Simulation of Advanced ELC with Synchronous Generator for Micro Hydropower

Size: px
Start display at page:

Download "Simulation of Advanced ELC with Synchronous Generator for Micro Hydropower"

Transcription

1 Simulation of Advanced ELC with Synchronous Generator for Micro Hydropower Station ANKITA GUPTA 1 Alternate Hydro Energy Centre Indian Institute of Technology, Roorkee, India ankita.iitr.6@gmail.com Abstract- This paper presents an analysis and design of an Electronic Load Controller (ELC) for standalone synchronous generator suitable for micro hydropower stations. ELC is basically used to maintain the constant power at the generator terminals, which in turn helps to maintain the system frequency constant. The designed ELC consists of a controlled bridge rectifier-chopper system feeding a resistive dump load whose power consumption is varied through the duty cycle of the chopper. Proper design of rectifier, chopper and dump load is very important for trouble free operation of ELC. The ELC is designed and simulated in MATLAB using Simulink. This scheme can be efficiently used in micro hydropower stations. Index Terms - Electronic Load Controller; Synchronous Generator; Micro Hydropower Station. I. INTROUCTION Micro hydropower stations are emerging as a major renewable energy resource today as they do not encounter the problems of population displacement and environmental problems associated with the large hydropower plants. They have been playing a great role to provide electricity to remote area especially in developing countries. Micro hydropower stations are defined as hydro electric system upto 100 kw power range. Almost all of the micro hydropower stations are based on run-off-river type. The operating point of the generator is fixed such that it gives constant rated output at the rated conditions of voltage, current and speed, but the consumer load may vary. When the consumer load on the generator decreases, the turbine begins to accelerate and increases generated frequency. Similarly, an increase in consumer load on the generator causes deceleration in the turbine speed and the frequency decreases [1]. Now the variation in the consumer load connected is neutralized by the controller diverting the extra power to a dump load. ELC regulates the voltage and frequency of the generator through monitoring of consumer load variation and automatically dissipating any surplus power produced by the generator in additional load known as dump load, so that, the total output power of generator remains equal to its rated power. Synchronous generator has some advantages over induction generator for such systems. Synchronous generators can run isolated from the grid and produce power since excitation is not grid-dependent. Also, synchronous generators are readily available in market, no excitation capacitors are required to provide reactive power, highly efficient, having in-built AVR for voltage regulation and using synchronous generator with ELC we can achieve good frequency regulation. Literature has revealed that lots of work is done on ELC with asynchronous generator [2-7]. This paper therefore deals with the unexplored and relevant topic of evelopment of ELC for micro hydropower station using Synchronous generator of 50kW. The designed system consists of hydro turbine, exciter, synchronous generator, consumer load and ELC. In this case it is 50kW generator driven by a hydro turbine. The voltage output of the generator is regulated by AVR. The ELC is controlled rectifier type with chopper controlled dump load. Here IGBT is used as chopper. The system is designed in MATLAB Simulink and the results are analyzed. II. EVELOPE SCHEME A schematic diagram of the developed ELC system with synchronous generator is shown in Fig. 1. The system consists of 3-phase synchronous generator of 50kW driven by a constant hydro turbine. Since the input to the hydro turbine (i.e. Head and discharge) is assumed to be constant, so the output of hydro turbine is nearly constant, output power of the Synchronous generator must be held constant at all loads. Any decrease in load may accelerate the machine and raise the frequency levels to high value. The power in surplus of the consumer load is dumped in the resistive dump load through an ELC connected at the terminals of the synchronous generator. The ELC consists of a controlled bridge rectifier in series with IGBT chopper and dump load (resistors). The duty cycle of the chopper is adjusted so that the output power of the generator remains constant. ELC reacts so fast to load change which is not even noticeable unless a very large load is applied. The advantage of ELC is that, it is reliable and not having any moving part, so virtually maintenance free. 55 ISSN (Print): , Volume-2, Issue-1, 20123

2 S = uty cycle of chopper V dc = C output voltage of thyristor bridge rectifier R = ump load resistance The rating of dump load resistance is given by: R ( Vdc) P G 2 (3) Fig 1: Schematic iagram of eveloped ELC Scheme III. PRINCIPLE OF OPERATION The Synchronous generator ELC system consists of a threephase delta-connected generator driven by a micro hydro turbine and an ELC. Since the input power is nearly constant, the output power of the SEIG is held constant at varying consumer loads. The power in surplus of the consumer load is dumped in a dump load through the ELC. Thus, Synchronous Generator feeds two loads in parallel such that the total power is constant, that is, P G = P C + P P G = Generated power of the generator (which should be kept constant), P C = Consumer load power, and P = ump load power The power dissipated in the dump load can be used for battery charging, water heating, cooking, etc. IV. ESIGN OF ELC FOR SIMULATION A number of Electronic Load Controller circuits are developed based on various methods, to dissipate the power in dump load, to obtain the balancing between the hydro turbine input and the generator output [1]. With the variation of consumer load the load controller has to change the effective dump load resistance, so that, P G = P C + P (1) P G = Output power of synchronous generator P C = Consumer load power P = ump load power The power in dump load depends on the duty cycle of the chopper and is given as: P ( SVdc) R 2 (2) The model of the 50 kw synchronous generator is designed for simulation. The calculation is based on assumption and it can be used to analyze the system and to understand the effect of using ELC on the micro hydropower plant. The model was designed to control the frequency of the system but the voltage is controlled by Automatic voltage regulator (AVR). A. Generator Parameters For simulation, the 3 phase synchronous generator model of 50 kw, 400 V, 50 Hz, 4-pole is considered. The generator is Salient pole type. The speed of synchronous generator is calculated as below: 120 f N 1500rpm p (4) N = synchronous speed of generator f = frequency of generated voltage p = no. of poles B. esign of ELC The rating of bridge rectifier and chopper switch depends on the rated voltage and power of the synchronous generator. The C output voltage of controlled bridge rectifier is given as below: 3 3Vm Vdc cos (5) α = firing angle V m = Input voltage at ELC terminal The maximum value of Vdc occurs when α=0, and is given as, 3 3Vm Vdc (6) V dc V (7) 56

3 ELC current is given as, P Idc V G dc I dc A (8) (9) The dump load resistance is calculated as : R 2 2 ( Vdc) (661.59) P gen C. esign of C Filter capacitor (10) When the AC signal passed through rectifier it would become an uneven C. A filtering section is used to smooth out this uneven C signal. Filters filter unwanted AC in the output of a rectifier. The Ripple factor for C- filter is given by: 1 r 4 3fCRL Where, r = Ripple factor of C- filter f = frequency (in Hz) RL = Resistance of dump load (in Ohm) or, 1 C 4 3fRr (11) (12) The change in speed of generator (change in frequency) corresponding to the change of load is measured. This is compared with a reference frequency, which is taken as proportional to the rated frequency of the generator. A controller is used to process the error between feedback and reference frequency signals. The error frequency is fed to a controller as shown in Fig. 2. The output of the controller is compared with a sawtooth carrier waveform to result in a PWM signal to alter the duty cycle of the chopper. The saw-tooth waveform is defined as [7]: V st Amt T A m = amplitude of the saw-tooth carrier waveform t = time in m-sec T p = time period of the saw-tooth PWM carrier wave p (14) The controller output is compared with the saw-tooth carrier waveform and output is fed to the gate of the chopper switch (IGBT). The switching logic is as follows: If Vst > Vo, then S=1 If Vst < Vo, then S=0 Where, S is the switching function used for generating the gating pulse of IGBT of the chopper of ELC. Assume, the ripple factor is 15%, 1 3 C F (13) V. SIMULINK MOEL OF ESIGNE SCHEME The imulink model of the designed scheme is as shown in Fig 2. In this scheme, the ELC consists of a three-phase controlled bridge rectifier and an IGBT chopper. The AC voltage is rectified by means of a controlled bridge rectifier. An electrolytic capacitor is connected across the bridge rectifier to filter out the ripples. The dump load in series with the chopper switch is connected across the C link. The dump load is designed such that, when the duty cycle of the chopper is unity, it should consume the rated output power of the generator. The output power of the synchronous generator is kept constant by the ELC. Figure 2: Simulink model of esigned scheme. Cases consider for analysis of designed scheme For analysis of ELC with synchronous generator, we considered three cases with synchronous generator of output power 50kW and varying consumer load demand as shown in table 1. 57

4 TABLE 1: IFFERENT CASES FOR SIMULINK MOEL ANALYSIS Case No. Consumer load in kw Figure 3 (e): Error in Frequency VI. RESULTS AN ISCUSSUION The simulation circuit is simulated in MATLAB Simulink, after simulation we get the results as shown in Fig 3, 4 and 5, case 1, 2 and 3 respectively. The oscilloscope output shows the Excitation Voltage, Rotor Speed (in pu), Mechanical Power Output of Turbine, 3- Phase Current output of generator, Error in Frequency and Power outputs for all the three mentioned cases. A. CASE 1: Generator output is 50kW and Consumer load demand is 50kW Figure 3(f): Output power of generator and power across consumer load and dump load (P G = P C + P ) Figure 3(a): Excitation voltage B. CASE 2: Generator output is 50kW and Consumer load demand is 30kW Figure 3(b): Rotor Speed of Synchronous Generator (in pu) Figure 4(a): Excitation voltage Figure 3(c): Mechanical Power Output of hydro turbine Figure 4(b): Rotor Speed of Synchronous Generator (in pu) Figure3 (d): 3-Phase Current Output of Generator Figure 4(c): Mechanical Power Output of hydro turbine 58

5 Figure 4(d): 3-Phase Current Output of Generator Figure 5(b): Rotor Speed of Synchronous Generator (in pu) Figure 4(e): Error in Frequency Figure 5(c): Mechanical Power Output of hydro turbine Figure 5(d): 3-Phase Current Output of Generator Figure 5(e): Error Frequency Figure (f): Output power of generator and power across consumer load and dump load (P G = P C + P ) C. CASE 3: Generator output is 50kW and Consumer load demand is 40kW Figure 5 (a): Excitation voltage Figure 5(f): Output power of generator and power across consumer load and dump load (P G = P C + P ) 59

6 VII. CONCLUSION An Electronic Load Controller with synchronous generator using a three-phase controlled bridge rectifier and IGBT as chopper converter has been modeled in MATLAB Simulink, for controlling the frequency of micro hydro turbine under varying load conditions. The controller is modeled and the results are analyzed after simulation. The designed ELC is achieving its objective to control the frequency. This ELC can be fabricated and used efficiently in any micro hydropower plant. REFERENCES [1] B. Singh, S.S.Murthy, M.Goel and A.K.Tandon, A Steady State Analysis on Voltage and Frequency Control of Self-Excited Induction Generator in Micro- Hydro System, International conference on power electronics, rives and Energy Systems, pp.1-6, 2006 [2] S.S.Murthy, B.Singh, A.Kulkarni, R.Sivarajan and S.Gupta, Field Experience on A Novel Pico Hydel System using SEIG and ELC, IEEE Conference, Vol. 2, pp , 2003 [2] B.Singh, S.S.Murthy and S.Gupta, Analysis and esign of Electronic Load Controller for Self-Excited Induction Generators, IEEE Transactions on Energy Conversion, Vol. 21, pp , [3] M.Ramirez, An Electronic Load Controller for the Self-Excited Induction Generator, IEEE Transactions on energy conversion, Vol.22, No. 2, pp , [4] B.Singh, G.K.Kasal and S.Gairola, Power Quality Improvement in Conventional Electronic Load Controller for an Isolated Power Generation, IEEE Transactions on Energy Conversion, Vol. 23, No. 3, pp , [5] B.Singh and V.Rajagopal, Electronic Load Controller for Islanded Asynchronous Generator in Pico Hydro Power Generation, Conference paper Electrical, Indian Institute of Technology Roorkee, [6] B.Singh, S.S.Murthy and S.Gupta, Transient Analysis of Self-Excited Induction Generator with Electronic Load Controller (ELC) Supplying Static and ynamic Loads, IEEE Transactions on Industry Applications, Vol. 41, No.5, pp ,

DESIGN OF ELECTRONIC LOAD CONTROLLER BY USING COMBINATION METHOD FOR MICRO-HYDRO POWER PLANT AND ITS CONTROL AND MONITORING PROGRAM SIMULATION

DESIGN OF ELECTRONIC LOAD CONTROLLER BY USING COMBINATION METHOD FOR MICRO-HYDRO POWER PLANT AND ITS CONTROL AND MONITORING PROGRAM SIMULATION DESIGN OF ELECTRONIC LOAD CONTROLLER BY USING COMBINATION METHOD FOR MICRO-HYDRO POWER PLANT AND ITS CONTROL AND MONITORING PROGRAM SIMULATION 1 NAN WIN AUNG, 2 AUNG ZE YA 1,2 Department of Electrical

More information

Pid Plus Fuzzy Logic Controller Based Electronic Load Controller For Self Exited Induction Generator.

Pid Plus Fuzzy Logic Controller Based Electronic Load Controller For Self Exited Induction Generator. RESEARCH ARTICLE OPEN ACCESS Pid Plus Fuzzy Logic Controller Based Electronic Load Controller For Self Exited Induction Generator. S.Swathi 1, V. Vijaya Kumar Nayak 2, Sowjanya Rani 3,Yellaiah.Ponnam 4

More information

Electronic Load Controller for Self Exited Induction Generator Using Fuzzy Logic Controller

Electronic Load Controller for Self Exited Induction Generator Using Fuzzy Logic Controller IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 5, Issue 3 (Mar. - Apr. 2013), PP 49-54 Electronic Load Controller for Self Exited Induction

More information

Power Quality Improvement in Conventional Electronic Load Controller. for an Isolated Power Generation

Power Quality Improvement in Conventional Electronic Load Controller. for an Isolated Power Generation Power Quality Improvement in Conventional Electronic Load Controller Abstract for an Isolated Power Generation 1 B Saritha, 2 S Sravanthi 1 Assistant Professor, Lords Institute of Engineering and Technology,

More information

PERFORMANCE ANALYSIS OF MICROCONTROLLER BASED ELECTRONIC LOAD CONTROLLER

PERFORMANCE ANALYSIS OF MICROCONTROLLER BASED ELECTRONIC LOAD CONTROLLER ORIGINAL RESEARCH ARTICLE OPEN ACCESS PERFORMANCE ANALYSIS OF MICROCONTROLLER BASED ELECTRONIC LOAD CONTROLLER Amir Raj Giri *, Bikesh Shrestha, Rakesh Sinha Department of Electrical and Electronics Engineering,

More information

Transient Analysis of Self-Excited Induction Generator with Electronic Load Controller (ELC) for Single-Phase Loading

Transient Analysis of Self-Excited Induction Generator with Electronic Load Controller (ELC) for Single-Phase Loading INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR 721302, DECEMBER 27-29, 2002 393 Transient Analysis of Self-Excited Induction Generator with Electronic Load Controller (ELC) for Single-Phase Loading Bhim. Singh,

More information

Available online at ScienceDirect. Procedia Technology 21 (2015 ) SMART GRID Technologies, August 6-8, 2015

Available online at   ScienceDirect. Procedia Technology 21 (2015 ) SMART GRID Technologies, August 6-8, 2015 Available online at www.sciencedirect.com ScienceDirect Procedia Technology 21 (2015 ) 310 316 SMART GRID Technologies, August 6-8, 2015 A Zig-Zag Transformer and Three-leg VSC based DSTATCOM for a Diesel

More information

Improved Electronic Load Controller for Three Phase Isolated Micro-Hydro Generator

Improved Electronic Load Controller for Three Phase Isolated Micro-Hydro Generator Improved Electronic Controller for hree Isolated Micro-Hydro Generator Rajendra Adhikari Rojan Bhattarai Research Assistant at Department of Electrical Engineering Institute of Engineering, U therajendraadhikari@gmail.com

More information

International Journal of Advance Engineering and Research Development

International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor (SJIF): 4.14 International Journal of Advance Engineering and Research Development Volume 3, Issue 10, October -2016 e-issn (O): 2348-4470 p-issn (P): 2348-6406 Single

More information

Courseware Sample F0

Courseware Sample F0 Electric Power / Controls Courseware Sample 85822-F0 A ELECTRIC POWER / CONTROLS COURSEWARE SAMPLE by the Staff of Lab-Volt Ltd. Copyright 2009 Lab-Volt Ltd. All rights reserved. No part of this publication

More information

STATCOM with FLC and Pi Controller for a Three-Phase SEIG Feeding Single-Phase Loads

STATCOM with FLC and Pi Controller for a Three-Phase SEIG Feeding Single-Phase Loads STATCOM with FLC and Pi Controller for a Three-Phase SEIG Feeding Single-Phase Loads Ponananthi.V, Rajesh Kumar. B Final year PG student, Department of Power Systems Engineering, M.Kumarasamy College of

More information

Modeling & Simulation of Permanent Magnet Synchronous Wind Generator Based Stand-alone System

Modeling & Simulation of Permanent Magnet Synchronous Wind Generator Based Stand-alone System 2016 IJSRSET Volume 2 Issue 3 Print ISSN : 2395-1990 Online ISSN : 2394-4099 Themed Section: Engineering and Technology Modeling & Simulation of Permanent Magnet Synchronous Wind Generator Based Stand-alone

More information

Voltage Control and Power System Stability Enhancement using UPFC

Voltage Control and Power System Stability Enhancement using UPFC International Conference on Renewable Energies and Power Quality (ICREPQ 14) Cordoba (Spain), 8 th to 10 th April, 2014 Renewable Energy and Power Quality Journal (RE&PQJ) ISSN 2172-038 X, No.12, April

More information

( ) ON s inductance of 10 mh. The motor draws an average current of 20A at a constant back emf of 80 V, under steady state.

( ) ON s inductance of 10 mh. The motor draws an average current of 20A at a constant back emf of 80 V, under steady state. 1991 1.12 The operating state that distinguishes a silicon controlled rectifier (SCR) from a diode is (a) forward conduction state (b) forward blocking state (c) reverse conduction state (d) reverse blocking

More information

Study on Voltage Controller of Self-Excited Induction Generator Using Controlled Shunt Capacitor, SVC Magnetic Energy Recovery Switch

Study on Voltage Controller of Self-Excited Induction Generator Using Controlled Shunt Capacitor, SVC Magnetic Energy Recovery Switch Study on Voltage Controller of Self-Excited Induction Generator Using Controlled Shunt Capacitor, SVC Magnetic Energy Recovery Switch Abstract F.D. Wijaya, T. Isobe, R. Shimada Tokyo Institute of Technology,

More information

SHUNT ACTIVE POWER FILTER

SHUNT ACTIVE POWER FILTER 75 CHAPTER 4 SHUNT ACTIVE POWER FILTER Abstract A synchronous logic based Phase angle control method pulse width modulation (PWM) algorithm is proposed for three phase Shunt Active Power Filter (SAPF)

More information

Grid Interconnection of Wind Energy System at Distribution Level Using Intelligence Controller

Grid Interconnection of Wind Energy System at Distribution Level Using Intelligence Controller Energy and Power Engineering, 2013, 5, 382-386 doi:10.4236/epe.2013.54b074 Published Online July 2013 (http://www.scirp.org/journal/epe) Grid Interconnection of Wind Energy System at Distribution Level

More information

Stability of Voltage using Different Control strategies In Isolated Self Excited Induction Generator for Variable Speed Applications

Stability of Voltage using Different Control strategies In Isolated Self Excited Induction Generator for Variable Speed Applications Stability of Voltage using Different Control strategies In Isolated Self Excited Induction Generator for Variable Speed Applications Shilpa G.K #1, Plasin Francis Dias *2 #1 Student, Department of E&CE,

More information

ELECTRONIC CONTROL OF A.C. MOTORS

ELECTRONIC CONTROL OF A.C. MOTORS CONTENTS C H A P T E R46 Learning Objectives es Classes of Electronic AC Drives Variable Frequency Speed Control of a SCIM Variable Voltage Speed Control of a SCIM Chopper Speed Control of a WRIM Electronic

More information

A Switched Boost Inverter Fed Three Phase Induction Motor Drive

A Switched Boost Inverter Fed Three Phase Induction Motor Drive A Switched Boost Inverter Fed Three Phase Induction Motor Drive 1 Riya Elizabeth Jose, 2 Maheswaran K. 1 P.G. student, 2 Assistant Professor 1 Department of Electrical and Electronics engineering, 1 Nehru

More information

CONTROL SCHEME OF STAND-ALONE WIND POWER SUPPLY SYSTEM WITH BATTERY ENERGY STORAGE SYSTEM

CONTROL SCHEME OF STAND-ALONE WIND POWER SUPPLY SYSTEM WITH BATTERY ENERGY STORAGE SYSTEM CONTROL SCHEME OF STAND-ALONE WIND POWER SUPPLY SYSTEM WITH BATTERY ENERGY STORAGE SYSTEM 1 TIN ZAR KHAING, 2 LWIN ZA KYIN 1,2 Department of Electrical Power Engineering, Mandalay Technological University,

More information

Power quality improvement of self- excited induction generator using Multipulse AC-DC converters - A comparison

Power quality improvement of self- excited induction generator using Multipulse AC-DC converters - A comparison Swati Devabhaktuni, Carib.j.SciTech,13,Vol.1,5-6 Power quality improvement of self- excited induction generator using Multipulse AC-DC converters - A comparison Authors & Affiliation: Swati Devabhaktuni

More information

SIMULATION AND EVALUATION OF A PHASE SYNCHRONOUS INVERTER FOR MICRO-GRID SYSTEM

SIMULATION AND EVALUATION OF A PHASE SYNCHRONOUS INVERTER FOR MICRO-GRID SYSTEM SIMULATION AND EVALUATION OF A PHASE SYNCHRONOUS INVERTER FOR MICRO-GRID SYSTEM Tawfikur Rahman, Muhammad I. Ibrahimy, Sheikh M. A. Motakabber and Mohammad G. Mostafa Department of Electrical and Computer

More information

Load Frequency Control An ELC based approach

Load Frequency Control An ELC based approach Load Frequency Control An ELC based approach Ashwin Venkatraman 1, Paduru Kandarpa Sai 2, Mohit Gupta 3 1Electrical Engineering Department, Indian Institute of Technology Jodhpur 2Electrical Engineering

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad I INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad-000 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING TUTORIAL QUESTION BANK Course Name : POWER ELECTRONICS Course Code : AEE0

More information

Extraction of Extreme Power and Standardize of Voltage and Frequency under Varying Wind Conditions

Extraction of Extreme Power and Standardize of Voltage and Frequency under Varying Wind Conditions Extraction of Extreme Power and Standardize of Voltage and Frequency under Varying Wind Conditions V. Karthikeyan 1 1 Department of ECE, SVSCE, Coimbatore, Tamilnadu, India, Karthick77keyan@gmail.com `

More information

PERFORMANCE EVALUATION OF THREE PHASE SCALAR CONTROLLED PWM RECTIFIER USING DIFFERENT CARRIER AND MODULATING SIGNAL

PERFORMANCE EVALUATION OF THREE PHASE SCALAR CONTROLLED PWM RECTIFIER USING DIFFERENT CARRIER AND MODULATING SIGNAL Journal of Engineering Science and Technology Vol. 10, No. 4 (2015) 420-433 School of Engineering, Taylor s University PERFORMANCE EVALUATION OF THREE PHASE SCALAR CONTROLLED PWM RECTIFIER USING DIFFERENT

More information

CHAPTER 6 ANALYSIS OF THREE PHASE HYBRID SCHEME WITH VIENNA RECTIFIER USING PV ARRAY AND WIND DRIVEN INDUCTION GENERATORS

CHAPTER 6 ANALYSIS OF THREE PHASE HYBRID SCHEME WITH VIENNA RECTIFIER USING PV ARRAY AND WIND DRIVEN INDUCTION GENERATORS 73 CHAPTER 6 ANALYSIS OF THREE PHASE HYBRID SCHEME WITH VIENNA RECTIFIER USING PV ARRAY AND WIND DRIVEN INDUCTION GENERATORS 6.1 INTRODUCTION Hybrid distributed generators are gaining prominence over the

More information

Prabir Ranjan Kasari 1, Abanishwar Chakraborti 1. Bikram Das 1, Naireeta Deb System Configurations and principle of operation. I.

Prabir Ranjan Kasari 1, Abanishwar Chakraborti 1. Bikram Das 1, Naireeta Deb System Configurations and principle of operation. I. Power Electronics Based Voltage and Frequency Controller Feeding Fixed Loads For Application In Stand-Alone Wind Energy Conversion System Bikram Das 1, Naireeta Deb 2 1. Electrical Engineering Department,

More information

Electrical Engineering. Elixir Elec. Engg. 121 (2018)

Electrical Engineering. Elixir Elec. Engg. 121 (2018) 51530 Available online at www.elixirpublishers.com (Elixir International Journal) Electrical Engineering Elixir Elec. Engg. 121 (2018) 51530-51534 Optimal Modeling of Grid Connected DC Coupled PV/Hydro

More information

A Fuzzy Controlled PWM Current Source Inverter for Wind Energy Conversion System

A Fuzzy Controlled PWM Current Source Inverter for Wind Energy Conversion System 7 International Journal of Smart Electrical Engineering, Vol.3, No.2, Spring 24 ISSN: 225-9246 pp.7:2 A Fuzzy Controlled PWM Current Source Inverter for Wind Energy Conversion System Mehrnaz Fardamiri,

More information

Speed control of Induction Motor drive using five level Multilevel inverter

Speed control of Induction Motor drive using five level Multilevel inverter Speed control of Induction Motor drive using five level Multilevel inverter Siddayya hiremath 1, Dr. Basavaraj Amarapur 2 [1,2] Dept of Electrical & Electronics Engg,Poojya Doddappa Appa college of Engg,

More information

A Novel Voltage and Frequency Control Scheme for a Wind Turbine Driven Isolated Asynchronous Generator

A Novel Voltage and Frequency Control Scheme for a Wind Turbine Driven Isolated Asynchronous Generator International Journal of Modern Engineering Research (IJMER) Vol.2, Issue.2, Mar-Apr 2012 pp-398-402 ISSN: 2249-6645 A Novel Voltage and Frequency Control Scheme for a Wind Turbine Driven Isolated Asynchronous

More information

AN EXPERIMENTAL INVESTIGATION OF PFC BLDC MOTOR DRIVE USING BRIDGELESS CUK DERIVED CONVERTER

AN EXPERIMENTAL INVESTIGATION OF PFC BLDC MOTOR DRIVE USING BRIDGELESS CUK DERIVED CONVERTER Volume 116 No. 11 2017, 141-149 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: 10.12732/ijpam.v116i11.15 ijpam.eu AN EXPERIMENTAL INVESTIGATION OF PFC

More information

CHAPTER 3 MODIFIED SINE PWM VSI FED INDUCTION MOTOR DRIVE

CHAPTER 3 MODIFIED SINE PWM VSI FED INDUCTION MOTOR DRIVE CHAPTER 3 MOIFIE INE PWM VI FE INUCTION MOTOR RIVE 3. 1 INTROUCTION Three phase induction motors are the most widely used motors for industrial control and automation. Hence they are often called the workhorse

More information

Eyenubo, O. J. & Otuagoma, S. O.

Eyenubo, O. J. & Otuagoma, S. O. PERFORMANCE ANALYSIS OF A SELF-EXCITED SINGLE-PHASE INDUCTION GENERATOR By 1 Eyenubo O. J. and 2 Otuagoma S. O 1 Department of Electrical/Electronic Engineering, Delta State University, Oleh Campus, Nigeria

More information

Available online at ScienceDirect. Energy Procedia 93 (2016 )

Available online at   ScienceDirect. Energy Procedia 93 (2016 ) Available online at www.sciencedirect.com ScienceDirect Energy Procedia 93 (2016 ) 133 140 Africa-EU Renewable Energy Research and Innovation Symposium, RERIS 2016, 8-10 March 2016, Tlemcen, Algeria Comparison

More information

ABSTRACT I. INTRODUCTION

ABSTRACT I. INTRODUCTION 2017 IJSRST Volume 3 Issue 8 Print ISSN: 2395-6011 Online ISSN: 2395-602X Themed Section: Science and Technology A Novel Zeta Converter with Pi Controller for Power Factor Correction in Induction Motor

More information

Design and Simulation of Fuzzy Logic controller for DSTATCOM In Power System

Design and Simulation of Fuzzy Logic controller for DSTATCOM In Power System Design and Simulation of Fuzzy Logic controller for DSTATCOM In Power System Anju Gupta Department of Electrical and Electronics Engg. YMCA University of Science and Technology anjugupta112@gmail.com P.

More information

Development of an Experimental Rig for Doubly-Fed Induction Generator based Wind Turbine

Development of an Experimental Rig for Doubly-Fed Induction Generator based Wind Turbine Development of an Experimental Rig for Doubly-Fed Induction Generator based Wind Turbine T. Neumann, C. Feltes, I. Erlich University Duisburg-Essen Institute of Electrical Power Systems Bismarckstr. 81,

More information

Transient stability improvement by using shunt FACT device (STATCOM) with Reference Voltage Compensation (RVC) control scheme

Transient stability improvement by using shunt FACT device (STATCOM) with Reference Voltage Compensation (RVC) control scheme I J E E E C International Journal of Electrical, Electronics ISSN No. (Online) : 2277-2626 and Computer Engineering 2(1): 7-12(2013) Transient stability improvement by using shunt FACT device (STATCOM)

More information

Dynamic Response of Wound Rotor Induction Generator for. Wind Energy Application

Dynamic Response of Wound Rotor Induction Generator for. Wind Energy Application Dynamic Response of Wound Rotor Induction Generator for Wind Energy Application Saurabh Gupta Kishor Thakre Gaurav Gupta Research scholar Research scholar Research Scholar UIT-RGPV BHOPAL UIT-RGPV BHOPAL

More information

ANFIS based 48-Pulse STATCOM Controller for Enhancement of Power System Stability

ANFIS based 48-Pulse STATCOM Controller for Enhancement of Power System Stability ANFIS based 48-Pulse STATCOM Controller for Enhancement of Power System Stility Subir Datta and Anjan Kumar Roy Abstract The paper presents a new ANFIS-based controller for enhancement of voltage stility

More information

IJESRT. (I2OR), Publication Impact Factor: (ISRA), Impact Factor: Student, SV University, Tirupati, India.

IJESRT. (I2OR), Publication Impact Factor: (ISRA), Impact Factor: Student, SV University, Tirupati, India. IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY DC-DC CONVERTER WITH VOLTAGE CONTROLLER FOR STAND ALONE WIND ENERGY SYSTEM A. Bala Chandana*, P.Sangameswara Raju * Student, SV

More information

CHAPTER 3 SINGLE SOURCE MULTILEVEL INVERTER

CHAPTER 3 SINGLE SOURCE MULTILEVEL INVERTER 42 CHAPTER 3 SINGLE SOURCE MULTILEVEL INVERTER 3.1 INTRODUCTION The concept of multilevel inverter control has opened a new avenue that induction motors can be controlled to achieve dynamic performance

More information

Modeling and Analysis of Common-Mode Voltages Generated in Medium Voltage PWM-CSI Drives

Modeling and Analysis of Common-Mode Voltages Generated in Medium Voltage PWM-CSI Drives IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 18, NO. 3, MAY 2003 873 Modeling and Analysis of Common-Mode Voltages Generated in Medium Voltage PWM-CSI Drives José Rodríguez, Senior Member, IEEE, Luis Morán,

More information

Application of Fuzzy Logic Controller in Shunt Active Power Filter

Application of Fuzzy Logic Controller in Shunt Active Power Filter IJIRST International Journal for Innovative Research in Science & Technology Volume 2 Issue 11 April 2016 ISSN (online): 2349-6010 Application of Fuzzy Logic Controller in Shunt Active Power Filter Ketan

More information

Simulation of Speed Control of Induction Motor with DTC Scheme Patel Divyaben Lalitbhai 1 Prof. C. A. Patel 2 Mr. B. R. Nanecha 3

Simulation of Speed Control of Induction Motor with DTC Scheme Patel Divyaben Lalitbhai 1 Prof. C. A. Patel 2 Mr. B. R. Nanecha 3 IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 09, 2015 ISSN (online): 2321-0613 Simulation of Speed Control of Induction Motor with DTC Scheme Patel Divyaben Lalitbhai

More information

AUTONOMOUS MICRO-HYDRO POWER SYSTEM FOR DISTRIBUTED GENERATION: A POWER QUALITY ANALYSIS

AUTONOMOUS MICRO-HYDRO POWER SYSTEM FOR DISTRIBUTED GENERATION: A POWER QUALITY ANALYSIS AUTONOMOUS MICRO-HYDRO POWER SYSTEM FOR DISTRIBUTED GENERATION: A POWER QUALITY ANALYSIS 1 H. Ashfaq, 2 Mohammad Saood, 3 Rajveer Singh Department of Electrical Engineering, Jamia Millia Islamia, New Delhi

More information

Questions from the same exercise can be combined together to increase difficulty. Which one of the following properties of the diode is NOT true:

Questions from the same exercise can be combined together to increase difficulty. Which one of the following properties of the diode is NOT true: Questions from the same exercise can be combined together to increase difficulty. 21 1 Which one of the following properties of the diode is NOT true: a) When no voltage is applied across the diode, it

More information

Arvind Pahade and Nitin Saxena Department of Electrical Engineering, Jabalpur Engineering College, Jabalpur, (MP), India

Arvind Pahade and Nitin Saxena Department of Electrical Engineering, Jabalpur Engineering College, Jabalpur, (MP), India e t International Journal on Emerging Technologies 4(1): 10-16(2013) ISSN No. (Print) : 0975-8364 ISSN No. (Online) : 2249-3255 Control of Synchronous Generator Excitation and Rotor Angle Stability by

More information

Wind Energy Stabilization Using SVPWM Based Modulated Power Filter Compensator

Wind Energy Stabilization Using SVPWM Based Modulated Power Filter Compensator Wind Energy Stabilization Using SVPWM Based Modulated Power Filter Compensator Fatehbir Singh 1, Shakti Singh 2 Abstract: During the last two decades, renewable wind energy has become increasingly popular

More information

dr lr dt dt. V = ωl i g m m

dr lr dt dt. V = ωl i g m m International Journal of Advances In Applied Science and Engineering (IJAEAS) ISSN (P): 2348-1811; ISSN (E): 2348-182X Vol. 1, Issue 1, Feb 2014, 17-21 IIST HUSSAIN BASHA.G 1, SHAIK HAMEED 2 1 (PG scholor),

More information

CHAPTER 2 VSI FED INDUCTION MOTOR DRIVE

CHAPTER 2 VSI FED INDUCTION MOTOR DRIVE CHAPTER 2 VI FE INUCTION MOTOR RIVE 2.1 INTROUCTION C motors have been used during the last century in industries for variable speed applications, because its flux and torque can be controlled easily by

More information

A Novel Simple Reliability Enhancement Switching Topology for Single Phase Buck-Boost Inverter

A Novel Simple Reliability Enhancement Switching Topology for Single Phase Buck-Boost Inverter A Novel Simple Reliability Enhancement Switching Topology for Single Phase Buck-Boost Inverter Snehal Balaji Gatkine 1 PG Scholar, 1 Department of Electrical Engineering, 1 Tulsiramji Gaikwad - Patil College

More information

Conventional Paper-II-2013

Conventional Paper-II-2013 1. All parts carry equal marks Conventional Paper-II-013 (a) (d) A 0V DC shunt motor takes 0A at full load running at 500 rpm. The armature resistance is 0.4Ω and shunt field resistance of 176Ω. The machine

More information

Active Power Factor Correction for AC-DC Converter with PWM Inverter for UPS System

Active Power Factor Correction for AC-DC Converter with PWM Inverter for UPS System IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 02, 2015 ISSN (online): 2321-0613 Active Power Factor Correction for AC-DC Converter with PWM Inverter for UPS System Harish

More information

CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL

CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL 14 CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL 2.1 INTRODUCTION Power electronics devices have many advantages over the traditional power devices in many aspects such as converting

More information

Speed Control of a Dc Motor Using a Chopper Drive

Speed Control of a Dc Motor Using a Chopper Drive International Journal of Engineering and Technology Volume 6 No.5, May, 2016 Speed Control of a Dc Motor Using a Chopper Drive Nwosu, A.W 1,Okpagu P.E 2 1 National Engineering Design and Development Institute

More information

Simulation of Solar Powered PMBLDC Motor Drive

Simulation of Solar Powered PMBLDC Motor Drive Simulation of Solar Powered PMBLDC Motor Drive 1 Deepa A B, 2 Prof. Maheshkant pawar 1 Students, 2 Assistant Professor P.D.A College of Engineering Abstract - Recent global developments lead to the use

More information

11. Define the term pinch off voltage of MOSFET. (May/June 2012)

11. Define the term pinch off voltage of MOSFET. (May/June 2012) Subject Code : EE6503 Branch : EEE Subject Name : Power Electronics Year/Sem. : III /V Unit - I PART-A 1. State the advantages of IGBT over MOSFET. (Nov/Dec 2008) 2. What is the function of snubber circuit?

More information

CHAPTER 4 ON LINE LOAD FREQUENCY CONTROL

CHAPTER 4 ON LINE LOAD FREQUENCY CONTROL CHAPTER 4 ON LINE LOAD FREQUENCY CONTROL The main objective of Automatic Load Frequency Control (LFC) is to maintain the frequency and active power change over lines at their scheduled values. As frequency

More information

Integrated Electronic Load Controller with T-Connected Transformer for Isolated Asynchronous Generator

Integrated Electronic Load Controller with T-Connected Transformer for Isolated Asynchronous Generator Asian Power Electronics Journal, Vol. 4 No.2 August 2010 Integrated Electronic Load Controller with T-Connected Transformer for Isolated Asynchronous Generator Bhim Singh 1 V. Rajagopal 2 Abstract This

More information

IJEETC. InternationalJournalof. ElectricalandElectronicEngineering& Telecommunications.

IJEETC. InternationalJournalof. ElectricalandElectronicEngineering& Telecommunications. IJEETC www.ijeetc.com InternationalJournalof ElectricalandElectronicEngineering& Telecommunications editorijeetc@gmail.com oreditor@ijeetc.com Int. J. Elec&Electr.Eng&Telecoms. 2015 Anoop Dhayani A P et

More information

Modeling of Single Stage Grid-Connected Buck-Boost Inverter for Domestic Applications Maruthi Banakar 1 Mrs. Ramya N 2

Modeling of Single Stage Grid-Connected Buck-Boost Inverter for Domestic Applications Maruthi Banakar 1 Mrs. Ramya N 2 IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 02, 2015 ISSN (online): 2321-0613 Modeling of Single Stage Grid-Connected Buck-Boost Inverter for Domestic Applications

More information

Design of Three Phase PWM Voltage Source Inverter for Induction Heater

Design of Three Phase PWM Voltage Source Inverter for Induction Heater Design of Three Phase PWM Voltage Source Inverter for Induction Heater Divya.S.R. 1, Ashwini.K.V.2, Nandish B.M. 3 1,2 UG Student, 3 Assistant Proffesor Department of EEE,JIT,Karnataka,India Abstract:

More information

Mitigation of Power Quality Problems Using DVR in Distribution Network for Welding Load

Mitigation of Power Quality Problems Using DVR in Distribution Network for Welding Load IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 10, Issue 4 Ver. I (July Aug. 2015), PP 106-112 www.iosrjournals.org Mitigation of Power Quality

More information

II. L-Z SOURCE INVERTER

II. L-Z SOURCE INVERTER V/F Speed Control of Induction Motor by using L- Z Source Inverter Priyanka A. Jadhav 1, Amruta A. Patil 2, Punam P. Patil 3, Supriya S. Yadav 4, Rupali S. Patil 5, Renu C. Lohana 6 1,2,3,4,5,6 Electrical

More information

Module 4. AC to AC Voltage Converters. Version 2 EE IIT, Kharagpur 1

Module 4. AC to AC Voltage Converters. Version 2 EE IIT, Kharagpur 1 Module 4 AC to AC Voltage Converters Version EE IIT, Kharagpur 1 Lesson 9 Introduction to Cycloconverters Version EE IIT, Kharagpur Instructional Objectives Study of the following: The cyclo-converter

More information

(a) average output voltage (b) average output current (c) average and rms values of SCR current and (d) input power factor. [16]

(a) average output voltage (b) average output current (c) average and rms values of SCR current and (d) input power factor. [16] Code No: 07A50204 R07 Set No. 2 1. A single phase fully controlled bridge converter is operated from 230 v, 50 Hz source. The load consists of 10Ω and a large inductance so as to reach the load current

More information

Voltage-Control Based Pmbldcm By Using Cuk Converter With Pfc

Voltage-Control Based Pmbldcm By Using Cuk Converter With Pfc International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 8, Issue 1 (July 2013), PP. 51-59 Voltage-Control Based Pmbldcm By Using Cuk Converter

More information

DSP-Based Simple Technique for Synchronization of 3 phase Alternators with Active and Reactive Power Load Sharing

DSP-Based Simple Technique for Synchronization of 3 phase Alternators with Active and Reactive Power Load Sharing DSP-Based Simple Technique for Synchronization of 3 phase Alternators with Active and Reactive Power Load Sharing M. I. Nassef (1), H. A. Ashour (2), H. Desouki (3) Department of Electrical and Control

More information

Voltage and Frequency Controller for a Small Scale Wind Power Generation

Voltage and Frequency Controller for a Small Scale Wind Power Generation Voltage and Frequency Controller for a Small Scale Wind Power Generation Bhim Singh 1 and Gaurav Kumar Kasal 1 Abstract This paper deals with the control of voltage and frequency of a wind turbine driven

More information

CHAPTER-III MODELING AND IMPLEMENTATION OF PMBLDC MOTOR DRIVE

CHAPTER-III MODELING AND IMPLEMENTATION OF PMBLDC MOTOR DRIVE CHAPTER-III MODELING AND IMPLEMENTATION OF PMBLDC MOTOR DRIVE 3.1 GENERAL The PMBLDC motors used in low power applications (up to 5kW) are fed from a single-phase AC source through a diode bridge rectifier

More information

CHAPTER 4 MODIFIED H- BRIDGE MULTILEVEL INVERTER USING MPD-SPWM TECHNIQUE

CHAPTER 4 MODIFIED H- BRIDGE MULTILEVEL INVERTER USING MPD-SPWM TECHNIQUE 58 CHAPTER 4 MODIFIED H- BRIDGE MULTILEVEL INVERTER USING MPD-SPWM TECHNIQUE 4.1 INTRODUCTION Conventional voltage source inverter requires high switching frequency PWM technique to obtain a quality output

More information

CHAPTER 5 MODIFIED SINUSOIDAL PULSE WIDTH MODULATION (SPWM) TECHNIQUE BASED CONTROLLER

CHAPTER 5 MODIFIED SINUSOIDAL PULSE WIDTH MODULATION (SPWM) TECHNIQUE BASED CONTROLLER 74 CHAPTER 5 MODIFIED SINUSOIDAL PULSE WIDTH MODULATION (SPWM) TECHNIQUE BASED CONTROLLER 5.1 INTRODUCTION Pulse Width Modulation method is a fixed dc input voltage is given to the inverters and a controlled

More information

Closed Loop Single Phase Bidirectional AC to AC Buck Boost Converter for Power Quality Improvement

Closed Loop Single Phase Bidirectional AC to AC Buck Boost Converter for Power Quality Improvement International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 7, Issue 11 (July 2013), PP. 35-42 Closed Loop Single Phase Bidirectional AC to

More information

SINGLE PHASE BRIDGELESS PFC FOR PI CONTROLLED THREE PHASE INDUCTION MOTOR DRIVE

SINGLE PHASE BRIDGELESS PFC FOR PI CONTROLLED THREE PHASE INDUCTION MOTOR DRIVE SINGLE PHASE BRIDGELESS PFC FOR PI CONTROLLED THREE PHASE INDUCTION MOTOR DRIVE Sweatha Sajeev 1 and Anna Mathew 2 1 Department of Electrical and Electronics Engineering, Rajagiri School of Engineering

More information

Power Electronics (Sample Questions) Module-1

Power Electronics (Sample Questions) Module-1 Module-1 Short Questions (Previous Years BPUT Questions 1 to 18) 1. What are the conditions for a thyristor to conduct? di 2. What is the common method used for protection? dt 3. What is the importance

More information

Simulation of Dc-Link Power Converter for Integrating Offshore Wind Turbine Generator to Grid

Simulation of Dc-Link Power Converter for Integrating Offshore Wind Turbine Generator to Grid Simulation of Dc-Link Power Converter for Integrating Offshore Wind Turbine Generator to Grid Chaitanya Krishna Jambotkar #1, Prof. Uttam S Satpute #2 #1Department of Electronics and Communication Engineering,

More information

STATCOM WITH POD CONTROLLER FOR REACTIVE POWER COMPENSATION Vijai Jairaj 1, Vishnu.J 2 and Sreenath.N.R 3

STATCOM WITH POD CONTROLLER FOR REACTIVE POWER COMPENSATION Vijai Jairaj 1, Vishnu.J 2 and Sreenath.N.R 3 STATCOM WITH POD CONTROLLER FOR REACTIVE POWER COMPENSATION Vijai Jairaj 1, Vishnu.J 2 and Sreenath.N.R 3 1 PG Student [Electrical Machines], Department of EEE, Sree Buddha College of Engineering Pattoor,

More information

MATLAB/Simulink Based Model for 25 kv AC Electric Traction Drive

MATLAB/Simulink Based Model for 25 kv AC Electric Traction Drive MATLAB/Simulink Based Model for 25 kv AC Electric Traction Drive Shubhra (MIEEE, LMIETE) Assistant Professor Indraprastha Engineering College Ghaziabad, Uttar Pradesh, India Abstract-- Advances in power

More information

Module 5. DC to AC Converters. Version 2 EE IIT, Kharagpur 1

Module 5. DC to AC Converters. Version 2 EE IIT, Kharagpur 1 Module 5 DC to AC Converters Version 2 EE IIT, Kharagpur 1 Lesson 37 Sine PWM and its Realization Version 2 EE IIT, Kharagpur 2 After completion of this lesson, the reader shall be able to: 1. Explain

More information

CHAPTER 3 H BRIDGE BASED DVR SYSTEM

CHAPTER 3 H BRIDGE BASED DVR SYSTEM 23 CHAPTER 3 H BRIDGE BASED DVR SYSTEM 3.1 GENERAL The power inverter is an electronic circuit for converting DC power into AC power. It has been playing an important role in our daily life, as well as

More information

Power Quality Improvement of Distribution Network for Non-Linear Loads using Inductive Active Filtering Method Suresh Reddy D 1 Chidananda G Yajaman 2

Power Quality Improvement of Distribution Network for Non-Linear Loads using Inductive Active Filtering Method Suresh Reddy D 1 Chidananda G Yajaman 2 IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 03, 2015 ISSN (online): 2321-0613 Power Quality Improvement of Distribution Network for Non-Linear Loads using Inductive

More information

INSTANTANEOUS POWER CONTROL OF D-STATCOM FOR ENHANCEMENT OF THE STEADY-STATE PERFORMANCE

INSTANTANEOUS POWER CONTROL OF D-STATCOM FOR ENHANCEMENT OF THE STEADY-STATE PERFORMANCE INSTANTANEOUS POWER CONTROL OF D-STATCOM FOR ENHANCEMENT OF THE STEADY-STATE PERFORMANCE Ms. K. Kamaladevi 1, N. Mohan Murali Krishna 2 1 Asst. Professor, Department of EEE, 2 PG Scholar, Department of

More information

Pulse Width Modulated Motor Drive Fault Detection Using Electrical Signature Analysis

Pulse Width Modulated Motor Drive Fault Detection Using Electrical Signature Analysis Pulse Width Modulated Motor Drive Fault Detection Using Electrical Signature Analysis By ALL-TEST Pro, LLC & EMA Inc. Industry s use of Motor Drives for AC motors continues to grow and the Pulse-Width

More information

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 04, 2016 ISSN (online):

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 04, 2016 ISSN (online): IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 04, 2016 ISSN (online): 2321-0613 Speed Control and Braking of Three-Phase IM Vipul Gupta 1 S. Phulambikar 2 1 P.G Scholar

More information

Power Electronics Converters for Variable Speed Pump Storage

Power Electronics Converters for Variable Speed Pump Storage International Journal of Power Electronics and Drive System (IJPEDS) Vol. 3, No. 1, March 2013, pp. 74~82 ISSN: 2088-8694 74 Power Electronics Converters for Variable Speed Pump Storage Othman Hassan Abdalla,

More information

Symmetrical Multilevel Inverter with Reduced Number of switches With Level Doubling Network

Symmetrical Multilevel Inverter with Reduced Number of switches With Level Doubling Network International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 12, Issue 10 (October 2016), PP.70-74 Symmetrical Multilevel Inverter with Reduced

More information

Modular Grid Connected Photovoltaic System with New Multilevel Inverter

Modular Grid Connected Photovoltaic System with New Multilevel Inverter Modular Grid Connected Photovoltaic System with New Multilevel Inverter Arya Sasi 1, Jasmy Paul 2 M.Tech Scholar, Dept. of EEE, ASIET, Kalady, Mahatma Gandhi University, Kottayam, Kerala, India 1 Assistant

More information

Micro-controller Based Three-phase Voltage Source Inverter for Alternative Energy Source. Abstract

Micro-controller Based Three-phase Voltage Source Inverter for Alternative Energy Source. Abstract Micro-controller Based Three-phase Voltage Source Inverter for Alternative Energy Source M.M. A. Rahman, Kurt Hammons, Phillip Beemer, Marcia Isserstedt, and Matt Trommater School of Engineering Padnos

More information

PF and THD Measurement for Power Electronic Converter

PF and THD Measurement for Power Electronic Converter PF and THD Measurement for Power Electronic Converter Mr.V.M.Deshmukh, Ms.V.L.Jadhav Department name: E&TC, E&TC, And Position: Assistant Professor, Lecturer Email: deshvm123@yahoo.co.in, vandanajadhav19jan@gmail.com

More information

Low Cost Power Converter with Improved Performance for Switched Reluctance Motor Drives

Low Cost Power Converter with Improved Performance for Switched Reluctance Motor Drives ISSN (Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology Volume 3, Special Issue 3, March 2014 2014 International Conference

More information

Operation of a Three-Phase PWM Rectifier/Inverter

Operation of a Three-Phase PWM Rectifier/Inverter Exercise 1 Operation of a Three-Phase PWM Rectifier/Inverter EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the block diagram of the three-phase PWM rectifier/inverter.

More information

High Voltage DC Transmission 2

High Voltage DC Transmission 2 High Voltage DC Transmission 2 1.0 Introduction Interconnecting HVDC within an AC system requires conversion from AC to DC and inversion from DC to AC. We refer to the circuits which provide conversion

More information

International Journal of Engineering Research and General Science Volume 5, Issue 2, March-April, 2017 ISSN

International Journal of Engineering Research and General Science Volume 5, Issue 2, March-April, 2017 ISSN Analysis of H Link in Large Scale Offshore farm, Study and Comparison of LCC and SC Based H Links and Interconnection of Asynchronous Power Systems Utilizing SC-Based H Converter *Usman Raees Baig, **Mokhi

More information

Single Phase Induction Motor Drive using Modified SEPIC Converter and Three Phase Inverter

Single Phase Induction Motor Drive using Modified SEPIC Converter and Three Phase Inverter Single Phase Induction Motor Drive using Modified SEPIC Converter and Three Phase Inverter Ajeesh P R PG Student, M. Tech Power Electronics, Mar Athanasius College of Engineering, Kerala, India, Dr. Babu

More information

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK INDUCTION MOTOR DRIVE WITH SINGLE DC LINK TO MINIMIZE ZERO SEQUENCE CURRENT IN

More information

Inverter topologies for photovoltaic modules with p-sim software

Inverter topologies for photovoltaic modules with p-sim software Inverter topologies for photovoltaic modules with p-sim software Anand G. Acharya, Brijesh M. Patel, Kiran R. Prajapati 1. Student, M.tech, power system, SKIT, Jaipur, India, 2. Assistant Professor, ADIT,

More information