Power Transient Response of EDFA as a function of Wavelength in the scenario of Wavelength Division Multiplexed System

Size: px
Start display at page:

Download "Power Transient Response of EDFA as a function of Wavelength in the scenario of Wavelength Division Multiplexed System"

Transcription

1 IJSRD - International Journal for Scientific Research & Development Vol. 1, Issue 9, 2013 ISSN (online): Power Transient Response of EDFA as a function of Wavelength in the scenario of Wavelength Division Multiplexed System Prabhjyot Singh 1 Simranjit Singh 2 1 M. Tech. Student 2 Assistant Professor 1,2 Department of Electronics and Communication Engineering 1, 2 UCoE Patiala, Punjab, India Abstract In this paper power transient is investigated as function of add/drop wavelength and surviving channel wavelength. We have reported that power excursions varies with different wavelength allocations of the add/drop channels. Transient response is reduced by 73.39% in case when add/drop channels are taken in L band instead of C band. Also power transient response is calculated as a function of wavelengths of surviving channel. It has been observed that at higher wavelengths power excursions are less than at shorter wavelengths of C band. Key words: EDFA transient, Power excursions, WDM optical networks, add/drop (disturbing) channels. I. INTRODUCTION The transmission capacity of long-haul optical networks has evolved tremendously over the past decades by adding multiple wavelength channels through the use of wavelength division multiplexing (WDM) and dense WDM technology. Recently, there has been a rapidly growing interest in the study of all-optical wavelength-division multiplexed networks that provide both switching and transmission the optical domain. WDM system is an attractive means for large capacity transmission systems and flexible optical networks. Such WDM networks have become possible because of the availability of optical amplification, particularly erbium-doped fiber amplifiers (EDFA s). Although new amplification technologies, such as Raman and semiconductor optical amplifiers can provide remarkable performances in terms of gain bandwidth and flexibility, standard EDFAs are still the most attractive solution as the best tradeoff between cost end performances [30,31]. EDFA s provide low-cost and efficient amplification in wavelength-division multiplexed networks. The Performance of an Optical Communication system can be improved by the use of EDFAs as an Optical Amplifier. The EDFA is the most deployed fiber amplifier as its amplification window coincides with the third transmission window of silica-based optical fiber. EDFAs are reliable for transmitting data through long distance because of their wide bandwidth and optimum bit error rate. Although EDFA s are a key technology enabling the realization of transparent WDM communication, and despite their unsurpassed performance, a number of significant technological challenges remain. In multiwavelength light wave networks, the number of transmitted channels may vary due to, e.g., network reconfiguration, network growth to larger number of channels or failure of a channel that can cause one or more channel to drop out[1,2]. Because these amplifiers are operating near saturation, and since the total output power of a saturated EDFA is very nearly constant, independent of the number of channels, the gain experienced by each channel will, therefore, depend on the number of channels present. Rapidly changing gain, due to channel drop or addition, leads to cross-gain saturation in fiber amplifiers that in turn would induce power transients in the surviving channels which can seriously degrade system performance parameters such as bit-error rate (BER) and signal-to-noise ratio (SNR) during the transient events. They can result in the drastic deterioration of the surviving channels performance. Sudden changes in network configuration, fiber breaks, other failure mechanisms, and protection switching may cause abrupt changes in optical power which can also cause transience. The EDFA transients arise due to two factors: (i) they usually work in deep saturation and (ii) present long upper state lifetime of Erbium ions (~ 10 ms) [3]. Although this perturbation will generally be small in a single amplifier, it will grow rapidly along a cascade. To cater to the demand for an increasing number of channels, high signal powers, greater than 20 db m, cascaded/multistage amplifiers are used. So small transient perturbations in a single EDFA grow rapidly along a cascade [2], [4]. In general, system performance may be degraded by fiber nonlinearity when the channel powers are too high and by a small receiver signal-to-noise ratio (SNR) when the channel powers are too low. These transients occur on the time scale of microseconds to milliseconds, and could momentarily and significantly disrupt the system performance. When channels are dropped, the power of the surviving channel increases which severely degrades the performance of the surviving channel because of self-phase modulation. And when channels are added it degrades surviving channels due to cross-phase modulation (XPM) and four-wave mixing (FWM) for up to a few microseconds. To overcome these problems, the transient effects in the optical amplifiers must be controlled.. Also To maintain quality of service for surviving channels, it is necessary to limit the power excursions they experience. In the past several control strategies have been proposed to fix the EDFA gain at a given operating point. Low electronic cost control suggested in [5] is widely used. Also a combination of optical and electrical control schemes is possible [7]. Also proposed is gain clamping via the construction of ring lasers [6], [7] and insertion of a compensating signal [8]. Inserting a compensating signal into the first EDFA has been reported to be effective in stabilizing chains of six [9] and eight [10] EDFA s. Some solutions to mitigate optical amplifiers transients were successfully demonstrated and are based on a combination of techniques such as linear gain control, gain All rights reserved by

2 clamping and fast automatic gain control [13, 14]. Additionally, passive mitigation approaches have also been proposed, such as the use of EDF with a large active area of Er 3+ [15, 16]. In the optical domain, the idea of recirculating amplified spontaneous emission (ASE) as a clamping mechanism in a feedback loop was presented in the context of WDM ring networks [17]. The idea of recirculating ASE using a band pass filter to select the lasing wavelength, and a variable optical attenuator (VOA) to adjust the feedback cavity loss was presented in [18, 19]. The same principle using fiber Bragg grating (FBG) as band pass filters was demonstrated to flatten and clamp the gain of L-band EDFA for WDM applications [31]. Other approaches based on feedback techniques make use of a DWDM multiplexer [32]. Also novel techniques to minimize gain-transient time of WDM signals in EDFA in channel add/drop networks have been introduced. The newly proposed gain controller is composed of a disturbance observer and a PID controller. Another approach based on use of the per-band link control method in cascades of distributed fiber Raman amplifiers (DFRAs) for compensating power transients of WDM channels was introduced. By adding compensation channels the power excursion is reduced in the surviving channels. However many of these proposals are not practical because of high cost, or instability due to electronic control induced or chaotic behavior [20]. The all-optical scheme has a drawback, the frequency of channel add/drop should be less than that of the relaxation oscillation frequency of EDFA, which is several hundred Hz. Also inserting the extra channel is not economical in signal bandwidth. While transient suppression methods using PID controller, feedback electrical/optical are very complex and use additional circuitry, so is expensive. The transient response of EDF is a function of the wavelength and power of the survival channels, number of channels, pump etc. In order to gain a better understanding of the transient response and to reduce the power transient, analysis of the effect of the factors such as signal wavelength and power, pump wavelength and power, etc. is needed to be done. A true understanding of the EDFA gain dynamics will help in the design of protection and control schemes against deleterious nonlinear effects in transmission. So power transient response of surviving channels can be reduced by analyzing the factors on which transient depends and then by optimizing them. This method is very cost effective as it is done without adding any complex additional circuitry. Wang et al. [21] investigated Gain transients in both co-pumped and counter pumped distributed Raman amplifiers as a function of signal launch power, fiber type, surviving signal wavelength. All these parameters affect the magnitude of the pump-depletion level and, thus, determine the amplifier transients. It is found that gain transients are much more pronounced in a copumping scenario than in a counter pumping scenario for the same operating conditions. Transient suppression technique with better than 0.2-dB ripple capability was also demonstrated in this study. Chan et al. [22] simulated how the EDFA transient dynamics depend on different EDF lengths and erbium concentration. EDFA model was designed that used optimized length and erbium concentration to suppress the power transient. Gurkan et al. [23] presented a more extensive study of the differences between C and L-band EDFA dynamics for a 40-channel WDM system for varying numbers of cascaded EDFAs. Results have shown that the L-band EDFA transient response time is -5 times slower than for the C-band. Also longer transient time for L-band provides the necessary time to prevent the degrading transmission penalties. Kar asek et al. [2] analyzed and compared surviving channel power excursions resulting from switching ON OFF of one, three, and six out of eight WDM channels in a cascade of concatenated strongly inverted and standard two-stage EDFA s. It follows from the performed analysis that the rise time of the surviving channel power transients in the strongly inverted cascade is approximately twice as fast as in the cascade of standard amplifiers The effect of pump power, EDF length and span loss on the characteristics of the cascade of six strongly inverted EDFA s has been analyzed. Lee et al. [24] investigated steady state and transient behavior of a C-band EDFA has been for the various add/drop channel allocations. The channels are located at around short wavelengths, long wavelengths, and in the middle of C-band. The measured transient behavior in each case is calculated. Sugaya et al. [25] illustrated transient response of discrete Raman amplifier in case of channel add-drop through comparing co- and counter-propagating pump schemes by experiment and calculation. Karlsek et al. [26] investigated, both experimentally and theoretically, the effect of channel removal/addition on surviving channel power transients in distributed Raman fiber amplifier (RFA). The effect of pumping scheme, pump power, the length and type of Raman fiber, and number of added and/or dropped channels on the dynamics of surviving channel power fluctuations has been studied. Gest et al. [27] analyzed the dynamic response of nine different cascades of DFRAs. Three cases of cascades a cascade of all unclamped DFRAs, a cascade of all gain-clamped DFRAs, and a cascade of mixed unclamped and gain-clamped DFRAs is compared and analyzed in terms of gain excursions and overshoot & undershoot. The evolution of the rise and fall times in the surviving channel after each amplifier in the cascade is also monitored. Also investigation of the influence of the surviving channel location in the amplification band is done. Kaler [28] investigated Effect of channel adding/dropping on EDFA transients. Also further comparison of the transient response of Compact EDFAs and Transient EDFAs is done. Tian et al. [29] studied the transient dynamics of the EDFAs responding to channel adding/dropping events. The differences in the responses of the EDFAs pumped at 1480 and at 980 nm are compared and analyzed. It is also observed that EDFA pumped at 980 nm has much faster transient response than the one pumped at 1480 nm. Already many papers have been presented on the pump control method. Also effects of number of channels add/drop pump power, wavelength and different pumping scheme have been extensive studied. But the impact of the wavelength allocation of the add/drop channels in C and L bands on the survivor channels power transient have not clearly investigated. Since L-band transmission is becoming All rights reserved by

3 commercially available, optical ADM operations will be required for both the L and C bands. The differences between C- and L band dynamics have been recently studied. In this paper, we have measured the power transient of the surviving channel for different wavelength allocations of add/drop channels in C and L band. Also effect of surviving channel wavelength in terms of power excursions is observed. Q factor is also calculated for surviving and add/drop channel different wavelength allocations. And we have shown that the gain of the EDFA depends on the channel assignment in the steady state. This paper is divided into 4 sections. In Section 2, the optical simulation setup is described. In Section 3, simulation results have been reported and discussed for the different wavelengths of surviving and disturbing channels. And finally in Section 4, conclusions and future work are made. II. SIMULATION SETUP In this work, an analysis is presented regarding power transient excursions resulting from channel drop/add in the system of transmission using EDFA amplifier with as many as 25 WDM channels. In order to gain a better understanding of the transient response and, analyze the effect of the factors such as signal wavelength and add/drop channel wavelength we have made this system as shown in figure 1. Fig. 1 shows the simulation setup to analyze the EDFA transients. The simulation tool used in this work is the Optisystem (version 7.0), a software of Optiwave Corporation. A 25 channel WDM system was simulated in Optisystem. We consider twenty five WDM channels. This is sufficient to show the dynamics of an EDFA after channels dropping and adding. 24 channels out of 25 are added dropped. Powers of all 25 channels are kept constant with each channel given input power of -20 dbm. The add/drop of 24 channels was simulated by modulating the optical signal by a square wave at a low bit rate of 4000 bits/s. A 32-bit pseudorandom or user defined bit pattern is encoded on each add/drop channel using non-return-to zero pulse generator. Twenty four channels are added at t = 0.1 ms and dropped back at t =0.3ms and then is repeated with a period of 4ms. This 24 channel light source is modulated by an Optical Modulator (OM). Fig. 1: Simulation setup to calculate and analyze power transient of the surviving channel. (OTDV: Optical time domain visualizer; BER: Bit error rate) And these 24 channels are combined with a CWprobe (surviving) channel to simulate adding dropping twenty four out of twenty five channels (worst case condition) using a multiplexer. Add/drop channels (disturbing channels) are equally spaced with a uniform channel spacing of 1 nanometer (nm). The surviving channel is kept at constant wavelength of 1532nm; while we have given disturbing channels two different wavelength allocations in different set of measurements. In 1 st case disturbing channels are given wavelengths in C band from 1538 to 1561nm and in 2 nd case they are allocated wavelength in L band from 1566 to 1589nm. These channels are coupled into the dynamic EDFA. The amplification stage is composed by a WDM (coupler), that combines the input and pump powers, followed by a 5-m erbium doped fiber and isolator. The pump laser at 980 nm wavelength and with constant power of 20 dbm is used for forward (co) pumping the signal (channels). The pump laser with wavelength of 1480 nm can be used as well. We have used the dynamic erbium-doped fiber with the erbium ion density of 1000 ppm-wt. Its core radius is assumed to be 2.2 µm and numerical aperture is assumed to be The metastable life time of 10 ms is used. The insertion loss at 1550 and 980 nm is taken as 0.01 and db/m respectively. Power amplified signal is then passed through a fiber. For the sake of simplicity, only one section of 40 km standard fiber is used with one EDFA. At the receiver each channel passes through photo detectors and then through electrical low pass filter with a bandwidth of bit rate. System performance is evaluated by BER analyzer by calculating the factors like Q factor, eye diagram and bit error rate. III. SIMULATION RESULTS AND DISCUSSION We examine and analyze the relevant factors which affect the transient power excursion of the surviving channel in a single all-optically stabilized EDFA, such as add/drop channels wavelengths, surviving channel wavelengths. A. Power Transient as a Function of Add/Drop (Disturbing) Channels Wavelength Firstly, the system impact of the disturbing channels wavelengths on the power transients of EDFA is observed. To study and investigate the effect of disturbing channels wavelength all the other factors like surviving channel power & wavelength, pump power & wavelength, EDFA length are kept constant. 24 channels are added at 1 ms and then dropped at 3 ms. the surviving channel wavelength is taken at 1532 nm. The disturbing channels wavelengths are varied and two cases are made. When the wavelengths of add drop channels are changed, the output transient of surviving channel is affected In first case 24 disturbing channels are taken in C band from 1538 to 1561 nm. While in 2 nd case their wavelengths are taken in L band from 1566 to 1589 nm. Now corresponding to two cases power transient is calculated by simulation. The results are as shown in the fig. 2. It shows analysis of the results for the different disturbing channel wavelengths after the EDFA. All rights reserved by

4 Fig. 2: Transient response comparison of surviving channel for disturbing channels wavelengths in C and L band. Now, power excursion, P is given by: P = P (0) P ( ). Where P (0) is power before the channel add or drop and P ( ) is power after the channel add/drop. Simulation shows a different power transient behavior under different disturbing channels wavelengths although the output gain of the surviving channel is observed to be almost same. As it can be seen that power excursion when disturbing channels are in C band is mw. While when we take disturbing channels in L band the power excursion is dropped to mw, that is mw less than what it was in case of C band disturbing channels. So we can see that power transient is reduced by % when disturbing channels are taken in L band instead of C band. The reason behind this transient reduction can be attributed to the difference in wavelengths between the surviving and disturbing channel. A power transient in the surviving channels is mainly induced by cross gain saturation and four wave mixing when channels are added or dropped. The cross gain saturation and four wave mixing in WDM system depends directly on the how closely channels are spaced. Channels with small channel spacing or gap are found to be more affected by cross gain saturation & four wave mixing than the channels which have more channel spacing. Thus when disturbing channels are taken in C band their difference in wavelength with surviving channel at 1532 nm is less so more is the power transient. As we have seen just by optimizing the disturbing channel wavelength we can reduce the unwanted power transient effect in the amplifier. Optimizing basic parameter like add/drop channel wavelength can reduce the transient behavior which can be used in future reconfigurable networks. Moreover reduction in transient behavior is not obtained at the expense of the gain or output power. Output power remains at same level but transient effect is reduced. figure 3. It can be seen that Q factor is higher when the disturbing channels are in L band. As power transient effects in case of channel add/drop in L band is less as compared to when they are in C band. So Q factor is better when channel add/drop takes place in L band rather than in C band. This confirms our experimental analysis that when disturbing channels are allocated wavelengths in L band, while surviving channel is in C band, it reduces the power transient and Q factor is improved. B. Power Transient as a Function of Surviving Channel Wavelength We have also calculated the effect of surviving channel wavelengths on the power transient and power excursions. The wavelengths of add/drop channels are kept. They are allocated wavelengths from 1557 to 1564 nm. For sake of simplicity 8 channels are added or dropped. While we change the wavelength of the survival channel across the C band and get the wavelength dependence. This is shown in the figure 4. Fig. 4: Power excursions as a function of surviving channel wavelength. The power excursions depend on the amplifier gain. And amplifier gain is wavelength dependent. Thus transient response of EDF is a function of the wavelength. Higher gain or power leads to higher power transient. Power excursions behavior is closely related to the shape of the EDFA gain response. The longer wavelengths receive less power gain than the shorter ones. The shorter wavelength channels exhibits faster and stronger transient as compared to longer wavelengths. It is observed that the channels centered around 1550 nm exhibit almost constant power excursions. Fig. 3: Q-factor comparison for the wavelength allocation in C and L band of disturbing channels. The Q factor at the receiver side with the corresponding system is also calculated. It is shown in the Fig. 5: Comparison of power excursions of surviving channel for channel dropping and adding. Also power excursions are calculated for channel dropping and channel adding separately. As can be seen from the figure, amplitude of the transient power excursions of the surviving channel are lower in the case of adding channels versus that of dropping channels. These simulation results are in good qualitative agreement with the experimental results reported in [11], [12]. Both simulation and experiment indicate that dropping of channels results in much more severe effects on the surviving channels. All rights reserved by

5 IV. CONCLUSION Surviving channel power excursion resulting from 24 channels add/drop out of 25 total WDM channels is investigated and simulated for various wavelength allocation of disturbing (add/drop) channels in C and L band. It is found that power transient is reduced by mw or 73.39% when disturbing channels wavelengths are taken in the L band instead of C band. Also Q factor is found to be better and higher when wavelength of adding/dropping channels is in L band. Power transient of EDFA is also calculated as a function of surviving channel wavelength. It is observed that power excursions are less in case of higher wavelengths of C band. Power excursions are observed to be almost constant for surviving channels wavelengths near the 1550 nm region (from nm). Thus by just optimizing the disturbing and surviving channels wavelengths the power excursions or power transient can be reduced by a large factor. ACKNOWLEGEMENT The author appreciate the help given by the guide Mr. Simranjit Singh, Electronics and Communication Engineering Department, Punjabi University, Patiala for their technical assistance. REFERENCES [1] Y. Sun, J.L. Zyskind, and A.K. Srivastava, Average inversion level, modeling, and physics of Erbium doped fiber amplifiers, IEEE Journal of Selected Topics in Quantum Electronics, vol. 3, no. 4, pp , August [2] M. Karasek and F. W. Willems, Channel addition/removal response in cascades of strongly inverted Erbium-doped fiber amplifiers, IEEE Journal of Lightwave Technology, vol.16, no. 12, pp , December [3] A. Bononi, L. A. Rusch, Doped-fiber amplifier dynamics: a system perspective, J. Lightwave Technol, vol. 16, pp , [4] M. Karasek, M. Menif, and L.A. Rusch, Output power excursions in a cascade of EDFAs fed by multichannel burst-mode packet traffic: Experimentation and modeling, IEEE Journal of Lightwave Technology, vol.19, no. 7, pp , July [5] A. Bianciotto, A. Carena, V. Ferrero, and R. Gaudino, "EDFA gain transients: Experimental demonstration of a low cost electronic control," IEEE Photon. Technol. Lett., vol. 15, no. 10, pp , October [6] M. Zirngibl, Gain control in Erbium-doped fiber amplifier by an all optical feedback loop, Electron. Lett., vol. 27, pp , [7] H. Okamura, Automatic optical loss compensation with erbium-doped fiber amplifiers, J. Lightwave Technol., vol. 10, pp , [8] F. Shehadeh, R. S. Vodhanel, C. Gibbons, and M. Ali, Comparison of gain control techniques to stabilize EDFA s for WDM networks, in Tech. Dig. Optical Fiber Communications, Opt. Soc. Amer., San Jose, CA, paper WM8, [9] B. Clesca, V. Harvard, S. Gauchard, V. Rodriques, E. Lantoine, D. Cravec, and F. X. Ollivier, Upper limit and control scheme for power channel in optically amplified WDM systems, in Proc. Eur. Conf. Optical Communications, Oslo, Norway, paper WeP.31, [10] J. L. Zyskind, A. K. Srivastava, Y. Sun, J. C. Ellison, G. W. Newsome, R. W. Tkach, A. R. Chraplyvy, J. W. Sulhoff, T. A. Strasser, J. R. Pedrazzani, and C. Wolf, Fast link control protection for surviving channels in multiwavelength optical networks, in Proc. Eur. Conf. Optical Commun., Oslo, Norway, post deadline paper, [11] G. Luo, J. L. Zyskind, Y. Sun, A. K. Srivastava, J. W. Sulhoff, and M. A. Ali, Relaxation oscillations and spectral hole burning in laser automatic gain control of EDFA s, in Tech. Dig. Optical Fiber Communication Conf., Opt. Soc. Amer., Dallas, TX, paper WF4, [12] B. Landousies, T. Georges, E. Delevaque, R. Lebref, and M. Monerie, Low power transients in multichannel equalized and stabilized gain amplifier using passive gain control, Electron. Lett., vol. 32, pp , [13] Fukada Y., Suzuki K., Nakamura H., Yoshimoto N., Tsubokawam, First demonstration of fast automatic gain control (AGC) PDFA for amplifying burst-mode PON upstream signal, European Conf. on Optical Communication, ECOC, paper We.2.F.4, [14] Sun Y., Luo G., Zyskind J.L., Saleh A.A.M., Srivastava A.K., Sulhoff, J.W., Model for gain dynamics in Erbium-doped fiber amplifiers, IEEE Electron. Lett., vol. 32, pp , [15] Awaji Y., Furukawa H., Wada N., Chan P., Man R., Mitigation of the transient response of Erbium doped fiber amplifiers for burst traffic high speed optical packets, Conf. on Lasers and Electro-Optics, CLEO 2007, paper JTuA133, [16] Awaji Y., Furukawa H., Wada N., Kong E., Chan P., Man R., Guidelines for amplification of optical packets in WDM environment regarding impact of transient response of Erbium-doped fiber amplifier, Compute. Netw., vol. 52, pp , [17] Sacchi G., Sugliani S., Bogoni A., Design and experimental characterization of EDFA-based WDM ring networks with free ASE light recirculation and link control for network survivability, J. Lightw. Technol., vol. 23, pp , [18] Puttnam B.J., Awaji Y., Wada N., Supplementary transient suppression in a burst-mode EDFA using optical feedback, Opto-Electronic and Communications Conf., OECC 2009, paper FG3, [19] Puttnam B.J., Thomsen B.C., Lopez A., Bayvel P., Experimental investigation of optically gain-clamped EDFAs in dynamic optical-bust switched networks, J. Opt. Netw., vol. 7, pp , [20] S.J.B. Yoo et al., Observation of prolonged power transients in a reconfigurable multiwavelength network and their suppression by gain-clamping of optical amplifiers, IEEE Photon. Lett. 10, pp , [21] L. L. Wang, B. C. Hwang, and L. M. Yang, Gain Transients in Copumped and Counter pumped Raman All rights reserved by

6 Amplifiers, IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 15, NO. 5, pp , MAY [22] P. S. Chan and H.K. Tsang, Transient Gain Dynamics in Gain-Clamped EDFA with Different Erbium Dopant Levels, IEEE, ISBN , pp , [23] D. Gurkan, M.I. Hayee, A.E. Willner, Transient behavior of L-band and C-band EDFAs in an add/drop multiplexed 40 channel WDM network, CLEO pp , [24] Wonkyoung Lee, Heuk Park, Hee Sang Chung, Moo- Jung Chu, Transient behavior of C-band EDFA under various wavelength allocations of add/drop channels, IEEE, vol. 13, no. 4, pp. 392, [25] Yasushi Sugaya, Shinichiro Muro, Yukihiro Sato and Etsuko lshikawa, Suppression method of transient power response of Raman amplifier caused by channel add-drop, OFC2007, WB3, [26] Miroslav Karlsek, Fast Power Transients in Raman Fibre Amplifiers, ICTON IEEE, CLEO , pp , [27] Johann Gest, Lawrence R. Chen, Impact of the alloptical gain-clamping technique on the transience characteristics of cascaded discrete fiber Raman amplifiers, Optics Communications, vol. 273, pp , [28] R.S. Kaler, Effect of channel adding/dropping on EDFA transients, Optic, vol. 122, pp , [29] Cechan Tian and Susumu Kinoshita, Analysis and Control of Transient Dynamics of EDFA Pumped by and 980-nm Lasers, JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 21, NO. 8, pp , AUGUST [30] G.P. Agrawal, Fiber-Optic Communication System, Third Edition, ISBN [31] Harun S.W., Ahmad H., L-band erbium-doped fiber amplifier with clamped- and flattened-gain using FBG, IEEE electron. Lett., vol. 39, pp , [32] Huang T.T., Sheu L.G., Chi S., All-optical gain clamped Erbium-doped fiber amplifier using a DWDM demultiplexer, Opto-Electronic and Communications Conf., OECC 2009, paper ThLP16, [33] G. Keiser, Optical Communications Essentials, third edition, Tata McGraw-Hill Publishing Company Limited, All rights reserved by

EDFA TRANSIENT REDUCTION USING POWER SHAPING

EDFA TRANSIENT REDUCTION USING POWER SHAPING Proceedings of the Eighth IASTED International Conference WIRELESS AND OPTICAL COMMUNICATIONS (WOC 2008) May 26-28, 2008 Quebec City, Quebec, Canada EDFA TRANSIENT REDUCTION USING POWER SHAPING Trent Jackson

More information

S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique

S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique Chien-Hung Yeh 1, *, Ming-Ching Lin 3, Ting-Tsan Huang 2, Kuei-Chu Hsu 2 Cheng-Hao Ko 2, and Sien Chi

More information

Burst-mode EDFA based on a mid-position gain flattening filter with an overpumping configuration for variable traffic conditions in a WDM environment

Burst-mode EDFA based on a mid-position gain flattening filter with an overpumping configuration for variable traffic conditions in a WDM environment Opt Quant Electron (8) :61 66 DOI 1.17/s118-8-913-x Burst-mode EDFA based on a mid-position gain flattening filter with an overpumping configuration for variable traffic conditions in a WDM environment

More information

A Comparative Study of Techniques to Control Power Transients in Optical WDM Networks

A Comparative Study of Techniques to Control Power Transients in Optical WDM Networks A Comparative Study of Techniques to Control Power Transients in Optical WDM Networks R. Olivares 1 and J. R. Souza 2 1 Departamento de Electrónica, Universidad Técnica Federico Santa María Casilla Postal

More information

Gain-clamping techniques in two-stage double-pass L-band EDFA

Gain-clamping techniques in two-stage double-pass L-band EDFA PRAMANA c Indian Academy of Sciences Vol. 66, No. 3 journal of March 2006 physics pp. 539 545 Gain-clamping techniques in two-stage double-pass L-band EDFA S W HARUN 1, N Md SAMSURI 2 and H AHMAD 2 1 Faculty

More information

Dynamic gain-tilt compensation using electronic variable optical attenuators and a thin film filter spectral tilt monitor

Dynamic gain-tilt compensation using electronic variable optical attenuators and a thin film filter spectral tilt monitor Dynamic gain-tilt compensation using electronic variable optical attenuators and a thin film filter spectral tilt monitor P. S. Chan, C. Y. Chow, and H. K. Tsang Department of Electronic Engineering, The

More information

Transient Control in Dynamically Reconfigured Networks with Cascaded Erbium Doped Fiber Amplifiers

Transient Control in Dynamically Reconfigured Networks with Cascaded Erbium Doped Fiber Amplifiers Transient Control in Dynamically Reconfigured Networks with Cascaded Erbium Doped Fiber Amplifiers Lei Zong, Ting Wang lanezong@nec-labs.com NEC Laboratories America, Princeton, New Jersey, USA WOCC 2007

More information

Optical fiber-fault surveillance for passive optical networks in S-band operation window

Optical fiber-fault surveillance for passive optical networks in S-band operation window Optical fiber-fault surveillance for passive optical networks in S-band operation window Chien-Hung Yeh 1 and Sien Chi 2,3 1 Transmission System Department, Computer and Communications Research Laboratories,

More information

Power Transients in Hybrid Optical Amplifier (EDFA + DFRA) Cascades

Power Transients in Hybrid Optical Amplifier (EDFA + DFRA) Cascades Power Transients in Hybrid Optical Amplifier (EDFA + DFRA) Cascades Bárbara Dumas and Ricardo Olivares Electronic Engineering Department Universidad Técnica Federico Santa María Valparaíso, Chile bpilar.dumas@gmail.com,

More information

OBSERVATION AND EVALUATION OF POWER TRANSIENTS IN 45 CHANNEL SSDWDM OPTICAL NETWORK

OBSERVATION AND EVALUATION OF POWER TRANSIENTS IN 45 CHANNEL SSDWDM OPTICAL NETWORK OBSERVATION AND EVALUATION OF POWER TRANSIENTS IN 45 CHANNEL SSDWDM OPTICAL NETWORK Vikrant Sharma, Dalveer Kaur 1,2 Department of ECE,IKG PTU, Jalandhar, India Abstract: Erbium doped fiber amplifiers

More information

1170 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 23, NO. 3, MARCH 2005

1170 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 23, NO. 3, MARCH 2005 1170 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 23, NO. 3, MARCH 2005 Design and Experimental Characterization of EDFA-Based WDM Ring Networks With Free ASE Light Recirculation and Link Control for Network

More information

Performance of optical automatic gain control EDFA with dual-oscillating control lasers

Performance of optical automatic gain control EDFA with dual-oscillating control lasers Optics Communications 224 (2003) 281 287 www.elsevier.com/locate/optcom Performance of optical automatic gain control EDFA with dual-oscillating control lasers Chun-Liu Zhao a,b,c, *, Bai-Ou Guan a,b,

More information

OBSERVATION AND MITIGATION OF POWER TRANSIENTS IN 160Gbps OPTICAL BACKHAUL NETWORKS

OBSERVATION AND MITIGATION OF POWER TRANSIENTS IN 160Gbps OPTICAL BACKHAUL NETWORKS OBSERVATION AND MITIGATION OF POWER TRANSIENTS IN 160Gbps OPTICAL BACKHAUL NETWORKS Vikrant Sharma Anurag Sharma Electronics and Communication Engineering, CT Group of Institutions, Jalandhar Dalveer Kaur

More information

SIMULATION OF FIBER LOOP BUFFER MEMORY OF ALL-OPTICAL PACKET SWITCH. Mandar Naik, Yatindra Nath Singh

SIMULATION OF FIBER LOOP BUFFER MEMORY OF ALL-OPTICAL PACKET SWITCH. Mandar Naik, Yatindra Nath Singh SIMULATION OF FIBER LOOP BUFFER MEMORY ABSTRACT OF ALL-OPTICAL PACKET SWITCH Mandar Naik, Yatindra Nath Singh Center for Laser Technology Indian Institute of Technology Kanpur - 28 16 India {mandy,ynsingh}@iitk.ac.in

More information

Transient Control of EDFA using Recirculating loop for WDM Transmisstion System.

Transient Control of EDFA using Recirculating loop for WDM Transmisstion System. Transient Control of EDFA usg Recirculatg loop for WDM Transmisstion System. Soo-J Bae *a, Chang-Hee Lee b a Korea Electrotechnology Research Institute, Gyeonggi-TP, 1271-11, Sa-1dong, Ansan, Gyeonggi

More information

Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber

Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber H. Ahmad 1, S. Shahi 1 and S. W. Harun 1,2* 1 Photonics Research Center, University of Malaya, 50603 Kuala Lumpur, Malaysia 2 Department

More information

EDFA-WDM Optical Network Analysis

EDFA-WDM Optical Network Analysis EDFA-WDM Optical Network Analysis Narruvala Lokesh, kranthi Kumar Katam,Prof. Jabeena A Vellore Institute of Technology VIT University, Vellore, India Abstract : Optical network that apply wavelength division

More information

Linear cavity erbium-doped fiber laser with over 100 nm tuning range

Linear cavity erbium-doped fiber laser with over 100 nm tuning range Linear cavity erbium-doped fiber laser with over 100 nm tuning range Xinyong Dong, Nam Quoc Ngo *, and Ping Shum Network Technology Research Center, School of Electrical & Electronics Engineering, Nanyang

More information

Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers

Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers 1.0 Modulation depth 0.8 0.6 0.4 0.2 0.0 Laser 3 Laser 2 Laser 4 2 3 4 5 6 7 8 Absorbed pump power (W) Laser 1 W. Guan and J. R.

More information

Transient gain dynamics in long-haul transmission systems with electronic EDFA gain control

Transient gain dynamics in long-haul transmission systems with electronic EDFA gain control Vol. 6, No. 9 / September 2007 / JOURNAL OF OPTICAL NETWORKING 1129 Transient gain dynamics in long-haul transmission systems with electronic EDFA gain control Stephan Pachnicke, 1, * Peter M. Krummrich,

More information

AN EFFICIENT L-BAND ERBIUM-DOPED FIBER AMPLIFIER WITH ZIRCONIA-YTTRIA-ALUMINUM CO-DOPED SILICA FIBER

AN EFFICIENT L-BAND ERBIUM-DOPED FIBER AMPLIFIER WITH ZIRCONIA-YTTRIA-ALUMINUM CO-DOPED SILICA FIBER Journal of Non - Oxide Glasses Vol. 10, No. 3, July - September 2018, p. 65-70 AN EFFICIENT L-BAND ERBIUM-DOPED FIBER AMPLIFIER WITH ZIRCONIA-YTTRIA-ALUMINUM CO-DOPED SILICA FIBER A. A. ALMUKHTAR a, A.

More information

Performance Evaluation of Hybrid (Raman+EDFA) Optical Amplifiers in Dense Wavelength Division Multiplexed Optical Transmission System

Performance Evaluation of Hybrid (Raman+EDFA) Optical Amplifiers in Dense Wavelength Division Multiplexed Optical Transmission System Performance Evaluation of Hybrid (Raman+EDFA) Optical Amplifiers in Dense Wavelength Division Multiplexed Optical Transmission System Gagandeep Singh Walia 1, Kulwinder Singh 2, Manjit Singh Bhamrah 3

More information

Optical Fibre Amplifiers Continued

Optical Fibre Amplifiers Continued 1 Optical Fibre Amplifiers Continued Stavros Iezekiel Department of Electrical and Computer Engineering University of Cyprus ECE 445 Lecture 09 Fall Semester 2016 2 ERBIUM-DOPED FIBRE AMPLIFIERS BASIC

More information

ESTIMATION OF NOISE FIGURE USING GFF WITH HYBRID QUAD PUMPING

ESTIMATION OF NOISE FIGURE USING GFF WITH HYBRID QUAD PUMPING IJCRR Vol 05 issue 13 Section: Technology Category: Research Received on: 19/12/12 Revised on: 16/01/13 Accepted on: 09/02/13 ESTIMATION OF NOISE FIGURE USING GFF WITH HYBRID QUAD PUMPING V.R. Prakash,

More information

An Amplified WDM-PON Using Broadband Light Source Seeded Optical Sources and a Novel Bidirectional Reach Extender

An Amplified WDM-PON Using Broadband Light Source Seeded Optical Sources and a Novel Bidirectional Reach Extender Journal of the Optical Society of Korea Vol. 15, No. 3, September 2011, pp. 222-226 DOI: http://dx.doi.org/10.3807/josk.2011.15.3.222 An Amplified WDM-PON Using Broadband Light Source Seeded Optical Sources

More information

CONTROLLABLE WAVELENGTH CHANNELS FOR MULTIWAVELENGTH BRILLOUIN BISMUTH/ERBIUM BAS-ED FIBER LASER

CONTROLLABLE WAVELENGTH CHANNELS FOR MULTIWAVELENGTH BRILLOUIN BISMUTH/ERBIUM BAS-ED FIBER LASER Progress In Electromagnetics Research Letters, Vol. 9, 9 18, 29 CONTROLLABLE WAVELENGTH CHANNELS FOR MULTIWAVELENGTH BRILLOUIN BISMUTH/ERBIUM BAS-ED FIBER LASER H. Ahmad, M. Z. Zulkifli, S. F. Norizan,

More information

DESIGN AND CHARACTERIZATION OF HIGH PERFORMANCE C AND L BAND ERBIUM DOPED FIBER AMPLIFIERS (C,L-EDFAs)

DESIGN AND CHARACTERIZATION OF HIGH PERFORMANCE C AND L BAND ERBIUM DOPED FIBER AMPLIFIERS (C,L-EDFAs) DESIGN AND CHARACTERIZATION OF HIGH PERFORMANCE C AND L BAND ERBIUM DOPED FIBER AMPLIFIERS (C,L-EDFAs) Ahmet Altuncu Arif Başgümüş Burçin Uzunca Ekim Haznedaroğlu e-mail: altuncu@dumlupinar.edu.tr e-mail:

More information

EDFA WDM Optical Network using GFF

EDFA WDM Optical Network using GFF EDFA WDM Optical Network using GFF Shweta Bharti M. Tech, Digital Communication, (Govt. Women Engg. College, Ajmer), Rajasthan, India ABSTRACT This paper describes the model and simulation of EDFA WDM

More information

Design of Ultra High Capacity DWDM System with Different Modulation Formats

Design of Ultra High Capacity DWDM System with Different Modulation Formats Design of Ultra High Capacity DWDM System with Different Modulation Formats A. Nandhini 1, K. Gokulakrishnan 2 1 PG Scholar, Department of Electronics & Communication Engineering, Regional Center, Anna

More information

Enhanced optical gain clamping for upstream packet based traffic on hybrid WDM/TDM-PON using Fiber Bragg grating

Enhanced optical gain clamping for upstream packet based traffic on hybrid WDM/TDM-PON using Fiber Bragg grating Enhanced optical gain clamping for upstream packet based traffic on hybrid WDM/TDM-PON using Fiber Bragg grating B. Neto 1,2, A. Klingler 1,3, C. Reis 1,4, R. P. Dionisio 1,4,5, R. N. Nogueira 1,2,6, A.

More information

EDFA-WDM Optical Network Design System

EDFA-WDM Optical Network Design System Available online at www.sciencedirect.com Procedia Engineering 53 ( 2013 ) 294 302 Malaysian Technical Universities Conference on Engineering & Technology 2012, MUCET 2012 Part -1 Electronic and Electrical

More information

Study of Multiwavelength Fiber Laser in a Highly Nonlinear Fiber

Study of Multiwavelength Fiber Laser in a Highly Nonlinear Fiber Study of Multiwavelength Fiber Laser in a Highly Nonlinear Fiber I. H. M. Nadzar 1 and N. A.Awang 1* 1 Faculty of Science, Technology and Human Development, Universiti Tun Hussein Onn Malaysia, Johor,

More information

Progress In Electromagnetics Research C, Vol. 15, 37 48, 2010 TEMPERATURE INSENSITIVE BROAD AND FLAT GAIN C-BAND EDFA BASED ON MACRO-BENDING

Progress In Electromagnetics Research C, Vol. 15, 37 48, 2010 TEMPERATURE INSENSITIVE BROAD AND FLAT GAIN C-BAND EDFA BASED ON MACRO-BENDING Progress In Electromagnetics Research C, Vol. 15, 37 48, 2010 TEMPERATURE INSENSITIVE BROAD AND FLAT GAIN C-BAND EDFA BASED ON MACRO-BENDING P. Hajireza Optical Fiber Devices Group Multimedia University

More information

A broadband fiber ring laser technique with stable and tunable signal-frequency operation

A broadband fiber ring laser technique with stable and tunable signal-frequency operation A broadband fiber ring laser technique with stable and tunable signal-frequency operation Chien-Hung Yeh 1 and Sien Chi 2, 3 1 Transmission System Department, Computer & Communications Research Laboratories,

More information

Performance Comparison of Pre-, Post-, and Symmetrical Dispersion Compensation for 96 x 40 Gb/s DWDM System using DCF

Performance Comparison of Pre-, Post-, and Symmetrical Dispersion Compensation for 96 x 40 Gb/s DWDM System using DCF Performance Comparison of Pre-, Post-, and Symmetrical Dispersion Compensation for 96 x 40 Gb/s DWDM System using Sabina #1, Manpreet Kaur *2 # M.Tech(Scholar) & Department of Electronics & Communication

More information

Investigation of Performance Analysis of EDFA Amplifier. Using Different Pump Wavelengths and Powers

Investigation of Performance Analysis of EDFA Amplifier. Using Different Pump Wavelengths and Powers Investigation of Performance Analysis of EDFA Amplifier Using Different Pump Wavelengths and Powers Ramandeep Kaur, Parkirti, Rajandeep Singh ABSTRACT In this paper, an investigation of the performance

More information

Optimized Flattened Gain Spectrum in C Band WDM using Automatic Gain Control in Bi-Directionally Pumped EDFA

Optimized Flattened Gain Spectrum in C Band WDM using Automatic Gain Control in Bi-Directionally Pumped EDFA Optimized Flattened Gain Spectrum in C Band WDM using Automatic Gain Control in Bi-Directionally Pumped EDFA 1 V. S. Lavanya*, 2 V. K. Vaidyan 1,2 Department of Physics, Mar Ivanios College, Thiruvananthapuram,

More information

Study of All-Optical Wavelength Conversion and Regeneration Subsystems for use in Wavelength Division Multiplexing (WDM) Telecommunication Networks.

Study of All-Optical Wavelength Conversion and Regeneration Subsystems for use in Wavelength Division Multiplexing (WDM) Telecommunication Networks. Study of All-Optical Wavelength Conversion and Regeneration Subsystems for use in Wavelength Division Multiplexing (WDM) Telecommunication Networks. Hercules Simos * National and Kapodistrian University

More information

Gain Flattened L-Band EDFA -Raman Hybrid Amplifier by Bidirectional Pumping technique

Gain Flattened L-Band EDFA -Raman Hybrid Amplifier by Bidirectional Pumping technique Gain Flattened L-Band EDFA -Raman Hybrid Amplifier by Bidirectional Pumping technique Avneet Kour 1, Neena Gupta 2 1,2 Electronics and Communication Department, PEC University of Technology, Chandigarh

More information

Advanced Optical Communications Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay

Advanced Optical Communications Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Advanced Optical Communications Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture No. # 27 EDFA In the last lecture, we talked about wavelength

More information

Performance Analysis of Designing a Hybrid Optical Amplifier (HOA) for 32 DWDM Channels in L-band by using EDFA and Raman Amplifier

Performance Analysis of Designing a Hybrid Optical Amplifier (HOA) for 32 DWDM Channels in L-band by using EDFA and Raman Amplifier Performance Analysis of Designing a Hybrid Optical Amplifier (HOA) for 32 DWDM Channels in L-band by using EDFA and Raman Amplifier Aied K. Mohammed, PhD Department of Electrical Engineering, University

More information

To investigate effects of extinction ratio on SOA based wavelength Converters for all Optical Networks

To investigate effects of extinction ratio on SOA based wavelength Converters for all Optical Networks 289 To investigate effects of extinction ratio on SOA based wavelength Converters for all Optical Networks Areet Aulakh 1, Kulwinder Singh Malhi 2 1 Student, M.Tech, ECE department, Punjabi University,

More information

Performance Analysis of EDFA for Different Pumping Configurations at High Data Rate

Performance Analysis of EDFA for Different Pumping Configurations at High Data Rate Global Journal of Researches in Engineering Electrical and Electronics Engineering Volume 13 Issue 9 Version 1.0 Year 2013 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global

More information

Comparative Analysis Of Different Dispersion Compensation Techniques On 40 Gbps Dwdm System

Comparative Analysis Of Different Dispersion Compensation Techniques On 40 Gbps Dwdm System INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 3, ISSUE 06 34 Comparative Analysis Of Different Dispersion Compensation Techniques On 40 Gbps Dwdm System Meenakshi,

More information

Colorless Amplified WDM-PON Employing Broadband Light Source Seeded Optical Sources and Channel-by-Channel Dispersion Compensators for >100 km Reach

Colorless Amplified WDM-PON Employing Broadband Light Source Seeded Optical Sources and Channel-by-Channel Dispersion Compensators for >100 km Reach Journal of the Optical Society of Korea Vol. 18, No. 5, October 014, pp. 46-441 ISSN: 16-4776(Print) / ISSN: 09-6885(Online) DOI: http://dx.doi.org/10.807/josk.014.18.5.46 Colorless Amplified WDM-PON Employing

More information

Stable dual-wavelength oscillation of an erbium-doped fiber ring laser at room temperature

Stable dual-wavelength oscillation of an erbium-doped fiber ring laser at room temperature Stable dual-wavelength oscillation of an erbium-doped fiber ring laser at room temperature Donghui Zhao.a, Xuewen Shu b, Wei Zhang b, Yicheng Lai a, Lin Zhang a, Ian Bennion a a Photonics Research Group,

More information

International Journal of Computational Intelligence and Informatics, Vol. 2: No. 4, January - March Bandwidth of 13GHz

International Journal of Computational Intelligence and Informatics, Vol. 2: No. 4, January - March Bandwidth of 13GHz Simulation and Analysis of GFF at WDM Mux Bandwidth of 13GHz Warsha Balani Department of ECE, BIST Bhopal, India balani.warsha@gmail.com Manish Saxena Department of ECE,BIST Bhopal, India manish.saxena2008@gmail.com

More information

Bit error rate and cross talk performance in optical cross connect with wavelength converter

Bit error rate and cross talk performance in optical cross connect with wavelength converter Vol. 6, No. 3 / March 2007 / JOURNAL OF OPTICAL NETWORKING 295 Bit error rate and cross talk performance in optical cross connect with wavelength converter M. S. Islam and S. P. Majumder Department of

More information

Research Article Output Signal Power Analysis in Erbium-Doped Fiber Amplifier with Pump Power and Length Variation Using Various Pumping Techniques

Research Article Output Signal Power Analysis in Erbium-Doped Fiber Amplifier with Pump Power and Length Variation Using Various Pumping Techniques ISRN Electronics Volume 213, Article ID 31277, 6 pages http://dx.doi.org/1.1155/213/31277 Research Article Output Signal Power Analysis in Erbium-Doped Fiber Amplifier with Power and Length Variation Using

More information

Cost-effective wavelength-tunable fiber laser using self-seeding Fabry-Perot laser diode

Cost-effective wavelength-tunable fiber laser using self-seeding Fabry-Perot laser diode Cost-effective wavelength-tunable fiber laser using self-seeding Fabry-Perot laser diode Chien Hung Yeh, 1* Fu Yuan Shih, 2 Chia Hsuan Wang, 3 Chi Wai Chow, 3 and Sien Chi 2, 3 1 Information and Communications

More information

Emerging Subsea Networks

Emerging Subsea Networks A NEW CABLE FAILURE QUICK ISOLATION TECHNIQUE OF OADM BRANCHING UNIT IN SUBMARINE NETWORKS Hongbo Sun, Likun Zhang, Xin Wang, Wendou Zhang, Liping Ma (Huawei Marine Networks Co., LTD) Email: sunhongbo@huaweimarine.com

More information

Optimisation of DSF and SOA based Phase Conjugators. by Incorporating Noise-Suppressing Fibre Gratings

Optimisation of DSF and SOA based Phase Conjugators. by Incorporating Noise-Suppressing Fibre Gratings Optimisation of DSF and SOA based Phase Conjugators by Incorporating Noise-Suppressing Fibre Gratings Paper no: 1471 S. Y. Set, H. Geiger, R. I. Laming, M. J. Cole and L. Reekie Optoelectronics Research

More information

Chapter 12: Optical Amplifiers: Erbium Doped Fiber Amplifiers (EDFAs)

Chapter 12: Optical Amplifiers: Erbium Doped Fiber Amplifiers (EDFAs) Chapter 12: Optical Amplifiers: Erbium Doped Fiber Amplifiers (EDFAs) Prof. Dr. Yaocheng SHI ( 时尧成 ) yaocheng@zju.edu.cn http://mypage.zju.edu.cn/yaocheng 1 Traditional Optical Communication System Loss

More information

Spectral Response of FWM in EDFA for Long-haul Optical Communication

Spectral Response of FWM in EDFA for Long-haul Optical Communication Spectral Response of FWM in EDFA for Long-haul Optical Communication Lekshmi.S.R 1, Sindhu.N 2 1 P.G.Scholar, Govt. Engineering College, Wayanad, Kerala, India 2 Assistant Professor, Govt. Engineering

More information

Loop Mirror Multi-wavelength Brillouin Fiber Laser Utilizing Semiconductor Optical Amplifier and Fiber Bragg Grating

Loop Mirror Multi-wavelength Brillouin Fiber Laser Utilizing Semiconductor Optical Amplifier and Fiber Bragg Grating Loop Mirror Multi-wavelength Brillouin Fiber Laser Utilizing Semiconductor Optical Amplifier and Fiber Bragg Grating N. A. Idris 1,2,*, N. A. M. Ahmad Hambali 1,2, M.H.A. Wahid 1,2, N. A. Ariffin 1,2,

More information

Active mode-locking of miniature fiber Fabry-Perot laser (FFPL) in a ring cavity

Active mode-locking of miniature fiber Fabry-Perot laser (FFPL) in a ring cavity Active mode-locking of miniature fiber Fabry-Perot laser (FFPL) in a ring cavity Shinji Yamashita (1)(2) and Kevin Hsu (3) (1) Dept. of Frontier Informatics, Graduate School of Frontier Sciences The University

More information

Optical simulations for experimental networks: lessons from MONET

Optical simulations for experimental networks: lessons from MONET Optical simulations for experimental networks: lessons from MONET D. Richards, J. Jackel, M. Goodman, I. Roudas, * R. Wagner*, and N. Antoniades* Telcordia Technologies, Red Bank NJ 07701 ABSTRACT We have

More information

Current Trends in Unrepeatered Systems

Current Trends in Unrepeatered Systems Current Trends in Unrepeatered Systems Wayne Pelouch (Xtera, Inc.) Email: wayne.pelouch@xtera.com Xtera, Inc. 500 W. Bethany Drive, suite 100, Allen, TX 75013, USA. Abstract: The current trends in unrepeatered

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 4, 116, 12M Open access books available International authors and editors Downloads Our authors

More information

Prabhjeet Singh a, Narwant Singh b, Amandeep Singh c

Prabhjeet Singh a, Narwant Singh b, Amandeep Singh c ISSN : 2250-3021 Investigation of DWDM System for Different Modulation Formats Prabhjeet Singh a, Narwant Singh b, Amandeep Singh c a B.G.I.E.T. Sangrur, India b G.N.D.E.C. Ludhiana, India c R.I.E.T, Ropar,

More information

Fiberoptic Communication Systems By Dr. M H Zaidi. Optical Amplifiers

Fiberoptic Communication Systems By Dr. M H Zaidi. Optical Amplifiers Optical Amplifiers Optical Amplifiers Optical signal propagating in fiber suffers attenuation Optical power level of a signal must be periodically conditioned Optical amplifiers are a key component in

More information

from ocean to cloud SEAMLESS OADM FUNCTIONALITY FOR SUBMARINE BU

from ocean to cloud SEAMLESS OADM FUNCTIONALITY FOR SUBMARINE BU SEAMLESS OADM FUNCTIONALITY FOR SUBMARINE BU Shigui Zhang, Yan Wang, Hongbo Sun, Wendou Zhang and Liping Ma sigurd.zhang@huaweimarine.com Huawei Marine Networks, Hai-Dian District, Beijing, P.R. China,

More information

PERFORMANCE ANALYSIS OF 4 CHANNEL WDM_EDFA SYSTEM WITH GAIN EQUALISATION

PERFORMANCE ANALYSIS OF 4 CHANNEL WDM_EDFA SYSTEM WITH GAIN EQUALISATION PERFORMANCE ANALYSIS OF 4 CHANNEL WDM_EDFA SYSTEM WITH GAIN EQUALISATION S.Hemalatha 1, M.Methini 2 M.E.Student, Department Of ECE, Sri Sairam Engineering College,Chennai,India1 Assistant professsor,department

More information

All-Optical Signal Processing and Optical Regeneration

All-Optical Signal Processing and Optical Regeneration 1/36 All-Optical Signal Processing and Optical Regeneration Govind P. Agrawal Institute of Optics University of Rochester Rochester, NY 14627 c 2007 G. P. Agrawal Outline Introduction Major Nonlinear Effects

More information

Improvisation of Gain and Bit-Error Rate for an EDFA-WDM System using Different Filters

Improvisation of Gain and Bit-Error Rate for an EDFA-WDM System using Different Filters Improvisation of Gain and Bit-Error Rate for an EDFA-WDM System using Different Filters Sharmila M M.Tech LEOE Department of physics College of engineering guindy Chennai 600025 India. Abstract: The Gain

More information

PERFORMANCE ANALYSIS OF WDM AND EDFA IN C-BAND FOR OPTICAL COMMUNICATION SYSTEM

PERFORMANCE ANALYSIS OF WDM AND EDFA IN C-BAND FOR OPTICAL COMMUNICATION SYSTEM www.arpapress.com/volumes/vol13issue1/ijrras_13_1_26.pdf PERFORMANCE ANALYSIS OF WDM AND EDFA IN C-BAND FOR OPTICAL COMMUNICATION SYSTEM M.M. Ismail, M.A. Othman, H.A. Sulaiman, M.H. Misran & M.A. Meor

More information

TRANSMISSION OF NG-PON FOR LONG HAUL NETWORKS USING HYBRID AMPLIFIER

TRANSMISSION OF NG-PON FOR LONG HAUL NETWORKS USING HYBRID AMPLIFIER RESEARCH ARTICLE OPEN ACCESS TRANSMISSION OF NG-PON FOR LONG HAUL NETWORKS USING HYBRID AMPLIFIER Karthick.J Sanjai.V Sivakumar.K Syed Feroze hussain.s UG Scholar UG Scholar UG Scholar Assistant Professor

More information

Performance Limitations of WDM Optical Transmission System Due to Cross-Phase Modulation in Presence of Chromatic Dispersion

Performance Limitations of WDM Optical Transmission System Due to Cross-Phase Modulation in Presence of Chromatic Dispersion Performance Limitations of WDM Optical Transmission System Due to Cross-Phase Modulation in Presence of Chromatic Dispersion M. A. Khayer Azad and M. S. Islam Institute of Information and Communication

More information

1.6 Tbps High Speed Long Reach DWDM System by incorporating Modified Duobinary Modulation Scheme

1.6 Tbps High Speed Long Reach DWDM System by incorporating Modified Duobinary Modulation Scheme Research Article International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347-5161 2014 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet 1.6

More information

Introduction Fundamental of optical amplifiers Types of optical amplifiers

Introduction Fundamental of optical amplifiers Types of optical amplifiers ECE 6323 Introduction Fundamental of optical amplifiers Types of optical amplifiers Erbium-doped fiber amplifiers Semiconductor optical amplifier Others: stimulated Raman, optical parametric Advanced application:

More information

Wideband Rare-earth-doped Fiber Amplification Technologies Gain Bandwidth Expansion in the C and L bands

Wideband Rare-earth-doped Fiber Amplification Technologies Gain Bandwidth Expansion in the C and L bands Wideband Rare-earth-doped Fiber Amplification Technologies Gain Bandwidth Expansion in the C and L bands Tadashi Sakamoto, Atsushi Mori, Hiroji Masuda, and Hirotaka Ono Abstract We are expanding the gain

More information

Downstream Transmission in a WDM-PON System Using a Multiwavelength SOA-Based Fiber Ring Laser Source

Downstream Transmission in a WDM-PON System Using a Multiwavelength SOA-Based Fiber Ring Laser Source JOURNAL OF L A TEX CLASS FILES, VOL. X, NO. XX, XXXX XXX 1 Downstream Transmission in a WDM-PON System Using a Multiwavelength SOA-Based Fiber Ring Laser Source Jérôme Vasseur, Jianjun Yu Senior Member,

More information

OFC SYSTEMS Performance & Simulations. BC Choudhary NITTTR, Sector 26, Chandigarh

OFC SYSTEMS Performance & Simulations. BC Choudhary NITTTR, Sector 26, Chandigarh OFC SYSTEMS Performance & Simulations BC Choudhary NITTTR, Sector 26, Chandigarh High Capacity DWDM OFC Link Capacity of carrying enormous rates of information in THz 1.1 Tb/s over 150 km ; 55 wavelengths

More information

Performance Analysis of 4-Channel WDM System with and without EDFA

Performance Analysis of 4-Channel WDM System with and without EDFA Performance Analysis of 4-Channel WDM System with and without EDFA 1 Jyoti Gujral, 2 Maninder Singh 1,2 Indo Global College of Engineering, Abhipur, Mohali, Punjab, India Abstract The Scope of this paper

More information

A Novel Design Technique for 32-Channel DWDM system with Hybrid Amplifier and DCF

A Novel Design Technique for 32-Channel DWDM system with Hybrid Amplifier and DCF Research Manuscript Title A Novel Design Technique for 32-Channel DWDM system with Hybrid Amplifier and DCF Dr.Punal M.Arabi, Nija.P.S PG Scholar, Professor, Department of ECE, SNS College of Technology,

More information

International Journal of Advanced Research in Computer Science and Software Engineering

International Journal of Advanced Research in Computer Science and Software Engineering ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: Performance Analysis of WDM/SCM System Using EDFA Mukesh Kumar

More information

Optical monitoring technique based on scanning the gain profiles of erbium-doped fiber amplifiers for WDM networks

Optical monitoring technique based on scanning the gain profiles of erbium-doped fiber amplifiers for WDM networks Optics Communications () 8 www.elsevier.com/locate/optcom Optical monitoring technique based on scanning the gain profiles of erbium-doped fiber amplifiers for WDM networks Chien-Hung Yeh *, Chien-Chung

More information

Performance Analysis of Gb/s DWDM Metropolitan Area Network using SMF-28 and MetroCor Optical Fibres

Performance Analysis of Gb/s DWDM Metropolitan Area Network using SMF-28 and MetroCor Optical Fibres Research Cell: An International Journal of Engineering Sciences ISSN: 2229-6913 Issue Sept 2011, Vol. 4 11 Performance Analysis of 32 2.5 Gb/s DWDM Metropolitan Area Network using SMF-28 and MetroCor Optical

More information

A novel 3-stage structure for a low-noise, high-gain and gain-flattened L-band erbium doped fiber amplifier *

A novel 3-stage structure for a low-noise, high-gain and gain-flattened L-band erbium doped fiber amplifier * Journal of Zhejiang University SCIENCE ISSN 9-9 http://www.zju.edu.cn/jzus E-mail: jzus@zju.edu.cn A novel -stage structure for a low-noise, high-gain and gain-flattened L-band erbium doped fiber amplifier

More information

Recon gurable WDM add/drop multiplexer based on optical switches and bre Bragg gratings

Recon gurable WDM add/drop multiplexer based on optical switches and bre Bragg gratings Optical and Quantum Electronics 31 (1999) 77±83 Recon gurable WDM add/drop multiplexer based on optical switches and bre Bragg gratings SHIEN-KUEI LIAW Institute of Electro-Optical Engineering, National

More information

Analysis of Self Phase Modulation Fiber nonlinearity in Optical Transmission System with Dispersion

Analysis of Self Phase Modulation Fiber nonlinearity in Optical Transmission System with Dispersion 36 Analysis of Self Phase Modulation Fiber nonlinearity in Optical Transmission System with Dispersion Supreet Singh 1, Kulwinder Singh 2 1 Department of Electronics and Communication Engineering, Punjabi

More information

Temporal phase mask encrypted optical steganography carried by amplified spontaneous emission noise

Temporal phase mask encrypted optical steganography carried by amplified spontaneous emission noise Temporal phase mask encrypted optical steganography carried by amplified spontaneous emission noise Ben Wu, * Zhenxing Wang, Bhavin J. Shastri, Matthew P. Chang, Nicholas A. Frost, and Paul R. Prucnal

More information

Kuldeep Kaur #1, Gurpreet Bharti *2

Kuldeep Kaur #1, Gurpreet Bharti *2 Performance Evaluation of Hybrid Optical Amplifier in Different Bands for DWDM System Kuldeep Kaur #1, Gurpreet Bharti *2 #1 M Tech Student, E.C.E. Department, YCOE, Talwandi Sabo, Punjabi University,

More information

Gain Flattening Improvements With Two Cascade Erbium Doped Fiber Amplifier In WDM Systems

Gain Flattening Improvements With Two Cascade Erbium Doped Fiber Amplifier In WDM Systems International Academic Institute for Science and Technology International Academic Journal of Science and Engineering Vol. 3, No. 1, 2016, pp. 36-42. ISSN 2454-3896 International Academic Journal of Science

More information

Performance analysis of Erbium Doped Fiber Amplifier at different pumping configurations

Performance analysis of Erbium Doped Fiber Amplifier at different pumping configurations Performance analysis of Erbium Doped Fiber Amplifier at different pumping configurations Mayur Date M.E. Scholar Department of Electronics and Communication Ujjain Engineering College, Ujjain (M.P.) datemayur3@gmail.com

More information

Emerging Subsea Networks

Emerging Subsea Networks Highly efficient submarine C+L EDFA with serial architecture Douglas O. M. de Aguiar, Reginaldo Silva (Padtec S/A) Giorgio Grasso, Aldo Righetti, Fausto Meli (Fondazione Cife) Email: douglas.aguiar@padtec.com.br

More information

International Journal Of Scientific Research And Education Volume 3 Issue 4 Pages April-2015 ISSN (e): Website:

International Journal Of Scientific Research And Education Volume 3 Issue 4 Pages April-2015 ISSN (e): Website: International Journal Of Scientific Research And Education Volume 3 Issue 4 Pages-3183-3188 April-2015 ISSN (e): 2321-7545 Website: http://ijsae.in Effects of Four Wave Mixing (FWM) on Optical Fiber in

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements HW #5 is assigned (due April 9) April 9 th class will be in

More information

Index Terms WDM, multi-wavelength Erbium Doped fiber laser.

Index Terms WDM, multi-wavelength Erbium Doped fiber laser. A Multi-wavelength Erbium Doped Fiber Laser for Free Space Optical Communication link S. Qhumayo, R. Martinez Manuel and J.J. M. Kaboko Photonics Research Group, Department of Electrical and Electronic

More information

Optical Amplifiers Photonics and Integrated Optics (ELEC-E3240) Zhipei Sun Photonics Group Department of Micro- and Nanosciences Aalto University

Optical Amplifiers Photonics and Integrated Optics (ELEC-E3240) Zhipei Sun Photonics Group Department of Micro- and Nanosciences Aalto University Photonics Group Department of Micro- and Nanosciences Aalto University Optical Amplifiers Photonics and Integrated Optics (ELEC-E3240) Zhipei Sun Last Lecture Topics Course introduction Ray optics & optical

More information

Performance Analysis of SOA-MZI based All-Optical AND & XOR Gate

Performance Analysis of SOA-MZI based All-Optical AND & XOR Gate International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2016 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Utkarsh

More information

Optical Fiber Devices and Their Applications

Optical Fiber Devices and Their Applications Optical Fiber Devices and Their Applications Yutaka SASAKI Faculty of Engineering Ibaraki University --, Nakanarusawa-cho, Hitachi, Ibaraki 6-85, Japan ABSTRACT: - Recent progress in research on optical

More information

An All-Optical Gain-Controlled Amplifier for Bidirectional Transmission

An All-Optical Gain-Controlled Amplifier for Bidirectional Transmission An All-Optical Gain-Controlled Amplifier for Bidirectional Transmission Bo-Hun Choi, Kyung-Jin Hong, Chang-Bong Kim, and Yong Hyub Won A novel all-optical gain-controlled (AOGC) bidirectional amplifier

More information

Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers

Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers Keisuke Kasai a), Jumpei Hongo, Masato Yoshida, and Masataka Nakazawa Research Institute of

More information

International Journal of Emerging Technologies in Computational and Applied Sciences(IJETCAS)

International Journal of Emerging Technologies in Computational and Applied Sciences(IJETCAS) International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) International Journal of Emerging Technologies in Computational

More information

Enhancing Optical Network Capacity using DWDM System and Dispersion Compansating Technique

Enhancing Optical Network Capacity using DWDM System and Dispersion Compansating Technique ISSN (Print) : 2320 3765 ISSN (Online): 2278 8875 International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering Vol. 6, Issue 12, December 2017 Enhancing Optical

More information

New pumping scheme for high gain and low noise figure in an erbium-doped fiber amplifier

New pumping scheme for high gain and low noise figure in an erbium-doped fiber amplifier New pumping scheme for high gain and low noise figure in an erbium-doped fiber amplifier V. Sinivasagam, 1,3a) Mustafa A. G. Abushagur, 1,2 K. Dimyati, 3 and F. Tumiran 1 1 Photronix (M) Sdn. Bhd., G05,

More information

SOA-BASED NOISE SUPPRESSION IN SPECTRUM-SLICED PONs: IMPACT OF BIT-RATE AND SOA GAIN RECOVERY TIME

SOA-BASED NOISE SUPPRESSION IN SPECTRUM-SLICED PONs: IMPACT OF BIT-RATE AND SOA GAIN RECOVERY TIME SOA-BASED NOISE SUPPRESSION IN SPECTRUM-SLICED PONs: IMPACT OF BIT-RATE AND SOA GAIN RECOVERY TIME Francesco Vacondio, Walid Mathlouthi, Pascal Lemieux, Leslie Ann Rusch Centre d optique photonique et

More information

BROAD-BAND rare-earth-doped fiber sources have been

BROAD-BAND rare-earth-doped fiber sources have been JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 15, NO. 8, AUGUST 1997 1587 Feedback Effects in Erbium-Doped Fiber Amplifier/Source for Open-Loop Fiber-Optic Gyroscope Hee Gap Park, Kyoung Ah Lim, Young-Jun Chin,

More information

Optical Amplifiers (Chapter 6)

Optical Amplifiers (Chapter 6) Optical Amplifiers (Chapter 6) General optical amplifier theory Semiconductor Optical Amplifier (SOA) Raman Amplifiers Erbium-doped Fiber Amplifiers (EDFA) Read Chapter 6, pp. 226-266 Loss & dispersion

More information