Introduction to: Radio Navigational Aids

Size: px
Start display at page:

Download "Introduction to: Radio Navigational Aids"

Transcription

1 Introduction to: Radio Navigational Aids 1

2 Lecture Topics Basic Principles Radio Directional Finding (RDF) Radio Beacons Distance Measuring Equipment (DME) Instrument Landing System (ILS) Microwave Landing System (MLS) Hyperbolic Navigational System 2

3 Defining Navigation Navigation is the determination of the Position and Velocity of a Moving Vehicle on land, at sea, in the air, or space. 3

4 What are Radio Navigational Aids? Specialised Electronic and Communication Systems used for navigational purposes. Long-range systems employ LF and HF bands. Short-range systems employ VHF and UHF bands. Microwave frequencies are used for long-range and short-range systems. 4

5 Basic Principles of Radio Navigational Aides Measuring the distance to a known location by measuring the round trip time of the Electromagnetic Waves. Utilizing the directional radiation pattern of antennas to find the direction to a known location. Antenna radiation patterns are of a prime interest in the field of radio navigation aids. 5

6 Triangulation Systems X B A A and B are landmarks of known coordinates 6

7 Line of Position (LOP) 90 o 90 o 135 o 45 o 45 o 135 o 180 o A B 180 o 225 o 315 o 315 o 225 o 270 o 270 o 7

8 Bearings Measurement North A X B A B Heading B base-line A 8

9 Radio Direction Finding RDF equipment are used on board of aircraft, ships, and other moving platforms. RDF systems employ a radio receiver with a rotatable Loop antenna. Loop antennas have a special radiation pattern which is suited to the RDF function. 9

10 Loop Antenna one or more loops of wire connection terminals base The loop can be circular or square. 10

11 Loop Antenna Radiation Pattern Loop Top View of Loop Antenna Radiation Pattern 11

12 Loop Antenna Orientation Tx Tx vertically polarised radio field Direction of Propagation Top View of Loop Antenna 12

13 Maximum Induced Voltage vertically polarised radio field Direction of Propagation Tx Tx Top View of Loop Antenna Magnetic component 13

14 Minimum Induced Voltage vertically polarised radio field Direction of Propagation Tx Tx Top View of Loop Antenna Magnetic component 14

15 Simple Direction Finder Bearing is found by searching for the minimum signal. Why? Rx Rotating Loop Antenna Field Strength meter 15

16 Ambiguity of Simple RDF Tx? Tx? Top View of Loop Antenna Radiation Pattern 16

17 Addition of Sense Antenna Loop Antenna Omnidirectional Antenna (Sense Antenna) Voltage sum of Loop and Sense antennas 17

18 Cardioid Antenna Pattern Loop Antenna v is proportional to 1 +cos 18

19 Automatic Direction Finder (ADF) Loop Sense Antenna Synchro Gen. Amp /2 Rx Motor IF Amp Detector Indicator IF Amp Detector 19

20 Radio Beacons A Radio Beacon (RB) is a transmitter used with RDF (300 khz - 3 MHz). Technically, RDF can be used to take bearing of any transmitter operating at the appropriate radio frequency. Non-directional Beacons (NDB) are used specifically with RDF. NDB transmit CW interrupted at regular interval by identification Morse code. 20

21 Simple Radio Range System Tx /2 21

22 Radio Range Antenna Pattern Morse Code: A : N : NW CW A North CW NE CW = A + N West N N East CW A CW SW South SE 22

23 VHF Omnidirectional Range (VOR) VHF Omnidirectional Range (VOR) provides Azimuth reading at the aircraft. No direction finding antenna required at the aircraft position. VOR Beacon, transmits continuous signals on one of 20 assigned channels in the MHz band. Limited range to line-of-sight, about 100 km. Several VORs are needed to cover long distance over land. 23

24 Principle of Operation Antenna with Cardioid pattern, rotating electrically at the rate of 30 Hz (Goniometer). Bearing information is transmitted in the phase of the signal. A separate 30 Hz reference signal is transmitted by an Omnidirectional antenna. Bearings are calculated from the phase information received at the aircraft. 24

25 Cardioid Antenna Pattern 315 o 0 o 360 o 45 o 270 o 90 o 225 o 180 o 135 o 25

26 VOR Antenna Pattern 30 revolutions per second North X 26

27 The signal at x is proportional to 1 + cos The signal at X is effectively AM modulated by 30 Hz North X 30 revolutions per second 27

28 Bearing Calculation The amplitude of the signal at x is proportional to 1 + cos where is the bearing of x relative to North. The Cardioid pattern is rotated anticlockwise at the rate of 30 revolution s per second. The amplitude of the signal at x is then proportional to: 1 + cos (2 30 t + The phase difference = cos (2 30 t + cos (2 30 t 28

29 Distance Measuring Equipment 29

30 Introduction Distance Measuring Equipment (DME) is used to measure the distance between an aircraft and a fixed point. Generally the fixed point is a VOR or a destination point as an airport. The useful range of DME systems is about 180 km, corresponding to a roundtrip delay of 1200 m sec. 30

31 System Architecture Airborne equipment (Interrogator): Transmitter Receiver Ground equipment (Transponder) located at the fixed point. 31

32 Basic Principle MHz (126 channels) Tx Rx Interrogation Reply Transponder MHz or MHz 32

33 Operation The transmitter sends pseudo-random coded interrogation pulses The transponder responds by sending reply pulses using the same pseudo-random pattern. The onboard receiver intercepts the reply pulses that conforms to its pseudo-random pattern. The time difference between sending the pulses, transponder processing delay, and receiving the pulses is used in calculating the distance. 33

34 Transponder Access Method The system employs a random access method. Up to 50 aircrafts may use the same transponder. The interrogation pulses are pseudo-random coded. The receiver only accepts replies that conform to the same pseudo-random pattern. 34

35 Instrument Landing System 35

36 Introduction Instrument Landing Systems (ILS) are designed to guide an aircraft in its final approach and landing. Three distinct subsystems are used: Localiser, Glide Slope, and Markers. 36

37 Localiser Plan Runway 5 o 90 Hz 150 Hz (top view) Localiser Tx ( MHz) DIRECTION OF APPROACH 37

38 Localiser Aids the pilot in lining up his/her aircraft in the proper azimuth approach to the runway. Consists of a group of transmitters and antennas positioned at the far end of the runway. The antenna radiation pattern has a 5 o beawidth, centred along the runway. The VHF frequencies used for the localise are in the range to MHz. The useful range of the system is about 40 km. 38

39 Glide Slope Plan Runway 5 o 90 Hz Tx Localiser Tx 150 Hz (top view) ( MHz) 1 o 90 Hz 150 Hz 2.5 o o ( MHz) Tx DIRECTION OF APPROACH (side view) 39

40 Glide Slope Aids the pilot in making his/her approach at the proper elevation angle to the runway. Consists of a group of transmitters and antennas positioned beside the runway. The antenna radiation pattern has a 1 o beawidth, and elevated about 2.5 o to 2.75 o in the direction of approach. The VHF frequencies used for the glide slope are in the range to MHz. The useful range of the system is about 40 km. 40

41 Frequency Arrangement 90 Hz 150 Hz 90 Hz 150 Hz 5 o 1 o 41

42 Markers Plan 75 MHz narrow vertical radio beam Marker Tx Marker Tx Runway 400 Hz Carrier 75 MHz 1300 Hz (top view) 1 km 6-10 km DIRECTION OF APPROACH 42

43 Markers Markers are transmitters that radiate continuous narrow vertical radio beams. The carrier frequency is 75 MHz modulated by special tones. The first transmitter is modulated by a 400 Hz tone, located at 6-10 km from the end of the runway. The second transmitter is modulated by a 1300 Hz tone, located at 1 km from the end of the runway. 43

44 Microwave Landing System 44

45 Introduction Microwave Landing System (MLS) was designed to handle the increase in air traffic volume and to satisfy the demand for all-weather landing facilities. Employs microwave frequencies ( GHz band) rather than VHF. MLS provides better accuracy, ease of application, and automation. enables landing down to zero ground visibility. ICAO-approved replacement for the ILS system. 45

46 Architecture MLS consists of three subsystems: Localiser, Glide Slope, and Flare. The Localiser and Glide Slope subsystems serve the same purpose as in ILS. The Flare provides information on the actual height of the aircraft above the plane of the runway. 46

47 Aircraft Height Measurement h = d tan h Flare Tx Runway (end view) d 47

48 Height Calculation The angle q made by the aircraft and the runway at the point where the flare transmitter is situated is measured. The distance d between the flare transmitter and the runway is known. The height is calculated using the equation: h = d tan 48

49 Time Reference Scanning Beam A Runway Localiser Tx (top view) B DIRECTION OF APPROACH 49

50 Operation The system is based on Time-Reference Scanning Beams (TRSB), referenced to the runway, that enables an aircraft to determine precise azimuth and elevation angles. The angular position is made by measurement of the time intervals between the TO and FRO azimuth antenna beam scan (typically +/- 60o) and UP and DOWN scan (typically 0o - 30o) of the elevation antenna pattern. 50

51 Calculation The angles (or are calculated using the equation: 1 t T t is the time difference between pulses and T is the scanning period from A to B and back to A 51

52 Hyperbolic Navigation Systems 52

53 Introduction Hyperbolic systems are based on measuring the difference in distance between a craft and two known sites. Fixed distance difference between the craft and the two sites lie on a hyperbolic locus that passes between the sites. Definition of terms: base-line base-line extension line of position (LOP) centre-line (CL) 53

54 Basic Concept CL X base-line extension A base-line B LOP 54

55 Hyperbolic Navigation D A B 55

56 Decca Concept Decca was the first of several hyperbolic electronic navigation systems developed during and after World War II. It uses radio waves as a means of measuring the difference in distance between sites. Master/slave radio transmitters arrangement. Calculating the difference in distance based on phase difference measurement. The range difference is given by: d= 360 o 56

57 Decca Lines 360 o 0 o or 0 o 720 o or 0 o A B 57

58 A Master and two Slaves A B1 B2 58

59 Decca System To overcome ambiguities and increase accuracy. Three bas-lines system. A set of four transmitters, a master and three slaves, referred to as a chain. The base lines identified as Red, Green, and Purple. The system reading is displayed on Red, Green, and Purple Decometers respectively. 59

60 Decca Station Topology B 3 purple B 1 A red green B 2 60

61 Basic System In phase Master Tx 340 khz Tx 340 khz Slave Red 340 khz Q 340 khz Onboard receiving equipment Red Decometer 61

62 Possible Working System In phase Master Slave Tx 340 khz X 1/ X 1/3 Red Tx 340 khz Q X 4 X Onboard receiving equipment Red Decometer 62

63 Practical 85 khz Scheme Master Tx 85 khz 85 In phase Slave X 1/ X Q X 4 X Onboard receiving equipment Red Decometer 63

64 Decca Communication Receiver Multipliers In Out Purple Slave 5f 5f 30f Decometers 30f 30f Purple Master 6f 6f 18f 24f 18f Green Green Slave 9f 9f 18f Red Slave 8f 8f 24f 24f Red 64

65 Thank you for your attention 65

EE Chapter 14 Communication and Navigation Systems

EE Chapter 14 Communication and Navigation Systems EE 2145230 Chapter 14 Communication and Navigation Systems Two way radio communication with air traffic controllers and tower operators is necessary. Aviation electronics or avionics: Avionic systems cover

More information

AIRCRAFT AVIONIC SYSTEMS

AIRCRAFT AVIONIC SYSTEMS AIRCRAFT AVIONIC SYSTEMS B-777 cockpit Package C:\Documents and ettings\administrato Course Outline Radio wave propagation Aircraft Navigation Systems - Very High Omni-range (VOR) system - Instrument Landing

More information

Keywords. DECCA, OMEGA, VOR, INS, Integrated systems

Keywords. DECCA, OMEGA, VOR, INS, Integrated systems Keywords. DECCA, OMEGA, VOR, INS, Integrated systems 7.4 DECCA Decca is also a position-fixing hyperbolic navigation system which uses continuous waves and phase measurements to determine hyperbolic lines-of

More information

NAVIGATION INSTRUMENTS - BASICS

NAVIGATION INSTRUMENTS - BASICS NAVIGATION INSTRUMENTS - BASICS 1. Introduction Several radio-navigation instruments equip the different airplanes available in our flight simulators software. The type of instrument that can be found

More information

NAVIGATION INTRUMENTATION ADF

NAVIGATION INTRUMENTATION ADF 1. Introduction NAVIGATION INTRUMENTATION ADF The Automatic Direction Finding (ADF) equipment on-board of aircraft is used together with the Non Directional Beacon (NDB) transmitters installed on the ground.

More information

Communication and Navigation Systems for Aviation

Communication and Navigation Systems for Aviation Higher National Unit Specification General information for centres Unit title: Communication and Navigation Systems for Aviation Unit code: F0M3 35 Unit purpose: This Unit is designed to allow candidates

More information

Radar and Navigational Aids. Navigational Aids By K M Vyas DIET Rajkot

Radar and Navigational Aids. Navigational Aids By K M Vyas DIET Rajkot Radar and Navigational Aids Navigational Aids By K. M. Vyas DIET, Rajkot 1 Introduction Navigation : The art of directing the movements of a craft (object) from one point to another along a desired path

More information

RADIO NAVIGATION

RADIO NAVIGATION details and associated Learning Objectives ATPL CPL ATPL/ ATPL CPL 062 00 00 00 RADIO NAVIGATION 062 01 00 00 BASIC RADIO PROPAGATION THEORY 062 01 01 00 Basic principles 062 01 01 01 Electromagnetic waves

More information

AE4-393: Avionics Exam Solutions

AE4-393: Avionics Exam Solutions AE4-393: Avionics Exam Solutions 2008-01-30 1. AVIONICS GENERAL a) WAAS: Wide Area Augmentation System: an air navigation aid developed by the Federal Aviation Administration to augment the Global Positioning

More information

10 Secondary Surveillance Radar

10 Secondary Surveillance Radar 10 Secondary Surveillance Radar As we have just noted, the primary radar element of the ATC Surveillance Radar System provides detection of suitable targets with good accuracy in bearing and range measurement

More information

Agilent 8644A-2 Air Navigation Receiver Testing with the Agilent 8644A

Agilent 8644A-2 Air Navigation Receiver Testing with the Agilent 8644A Agilent 8644A-2 Air Navigation Receiver Testing with the Agilent 8644A Application Note This application note describes the synthesized internal audio source used in the Agilent Technologies 8645A, 8665A,

More information

RADAR CHAPTER 3 RADAR

RADAR CHAPTER 3 RADAR RADAR CHAPTER 3 RADAR RDF becomes Radar 1. As World War II approached, scientists and the military were keen to find a method of detecting aircraft outside the normal range of eyes and ears. They found

More information

Exam questions: AE3-295-II

Exam questions: AE3-295-II Exam questions: AE3-295-II 1. NAVIGATION SYSTEMS (30 points) In this question we consider the DME radio beacon. [a] What does the acronym DME stand for? (3 points) DME stand for Distance Measuring Equipment

More information

Radar Reprinted from "Waves in Motion", McGourty and Rideout, RET 2005

Radar Reprinted from Waves in Motion, McGourty and Rideout, RET 2005 Radar Reprinted from "Waves in Motion", McGourty and Rideout, RET 2005 What is Radar? RADAR (Radio Detection And Ranging) is a way to detect and study far off targets by transmitting a radio pulse in the

More information

Regulations. Aeronautical Radio Service

Regulations. Aeronautical Radio Service Regulations Aeronautical Radio Service Version 1.0 Issue Date: 30 December 2009 Copyright 2009 Telecommunications Regulatory Authority (TRA). All rights reserved. P O Box 26662, Abu Dhabi, United Arab

More information

Kadi Sarva Vishwavidyalaya Gandhinagar

Kadi Sarva Vishwavidyalaya Gandhinagar A. Course Objective: The educational objectives of this course are B.E Semester: 8 Electronics & Communication Engineering Subject Name: Radar and Navigational Aids Subject Code : EC-802-B( E P II) To

More information

UNIT-4 Part A 1. What is kickback noise? [ N/D-16]

UNIT-4 Part A 1. What is kickback noise? [ N/D-16] UNIT-4 Part A 1. What is kickback noise? [ N/D-16] It is basically the noise from the switching first stage on the input of the comparator. If the output of the first stage swings quickly in large range,

More information

APPENDIX C VISUAL AND NAVIGATIONAL AIDS

APPENDIX C VISUAL AND NAVIGATIONAL AIDS VISUAL AND NAVIGATIONAL AIDS APPENDIX C VISUAL AND NAVIGATIONAL AIDS An integral part of the airport system is the visual and navigational aids provided to assist pilots in navigating both on the airfield

More information

CIVIL AVIATION REQUIREMENTS SECTION 4 - AERODROME STANDARDS & AIR TRAFFIC SERVICES SERIES 'D', PART II 12 TH JULY 2006 EFFECTIVE: FORTHWITH

CIVIL AVIATION REQUIREMENTS SECTION 4 - AERODROME STANDARDS & AIR TRAFFIC SERVICES SERIES 'D', PART II 12 TH JULY 2006 EFFECTIVE: FORTHWITH GOVERNMENT OF INDIA OFFICE OF DIRECTOR GENERAL OF CIVIL AVIATION TECHNICAL CENTRE, OPP SAFDARJANG AIRPORT, NEW DELHI CIVIL AVIATION REQUIREMENTS SECTION 4 AERODROME STANDARDS & AIR TRAFFIC SERVICES SERIES

More information

Lecture Topics. Doppler CW Radar System, FM-CW Radar System, Moving Target Indication Radar System, and Pulsed Doppler Radar System

Lecture Topics. Doppler CW Radar System, FM-CW Radar System, Moving Target Indication Radar System, and Pulsed Doppler Radar System Lecture Topics Doppler CW Radar System, FM-CW Radar System, Moving Target Indication Radar System, and Pulsed Doppler Radar System 1 Remember that: An EM wave is a function of both space and time e.g.

More information

NAVIGATION (2) RADIO NAVIGATION

NAVIGATION (2) RADIO NAVIGATION 1 An aircraft is "homing" to a radio beacon whilst maintaining a relative bearing of zero. If the magnetic heading decreases, the aircraft is experiencing: A left drift B right drift C a wind from the

More information

The Impact of Choice of Roofing Material on Navaids Wave Polarization

The Impact of Choice of Roofing Material on Navaids Wave Polarization The Impact of Choice of Roofing Material on Navaids Wave Polarization Robert J. Omusonga Directorate of Air Navigation Services, East African School of Aviation, P.O Box 93939-80100, Mombasa, Kenya Email:

More information

Annex II to ED Decision 2016/008/R K. SUBJECT 062 RADIO NAVIGATION. Syllabus details and associated Learning Objectives. Syllabus reference

Annex II to ED Decision 2016/008/R K. SUBJECT 062 RADIO NAVIGATION. Syllabus details and associated Learning Objectives. Syllabus reference Syllabus 060 00 00 00 NAVIGATION ATPL CPL ATPL/ 062 00 00 00 RADIO NAVIGATION 062 01 00 00 BASIC RADIO PROPAGATION THEORY 062 01 01 00 Basic principles 062 01 01 01 Electromagnetic waves LO State that

More information

Chapter 1: Telecommunication Fundamentals

Chapter 1: Telecommunication Fundamentals Chapter 1: Telecommunication Fundamentals Block Diagram of a communication system Noise n(t) m(t) Information (base-band signal) Signal Processing Carrier Circuits s(t) Transmission Medium r(t) Signal

More information

Banska Bystrica Branch. NDB + Marker NARASYS (Navigation Radio-Beacon System)

Banska Bystrica Branch. NDB + Marker NARASYS (Navigation Radio-Beacon System) Banska Bystrica Branch NDB + Marker (Navigation Radio-Beacon System) JB 2014 3 System consists of Modules: Non-Directional Dual Radio-Beacon (NDB) NAVYRA-M - Artificial Loud incl. VHF Position Marker RM-01C

More information

Airmanship Knowledge Learning Outcome 1 Air Traffic Control

Airmanship Knowledge Learning Outcome 1 Air Traffic Control Uncontrolled copy not subject to amendment Airmanship Knowledge Learning Outcome 1 Air Traffic Control Revision 1.00 Airmanship Knowledge Learning Outcome 1 Understand the types of airfield operations

More information

Learning Objectives 062 Radio Navigation

Learning Objectives 062 Radio Navigation Learning Objectives 062 Radio Navigation Syllabus 060 00 00 00 NAVIGATION 062 00 00 00 RADIO NAVIGATION 062 01 00 00 BASIC RADIO PROPAGATION THEORY 062 01 01 00 Basic principles 062 01 01 01 Electromagnetic

More information

Radar observables: Target range Target angles (azimuth & elevation) Target size (radar cross section) Target speed (Doppler) Target features (imaging)

Radar observables: Target range Target angles (azimuth & elevation) Target size (radar cross section) Target speed (Doppler) Target features (imaging) Fundamentals of Radar Prof. N.V.S.N. Sarma Outline 1. Definition and Principles of radar 2. Radar Frequencies 3. Radar Types and Applications 4. Radar Operation 5. Radar modes What What is is Radar? Radar?

More information

Subject: Aeronautical Telecommunications Aeronautical Radio Frequency Spectrum Utilization

Subject: Aeronautical Telecommunications Aeronautical Radio Frequency Spectrum Utilization GOVERNMENT OF INDIA OFFICE OF DIRECTOR GENERAL OF CIVIL AVIATION TECHNICAL CENTRE, OPP SAFDARJANG AIRPORT, NEW DELHI CIVIL AVIATION REQUIREMENTS SECTION 4 - AERODROME STANDARDS & AIR TRAFFIC SERVICES SERIES

More information

Aircraft Communication and Navigation Systems

Aircraft Communication and Navigation Systems Unit 86: Aircraft Communication and Navigation Systems Unit code: J/601/7217 QCF level: 4 Credit value: 15 Aim The aim of this unit is to develop learners understanding of the principles of operating aircraft

More information

Chapter 10 Navigation

Chapter 10 Navigation Chapter 10 Navigation Table of Contents VHF Omnidirectional Range (VOR) VOR Orientation Course Determination VOR Airways VOR Receiver Check Points Automatic Direction Finder (ADF) Global Positioning System

More information

UNIT Derive the fundamental equation for free space propagation?

UNIT Derive the fundamental equation for free space propagation? UNIT 8 1. Derive the fundamental equation for free space propagation? Fundamental Equation for Free Space Propagation Consider the transmitter power (P t ) radiated uniformly in all the directions (isotropic),

More information

Keysight Technologies VOR and ILS Radio Navigation Receiver Test Using Option 302 for Keysight Signal Sources. Application Note

Keysight Technologies VOR and ILS Radio Navigation Receiver Test Using Option 302 for Keysight Signal Sources. Application Note Keysight Technologies VOR and ILS Radio Navigation Receiver Test Using Option 302 for Keysight Signal Sources Application Note Introduction The Keysight X-series (EXG and MXG) analog and vector signal

More information

AIR ROUTE SURVEILLANCE 3D RADAR

AIR ROUTE SURVEILLANCE 3D RADAR AIR TRAFFIC MANAGEMENT AIR ROUTE SURVEILLANCE 3D RADAR Supplying ATM systems around the world for more than 30 years indracompany.com ARSR-10D3 AIR ROUTE SURVEILLANCE 3D RADAR ARSR 3D & MSSR Antenna Medium

More information

Lecture 1 INTRODUCTION. Dr. Aamer Iqbal Bhatti. Radar Signal Processing 1. Dr. Aamer Iqbal Bhatti

Lecture 1 INTRODUCTION. Dr. Aamer Iqbal Bhatti. Radar Signal Processing 1. Dr. Aamer Iqbal Bhatti Lecture 1 INTRODUCTION 1 Radar Introduction. A brief history. Simplified Radar Block Diagram. Two basic Radar Types. Radar Wave Modulation. 2 RADAR The term radar is an acronym for the phrase RAdio Detection

More information

Fundamental Concepts of Radar

Fundamental Concepts of Radar Fundamental Concepts of Radar Dr Clive Alabaster & Dr Evan Hughes White Horse Radar Limited Contents Basic concepts of radar Detection Performance Target parameters measurable by a radar Primary/secondary

More information

[EN 105] Evaluation Results of Airport Surface Multilateration

[EN 105] Evaluation Results of Airport Surface Multilateration ENRI Int. Workshop on ATM/CNS. Tokyo, Japan. (EIWAC 2010) [EN 105] Evaluation Results of Airport Surface Multilateration (EIWAC 2010) + H. Miyazaki*, T. Koga**, E. Ueda*, Y. Kakubari*, S. Nihei* *Communication,

More information

Botswana Radio Frequency Plan, Published on 16 April TABLE OF CONTENTS

Botswana Radio Frequency Plan, Published on 16 April TABLE OF CONTENTS , 2004 Radio Frequency Plan, 2004 Published on 16 April 2004 TABLE OF CONTENTS Part 1 PRELIMINARY 1 Introduction 2 Definitions 3 Interpretation of Table of Frequency Allocations Part II TABLE OF FREQUENCY

More information

A bluffer s guide to Radar

A bluffer s guide to Radar A bluffer s guide to Radar Andy French December 2009 We may produce at will, from a sending station, an electrical effect in any particular region of the globe; (with which) we may determine the relative

More information

Antenna pattern. Figure 1: Antenna Gain as a function of Angle. Modulated Transmitter Antenna Modulated Transmission Target

Antenna pattern. Figure 1: Antenna Gain as a function of Angle. Modulated Transmitter Antenna Modulated Transmission Target ANGLE TRACKING Amplitude Measurement Amplitude threshold is used to determine that a target is within the beam This gives a very rough measure of the target direction (within one beamwidth) if the target

More information

AERONAUTICAL SURVEILLANCE PANEL (ASP) Working Group Meeting. Montreal, 15 to 19 October Draft Manual on Multilateration Surveillance

AERONAUTICAL SURVEILLANCE PANEL (ASP) Working Group Meeting. Montreal, 15 to 19 October Draft Manual on Multilateration Surveillance WP ASP03-11 Agenda Item 5.5 16 October 2007 AERONAUTICAL SURVEILLANCE PANEL (ASP) Working Group Meeting Montreal, 15 to 19 October 2007 Draft Manual on Multilateration Surveillance (Prepared by TSG) (Presented

More information

RADAR DEVELOPMENT BASIC CONCEPT OF RADAR WAS DEMONSTRATED BY HEINRICH. HERTZ VERIFIED THE MAXWELL RADAR.

RADAR DEVELOPMENT BASIC CONCEPT OF RADAR WAS DEMONSTRATED BY HEINRICH. HERTZ VERIFIED THE MAXWELL RADAR. 1 RADAR WHAT IS RADAR? RADAR (RADIO DETECTION AND RANGING) IS A WAY TO DETECT AND STUDY FAR OFF TARGETS BY TRANSMITTING A RADIO PULSE IN THE DIRECTION OF THE TARGET AND OBSERVING THE REFLECTION OF THE

More information

ICAO Handbook on Radio Frequency Spectrum Requirements for Civil Aviation Vol. I - ICAO Spectrum Strategy Vol. II - Frequency Planning

ICAO Handbook on Radio Frequency Spectrum Requirements for Civil Aviation Vol. I - ICAO Spectrum Strategy Vol. II - Frequency Planning ICAO Handbook on Radio Frequency Spectrum Requirements for Civil Aviation Vol. I - ICAO Spectrum Strategy Vol. II - Frequency Planning 100 khz 200 khz 300 khz 400 khz 600 khz 800 khz 1 MHz 2 MHz 3 MHz

More information

Data and Computer Communications Chapter 4 Transmission Media

Data and Computer Communications Chapter 4 Transmission Media Data and Computer Communications Chapter 4 Transmission Media Ninth Edition by William Stallings Data and Computer Communications, Ninth Edition by William Stallings, (c) Pearson Education - Prentice Hall,

More information

AIR NAVIGATION ORDER

AIR NAVIGATION ORDER (AERONAUTICAL RADIO FREQUENCY SPECTRUM UTILIZATION) AIR NAVIGATION ORDER [[ VERSION : 1.0 DATE OF IMPLEMENTATION : 15-12-2010 OFFICE OF PRIME INTEREST : Technical Standards (DAAR) 15/12/2010 ANO-006-DRTS-1.0

More information

Sw earth Dw Direct wave GRw Ground reflected wave Sw Surface wave

Sw earth Dw Direct wave GRw Ground reflected wave Sw Surface wave WAVE PROPAGATION By Marcel H. De Canck, ON5AU Electromagnetic radio waves can propagate in three different ways between the transmitter and the receiver. 1- Ground waves 2- Troposphere waves 3- Sky waves

More information

Radio Propagation Fundamentals

Radio Propagation Fundamentals Radio Propagation Fundamentals Concept of Electromagnetic Wave Propagation Mechanisms Modes of Propagation Propagation Models Path Profiles Link Budget Fading Channels Electromagnetic (EM) Waves EM Wave

More information

RECOMMENDATION ITU-R S.1340 *,**

RECOMMENDATION ITU-R S.1340 *,** Rec. ITU-R S.1340 1 RECOMMENDATION ITU-R S.1340 *,** Sharing between feeder links the mobile-satellite service and the aeronautical radionavigation service in the Earth-to-space direction in the band 15.4-15.7

More information

Question 15.1: Which of the following frequencies will be suitable for beyond-the-horizon communication using sky waves? (a) 10 khz (b) 10 MHz (c) 1 GHz (d) 1000 GHz (b) : 10 MHz For beyond-the-horizon

More information

Scientific Journal of Silesian University of Technology. Series Transport Zeszyty Naukowe Politechniki Śląskiej. Seria Transport

Scientific Journal of Silesian University of Technology. Series Transport Zeszyty Naukowe Politechniki Śląskiej. Seria Transport Scientific Journal of Silesian University of Technology. Series Transport Zeszyty Naukowe Politechniki Śląskiej. Seria Transport Volume 93 2016 p-issn: 0209-3324 e-issn: 2450-1549 DOI: https://doi.org/10.20858/sjsutst.2016.93.13

More information

Airfield Obstruction and Navigational Aid Surveys

Airfield Obstruction and Navigational Aid Surveys Section I. Section II. Section III. Section IV. Section V. Chapter 7 Airfield Obstruction and Navigational Aid Surveys The purpose of this chapter is to acquaint the Army surveyor with the terminologies

More information

Technician License Course Chapter 2. Lesson Plan Module 2 Radio Signals and Waves

Technician License Course Chapter 2. Lesson Plan Module 2 Radio Signals and Waves Technician License Course Chapter 2 Lesson Plan Module 2 Radio Signals and Waves The Basic Radio Station What Happens During Radio Communication? Transmitting (sending a signal): Information (voice, data,

More information

A Novel Method for Very-high Frequency Omni Range (VOR) Azimuth Error Correction using Kalman Filter for the Improvement of Aircraft Density

A Novel Method for Very-high Frequency Omni Range (VOR) Azimuth Error Correction using Kalman Filter for the Improvement of Aircraft Density A Novel Method for Very-high Frequency Omni Range (VOR) Azimuth Error Correction using Kalman Filter for the Improvement of Aircraft Density K. Ramakrishna 1, M R K Murthy 2, N S Murthy Sharma 3 Research

More information

Radionavigation Systems

Radionavigation Systems Radionavigation Systems Börje Forssell 1 ARTECH HOUSE BOSTON LONDON artechhouse.com Contents Preface xiii Part I: Terrestrial Systems 1 1 The f undamentais of terrestrial navigation 3 1.1 The shape of

More information

A Review of Vulnerabilities of ADS-B

A Review of Vulnerabilities of ADS-B A Review of Vulnerabilities of ADS-B S. Sudha Rani 1, R. Hemalatha 2 Post Graduate Student, Dept. of ECE, Osmania University, 1 Asst. Professor, Dept. of ECE, Osmania University 2 Email: ssrani.me.ou@gmail.com

More information

Elements of Communication System Channel Fig: 1: Block Diagram of Communication System Terminology in Communication System

Elements of Communication System Channel Fig: 1: Block Diagram of Communication System Terminology in Communication System Content:- Fundamentals of Communication Engineering : Elements of a Communication System, Need of modulation, electromagnetic spectrum and typical applications, Unit V (Communication terminologies in communication

More information

MYANMAR CIVIL AVIATION REQUIREMENTS

MYANMAR CIVIL AVIATION REQUIREMENTS Civil Aviation Requirements THE REPULBIC OF THE UNION OF MYANMAR MINISTRY OF TRANSPORT DEPARTMENT OF CIVIL AVIATION MYANMAR CIVIL AVIATION REQUIREMENTS MCAR Part-5 ANS Section 9 Volume-V Aeronautical Telecommunications

More information

WRC19 Preparatory Workshop

WRC19 Preparatory Workshop ICAO Doc 9718 Handbook on Radio Frequency Spectrum Requirements for Civil Aviation Vol. I - ICAO Spectrum Strategy Vol. II - Frequency Planning 100 khz 200 khz 300 khz 400 khz 600 khz 800 khz 1 MHz 2 MHz

More information

(4) Answer : misconfigured the radar display are known as clutter. (ii) Target Cross Section :

(4) Answer : misconfigured the radar display are known as clutter. (ii) Target Cross Section : B. TECH. VIII SEM. I MID TERM FEB 2018 SUBJECT: RADAR & TV ENGG. TIME ALLOWED: 2 Hours BRANCH: ECE SUB. CODE: 8EC2A MAX. MARKS: 40 Question 1 a) Define the following radar terms & discuss their variation

More information

Page K1. The Big Picture. Pilotage

Page K1. The Big Picture. Pilotage Page K1 Pilotage 1. [K1/3/2] Pilotage is navigation by A. reference to flight instruments. B. reference to landmarks. C. reference to airborne satellites. Electronic Elucidation The Big Picture 3. [K4/2/1]

More information

Microwave Remote Sensing (1)

Microwave Remote Sensing (1) Microwave Remote Sensing (1) Microwave sensing encompasses both active and passive forms of remote sensing. The microwave portion of the spectrum covers the range from approximately 1cm to 1m in wavelength.

More information

Radar. Seminar report. Submitted in partial fulfillment of the requirement for the award of degree Of Mechanical

Radar.   Seminar report. Submitted in partial fulfillment of the requirement for the award of degree Of Mechanical A Seminar report on Radar Submitted in partial fulfillment of the requirement for the award of degree Of Mechanical SUBMITTED TO: SUBMITTED BY: www.studymafia.org www.studymafia.org Preface I have made

More information

Evaluation Results of Airport Surface Multilateration. Hiromi Miyazaki Electronic Navigation Research Institute

Evaluation Results of Airport Surface Multilateration. Hiromi Miyazaki Electronic Navigation Research Institute Evaluation Results of Airport Surface Multilateration Hiromi Miyazaki Electronic Navigation Research Institute 1 Contents Introduction Background, Purposes Overview of Multilateration (MLAT) Advantages,

More information

2. ETSO 2C40c#3 VHF Omni-directional Ranging (VOR) Equipment

2. ETSO 2C40c#3 VHF Omni-directional Ranging (VOR) Equipment Deviation request #96 for an ETSO approval for CS-ETSO applicable to Airborne VHF Omni-directional Ranging (VOR) Equipment (ETSO-2C40c) Consultation Paper 1. Introductory note The hereby presented deviation

More information

Chapter 1 Introduction

Chapter 1 Introduction Wireless Information Transmission System Lab. Chapter 1 Introduction National Sun Yat-sen University Table of Contents Elements of a Digital Communication System Communication Channels and Their Wire-line

More information

Vehicle Networks. Wireless communication basics. Univ.-Prof. Dr. Thomas Strang, Dipl.-Inform. Matthias Röckl

Vehicle Networks. Wireless communication basics. Univ.-Prof. Dr. Thomas Strang, Dipl.-Inform. Matthias Röckl Vehicle Networks Wireless communication basics Univ.-Prof. Dr. Thomas Strang, Dipl.-Inform. Matthias Röckl Outline Wireless Signal Propagation Electro-magnetic waves Signal impairments Attenuation Distortion

More information

RECOMMENDATION ITU-R S.1341*

RECOMMENDATION ITU-R S.1341* Rec. ITU-R S.1341 1 RECOMMENDATION ITU-R S.1341* SHARING BETWEEN FEEDER LINKS FOR THE MOBILE-SATELLITE SERVICE AND THE AERONAUTICAL RADIONAVIGATION SERVICE IN THE SPACE-TO-EARTH DIRECTION IN THE BAND 15.4-15.7

More information

Using Frequency Diversity to Improve Measurement Speed Roger Dygert MI Technologies, 1125 Satellite Blvd., Suite 100 Suwanee, GA 30024

Using Frequency Diversity to Improve Measurement Speed Roger Dygert MI Technologies, 1125 Satellite Blvd., Suite 100 Suwanee, GA 30024 Using Frequency Diversity to Improve Measurement Speed Roger Dygert MI Technologies, 1125 Satellite Blvd., Suite 1 Suwanee, GA 324 ABSTRACT Conventional antenna measurement systems use a multiplexer or

More information

Integrated navigation systems

Integrated navigation systems Chapter 13 Integrated navigation systems 13.1 Introduction For many vehicles requiring a navigation capability, there are two basic but conflicting requirements to be considered by the designer, namely

More information

Lecture 3 SIGNAL PROCESSING

Lecture 3 SIGNAL PROCESSING Lecture 3 SIGNAL PROCESSING Pulse Width t Pulse Train Spectrum of Pulse Train Spacing between Spectral Lines =PRF -1/t 1/t -PRF/2 PRF/2 Maximum Doppler shift giving unambiguous results should be with in

More information

Reducing Test Flights Using Simulated Targets and a Carefully Chosen Set-up

Reducing Test Flights Using Simulated Targets and a Carefully Chosen Set-up Reducing Test Flights Using Simulated Targets and a Carefully Chosen Set-up Edition: 001 Date: 18-FEB-09 Status: Released DOCUMENT DESCRIPTION Document Title Reducing Test Flights: Using Simulated Targets

More information

PRINCIPLES OF COMMUNICATION SYSTEMS. Lecture 1- Introduction Elements, Modulation, Demodulation, Frequency Spectrum

PRINCIPLES OF COMMUNICATION SYSTEMS. Lecture 1- Introduction Elements, Modulation, Demodulation, Frequency Spectrum PRINCIPLES OF COMMUNICATION SYSTEMS Lecture 1- Introduction Elements, Modulation, Demodulation, Frequency Spectrum Topic covered Introduction to subject Elements of Communication system Modulation General

More information

VOR/DME APPROACH WITH A320

VOR/DME APPROACH WITH A320 1. Introduction VOR/DME APPROACH WITH A320 This documentation presents an example of a VOR/DME approach performed with an Airbus 320 at LFRS runway 21. This type of approach is a non-precision approach

More information

Technician License Course Chapter 2 Radio and Signals Fundamentals

Technician License Course Chapter 2 Radio and Signals Fundamentals Technician License Course Chapter 2 Radio and Signals Fundamentals Handling Large and Small Numbers Electronics and Radio use a large range of sizes, i.e., 0.000000000001 to 1000000000000. Scientific Notation

More information

Guidance Material for ILS requirements in RSA

Guidance Material for ILS requirements in RSA Guidance Material for ILS requirements in RSA General:- Controlled airspace required with appropriate procedures. Control Tower to have clear and unobstructed view of the complete runway complex. ATC to

More information

Final Project Introduction to RFID (Radio Frequency IDentification) Andreas G. Andreou

Final Project Introduction to RFID (Radio Frequency IDentification) Andreas G. Andreou Final Project Introduction to RFID (Radio Frequency IDentification) Andreas G. Andreou Radio Frequency IDentification Frequency Distance LF 125khz Few cm HF 13.56Mhz 1m Example Application Auto- Immobilizer

More information

Section 1 Wireless Transmission

Section 1 Wireless Transmission Part : Wireless Communication! section : Wireless Transmission! Section : Digital modulation! Section : Multiplexing/Medium Access Control (MAC) Section Wireless Transmission Intro. to Wireless Transmission

More information

Engineering. Aim. Unit abstract. QCF level: 6 Credit value: 15

Engineering. Aim. Unit abstract. QCF level: 6 Credit value: 15 Unit T22: Avionic Systems Engineering Unit code: R/504/0134 QCF level: 6 Credit value: 15 Aim The aim of this unit is to provide learners with a detailed knowledge and understanding of a wide range of

More information

Satellite Navigation (and positioning)

Satellite Navigation (and positioning) Satellite Navigation (and positioning) Picture: ESA AE4E08 Instructors: Sandra Verhagen, Hans van der Marel, Christian Tiberius Course 2010 2011, lecture 1 Today s topics Course organisation Course contents

More information

Prototype Software-based Receiver for Remote Sensing using Reflected GPS Signals. Dinesh Manandhar The University of Tokyo

Prototype Software-based Receiver for Remote Sensing using Reflected GPS Signals. Dinesh Manandhar The University of Tokyo Prototype Software-based Receiver for Remote Sensing using Reflected GPS Signals Dinesh Manandhar The University of Tokyo dinesh@qzss.org 1 Contents Background Remote Sensing Capability System Architecture

More information

AN INTRODUCTION TO VHF/ UHF PROPAGATION. Paul Wilton, M1CNK

AN INTRODUCTION TO VHF/ UHF PROPAGATION. Paul Wilton, M1CNK AN INTRODUCTION TO VHF/ UHF PROPAGATION Paul Wilton, M1CNK OVERVIEW Introduction Propagation Basics Propagation Modes Getting Started in 2m DX INTRODUCTION QRV on 2m SSB since Aug 1998, on 6m since Jan

More information

Characteristics of HF Coastal Radars

Characteristics of HF Coastal Radars Function Characteristics System 1 Maximum operational (measurement) range** Characteristics of HF Coastal Radars 5 MHz Long-range oceanographic 160-220 km average during (daytime)* System 2 System 3 System

More information

New spectrum for audio PMSE. Further details on approach to modelling and sharing in the band MHz

New spectrum for audio PMSE. Further details on approach to modelling and sharing in the band MHz New spectrum for audio PMSE Further details on approach to modelling and sharing in the band 960-1164 MHz Consultation update Publication date: 08 January 2016 About this document In response to our consultation

More information

INTERNATIONAL STANDARDS AND RECOMMENDED PRACTICES

INTERNATIONAL STANDARDS AND RECOMMENDED PRACTICES Annex or Recommended Practice Chapter 1 Definition INTERNATIONAL STANDARDS AND RECOMMENDED PRACTICES CHAPTER 1. DEFINITIONS Note. All references to Radio Regulations are to the Radio Regulations published

More information

Aerobasics An Introduction to Aeronautics

Aerobasics An Introduction to Aeronautics Aerobasics An Introduction to Aeronautics 14. Air Navigation Principles S P Govinda Raju S P Govinda Raju retired as professor from the Department of Aerospace Engineering, Indian Institute of Science

More information

Mode 4A Unsafe terrain clearance with landing gear not down and flaps not in landing position

Mode 4A Unsafe terrain clearance with landing gear not down and flaps not in landing position 1.6.18 Ground Proximity Warning System Allied Signal Aerospace (Honeywell) manufactures the GPWS, part number 965-0648- 008. The GPWS provides the following alerts if thresholds are exceeded: Mode 1 Excessive

More information

RECOMMENDATION ITU-R M.1639 *

RECOMMENDATION ITU-R M.1639 * Rec. ITU-R M.1639 1 RECOMMENDATION ITU-R M.1639 * Protection criterion for the aeronautical radionavigation service with respect to aggregate emissions from space stations in the radionavigation-satellite

More information

Impact of ATC transponder transmission to onboard GPS-L5 signal environment

Impact of ATC transponder transmission to onboard GPS-L5 signal environment SCRSP-WG IP-A10 18 May 2006 SURVEILLANCE AND CONFLICT RESOLUTION SYSTEMS PANEL (SCRSP) TENTH MEETING WG-A Montreal, May, 2006 WG-A Agenda Item 9 Any Other Bussiness Impact of ATC transponder transmission

More information

DARSHAN INSTITUTE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ELECTRONICS & COMMUNICATION Lecture Notes

DARSHAN INSTITUTE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ELECTRONICS & COMMUNICATION Lecture Notes DARSHAN INSTITUTE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ELECTRONICS & COMMUNICATION Lecture Notes SEMESTER: BE Sem. 8 EC SUBJECT: Radar & Navigational Aids (181103) FACULTY: Part A: Prof. B. S. Bhesdadiya,

More information

Large Loop Antennas. Special thanks to graduate students of ECSE 593 class, Winter 2007: Yasha Khatamian, Lin Han, Ruiming Chen

Large Loop Antennas. Special thanks to graduate students of ECSE 593 class, Winter 2007: Yasha Khatamian, Lin Han, Ruiming Chen Large Loop Antennas Special thanks to graduate students of ECSE 593 class, Winter 2007: Yasha Khatamian, Lin Han, Ruiming Chen McGill University, ECSE 405 Antennas, Fall 2009, Prof. M. Popovic 1. History

More information

Avionics Navigation Systems, Second Edition Myron Kayton and Walter R. Fried John Wiley & Sons, Inc (Navtech order #1014)

Avionics Navigation Systems, Second Edition Myron Kayton and Walter R. Fried John Wiley & Sons, Inc (Navtech order #1014) Avionics Navigation Systems, Second Edition Myron Kayton and Walter R. Fried John Wiley & Sons, Inc. 1997 (Navtech order #1014) Table of Contents Preface... xvii Acknowledgments... xxi List of Contributors...1

More information

RECOMMENDATION ITU-R SA (Question ITU-R 210/7)

RECOMMENDATION ITU-R SA (Question ITU-R 210/7) Rec. ITU-R SA.1016 1 RECOMMENDATION ITU-R SA.1016 SHARING CONSIDERATIONS RELATING TO DEEP-SPACE RESEARCH (Question ITU-R 210/7) Rec. ITU-R SA.1016 (1994) The ITU Radiocommunication Assembly, considering

More information

Get Discount Coupons for your Coaching institute and FREE Study Material at COMMUNICATION SYSTEMS

Get Discount Coupons for your Coaching institute and FREE Study Material at   COMMUNICATION SYSTEMS COMMUNICATION SYSTEMS 1. BASICS OF COMMUNICATION 2. AMPLITUDE MODULATION Get Discount Coupons for your Coaching institute and FREE Study Material at www.pickmycoaching.com 1 BASICS OF COMMUNICATION 1.

More information

Modular Test Approaches for SSR Signal Analysis in IFF Applications

Modular Test Approaches for SSR Signal Analysis in IFF Applications Modular Test Approaches for SSR Signal Analysis in IFF Applications Military radar applications call for highly specialized test equipment Radar signal analysis applications require highly specialized

More information

COMMUNICATION SYSTEMS -I

COMMUNICATION SYSTEMS -I COMMUNICATION SYSTEMS -I Communication : It is the act of transmission of information. ELEMENTS OF A COMMUNICATION SYSTEM TRANSMITTER MEDIUM/CHANNEL: The physical medium that connects transmitter to receiver

More information

Radar Theory for Area/Approach Radar Controllers

Radar Theory for Area/Approach Radar Controllers ZULFIQAR ALI MIRANI Radar Theory for Area/Approach Radar Controllers Info: neoindus@gmail.com Radar Theory For Area /Approach Controller ZULFIQAR ALI MIRANI Senior Electronics Engineer Civil Aviation Authority

More information

Report ITU-R M (11/2017)

Report ITU-R M (11/2017) Report ITU-R M.2413-0 (11/2017) Reception of automatic dependent surveillance broadcast via satellite and compatibility studies with incumbent systems in the frequency band 1 087.7-1 092.3 MHz M Series

More information

Technician License Course Chapter 2. Lesson Plan Module 3 Modulation and Bandwidth

Technician License Course Chapter 2. Lesson Plan Module 3 Modulation and Bandwidth Technician License Course Chapter 2 Lesson Plan Module 3 Modulation and Bandwidth The Basic Radio Station What Happens During Radio Communication? Transmitting (sending a signal): Information (voice, data,

More information

Antenna & Propagation. Basic Radio Wave Propagation

Antenna & Propagation. Basic Radio Wave Propagation For updated version, please click on http://ocw.ump.edu.my Antenna & Propagation Basic Radio Wave Propagation by Nor Hadzfizah Binti Mohd Radi Faculty of Electric & Electronics Engineering hadzfizah@ump.edu.my

More information

Unguided Media and Matched Filter After this lecture, you will be able to Example?

Unguided Media and Matched Filter After this lecture, you will be able to Example? Unguided Media and Matched Filter After this lecture, you will be able to describe the physical and transmission characteristics of various unguided media Example? B.1 Unguided media Guided to unguided

More information