GHz-bandwidth optical filters based on highorder silicon ring resonators

Size: px
Start display at page:

Download "GHz-bandwidth optical filters based on highorder silicon ring resonators"

Transcription

1 GHz-bandwidth optical filters based on highorder silicon ring resonators Po Dong, 1* Ning-Ning Feng, 1 Dazeng Feng, 1 Wei Qian, 1 Hong Liang, 1 Daniel C. Lee, 1 B. J. Luff, 1 T. Banwell, 2 A. Agarwal, 2 P. Toliver, 2 R. Menendez, 2 T. K. Woodward, 2 and Mehdi Asghari 1 1 Kotura Inc., 2630 Corporate Place, Monterey Park, CA 91754, USA 2 Telcordia Technologies, Red Bank, NJ 07701, USA *pdong@kotura.com Abstract: Previously demonstrated high-order silicon ring filters typically have bandwidths larger than 100 GHz. Here we demonstrate 1-2 GHzbandwidth filters with very high extinction ratios (~50 db). The silicon waveguides employed to construct these filters have propagation losses of ~0.5 db/cm. Each ring of a filter is thermally controlled by metal heaters situated on the top of the ring. With a power dissipation of ~72 mw, the ring resonance can be tuned by one free spectral range, resulting in wavelength-tunable optical filters. Both second-order and fifth-order ring resonators are presented, which can find ready application in microwave/radio frequency signal processing Optical Society of America OCIS codes: ( ) Integrated optics devices; ( ) Resonators; ( ) Radio frequency photonics; ( ) Analog optical signal processing. References and links 1. RF photonic Technology in Optical Fiber Links, ed. W.S.C. Chang, (Cambridge University Press, 2002). 2. J. Capmany, B. Ortega, and D. Pastor, A tutorial on microwave photonic filters, J. Lightwave Technol. 24(1), (2006). 3. G. T. Reed, Silicon photonics, the state of the art (John Wiley and Sons, 2008). 4. T. K. Woodward, T. C. Banwell, A. Agarwal, P. Toliver, and R. Menendez, Signal processing in analog optical links, Avionics, Fiber Optics, and Photonics Conference (AVFOP 2009 IEEE), pp M. S. Rasras, K.-Y. Tu, D. M. Gill, Y.-K. Chen, A. E. White, S. S. Patel, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, and L. C. Kimerling, Demonstration of a tunable microwave-photonic notch filter using low-loss silicon ring resonators, J. Lightwave Technol. 27(12), (2009). 6. P. Toliver, R. C. Menendez, T. C. Banwell, A. Agarwal, T. K. Woodward, N. N. Feng, P. Dong, D. Feng, W. Qian, H. Liang, D. C. Lee, B. J. Luff, and M. Asghari, A programmable optical filter unit cell element for high resolution RF signal processing in silicon photonics (OFC 2010 IEEE), paper OWJ4. 7. C. K. Madsen, and J. H. Zhao, Optical filter design and analysis, a signal processing approach (Wiley 1999). 8. B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, Very high-order microring resonator filters for WDM applications, IEEE Photon. Technol. Lett. 16(10), (2004). 9. T. Barwicz, M. A. Popović, M. R. Watts, P. T. Rakich, E. P. Ippen, and H. I. Smith, Fabrication of add-drop filters based on frequency-matched microring resonators, J. Lightwave Technol. 24(5), (2006). 10. J. K. S. Poon, L. Zhu, G. A. DeRose, and A. Yariv, Transmission and group delay of microring coupledresonator optical waveguides, Opt. Lett. 31(4), (2006). 11. J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P.-T. Ho, High order filter response in coupled microring resonators, IEEE Photon. Technol. Lett. 12(3), (2000). 12. S. Xiao, M. H. Khan, H. Shen, and M. Qi, A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion, Opt. Express 15(22), (2007). 13. S. H. Tao, J. Song, Q. Fang, M. B. Yu, G. Q. Lo, and D. L. Kwong, 50th order series-coupled micro-ring resonator (IPGC 2008 IEEE), pp F. Xia, L. Sekaric, M. O Boyle, and Y. Vlasov, Coupled resonator optical waveguides (CROWs) based on silicon-on-insulator photonic wires, Appl. Phys. Lett. 89(4), (2006). 15. M. Popovic, Theory and design of high-index-contrast microphotonic circuits, PhD thesis, (MIT 2008). 16. P. Dong, W. Qian, S. Liao, H. Liang, C.-C. Kung, N.-N. Feng, R. Shafiiha, J. Fong, D. Feng, A. V. Krishnamoorthy, and M. Asghari, Low loss shallow-ridge silicon waveguides, Opt. Express 18(14), (2010). (C) 2010 OSA 8 November 2010 / Vol. 18, No. 23 / OPTICS EXPRESS 23784

2 17. P. Dong, W. Qian, H. Liang, R. Shafiiha, N.-N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, Low power and compact reconfigurable multiplexing devices based on silicon microring resonators, Opt. Express 18(10), (2010). 18. P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, Thermally tunable silicon racetrack resonators with ultralow tuning power, Opt. Express 18(19), (2010). 1. Introduction Overcoming the limitations of traditional methods of microwave and radio frequency (RF) signal processing has stimulated much activity in the application of photonics to this area [1, 2]. In particular, the use of fully integrated photonic devices and circuits to meet flexible wideband spectral processing requirements for both civilian and military applications is of great interest. Silicon photonics technology [3] has received much attention in recent years for application in long- and short-distance optical communications, including the demonstration of high speed optical modulators and detectors integrated with silicon waveguides, and it is becoming increasingly evident that this platform can also find ready application to previously intractable RF signal processing tasks [4]. The compatibility of silicon-based optics with mature CMOS fabrication techniques enables manufacture of high-performance optical components at low cost and offers the possibility of monolithic electronic-photonic integration. Here, we demonstrate high-order ring resonator based silicon photonics GHzbandwidth filters with large free spectral ranges (FSRs) and high extinction ratios. These are, to the best of our knowledge, the first high-order silicon-based filters with few-ghz bandwidths. This filter can work as a channelizing filter and be cascaded monolithically with other silicon photonic MHz-bandwidth RF filters, such as those demonstrated in Refs [5, 6], resulting in single-chip filter systems with high extinction ratios, narrow bandwidths, and large FSRs. 2. Device design and fabrication Mutually coupled resonators have the ability to synthesize higher-order filter responses with a flat-top passband and high out-of-band signal rejection (extinction ratio), which are important in applications such as WDM and microwave filtering [7]. Flat-top bands minimize group delay variation in the passband and high extinction ratios minimize signal crosstalk between adjacent channels. High-performance high-order rings with a few GHz bandwidth have been demonstrated in silica-based materials [8 11]. High-order silicon coupled rings have been also demonstrated, but usually with bandwidths larger than 100 GHz [12 14]. Here we use coupled ring resonators fabricated on a silicon-on-insulator platform to demonstrate few-ghz bandwidth filters. There are two major challenges to achieving narrow band silicon coupledring filters. First, although significant progress has been made in silicon photonics, silicon waveguide propagation losses are still too high for practical application to RF filters with large FSRs. While large-core silicon waveguides can have a propagation loss of ~0.1 db/cm, they require large bending radii on the order of mm, which limits the FSR to less than 10 GHz. A large device area also results in more power consumption. Submicron silicon waveguides have been demonstrated with a bend radius of a few µm [12 14], but the waveguide propagation loss is usually larger than 1 db/cm. Second, high-order coupled rings are very sensitive to fabrication tolerances. For instance, all mutually coupled rings in the filter are required to have precisely coincident resonant frequencies to achieve maximum efficiency. Unfortunately, the resonances of silicon rings built using submicron waveguides are very sensitive to fabrication imperfections [15]. The propagation loss of silicon waveguides arises mainly due to light scattering from the etched sidewalls. Minimizing the optical field overlap with etched interfaces can effectively reduce the waveguide propagation loss. Increasing waveguide width and decreasing etch depth can both realize this purpose. Here, we design a type of shallow-ridge waveguide [16]. The waveguide width and height are 1 µm and 0.25 µm, respectively, and the etch depth to form the ridge waveguide is 0.06 µm. Simulation indicates that the effective index and group index of the fundamental quasi-te mode are ~2.9 and ~3.8, respectively. Theoretical (C) 2010 OSA 8 November 2010 / Vol. 18, No. 23 / OPTICS EXPRESS 23785

3 simulation shows that the radiation loss for a bending radius of 100 µm is on the order of 10 4 db/cm. This bending radius can enable a ring resonator with an FSR of ~150 GHz. Based on the proposed waveguide geometry, we designed second and fifth order Butterworth filters with a maximally flat passband response. The FSR and bandwidth are targeted at 50 GHz and 1 GHz, respectively. The coupling ratios between rings are obtained based on Butterworth type response [7]. The ring radius is chosen as 248 µm. Due to fabrication variations, active control of ring resonance has to be used to make all the rings have coincident resonant frequencies. Individual heaters on the top of each ring are designed to fine tune the resonant frequency. We fabricated the devices using silicon-on-insulator wafers with a 0.25 µm thick silicon layer and a 3 µm thick buried oxide layer. An oxide layer was deposited on the wafers by plasma enhanced chemical vapor deposition to act as a hard mask for waveguide etching. Resist patterns were defined by an i-line stepper. The pattern was transferred to the oxide hard mask using a CHF 3 /O 2 chemistry. We then removed the resist and etched the silicon layer using an HBr-based silicon dry etch recipe. Both the oxide and silicon etch recipes were optimized to reduce sidewall roughness. We found that the use of oxide hard mask helps reduce the silicon waveguide loss. A 1.2 µm thick oxide was then deposited on the wafers as a cladding layer. A thin Ti metal was deposited on top of the ring to act as a heating resistor. This heater is connected by Al metals to test pads (shown in Fig. 1). Fig. 1. Optical images of fully fabricated 2 nd -order (a) and 5 th -order ring filters. 3. Waveguide loss measurement Characterizing waveguide loss is particularly important to assess ring performance. Test waveguides with different lengths together with ring filters were fabricated for this purpose. We tested the waveguide loss using an amplified spontaneous emission source with a wavelength centered at 1550 nm and an optical spectrum analyzer. Lensed fibers were used to couple light into and collect light from the waveguides. In Fig. 2(a), we show the insertion losses measured for different waveguide lengths as a function of wavelength. The insertion losses are normalized to the power measured from direct fiber to fiber coupling, and include both the fiber coupling loss to waveguides and the waveguide propagation loss. From the insertion loss at a particular wavelength for different waveguide lengths, we can extract the waveguide propagation loss using linear fitting. The results shown in Fig. 2(b) demonstrate a waveguide loss of ~0.48 db/cm in the C-band. Figure 2(c) presents the average waveguide loss in the C-band for ten different chips across the whole wafer. The wafer-level average waveguide loss is db/cm with a standard derivation of db/cm, demonstrating uniform waveguide quality on the wafer level. Given this propagation loss, the round trip loss of the ring is about 0.1 db. It is to be noted that the spectra in Fig. 2(a) are very smooth, indicating nearly single mode propagation through the waveguides. Although theoretical simulations predict two quasi-te modes, the coupling from the input fiber mode to the firstorder mode and the fundamental mode to the first-order mode is weak due to opposite (C) 2010 OSA 8 November 2010 / Vol. 18, No. 23 / OPTICS EXPRESS 23786

4 symmetry. In addition, the large index difference between two waveguide modes prevents efficient coupling between them. Fig. 2. (a) Insertion loss spectra for waveguides with different lengths. (b) Waveguide propagation loss spectrum obtained from linear fitting between insertion losses and waveguide lengths. (c) Average waveguide loss in C-band for ten different chips. 4. Heater characterization We characterized the heater efficiency and thermal crosstalk by measuring the drop-port transmission spectra with different heating powers for the second-order filter as shown in Fig. 1(a). The heaters on two neighboring rings are located on opposite sides of the rings, however, thermal crosstalk may still occur since silicon has very low thermal impedance. Although designed to have the same resonances, transmission spectra at the drop port usually show two resonant peaks corresponding to different resonances of the two rings, as shown in Fig. 3(a). This is due to resonance mismatch from fabrication imperfections. Applying heating power on one ring and monitoring the resonance shifts for both peaks give us information on both tuning efficiency and thermal crosstalk. Here the thermal crosstalk is defined as the ratio between the wavelength/frequency shift of the second to the first ring while heating the first ring. The wavelength shifts as a function of tuning power are shown in Fig. 3(b), from which we determine that the tuning power per unit frequency is 1.44 mw/ghz and the thermal crosstalk is 7.3%. Since the free spectral range (FSR) is 0.4 nm or 50 GHz, ~72 mw is needed to tune one whole FSR of a single ring. The thermal crosstalk can be reduced if air trenches are fabricated around the rings and metal heaters [17]. Fig. 3. (a) Transmission spectra at the drop port with heater off and on. (b) Resonance shifts for both rings as a function of heating power. 5. GHz-bandwidth 2 nd - and 5 th -order ring filters With the current waveguide geometry, the theoretical ring frequency sensitivity to waveguide width is approximately 4 GHz/nm, i.e., a 1 nm variation in waveguide width results in a resonant frequency shift of 4 GHz. The ring frequency is even more sensitive to etch depth (C) 2010 OSA 8 November 2010 / Vol. 18, No. 23 / OPTICS EXPRESS 23787

5 and silicon thickness, with a theoretical sensitivity of about 26 GHz/nm and 150 GHz/nm, respectively. As the bandwidth of the ring is only ~1 GHz, it would not be practical to expect that the rings resonant frequencies can be identical without any active tuning. Here we use the thermo-optic effect to control the ring resonance. Silicon has a large thermal coefficient of / C, with which value the ring resonant frequency shift is estimated as 9.6 GHz per degree. Therefore, the temperature of the ring has to be controlled with an accuracy of better than 0.02 C in order to align the ring resonant frequencies together. The use of partial heating of the ring relaxes this accuracy requirement to about 0.1 C for local temperature. We use a multi-channel current source to control the heaters, and each heater can be controlled independently. After optimizing the heater currents, we obtain spectra for through and drop with a maximally flat response, shown in Fig. 4 for both 2 nd - and 5 th -order ring filters. The filter demonstrates a 3 db bandwidth f 3dB = 1.0 GHz and 1.9 GHz for the 2 nd - and 5 th -order rings, respectively. The insertion losses (not including fiber coupling loss) are 2 db and 3.5 db. The out-of-band rejection of both filters is more than 50 db. In Fig. 5, we plot the filter response in drop ports for both rings by normalizing the frequency to their own 3dB bandwidths and normalizing the transmission to their own peak values. At a frequency of 2f 3dB, the transmission at the drop port drops to ~46 db and ~25 db for the 5 th -order and 2 nd - order filters, respectively, demonstrating an excellent box-like transmission. The measured bandwidth for the 5 th -order ring is larger than the target value (1 GHz), possibly due to uncertainty of coupling coefficients from fabrication tolerance variations. Since the five rings in the 5 th -order filters are all tunable in wavelength with a thermal tuning efficiency of 72 mw per free spectral range, the resonant wavelength can have a large tunability range with a total power of about 0.36 W. This tuning power can be significantly reduced, using thermal isolation trenches [17] or undercuts beneath the rings [18]. Fig. 4. Transmission spectra for the 2 nd -orer ring filter (a) and 5 th -order ring filter (b) after optimizing the heating power. The transmission is normalized to the maximum power of through ports. Insets: enlarged drop-port spectra at the resonance peaks. (C) 2010 OSA 8 November 2010 / Vol. 18, No. 23 / OPTICS EXPRESS 23788

6 6. Conclusions Fig. 5. Normalized drop-port transmission spectra for the 2 nd -orer and 5 th -order ring filters. The frequency is normalized to the filter s own 3dB bandwidth and the transmission is normalized to the maximum power of the drop port itself. We have presented the experimental realization of tunable high-order ring-resonator based filters on a silicon photonics platform. The filters have a bandwidth of 1-2 GHz, FSRs of 50 GHz, and out-of-band extinction ratios of 50 db at the drop port. To the best of our knowledge, these filters have the narrowest optical bandwidth for so far demonstrated highorder silicon ring filters. Such filters, when combined with appropriate unit-cell filters [5, 6], are key building blocks suitable for diverse optical signal processing applications [4]. Acknowledgements This material is based upon work supported by the Defense Advanced Research Projects Agency PhASER program under Contract No. HR C The views, opinions, and/or findings contained in this article are those of the authors and should not be interpreted as representing the official views or policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the Department of Defense. Approved for Public Release, Distribution Unlimited. (C) 2010 OSA 8 November 2010 / Vol. 18, No. 23 / OPTICS EXPRESS 23789

Optical cross-connect circuit using hitless wavelength selective switch

Optical cross-connect circuit using hitless wavelength selective switch Optical cross-connect circuit using hitless wavelength selective switch Yuta Goebuchi 1, Masahiko Hisada 1, Tomoyuki Kato 1,2, and Yasuo Kokubun 1 1 Department of Electrical and Computer Engineering, Graduate

More information

Wavelength tracking with thermally controlled silicon resonators

Wavelength tracking with thermally controlled silicon resonators Wavelength tracking with thermally controlled silicon resonators Ciyuan Qiu, Jie Shu, Zheng Li Xuezhi Zhang, and Qianfan Xu* Department of Electrical and Computer Engineering, Rice University, Houston,

More information

Horizontal single and multiple slot waveguides: optical transmission at λ = 1550 nm

Horizontal single and multiple slot waveguides: optical transmission at λ = 1550 nm Horizontal single and multiple slot waveguides: optical transmission at λ = 1550 nm Rong Sun 1 *, Po Dong 2 *, Ning-ning Feng 1, Ching-yin Hong 1, Jurgen Michel 1, Michal Lipson 2, Lionel Kimerling 1 1Department

More information

Design and realization of a two-stage microring ladder filter in silicon-on-insulator

Design and realization of a two-stage microring ladder filter in silicon-on-insulator Design and realization of a two-stage microring ladder filter in silicon-on-insulator A. P. Masilamani, and V. Van* Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB,

More information

A tunable Si CMOS photonic multiplexer/de-multiplexer

A tunable Si CMOS photonic multiplexer/de-multiplexer A tunable Si CMOS photonic multiplexer/de-multiplexer OPTICS EXPRESS Published : 25 Feb 2010 MinJae Jung M.I.C.S Content 1. Introduction 2. CMOS photonic 1x4 Si ring multiplexer Principle of add/drop filter

More information

Design Consideration Analysis of Optical Filters Based on Multiple Ring Resonator. Imran Khan *

Design Consideration Analysis of Optical Filters Based on Multiple Ring Resonator. Imran Khan * International Journal of Electronics & Informatics ORIGINAL ARTICLE Design Consideration Analysis of Optical Filters Based on Multiple Ring Resonator Imran Khan * ISSN: 186-0114 http://www.ijei.org ARTICLE

More information

CHAPTER 2 POLARIZATION SPLITTER- ROTATOR BASED ON A DOUBLE- ETCHED DIRECTIONAL COUPLER

CHAPTER 2 POLARIZATION SPLITTER- ROTATOR BASED ON A DOUBLE- ETCHED DIRECTIONAL COUPLER CHAPTER 2 POLARIZATION SPLITTER- ROTATOR BASED ON A DOUBLE- ETCHED DIRECTIONAL COUPLER As we discussed in chapter 1, silicon photonics has received much attention in the last decade. The main reason is

More information

Silicon-on-insulator microring add-drop filters with free spectral ranges over 30 nm

Silicon-on-insulator microring add-drop filters with free spectral ranges over 30 nm Purdue University Purdue e-pubs Birck and NCN Publications Birck Nanotechnology Center January 2008 Silicon-on-insulator microring add-drop filters with free spectral ranges over 30 nm Shijun Xiao Purdue

More information

Vertical p-i-n germanium photodetector with high external responsivity integrated with large core Si waveguides

Vertical p-i-n germanium photodetector with high external responsivity integrated with large core Si waveguides Vertical p-i-n germanium photodetector with high external responsivity integrated with large core Si waveguides Ning-Ning Feng* 1, Po Dong 1, Dawei Zheng 1, Shirong Liao 1, Hong Liang 1, Roshanak Shafiiha

More information

Microphotonics Readiness for Commercial CMOS Manufacturing. Marco Romagnoli

Microphotonics Readiness for Commercial CMOS Manufacturing. Marco Romagnoli Microphotonics Readiness for Commercial CMOS Manufacturing Marco Romagnoli MicroPhotonics Consortium meeting MIT, Cambridge October 15 th, 2012 Passive optical structures based on SOI technology Building

More information

Ultra-high quality factor planar Si 3 N 4 ring resonators on Si substrates

Ultra-high quality factor planar Si 3 N 4 ring resonators on Si substrates Ultra-high quality factor planar Si 3 N 4 ring resonators on Si substrates Ming-Chun Tien, * Jared F. Bauters, Martijn J. R. Heck, Daryl T. Spencer, Daniel J. Blumenthal, and John E. Bowers Department

More information

Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon

Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon Wei Shi, Han Yun, Charlie Lin, Mark Greenberg, Xu Wang, Yun Wang, Sahba Talebi Fard,

More information

Modeling of ring resonators as optical Filters using MEEP

Modeling of ring resonators as optical Filters using MEEP Modeling of ring resonators as optical Filters using MEEP I. M. Matere, D. W. Waswa, J Tonui and D. Kiboi Boiyo 1 Abstract Ring Resonators are key component in modern optical networks. Their size allows

More information

Optics Communications

Optics Communications Optics Communications 283 (2010) 3678 3682 Contents lists available at ScienceDirect Optics Communications journal homepage: www.elsevier.com/locate/optcom Ultra-low-loss inverted taper coupler for silicon-on-insulator

More information

Series-coupled silicon racetrack resonators and the Vernier effect: theory and measurement

Series-coupled silicon racetrack resonators and the Vernier effect: theory and measurement Series-coupled silicon racetrack resonators and the Vernier effect: theory and measurement Robi Boeck, 1, Nicolas A. F. Jaeger, 1 Nicolas Rouger, 1,2 and Lukas Chrostowski 1 1 Department of Electrical

More information

Opto-VLSI-based reconfigurable photonic RF filter

Opto-VLSI-based reconfigurable photonic RF filter Research Online ECU Publications 29 Opto-VLSI-based reconfigurable photonic RF filter Feng Xiao Mingya Shen Budi Juswardy Kamal Alameh This article was originally published as: Xiao, F., Shen, M., Juswardy,

More information

Compact two-mode (de)multiplexer based on symmetric Y-junction and Multimode interference waveguides

Compact two-mode (de)multiplexer based on symmetric Y-junction and Multimode interference waveguides Compact two-mode (de)multiplexer based on symmetric Y-junction and Multimode interference waveguides Yaming Li, Chong Li, Chuanbo Li, Buwen Cheng, * and Chunlai Xue State Key Laboratory on Integrated Optoelectronics,

More information

50-Gb/s silicon optical modulator with travelingwave

50-Gb/s silicon optical modulator with travelingwave 5-Gb/s silicon optical modulator with travelingwave electrodes Xiaoguang Tu, 1, * Tsung-Yang Liow, 1 Junfeng Song, 1,2 Xianshu Luo, 1 Qing Fang, 1 Mingbin Yu, 1 and Guo-Qiang Lo 1 1 Institute of Microelectronics,

More information

Compact Trench-Based Silicon-On-Insulator Rib Waveguide Ring Resonator With Large Free Spectral Range

Compact Trench-Based Silicon-On-Insulator Rib Waveguide Ring Resonator With Large Free Spectral Range Brigham Young University BYU ScholarsArchive All Faculty Publications 2009-12-01 Compact Trench-Based Silicon-On-Insulator Rib Waveguide Ring Resonator With Large Free Spectral Range Seunghyun Kim Gregory

More information

1 Introduction. Research article

1 Introduction. Research article Nanophotonics 2018; 7(4): 727 733 Research article Huifu Xiao, Dezhao Li, Zilong Liu, Xu Han, Wenping Chen, Ting Zhao, Yonghui Tian* and Jianhong Yang* Experimental realization of a CMOS-compatible optical

More information

Wavelength and bandwidth-tunable silicon comb filter based on Sagnac loop mirrors with Mach- Zehnder interferometer couplers

Wavelength and bandwidth-tunable silicon comb filter based on Sagnac loop mirrors with Mach- Zehnder interferometer couplers Wavelength and bandwidth-tunable silicon comb filter based on Sagnac loop mirrors with Mach- Zehnder interferometer couplers Xinhong Jiang, 1 Jiayang Wu, 1 Yuxing Yang, 1 Ting Pan, 1 Junming Mao, 1 Boyu

More information

A low-power, high-speed, 9-channel germaniumsilicon electro-absorption modulator array integrated with digital CMOS driver and wavelength multiplexer

A low-power, high-speed, 9-channel germaniumsilicon electro-absorption modulator array integrated with digital CMOS driver and wavelength multiplexer A low-power, high-speed, 9-channel germaniumsilicon electro-absorption modulator array integrated with digital CMOS driver and wavelength multiplexer A. V. Krishnamoorthy, 1* X. Zheng, 1 D. Feng, 3 J.

More information

Realization of Polarization-Insensitive Optical Polymer Waveguide Devices

Realization of Polarization-Insensitive Optical Polymer Waveguide Devices 644 Realization of Polarization-Insensitive Optical Polymer Waveguide Devices Kin Seng Chiang,* Sin Yip Cheng, Hau Ping Chan, Qing Liu, Kar Pong Lor, and Chi Kin Chow Department of Electronic Engineering,

More information

On-chip Si-based Bragg cladding waveguide with high index contrast bilayers

On-chip Si-based Bragg cladding waveguide with high index contrast bilayers On-chip Si-based Bragg cladding waveguide with high index contrast bilayers Yasha Yi, Shoji Akiyama, Peter Bermel, Xiaoman Duan, and L. C. Kimerling Massachusetts Institute of Technology, 77 Massachusetts

More information

Figure 1 Basic waveguide structure

Figure 1 Basic waveguide structure Recent Progress in SOI Nanophotonic Waveguides D. Van Thourhout, P. Dumon, W. Bogaerts, G. Roelkens, D. Taillaert, G. Priem, R. Baets IMEC-Ghent University, Department of Information Technology, St. Pietersnieuwstraat

More information

Index. Cambridge University Press Silicon Photonics Design Lukas Chrostowski and Michael Hochberg. Index.

Index. Cambridge University Press Silicon Photonics Design Lukas Chrostowski and Michael Hochberg. Index. absorption, 69 active tuning, 234 alignment, 394 396 apodization, 164 applications, 7 automated optical probe station, 389 397 avalanche detector, 268 back reflection, 164 band structures, 30 bandwidth

More information

Variable splitting ratio 2 2 MMI couplers using multimode waveguide holograms

Variable splitting ratio 2 2 MMI couplers using multimode waveguide holograms Variable splitting ratio 2 2 MMI couplers using multimode waveguide holograms Shuo-Yen Tseng, Canek Fuentes-Hernandez, Daniel Owens, and Bernard Kippelen Center for Organic Photonics and Electronics, School

More information

Compact silicon microring resonators with ultralow propagation loss in the C band

Compact silicon microring resonators with ultralow propagation loss in the C band Purdue University Purdue e-pubs Birck and NCN Publications Birck Nanotechnology Center October 2007 Compact silicon microring resonators with ultralow propagation loss in the C band Shijun Xiao Purdue

More information

Analysis and Design of Box-like Filters based on 3 2 Microring Resonator Arrays

Analysis and Design of Box-like Filters based on 3 2 Microring Resonator Arrays Analysis and esign of Box-like Filters based on 3 2 Microring Resonator Arrays Xiaobei Zhang a *, Xinliang Zhang b and exiu Huang b a Key Laboratory of Specialty Fiber Optics and Optical Access Networks,

More information

Hitless tunable WDM transmitter using Si photonic crystal optical modulators

Hitless tunable WDM transmitter using Si photonic crystal optical modulators Hitless tunable WDM transmitter using Si photonic crystal optical modulators Hiroyuki Ito, Yosuke Terada, Norihiro Ishikura, and Toshihiko Baba * Department of Electrical and Computer Engineering, Yokohama

More information

- no emitters/amplifiers available. - complex process - no CMOS-compatible

- no emitters/amplifiers available. - complex process - no CMOS-compatible Advantages of photonic integrated circuits (PICs) in Microwave Photonics (MWP): compactness low-power consumption, stability flexibility possibility of aggregating optics and electronics functionalities

More information

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 31, NO. 16, AUGUST 15,

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 31, NO. 16, AUGUST 15, JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 31, NO. 16, AUGUST 15, 2013 2785 Fabrication-Tolerant Four-Channel Wavelength- Division-Multiplexing Filter Based on Collectively Tuned Si Microrings Peter De Heyn,

More information

CMOS-compatible highly efficient polarization splitter and rotator based on a double-etched directional coupler

CMOS-compatible highly efficient polarization splitter and rotator based on a double-etched directional coupler CMOS-compatible highly efficient polarization splitter and rotator based on a double-etched directional coupler Hang Guan, 1,2,* Ari Novack, 1,2 Matthew Streshinsky, 1,2 Ruizhi Shi, 1,2 Qing Fang, 1 Andy

More information

MICRO RING MODULATOR. Dae-hyun Kwon. High-speed circuits and Systems Laboratory

MICRO RING MODULATOR. Dae-hyun Kwon. High-speed circuits and Systems Laboratory MICRO RING MODULATOR Dae-hyun Kwon High-speed circuits and Systems Laboratory Paper preview Title of the paper Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator Publication

More information

High-speed silicon-based microring modulators and electro-optical switches integrated with grating couplers

High-speed silicon-based microring modulators and electro-optical switches integrated with grating couplers Journal of Physics: Conference Series High-speed silicon-based microring modulators and electro-optical switches integrated with grating couplers To cite this article: Xi Xiao et al 2011 J. Phys.: Conf.

More information

Silicon Photonic Device Based on Bragg Grating Waveguide

Silicon Photonic Device Based on Bragg Grating Waveguide Silicon Photonic Device Based on Bragg Grating Waveguide Hwee-Gee Teo, 1 Ming-Bin Yu, 1 Guo-Qiang Lo, 1 Kazuhiro Goi, 2 Ken Sakuma, 2 Kensuke Ogawa, 2 Ning Guan, 2 and Yong-Tsong Tan 2 Silicon photonics

More information

S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique

S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique Chien-Hung Yeh 1, *, Ming-Ching Lin 3, Ting-Tsan Huang 2, Kuei-Chu Hsu 2 Cheng-Hao Ko 2, and Sien Chi

More information

Optical Integrated Devices in Silicon On Insulator for VLSI Photonics

Optical Integrated Devices in Silicon On Insulator for VLSI Photonics Optical Integrated Devices in Silicon On Insulator for VLSI Photonics Design, Modelling, Fabrication & Characterization Piero Orlandi 1 Possible Approaches Reduced Design time Transparent Technology Shared

More information

Title. Author(s)Fujisawa, Takeshi; Koshiba, Masanori. CitationOptics Letters, 31(1): Issue Date Doc URL. Rights. Type.

Title. Author(s)Fujisawa, Takeshi; Koshiba, Masanori. CitationOptics Letters, 31(1): Issue Date Doc URL. Rights. Type. Title Polarization-independent optical directional coupler Author(s)Fujisawa, Takeshi; Koshiba, Masanori CitationOptics Letters, 31(1): 56-58 Issue Date 2006 Doc URL http://hdl.handle.net/2115/948 Rights

More information

Silicon Carrier-Depletion-Based Mach-Zehnder and Ring Modulators with Different Doping Patterns for Telecommunication and Optical Interconnect

Silicon Carrier-Depletion-Based Mach-Zehnder and Ring Modulators with Different Doping Patterns for Telecommunication and Optical Interconnect Silicon Carrier-Depletion-Based Mach-Zehnder and Ring Modulators with Different Doping Patterns for Telecommunication and Optical Interconnect Hui Yu, Marianna Pantouvaki*, Joris Van Campenhout*, Katarzyna

More information

Adaptive multi/demultiplexers for optical signals with arbitrary wavelength spacing.

Adaptive multi/demultiplexers for optical signals with arbitrary wavelength spacing. Edith Cowan University Research Online ECU Publications Pre. 2011 2010 Adaptive multi/demultiplexers for optical signals with arbitrary wavelength spacing. Feng Xiao Edith Cowan University Kamal Alameh

More information

Controlling normal incident optical waves with an integrated resonator

Controlling normal incident optical waves with an integrated resonator Controlling normal incident optical waves with an integrated resonator Ciyuan Qiu and Qianfan Xu* Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, USA * qianfan@rice.edu

More information

Silicon photonic devices based on binary blazed gratings

Silicon photonic devices based on binary blazed gratings Silicon photonic devices based on binary blazed gratings Zhiping Zhou Li Yu Optical Engineering 52(9), 091708 (September 2013) Silicon photonic devices based on binary blazed gratings Zhiping Zhou Li Yu

More information

A silicon avalanche photodetector fabricated with standard CMOS technology with over 1 THz gain-bandwidth product

A silicon avalanche photodetector fabricated with standard CMOS technology with over 1 THz gain-bandwidth product A silicon avalanche photodetector fabricated with standard CMOS technology with over 1 THz gain-bandwidth product Myung-Jae Lee and Woo-Young Choi* Department of Electrical and Electronic Engineering,

More information

EPIC: The Convergence of Electronics & Photonics

EPIC: The Convergence of Electronics & Photonics EPIC: The Convergence of Electronics & Photonics K-Y Tu, Y.K. Chen, D.M. Gill, M. Rasras, S.S. Patel, A.E. White ell Laboratories, Lucent Technologies M. Grove, D.C. Carothers, A.T. Pomerene, T. Conway

More information

A high-speed, tunable silicon photonic ring modulator integrated with ultra-efficient active wavelength control

A high-speed, tunable silicon photonic ring modulator integrated with ultra-efficient active wavelength control A high-speed, tunable silicon photonic ring modulator integrated with ultra-efficient active wavelength control Xuezhe Zheng, 1 Eric Chang, 2 Philip Amberg, 1 Ivan Shubin, 1 Jon Lexau, 2 Frankie Liu, 2

More information

An integrated recirculating optical buffer

An integrated recirculating optical buffer An integrated recirculating optical buffer Hyundai Park, John P. Mack, Daniel J. Blumenthal, and John E. Bowers* University of California, Santa Barbara, Department of Electrical and Computer Engineering,

More information

Design and characterization of low loss 50 picoseconds delay line on SOI platform

Design and characterization of low loss 50 picoseconds delay line on SOI platform Design and characterization of low loss 50 picoseconds delay line on SOI platform Zhe Xiao, 1,2 Xianshu Luo, 2 Tsung-Yang Liow, 2 Peng Huei Lim, 5 Patinharekandy Prabhathan, 1 Jing Zhang, 4 and Feng Luan

More information

Demonstration of low power penalty of silicon Mach Zehnder modulator in long-haul transmission

Demonstration of low power penalty of silicon Mach Zehnder modulator in long-haul transmission Demonstration of low power penalty of silicon Mach Zehnder modulator in long-haul transmission Huaxiang Yi, 1 Qifeng Long, 1 Wei Tan, 1 Li Li, Xingjun Wang, 1,2 and Zhiping Zhou * 1 State Key Laboratory

More information

Photothermally tunable silicon-microring-based optical add-drop filter through integrated light absorber

Photothermally tunable silicon-microring-based optical add-drop filter through integrated light absorber Photothermally tunable silicon-microring-based optical add-drop filter through integrated light absorber Xi Chen, 1,4 Yuechun Shi, 2,1,4 Fei Lou, 1 Yiting Chen, 1 Min Yan, 1 Lech Wosinski, 1 and Min Qiu

More information

Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers

Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers 1.0 Modulation depth 0.8 0.6 0.4 0.2 0.0 Laser 3 Laser 2 Laser 4 2 3 4 5 6 7 8 Absorbed pump power (W) Laser 1 W. Guan and J. R.

More information

Numerical Analysis and Optimization of a Multi-Mode Interference Polarization Beam Splitter

Numerical Analysis and Optimization of a Multi-Mode Interference Polarization Beam Splitter Numerical Analysis and Optimization of a Multi-Mode Interference Polarization Beam Splitter Y. D Mello*, J. Skoric, M. Hui, E. Elfiky, D. Patel, D. Plant Department of Electrical Engineering, McGill University,

More information

On-chip interrogation of a silicon-on-insulator microring resonator based ethanol vapor sensor with an arrayed waveguide grating (AWG) spectrometer

On-chip interrogation of a silicon-on-insulator microring resonator based ethanol vapor sensor with an arrayed waveguide grating (AWG) spectrometer On-chip interrogation of a silicon-on-insulator microring resonator based ethanol vapor sensor with an arrayed waveguide grating (AWG) spectrometer Nebiyu A. Yebo* a, Wim Bogaerts, Zeger Hens b,roel Baets

More information

Binary phase-shift keying by coupling modulation of microrings

Binary phase-shift keying by coupling modulation of microrings Binary phase-shift keying by coupling modulation of microrings Wesley D. Sacher, 1, William M. J. Green,,4 Douglas M. Gill, Solomon Assefa, Tymon Barwicz, Marwan Khater, Edward Kiewra, Carol Reinholm,

More information

LASER &PHOTONICS REVIEWS

LASER &PHOTONICS REVIEWS LASER &PHOTONICS REPRINT Laser Photonics Rev., L1 L5 (2014) / DOI 10.1002/lpor.201300157 LASER & PHOTONICS Abstract An 8-channel hybrid (de)multiplexer to simultaneously achieve mode- and polarization-division-(de)multiplexing

More information

Compact wavelength router based on a Silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array

Compact wavelength router based on a Silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array Compact wavelength router based on a Silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array P. Dumon, W. Bogaerts, D. Van Thourhout, D. Taillaert and R. Baets Photonics Research Group,

More information

Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber

Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber H. Ahmad 1, S. Shahi 1 and S. W. Harun 1,2* 1 Photonics Research Center, University of Malaya, 50603 Kuala Lumpur, Malaysia 2 Department

More information

Silicon Photonics: A Platform for Integration, Wafer Level Assembly and Packaging

Silicon Photonics: A Platform for Integration, Wafer Level Assembly and Packaging Silicon Photonics: A Platform for Integration, Wafer Level Assembly and Packaging M. Asghari Kotura Inc April 27 Contents: Who is Kotura Choice of waveguide technology Challenges and merits of Si photonics

More information

Arbitrary Power Splitting Couplers Based on 3x3 Multimode Interference Structures for All-optical Computing

Arbitrary Power Splitting Couplers Based on 3x3 Multimode Interference Structures for All-optical Computing Arbitrary Power Splitting Couplers Based on 3x3 Multimode Interference Structures for All-optical Computing Trung-Thanh Le Abstract--Chip level optical links based on VLSI photonic integrated circuits

More information

All-optical logic based on silicon micro-ring resonators

All-optical logic based on silicon micro-ring resonators All-optical logic based on silicon micro-ring resonators Qianfan Xu and Michal Lipson School of Electrical and Computer Engineering, Cornell University 411 Phillips Hall, Ithaca, NY 14853 lipson@ece.cornell.edu

More information

Optical fiber-fault surveillance for passive optical networks in S-band operation window

Optical fiber-fault surveillance for passive optical networks in S-band operation window Optical fiber-fault surveillance for passive optical networks in S-band operation window Chien-Hung Yeh 1 and Sien Chi 2,3 1 Transmission System Department, Computer and Communications Research Laboratories,

More information

Demonstration of a Tunable Microwave-Photonic Notch Filter Using Low-Loss Silicon Ring Resonators

Demonstration of a Tunable Microwave-Photonic Notch Filter Using Low-Loss Silicon Ring Resonators Demonstration of a Tunable Microwave-Photonic Notch Filter Using Low-Loss Silicon Ring Resonators The MIT Faculty has made this article openly available. Please share how this access benefits you. Your

More information

Tunable Photonic RF Signal Processor Using Opto-VLSI

Tunable Photonic RF Signal Processor Using Opto-VLSI Research Online ECU Publications Pre. 2011 2008 Tunable Photonic RF Signal Processor Using Budi Juswardy Feng Xiao Kamal Alameh 10.1109/IPGC.2008.4781458 This article was originally published as: Juswardy,

More information

ADD/DROP filters that access one channel of a

ADD/DROP filters that access one channel of a IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL 35, NO 10, OCTOBER 1999 1451 Mode-Coupling Analysis of Multipole Symmetric Resonant Add/Drop Filters M J Khan, C Manolatou, Shanhui Fan, Pierre R Villeneuve, H

More information

Electrically tuneable lateral leakage loss in liquid crystal clad shallow-etched silicon waveguides

Electrically tuneable lateral leakage loss in liquid crystal clad shallow-etched silicon waveguides Electrically tuneable lateral leakage loss in liquid crystal clad shallow-etched silicon waveguides Thomas Ako, 1,2, Anthony Hope, 2,3,4 Thach Nguyen, 4 Arnan Mitchell, 4 Wim Bogaerts, 2,3 Kristiaan Neyts,

More information

Progress Towards Computer-Aided Design For Complex Photonic Integrated Circuits

Progress Towards Computer-Aided Design For Complex Photonic Integrated Circuits Department of Electrical and Computer Engineering Progress Towards Computer-Aided Design For Complex Photonic Integrated Circuits Wei-Ping Huang Department of Electrical and Computer Engineering McMaster

More information

Published in: Proceedings of the 20th Annual Symposium of the IEEE Photonics Benelux Chapter, November 2015, Brussels, Belgium

Published in: Proceedings of the 20th Annual Symposium of the IEEE Photonics Benelux Chapter, November 2015, Brussels, Belgium A Si3N4 optical ring resonator true time delay for optically-assisted satellite radio beamforming Tessema, N.M.; Cao, Z.; van Zantvoort, J.H.C.; Tangdiongga, E.; Koonen, A.M.J. Published in: Proceedings

More information

Silicon Photonics Technology Platform To Advance The Development Of Optical Interconnects

Silicon Photonics Technology Platform To Advance The Development Of Optical Interconnects Silicon Photonics Technology Platform To Advance The Development Of Optical Interconnects By Mieke Van Bavel, science editor, imec, Belgium; Joris Van Campenhout, imec, Belgium; Wim Bogaerts, imec s associated

More information

Linear cavity erbium-doped fiber laser with over 100 nm tuning range

Linear cavity erbium-doped fiber laser with over 100 nm tuning range Linear cavity erbium-doped fiber laser with over 100 nm tuning range Xinyong Dong, Nam Quoc Ngo *, and Ping Shum Network Technology Research Center, School of Electrical & Electronics Engineering, Nanyang

More information

POLITECNICO DI TORINO Repository ISTITUZIONALE

POLITECNICO DI TORINO Repository ISTITUZIONALE POLITECNICO DI TORINO Repository ISTITUZIONALE On the Design of Microring Resonator Devices for Switching Applications in Flexible-grid Networks Original On the Design of Microring Resonator Devices for

More information

Monolithic, Athermal Optical A/D Filter

Monolithic, Athermal Optical A/D Filter Monolithic, Athermal Optical A/D Filter Vivek Raghunathan, Jurgen Michel and Lionel C. Kimerling Microphotonics Center, Massachusetts Institute of Technology, USA Collaborators: Prof. Karen K. Gleason,

More information

Highly sensitive silicon microring sensor with sharp asymmetrical resonance

Highly sensitive silicon microring sensor with sharp asymmetrical resonance Highly sensitive silicon microring sensor with sharp asymmetrical resonance Huaxiang Yi, 1 D. S. Citrin, 2 and Zhiping Zhou 1,2 * 1 State Key Laboratory on Advanced Optical Communication Systems and Networks,

More information

AMACH Zehnder interferometer (MZI) based on the

AMACH Zehnder interferometer (MZI) based on the 1284 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 23, NO. 3, MARCH 2005 Optimal Design of Planar Wavelength Circuits Based on Mach Zehnder Interferometers and Their Cascaded Forms Qian Wang and Sailing He, Senior

More information

Frequency Noise Reduction of Integrated Laser Source with On-Chip Optical Feedback

Frequency Noise Reduction of Integrated Laser Source with On-Chip Optical Feedback MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Frequency Noise Reduction of Integrated Laser Source with On-Chip Optical Feedback Song, B.; Kojima, K.; Pina, S.; Koike-Akino, T.; Wang, B.;

More information

Wavelength-independent coupler from fiber to an on-chip cavity, demonstrated over an 850nm span

Wavelength-independent coupler from fiber to an on-chip cavity, demonstrated over an 850nm span Wavelength-independent coupler from fiber to an on-chip, demonstrated over an 85nm span Tal Carmon, Steven Y. T. Wang, Eric P. Ostby and Kerry J. Vahala. Thomas J. Watson Laboratory of Applied Physics,

More information

Design and demonstration of compact, wide bandwidth coupled-resonator filters on a siliconon-insulator

Design and demonstration of compact, wide bandwidth coupled-resonator filters on a siliconon-insulator Design and demonstration of compact, wide bandwidth coupled-resonator filters on a siliconon-insulator platform Qing i, Mohammad Soltani, Siva Yegnanarayanan and Ali Adibi School of Electrical and Computer

More information

Frequency Tunable Low-Cost Microwave Absorber for EMI/EMC Application

Frequency Tunable Low-Cost Microwave Absorber for EMI/EMC Application Progress In Electromagnetics Research Letters, Vol. 74, 47 52, 2018 Frequency Tunable Low-Cost Microwave Absorber for EMI/EMC Application Gobinda Sen * and Santanu Das Abstract A frequency tunable multi-layer

More information

High-speed Ge photodetector monolithically integrated with large cross silicon-on-insulator waveguide

High-speed Ge photodetector monolithically integrated with large cross silicon-on-insulator waveguide [ APPLIED PHYSICS LETTERS ] High-speed Ge photodetector monolithically integrated with large cross silicon-on-insulator waveguide Dazeng Feng, Shirong Liao, Roshanak Shafiiha. etc Contents 1. Introduction

More information

Propagation loss study of very compact GaAs/AlGaAs substrate removed waveguides

Propagation loss study of very compact GaAs/AlGaAs substrate removed waveguides Propagation loss study of very compact GaAs/AlGaAs substrate removed waveguides JaeHyuk Shin, Yu-Chia Chang and Nadir Dagli * Electrical and Computer Engineering Department, University of California at

More information

WAVELENGTH division multiplexing (WDM) is now

WAVELENGTH division multiplexing (WDM) is now Optimized Silicon AWG With Flattened Spectral Response Using an MMI Aperture Shibnath Pathak, Student Member, IEEE, Michael Vanslembrouck, Pieter Dumon, Member, IEEE, Dries Van Thourhout, Member, IEEE,

More information

Performance of silicon micro ring modulator with an interleaved p-n junction for optical interconnects

Performance of silicon micro ring modulator with an interleaved p-n junction for optical interconnects Indian Journal of Pure & Applied Physics Vol. 55, May 2017, pp. 363-367 Performance of silicon micro ring modulator with an interleaved p-n junction for optical interconnects Priyanka Goyal* & Gurjit Kaur

More information

Comparison of AWGs and Echelle Gratings for Wavelength Division Multiplexing on Silicon-on-Insulator

Comparison of AWGs and Echelle Gratings for Wavelength Division Multiplexing on Silicon-on-Insulator Comparison of AWGs and Echelle Gratings for Wavelength Division Multiplexing on Silicon-on-Insulator Volume 6, Number 5, October 2014 S. Pathak, Member, IEEE P. Dumon, Member, IEEE D. Van Thourhout, Senior

More information

A thin foil optical strain gage based on silicon-on-insulator microresonators

A thin foil optical strain gage based on silicon-on-insulator microresonators A thin foil optical strain gage based on silicon-on-insulator microresonators D. Taillaert* a, W. Van Paepegem b, J. Vlekken c, R. Baets a a Photonics research group, Ghent University - INTEC, St-Pietersnieuwstraat

More information

Planar lightwave circuit dispersion compensator using a compact arrowhead arrayed-waveguide grating

Planar lightwave circuit dispersion compensator using a compact arrowhead arrayed-waveguide grating Planar lightwave circuit dispersion compensator using a compact arrowhead arrayed-waveguide grating Takanori Suzuki 1a), Kenichi Masuda 1, Hiroshi Ishikawa 2, Yukio Abe 2, Seiichi Kashimura 2, Hisato Uetsuka

More information

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. Title Author(s) Citation Ultra-compact low loss polarization insensitive silicon waveguide splitter Xiao, Zhe;

More information

Keysight Technologies Using a Wide-band Tunable Laser for Optical Filter Measurements

Keysight Technologies Using a Wide-band Tunable Laser for Optical Filter Measurements Keysight Technologies Using a Wide-band Tunable Laser for Optical Filter Measurements Article Reprint NASA grants Keysight Technologies permission to distribute the article Using a Wide-band Tunable Laser

More information

Compact Microstrip UWB Power Divider with Dual Notched Bands Using Dual-Mode Resonator

Compact Microstrip UWB Power Divider with Dual Notched Bands Using Dual-Mode Resonator Progress In Electromagnetics Research Letters, Vol. 75, 39 45, 218 Compact Microstrip UWB Power Divider with Dual Notched Bands Using Dual-Mode Resonator Lihua Wu 1, Shanqing Wang 2,LuetaoLi 3, and Chengpei

More information

Optical Proximity Communication for a Silicon Photonic Macrochip

Optical Proximity Communication for a Silicon Photonic Macrochip Optical Proximity Communication for a Silicon Photonic Macrochip John E. Cunningham, Ivan Shubin, Xuezhe Zheng, Jon Lexau, Ron Ho, Ying Luo, Guoliang Li, Hiren Thacker, J. Yao, K. Raj and Ashok V. Krishnamoorthy

More information

NOVEL PLANAR MULTIMODE BANDPASS FILTERS WITH RADIAL-LINE STUBS

NOVEL PLANAR MULTIMODE BANDPASS FILTERS WITH RADIAL-LINE STUBS Progress In Electromagnetics Research, PIER 101, 33 42, 2010 NOVEL PLANAR MULTIMODE BANDPASS FILTERS WITH RADIAL-LINE STUBS L. Zhang, Z.-Y. Yu, and S.-G. Mo Institute of Applied Physics University of Electronic

More information

Photonic Integrated Beamformer for Broadband Radio Astronomy

Photonic Integrated Beamformer for Broadband Radio Astronomy M. Burla, D. A. I. Marpaung, M. R. H. Khan, C. G. H. Roeloffzen Telecommunication Engineering group University of Twente, Enschede, The Netherlands P. Maat, K. Dijkstra ASTRON, Dwingeloo, The Netherlands

More information

Large Scale Silicon Photonic MEMS Switch

Large Scale Silicon Photonic MEMS Switch Large Scale Silicon Photonic MEMS Switch Sangyoon Han Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2015-40 http://www.eecs.berkeley.edu/pubs/techrpts/2015/eecs-2015-40.html

More information

Investigation of ultrasmall 1 x N AWG for SOI- Based AWG demodulation integration microsystem

Investigation of ultrasmall 1 x N AWG for SOI- Based AWG demodulation integration microsystem University of Wollongong Research Online Faculty of Engineering and Information Sciences - Papers: Part A Faculty of Engineering and Information Sciences 2015 Investigation of ultrasmall 1 x N AWG for

More information

InP-based Waveguide Photodetector with Integrated Photon Multiplication

InP-based Waveguide Photodetector with Integrated Photon Multiplication InP-based Waveguide Photodetector with Integrated Photon Multiplication D.Pasquariello,J.Piprek,D.Lasaosa,andJ.E.Bowers Electrical and Computer Engineering Department University of California, Santa Barbara,

More information

Bandpass-Response Power Divider with High Isolation

Bandpass-Response Power Divider with High Isolation Progress In Electromagnetics Research Letters, Vol. 46, 43 48, 2014 Bandpass-Response Power Divider with High Isolation Long Xiao *, Hao Peng, and Tao Yang Abstract A novel wideband multilayer power divider

More information

ISSCC 2006 / SESSION 13 / OPTICAL COMMUNICATION / 13.7

ISSCC 2006 / SESSION 13 / OPTICAL COMMUNICATION / 13.7 13.7 A 10Gb/s Photonic Modulator and WDM MUX/DEMUX Integrated with Electronics in 0.13µm SOI CMOS Andrew Huang, Cary Gunn, Guo-Liang Li, Yi Liang, Sina Mirsaidi, Adithyaram Narasimha, Thierry Pinguet Luxtera,

More information

Optical Isolation Can Occur in Linear and Passive Silicon Photonic Structures

Optical Isolation Can Occur in Linear and Passive Silicon Photonic Structures Optical Isolation Can Occur in Linear and Passive Silicon Photonic Structures Chen Wang and Zhi-Yuan Li Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, P. O. Box 603,

More information

THE WIDE USE of optical wavelength division multiplexing

THE WIDE USE of optical wavelength division multiplexing 1322 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 35, NO. 9, SEPTEMBER 1999 Coupling of Modes Analysis of Resonant Channel Add Drop Filters C. Manolatou, M. J. Khan, Shanhui Fan, Pierre R. Villeneuve, H.

More information

Novel High-Q Spectrum Sliced Photonic Microwave Transversal Filter Using Cascaded Fabry-Pérot Filters

Novel High-Q Spectrum Sliced Photonic Microwave Transversal Filter Using Cascaded Fabry-Pérot Filters 229 Novel High-Q Spectrum Sliced Photonic Microwave Transversal Filter Using Cascaded Fabry-Pérot Filters R. K. Jeyachitra 1**, Dr. (Mrs.) R. Sukanesh 2 1 Assistant Professor, Department of ECE, National

More information

Experimental realization of an O-band compact polarization splitter and rotator

Experimental realization of an O-band compact polarization splitter and rotator Vol. 25, No. 4 20 Feb 2017 OPTICS EXPRESS 3234 Experimental realization of an O-band compact polarization splitter and rotator KANG TAN,1,2,* YING HUANG,2 GUO-QIANG LO,2 CHANGYUAN YU,1,3 AND CHENGKUO LEE1

More information

Demonstration of tunable optical delay lines based on apodized grating waveguides

Demonstration of tunable optical delay lines based on apodized grating waveguides Demonstration of tunable optical delay lines based on apodized grating waveguides Saeed Khan 1, 2 and Sasan Fathpour 1,2,* 1 CREOL, The College of Optics and Photonics, University of Central Florida, Orlando,

More information