Putting the D back into DWDM Full-band Multi-wavelength Systems Mani Ramachandran CEO / CTO InnoTrans Communications

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Putting the D back into DWDM Full-band Multi-wavelength Systems Mani Ramachandran CEO / CTO InnoTrans Communications"

Transcription

1 April Putting the D back into DWDM Full-band Multi-wavelength Systems Mani Ramachandran CEO / CTO InnoTrans Communications

2 Perception vs. Reality of full-band multiwavelength systems 40 wavelength Broadcast / Narrowcast topology Typical full-band multi-wavelength limitations An innovative hybrid transmitter solution Migrating from BC / NC to full-band 40 wavelengths Network design examples Conclusions 2

3 Only 16 wavelengths are possible due to Four Wave Mixing (FWM) A custom wavelength plan is required so optical beats due to FWM fall on un-used channels Full-band QAM DWDM systems will not support the BER / MER requirements for DOCSIS 3.1 and should be replaced digital optics such as remote PHY By controlling optical power, increasing OMI & eliminating CHIRP 40 wavelengths, 40 km & >40 MER are possible with fullspectrum all QAM systems

4 FWM Myth vs. FMW Reality FWM is the Biggest Problem for Fullband DWDM Crosstalk is the Biggest Problem for DWDM systems FWM Happens at All Optical Powers FWM can Come and Go and is Unpredictable Once FWM is Solved, other Nonlinearities can be Ignored and Will Not Impact System FWM Simulations Predict the Actual System Performance FWM has to be Solved with Unequal WL Spacing FWM ONLY happens with Very High Launch Powers FWM is Very Predictable and Stable over Long Periods with quality lasers Even without FWM High Launch Powers Cause Numerous Problems Dispersion and Modulation must be Considered for FWM FWM is Solved with Low Powers and Frequency Offsets if needed 4

5 Uneven Channel Spacing FWM Work-arounds Minimizes FWM but never 100% Still Requires Offsets Requires Non-Standard Passives Not an Efficient use of the Optical Spectrum Requires Forward and Return Interleaving The Reality is: Alternative WL Plans Focus only on FWM No 16 Ch. WL Plan Totally Avoids FWM & Still Requires Offsets (Unspecified ) along with Custom Passives and Ignores other Major Limitations 5

6 Common topology deployed since late 90s Supports up to 40 WLs of 200 MHz QAM Current NC bandwidth requirements are exceeding 200 MHz Hub BC 1550nm EM Tx NC QAM s Headend EDFA NC QAM s NC Tx - λ1 NC Tx - λ40 M U X +3 dbm / λ 30 km -3 to -5 dbm / λ EDFA EDFA Splitter / Combiner D M U X P Typical Forward RX Level 10 km BC:~0 dbm NC: -3 to -6 dbm Narrowcast optical levels relatively low as compared to broadcast Low optical level and limited RF BW results in low FWM & Xtalk 6

7 7

8 Externally modulated lasers utilized for the BC channels would provide best performance.. but at a significant cost penalty Expanding the bandwidth from 200 MHz to fullband with a Direct Modulated Laser (DML) or an Electro-absorption Modulated Laser (EML) lower cost but with a performance penalty DML lowest cost, highest CHIRP EML medium cost, lower CHIRP, poor linearity 8

9 RF pre-distortion is utilized to compensate for the non-linearities Laser CHIRP is compensated for a given length of fiber... but does not help for CSO/CIN degradation from filter ripple DML need to compensate for poor CSO EML need to compensate for poor CTB The technique & amount of improvement is a cost vs benefit trade-off Once the $$$ / benefit return is diminished a next step is to reduce OMI! 9

10 As channel count has increased, the OMI per channel is reduced plus an additional reduction due to CHIRP worsens with higher channel loading (Direct Mod Laser) Clipping, higher Peak to Average Power Ratio (PAPR) Poor linearity of electro-absorption modulated lasers (EML) To overcome low OMI. Requires higher optical input levels to EDFAs & receivers In turn Increases FWM & Xtalk Every 1 db = 2 db worse Lower OMI Low CNR High Optical Power Decrease BER Increase FWM & XTalk 10

11 Higher optical power leads to FWM & Xtalk issues To compensate develop elaborate WL plan where large FWM beats fall on unused channels in addition to the in-band ones & xtalk that degrade MER 11

12 3x fiber utilization to match 40 wavelength NC system 16 select wavelengths doesn t match the installed base of filters and need to be replaced Higher optical power levels to achieve MER / BER performance for 16 WL prohibiting 40 WLs All QAM s All QAM s Headend NC Tx λ1 NC Tx λ16 M U X +6 to 10 dbm / λ 3 to 6 db increase = 6 to 12 db FWM & XTALK EDFA D M U X Hub 30 km 10 km 0 to +3 dbm / λ Typical Forward RX Level 0 to +2 dbm 12

13 13

14 External Modulated performance with lower cost! Cancels laser CHIRP at source as an alternative to predistortion compensation of fiber dispersion Eliminates fiber dispersion & filter ripple induced CIN / CSO No need to compromise OMI to improve CHIRP Distance Independent Performance (no tuning) Supports redundant fiber paths with differential primary and secondary distance Immune to Filter Ripple Custom filters not required 14

15 Momentary rise in the composite power of QAM signals (Peak to Average Power Ratio or PAPR) results in periodic laser clipping. PAPR of QAM signals may vary 6 to 13 db or more depending on modulation rate & number of streams. (DOCSIS 3.1 with multisubcarrier OFDM & higher QAM rate will increase PAPR) Periodic clipping can limit a transmitter s pre-fec BER link performance to 1e-5 to 1e-7. or trade off MER for >BER spec! Clipping Mitigation technology eliminates the clipping errors extending the dynamic range which allows a much higher OMI operating point & < 1e-9 pre-fec performance along with >40 db MER (With up to 40 wavelengths!!) 15

16 Ability to operate 3 to 4 db lower optical levels improves Xtalk / FWM by 6 to 8 db 16

17 High OMI maintains RF lower optical input 17

18 Most solutions limit the number of wavelengths due to lower OMI & high launch power 18

19 Clipping Mitigation allows a much higher OMI making lower launch power possible, reducing FWM & Xtalk 19

20 CHIRP cancelation provides additional reduction in FWM & Xtalk 20

21 Together the Hybrid transmitter technology allows 40 consecutive wavelengths on the ITU DWDM plan 21

22 CHIRP cancellation supports use of standard ITU plan filters Lower optical levels matches existing NC overlay 40 to 42 db MER optical link performance is achievable Headend Hub Typical Forward RX Level All QAM s All QAM s NC Tx λ1 NC Tx λ16 M U X +3 dbm / λ 30 km 10 km -3 to -5 dbm / λ EDFA D M U X -3 to -6 dbm 22

23 23

24 40 Wavelength / 30 km / 42 MER CF-CH CF-CH CF-CH CF-CCT M ITU 20 ITU 21 ITU 22 ITU 23 CF-CCT M ITU 24 ITU 25 ITU 26 ITU 27 CF-CCT M ITU 28 ITU 29 ITU 30 ITU 31 CF-CCT M ITU 32 ITU 33 ITU 34 ITU 35 CF-CCT M ITU 36 ITU 37 ITU 38 ITU 39 CF-CCT M ITU 40 ITU 41 ITU 42 ITU 43 CF-CCT M ITU 44 ITU 45 ITU 46 ITU 47 CF-CCT M ITU 48 ITU 49 ITU 50 ITU 51 CF-CCT M ITU 52 ITU 53 ITU 54 ITU 55 CF-CCT M ITU 56 ITU 57 ITU 58 ITU 59-3 db 10 Band Combine 10 x 4λ transmitter (integrated mux) +3 dbm 10 band mux / dmux 23.8 km -6.0 db -3 / +3.5 dbm GCA-0620 Constant gain EDFA Add WLs without changing node levels -2 db 4 Ch Dmux -2 db 10 blocks of 4 wavelengths -3 db 10 Band Combine 4 Ch Dmux 7 km -1.8 db 2 km -0.5 db -3.5 dbm Node 1 Add 4 λ transmitter and 4 way demux as needed Node dbm 24

25 CF-CCT M ITU 23 CF-CH CF-CH ITU 22 ITU 21 ITU 20 CF-CCT M ITU 28 ITU 27 ITU 26 ITU 25 CF-CCT M ITU 33 ITU 32 ITU 31 ITU 30 CF-CCT M ITU 38 ITU 37 ITU 36 ITU 35 CF-CCT M ITU 43 ITU 42 ITU 41 ITU 40 CF-CCT M ITU 48 ITU 47 ITU 46 ITU 45 CF-CCT M ITU 53 ITU 52 ITU 51 Out Out Out Out Out Out Out +6 dbm -1.5 db Band Combine -1.5 db Band Combine -1 db Band Split -1 db C 8 WL O Stacker RTN km -6.8 db Forward Path 70km total distance 39 MER db C -5.3 / +4.7 dbm DSA DSA DSA DSA db C 37.5 km -9.4 db db C 8 WL O Stacker RTN -6.6 / +3.4 dbm 4 4 DSA DSA -1 db Band Split db Band Separater -1.5 db Band Separater -2 db 4 Ch Dmux -2 db 4 Ch Dmux km -1 db -2 dbm Node 1 7 km -1.8 db Node 32-3 dbm return λ ITU 50 CF-CCT M ITU 58 ITU 57 ITU 56 Out FWD λ ITU 55 25

26 Return Path 8 Wavelengths MHz RF return segments return λ FWD λ 26

27 RFoG / PON High OMI & CHIRP Cancellation 1.7 in. Headend to 512 HP Remote Cabinet or IHUB ITU 37 ITU 35 ITU 33 Out EP DS: 37 to 31 US: 45 to 39 DS: 37 to 31 US: 45 to 39 ITU 31 2x10Gig XFP 4-4x32HP 4x128HP 2x10Gig XFP CF-REM-RX4M- L CF-REM-RX4M- L Upstream GPON 10 Gig Transport ITU 51 & 49 Upstream RFoG O Stacker ITU 45 to 39 Downstream RFoG ITU 37 to 31 Downstream GPON 10 Gig Transport ITU 27 & 25 CF-REM-RX4M- L -1.5 db 4 Ch Dmux 4 x 128 HP / λ Downstream 16 x 32 HP Upstream with Stacker CF-REM-RX4M- L CISCO 7604 US: XX DS: XX CHIRP cancelled supports diverse routes 10GigE Aggregation DS: XX US: XX 27

28 RFoG High OMI & CHIRP Cancellation 512 HP Remote Cabinet feeding PONs DS: 37 to 31 US: 45 to 39 DS: 37 to 31 US: 45 to 39 TSD O/S Cabinet 37 to 31 Demux EDFA EDFA 1610 Reduce EDFA power by >3 db 1260 to to x to 1500 Micro Node GPON 1310/1490 ONU 1575 to to 1620 TSD Stacker TSD RRS-HS XPON Up GPON Up GPON Dwn Downstream RFoG ITU 37 to 31 XPON Dwn RFoG Up 45 to 39 Mux TSD Stacker TSD RRX-HS 128 HP / λ Downstream 32 HP Upstream with Stacker US: XX DS: XX DS: XX US: XX Remote OLT GPON 1310/ GigE λs serve OLT & OLT PON λs combine with RFoG High OMI reduces EDFA power requirements at PON & >MER RFoG upstream feed O Stacker 28

29 40 wavelength full-spectrum systems are possible with the right technology and optical power levels to avoid FWM issues Migrating from existing BC / NC to a full-spectrum solution can be a drop in replacement The hybrid transmitter technology high density DWDM solution simplifies network planning and deployment Optical link performance of >40 db MER and pre- FEC BER of 1e-9 with 40 wavelengths and 40 km are very achievable 29

30 Thank you for your time!

CHP Max CORWave Full Spectrum Multi-Wavelength Forward Transmitters

CHP Max CORWave Full Spectrum Multi-Wavelength Forward Transmitters CHP Max CORWave Full Spectrum Multi-Wavelength Forward Transmitters Bandwidth Usage is Expanding 100G 10G 1G 100M 10M Max Permitted Bandwidth for Modems (bps) The past 25-years show a constant increase

More information

Prisma II 1 GHz 1550 nm Transmitters

Prisma II 1 GHz 1550 nm Transmitters Optoelectronics Prisma II 1 GHz 1550 nm Transmitters Description The Prisma II optical network is an advanced transmission system designed to optimize network architectures and increase reliability, scalability,

More information

End of Life. Headend Optics Platform (HLP) SPL7210S/A. HL2 Series SUPRALink High Density DWDM Transmitter FEATURES PRODUCT OVERVIEW. arris.

End of Life. Headend Optics Platform (HLP) SPL7210S/A. HL2 Series SUPRALink High Density DWDM Transmitter FEATURES PRODUCT OVERVIEW. arris. arris.com Headend Optics Platform (HLP) SPL7210S/A HL2 Series SUPRALink High Density DWDM Transmitter FEATURES Compact size enables 20 DFB modules to fit in a 3RU platform DWDM technology optimizes HFC

More information

Marek Hajduczenia, ZTE Corp.

Marek Hajduczenia, ZTE Corp. Marek Hajduczenia, ZTE Corp. marek.hajduczenia@zte.pt » Terminology» Channel model» 1G-EPON power budgets» 10G-EPON power budgets» GPON power budgets» XGPON power budgets» CCSA defined power budgets for

More information

Cisco Prisma II 1.2 GHz High Density Long Reach Multiwave Transmitter

Cisco Prisma II 1.2 GHz High Density Long Reach Multiwave Transmitter Data Sheet Cisco Prisma II 1.2 GHz High Density Long Reach Multiwave Transmitter The Cisco Prisma II 1.2 GHz High Density Long Reach Multiwave (HD-LRMW) Transmitter (Figure 1) is the CATV industry s first

More information

Chromadigm-IR CIR - Integrated RFoG Transmitter

Chromadigm-IR CIR - Integrated RFoG Transmitter Patented U.S.# 7,936,997 Chromadigm-IR CIR - Integrated RFoG Transmitter Hardware Interface Manual powered by Although every effort has been taken to ensure the accuracy of this document it may be necessary,

More information

Prisma II Multi-Wavelength High Density Transmitter

Prisma II Multi-Wavelength High Density Transmitter Prisma II Multi-Wavelength High Density Transmitter Increasing customer demands for advanced services and competitive pressures are causing HFC network operators to consider strategic options. One popular

More information

System Impairments Mitigation for NGPON2 via OFDM

System Impairments Mitigation for NGPON2 via OFDM System Impairments Mitigation for NGPON2 via OFDM Yingkan Chen (1) Christian Ruprecht (2) Prof. Dr. Ing. Norbert Hanik (1) (1). Institute for Communications Engineering, TU Munich, Germany (2). Chair for

More information

2015 Spring Technical Forum Proceedings

2015 Spring Technical Forum Proceedings HFC IMPROVEMENT FOR DOCSIS 3.1 EVOLUTION Maxwell Huang Cisco Systems Abstract The DOCSIS 3.1 PHY and MAC standards have specified the QAM modulation order as high as to 16384QAM, however, we could not

More information

Prisma II 1 GHz SuperQAM Full Spectrum Transmitter

Prisma II 1 GHz SuperQAM Full Spectrum Transmitter Prisma II 1 GHz SuperQAM Full Spectrum Transmitter The Prisma II optical networks allow for best in class architectures with increased reliability, scalability, and cost-effectiveness. The Prisma II 1

More information

Measurement of Distortion in Multi-tone Modulation Fiber-based analog CATV Transmission System

Measurement of Distortion in Multi-tone Modulation Fiber-based analog CATV Transmission System 5 th SASTech 011, Khavaran Higher-education Institute, Mashhad, Iran. May 1-14. 1 Measurement of Distortion in Multi-tone Modulation Fiber-based analog CATV Transmission System Morteza Abdollahi Sharif

More information

I-HUB Chassis. Hardware Interface Manual

I-HUB Chassis. Hardware Interface Manual I-HUB Chassis Hardware Interface Manual Although every effort has been taken to ensure the accuracy of this document it may be necessary, without notice, to make amendments or correct omissions. Specifications

More information

Cisco Enhanced Digital Return (EDR) 85 System Compact Segmentable Nodes

Cisco Enhanced Digital Return (EDR) 85 System Compact Segmentable Nodes Cisco Enhanced Digital Return (EDR) 85 System Compact Segmentable Nodes The Cisco Enhanced Digital Return (EDR) 85 System expands the functionality of Compact Segmentable Nodes by increasing the performance,

More information

PARTNERSHIP FOR EXTENDED CAPACITY: DOCSIS 3.1 WITH RFOG

PARTNERSHIP FOR EXTENDED CAPACITY: DOCSIS 3.1 WITH RFOG PARTNERSHIP FOR EXTENDED CAPACITY: DOCSIS 3.1 WITH RFOG VENK MUTALIK, VP TECHNOLOGY AND STRATEGY MARCEL SCHEMMANN, PRINCIPAL ENGINEER AYHAM AL- BANNA, DISTINGUISHED SYSTEMS ENGINEER ZORAN MARICEVIC, ENGINEERING

More information

HDO772 C-BAND DWDM FIBRE TRANSMITTER

HDO772 C-BAND DWDM FIBRE TRANSMITTER Timo Rantanen 19.9.2012 1(6) HDO772 C-BAND DWDM FIBRE TRANSMITTER HDO772 is a high performance directly modulated C-band DWDM transmitter for forward path fibre optic links in CATV and FTTx networks. HDO772

More information

Cisco Prisma II Quad Optical Input Enhanced Digital Return (EDR) Receiver for Compact Segmentable Nodes

Cisco Prisma II Quad Optical Input Enhanced Digital Return (EDR) Receiver for Compact Segmentable Nodes Data Sheet Cisco Prisma II Quad Optical Input Enhanced Digital Return (EDR) Receiver for Compact Segmentable Nodes The Cisco Quad Optical Input Enhanced Digital Return (Q-EDR) 85 Receiver expands the Cisco

More information

HDO907 CATV FIBRE TRANSMITTER

HDO907 CATV FIBRE TRANSMITTER Timo Rantanen 18.2.2015 1(6) HDO907 CATV FIBRE TRANSMITTER HDO907 is a high performance, linear and directly modulated DFB laser transmitter for forward path fibre optic links in CATV and FTTx networks.

More information

GS7000 and GainMaker Reverse Segmentable Node bdr Digital Reverse 2:1 Multiplexing System

GS7000 and GainMaker Reverse Segmentable Node bdr Digital Reverse 2:1 Multiplexing System GS7000 and GainMaker Reverse Segmentable Node bdr Digital Reverse 2:1 Multiplexing System The bdr Digital Reverse 2:1 Multiplexing System expands the functionality of the GS7000 and GainMaker Reverse Segmentable

More information

Evolution from TDM-PONs to Next-Generation PONs

Evolution from TDM-PONs to Next-Generation PONs Evolution from TDM-PONs to Next-Generation PONs Ki-Man Choi, Jong-Hoon Lee, and Chang-Hee Lee Department of Electrical Engineering and Computer Science, Korea Advanced Institute of Science and Technology,

More information

DVO902 E/S CATV FIBRE TRANSMITTER

DVO902 E/S CATV FIBRE TRANSMITTER Timo Rantanen 24.7.2007 1(5) DVO902 E/S CATV FIBRE TRANSMITTER DVO902 E and S types are high performance, extremely linear DFB laser transmitters for DVO fibre optic CATV link. DVO902 is available on different

More information

100G EPON Downstream wavelength plan

100G EPON Downstream wavelength plan Downstream wavelength plan Hanhyub Lee Hwan Seok Chung IEEE P802.3ca - Task Force Vancouver, BC Canada March 12-17, 2017 2017-03-13 IEEE 802 Plenary session O-band wavelength plan was accepted at Huntington

More information

SignalOn Series WHITE PAPER. Impact of CCAP on RF Management Isolation. Pat. #s U.S. 6,842,348; 7,043,236; Cdn. 2,404,840; 2,404,844

SignalOn Series WHITE PAPER. Impact of CCAP on RF Management Isolation. Pat. #s U.S. 6,842,348; 7,043,236; Cdn. 2,404,840; 2,404,844 SignalOn Series Pat. #s U.S. 6,84,48; 7,04,6; Cdn.,404,840;,404,844 D. / CCAP Compliant Impact of CCAP on RF Management Isolation Although every effort has been taken to ensure the accuracy of this document

More information

IEEE July 2001 Plenary Meeting Portland, OR Robert S. Carlisle Sr. Market Development Engineer

IEEE July 2001 Plenary Meeting Portland, OR Robert S. Carlisle Sr. Market Development Engineer Ethernet PON Fiber Considerations IEEE July 2001 Plenary Meeting Portland, OR Robert S. Carlisle Sr. Market Development Engineer Special Thanks to Contributors Kendall Musgrove - Sr. Market Development

More information

GS7000 & GainMaker Reverse Segmentable Node bdr Digital Reverse 2:1 Multiplexing System

GS7000 & GainMaker Reverse Segmentable Node bdr Digital Reverse 2:1 Multiplexing System Optoelectronics GS7000 & GainMaker Reverse Segmentable Node bdr Digital Reverse 2:1 Multiplexing System Description The bdr Digital Reverse 2:1 Multiplexing System expands the functionality of the Scientific-Atlanta

More information

Consideration about wavelength allocation in O-band

Consideration about wavelength allocation in O-band IEEE P802.3ca -EPON Task Force meeting, Whistler Consideration about wavelength allocation in O-band Tomoyuki Funada May 24-25, 2016 Introduction 29dB channel insertion loss with 25Gbps/lane is challenging.

More information

1550nm external modulated optical transmitter operating manual

1550nm external modulated optical transmitter operating manual 1550nm external modulated optical transmitter operating manual Table of Contents Table of Contents...- 1 - Safety Instruction...- 2-1. Overview... - 3-1.1 About This Manual... - 3-1.2 Product Description...

More information

Cisco s CLEC Networkers Power Session

Cisco s CLEC Networkers Power Session Course Number Presentation_ID 1 Cisco s CLEC Networkers Power Session Session 2 The Business Case for ONS 15800 3 What s Driving the Demand? Data Voice 4 What s Driving the Demand? Internet 36,700,000

More information

GainMaker High Output 4-Port Node

GainMaker High Output 4-Port Node GainMaker 1 GHz High Output 4-Port Node with 42/54 MHz Split The GainMaker High Output 4-Port Node is designed to serve as an integral part of today s network architectures. The GainMaker High Output 4-Port

More information

Ver. 1.0en. Page 1 of 8

Ver. 1.0en. Page 1 of 8 Ver. 1.0en Vision 1550nm External Modulation Optical Transmitter GS8510 Series Technical Specification Page 1 of 8 CONTENT 1.0 PRODUCT DESCRIPTION... 3 2.0 PRODUCT FEATURE... 5 3.0 MAIN APPLICATION...

More information

AC500 AMPLIFIER PLATFORM

AC500 AMPLIFIER PLATFORM Broadband Cable Networks / Kari Mäki March 18, 2004 1(6) AC500 AMPLIFIER PLATFORM The AC500 is a single active output amplifier with 39 of gain. The amplifier can be used as in distribution purposes in

More information

GainMaker High Output Node 5-40/ MHz

GainMaker High Output Node 5-40/ MHz Optoelectronics GainMaker High Output Node 5-40/52-1002 MHz Description The GainMaker High Output Node is designed to serve as an integral part of today s network architectures, and combines the superior

More information

Semiconductor Optical Amplifiers (SOAs) as Power Boosters. Applications Note No. 0001

Semiconductor Optical Amplifiers (SOAs) as Power Boosters. Applications Note No. 0001 Semiconductor Optical Amplifiers (s) as Power Boosters Applications Note No. 0001 Semiconductor Optical Amplifiers (s) as Power Boosters There is a growing need to manage the increase in loss budgets associated

More information

CSO/CTB PERFORMANCE IMPROVEMENT BY USING FABRY-PEROT ETALON AT THE RECEIVING SITE

CSO/CTB PERFORMANCE IMPROVEMENT BY USING FABRY-PEROT ETALON AT THE RECEIVING SITE Progress In Electromagnetics Research Letters, Vol. 6, 107 113, 2009 CSO/CTB PERFORMANCE IMPROVEMENT BY USING FABRY-PEROT ETALON AT THE RECEIVING SITE S.-J. Tzeng, H.-H. Lu, C.-Y. Li, K.-H. Chang,and C.-H.

More information

Homeworx Lessons? What can we learn from the first deployment of OFDMA on HFC? Hal Roberts, Calix

Homeworx Lessons? What can we learn from the first deployment of OFDMA on HFC? Hal Roberts, Calix Homeworx Lessons? What can we learn from the first deployment of OFDMA on HFC? Hal Roberts, Calix The information contained in this presentation is not a commitment, promise, or legal obligation to deliver

More information

Research on Optical Access Network. Assoc. Prof. Dr. Duang-rudee Worasucheep Electrical Engineering Department Chulalongkorn University

Research on Optical Access Network. Assoc. Prof. Dr. Duang-rudee Worasucheep Electrical Engineering Department Chulalongkorn University Research on Optical Access Network Assoc. Prof. Dr. Duang-rudee Worasucheep Electrical Engineering Department Chulalongkorn University 1 History Faculty of Engineering was founded in 1913, First engineering

More information

product overview optical nodes

product overview optical nodes product overview optical nodes As a specialist for HFC- and RFoG-networks, DELTA Electronics offers a wide range of optical nodes. They are optimized for the individual applications at different locations.

More information

Fiber Optic Solutions for High-Speed Broadband, Wireless & Satellite Communications Networks

Fiber Optic Solutions for High-Speed Broadband, Wireless & Satellite Communications Networks Fiber Optic Solutions for High-Speed Broadband, Wireless & Satellite Communications Networks EMCORE is a leading provider of advanced Mixed-Signal Optics products that provide the foundation for today

More information

11.1 Gbit/s Pluggable Small Form Factor DWDM Optical Transceiver Module

11.1 Gbit/s Pluggable Small Form Factor DWDM Optical Transceiver Module INFORMATION & COMMUNICATIONS 11.1 Gbit/s Pluggable Small Form Factor DWDM Transceiver Module Yoji SHIMADA*, Shingo INOUE, Shimako ANZAI, Hiroshi KAWAMURA, Shogo AMARI and Kenji OTOBE We have developed

More information

GainMaker High Output Reverse Segmentable Node with 40/52 MHz Split

GainMaker High Output Reverse Segmentable Node with 40/52 MHz Split Data Sheet GainMaker High Output Reverse Segmentable Node with 40/52 MHz Split The GainMaker High Output Reverse Segmentable (RS) Node is designed to serve as an integral part of today s network architectures.

More information

AC1000 AMPLIFIER & OPTICAL NODE PLATFORM

AC1000 AMPLIFIER & OPTICAL NODE PLATFORM Broadband Cable Networks / Kari Mäki February 6, 2008 1(11) AC1000 AMPLIFIER & OPTICAL NODE PLATFORM The AC1000 is a single active output amplifier with 29 or 39 of platforms. Both platforms can be used

More information

1751A 1550 nm DWDM DFB Laser Module

1751A 1550 nm DWDM DFB Laser Module CATV Applications Node Capability Narrow Transmitter Housing Networks with Limited Fiber Architectures Using Separate Optical Wavelengths to Carry Targeted Services Features Standard ITU Grid Wavelengths

More information

Cisco Prisma Optical Passive Components

Cisco Prisma Optical Passive Components Data Sheet Cisco Prisma Optical Passive Components This data sheet includes optical wavelength filters, multiplexers, and demultiplexers that operate in the C-band from 1525 to 1565 nm as well as band

More information

Model 6944 Four Port Optoelectronic Node 870 MHz with 42/54 MHz Split

Model 6944 Four Port Optoelectronic Node 870 MHz with 42/54 MHz Split Optoelectronics Model 6944 Four t Optoelectronic Node 870 MHz with 42/54 MHz Split Description The Model 6944 Node is Scientific-Atlanta s latest generation 870 MHz optical node platfm. This platfm allows

More information

Coexistence of 10G-PON and GPON Reach Extension to 50-Km with Entirely Passive Fiber Plant

Coexistence of 10G-PON and GPON Reach Extension to 50-Km with Entirely Passive Fiber Plant e-issn 2455 1392 Volume 2 Issue 11, November 2016 pp. 12 19 Scientific Journal Impact Factor : 3.468 http://www.ijcter.com Coexistence of 10G-PON and GPON Reach Extension to 50-Km with Entirely Passive

More information

NETWORK DESIGN. Generally, 1550nm external modulation optical transmitter output port will be contact to EDFA.

NETWORK DESIGN. Generally, 1550nm external modulation optical transmitter output port will be contact to EDFA. NETWORK DESIGN 1550nm system can use to extend transmission distance, when signal is operated in 1550nm, the fiber should be considered of some factors, such as Chromatic Dispersion, SBS, SPM ( Self Phase

More information

S Optical Networks Course Lecture 4: Transmission System Engineering

S Optical Networks Course Lecture 4: Transmission System Engineering S-72.3340 Optical Networks Course Lecture 4: Transmission System Engineering Edward Mutafungwa Communications Laboratory, Helsinki University of Technology, P. O. Box 2300, FIN-02015 TKK, Finland Tel:

More information

CHAPTER 4 RESULTS. 4.1 Introduction

CHAPTER 4 RESULTS. 4.1 Introduction CHAPTER 4 RESULTS 4.1 Introduction In this chapter focus are given more on WDM system. The results which are obtained mainly from the simulation work are presented. In simulation analysis, the study will

More information

Maintaining an All Digital Plant

Maintaining an All Digital Plant Maintaining an All Digital Plant Presenter: Tony Holmes SCTE Iowa Heartland Chapter Technical Session Overview Physical Layer (PHY) metrics used by operators to measure digital health QAM performance metrics

More information

GainMaker Optoelectronic Node 1 GHz with 42/54 MHz Split

GainMaker Optoelectronic Node 1 GHz with 42/54 MHz Split Optoelectronics GainMaker Optoelectronic Node 1 GHz with 42/54 MHz Split Description The GainMaker Node is designed to serve as the cornerstone of today s emerging fiber deeper network architectures. The

More information

ECEN689: Special Topics in Optical Interconnects Circuits and Systems Spring 2016

ECEN689: Special Topics in Optical Interconnects Circuits and Systems Spring 2016 ECEN689: Special Topics in Optical Interconnects Circuits and Systems Spring 016 Lecture 7: Transmitter Analysis Sam Palermo Analog & Mixed-Signal Center Texas A&M University Optical Modulation Techniques

More information

A HIGH SPEED WDM PON FOR DOWNSTREAM DPSK ASK SIGNALS AND UPSTREAM OOK SIGNAL WITH BROADCAST CAPABILTY

A HIGH SPEED WDM PON FOR DOWNSTREAM DPSK ASK SIGNALS AND UPSTREAM OOK SIGNAL WITH BROADCAST CAPABILTY A HIGH SPEED WDM PON FOR DOWNSTREAM DPSK ASK SIGNALS AND UPSTREAM OOK SIGNAL WITH BROADCAST CAPABILTY 1 AAMIR KHAN, 2 ANITA CHOPRA 1 Department of Information Technology, Suresh Gyan Vihar University,

More information

Increasing the Performance and Capacity of Digital Reverse Systems. A study of system performance using 4:1 bdr technology

Increasing the Performance and Capacity of Digital Reverse Systems. A study of system performance using 4:1 bdr technology Increasing the Performance and Capacity of Digital Reverse Systems A study of system performance using 4:1 bdr technology Notices Trademark Acknowledgments Cisco, the Cisco logo, Cisco Systems, the Cisco

More information

Model 6940 Four Port Optoelectronic Node 870 MHz with 42/54 MHz Split

Model 6940 Four Port Optoelectronic Node 870 MHz with 42/54 MHz Split Optoelectronics Model 6940 Four ort Optoelectronic Node 870 MHz with 42/54 MHz Split Description The Model 6940 Node is a high performance, four output optoelectronic node. The Model 6940 Node can be configured

More information

Bandwidth expansion approach for DWDM deployment in O-band

Bandwidth expansion approach for DWDM deployment in O-band Bandwidth expansion approach for DWDM deployment in O-band Oleg G. Morozov*, Tagir S. Sadeev, Anvar A. Talipov Kazan State Technical Univ., 10 K. Marks str., Kazan, Russia ABSTRACT Fiber O band usability

More information

WDM-PON Delivering 5-Gbps Downstream/2.5-Gbps Upstream Data

WDM-PON Delivering 5-Gbps Downstream/2.5-Gbps Upstream Data WDM-PON Delivering 5-Gbps Downstream/2.5-Gbps Upstream Data Balaji Raobawale P. G. Department M.B.E.S. College of Engineering, Ambajogai, India S. K. Sudhansu P. G. Department M.B.E.S. College of Engineering,

More information

Radio over Fiber Technology for Investigation of Hybrid Passive Optical Networks

Radio over Fiber Technology for Investigation of Hybrid Passive Optical Networks I J C T A, 9(8), 2016, pp. 3451-3457 International Science Press Radio over Fiber Technology for Investigation of Hybrid Passive Optical Networks P. Sangeetha* and I. Muthumani ABSTRACT Multiplexed PONs

More information

INTRODUCING LcWDM THE NEXT WDM TECHNOLOGY FOR THE CABLE INDUSTRY Oleh J. Sniezko, Sudhesh Mysore, Charles Barker Aurora Networks, Inc.

INTRODUCING LcWDM THE NEXT WDM TECHNOLOGY FOR THE CABLE INDUSTRY Oleh J. Sniezko, Sudhesh Mysore, Charles Barker Aurora Networks, Inc. INTRODUCING cwdm TE NEXT WDM TECNOOGY FOR TE CABE INDUSTRY Oleh J. Sniezko, Sudhesh Mysore, Charles Barker Aurora Networks, Inc. Abstract This paper presents a WDM technology for downstream FC communication.

More information

ITU-T G (03/2008) Gigabit-capable passive optical networks (GPON): Reach extension

ITU-T G (03/2008) Gigabit-capable passive optical networks (GPON): Reach extension International Telecommunication Union ITU-T TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU G.984.6 (03/2008) SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS Digital sections and

More information

40Gb/s & 100Gb/s Transport in the WAN Dr. Olga Vassilieva Fujitsu Laboratories of America, Inc. Richardson, Texas

40Gb/s & 100Gb/s Transport in the WAN Dr. Olga Vassilieva Fujitsu Laboratories of America, Inc. Richardson, Texas 40Gb/s & 100Gb/s Transport in the WAN Dr. Olga Vassilieva Fujitsu Laboratories of America, Inc. Richardson, Texas All Rights Reserved, 2007 Fujitsu Laboratories of America, Inc. Outline Introduction Challenges

More information

All O band Uneven Spacing Wavelength Plan for 100G EPON

All O band Uneven Spacing Wavelength Plan for 100G EPON All O band Uneven Spacing Wavelength Plan for 100G EPON Eugene (Yuxin) Dai Cox CommunicaEons IEEE 802.3ca 100G EPON TF November, 2016 San Antonio, Texas, USA Background The FWM and other nonlinear issues

More information

GainStar 1 GHz Node with 42/54 MHz Split

GainStar 1 GHz Node with 42/54 MHz Split GainStar 1 GHz Node with 42/54 MHz Split The 1 GHz GainStar Node (GSN) is specifically designed to serve in HFC networks. With its modular design of Optics and RF amplifier electronics, the GSN can provide

More information

Model 6940 Collector/Terminator Three Port Unbalanced Optoelectronic Node 870 MHz with 65/86 MHz Split

Model 6940 Collector/Terminator Three Port Unbalanced Optoelectronic Node 870 MHz with 65/86 MHz Split Optoelectronics Model 6940 Collector/Terminator Three ort Unbalanced Optoelectronic Node 870 MHz with 65/86 MHz Split Description The Model 6940 Collector/Terminator Node is a three port unbalanced node

More information

PR-12-B-M. 12 GHz PhotoReceiver, Module. Features. Applications. Functional Diagram

PR-12-B-M. 12 GHz PhotoReceiver, Module. Features. Applications. Functional Diagram PR-12-B-M 12 GHz PhotoReceiver, Module The Optilab PR-12-B-M is a 12 GHz bandwidth amplified PIN photodiode receiver module, designed for RF over fiber, antenna remoting, and broadband RF signals transmission

More information

Enabling technology for suppressing nonlinear interchannel crosstalk in DWDM transoceanic systems

Enabling technology for suppressing nonlinear interchannel crosstalk in DWDM transoceanic systems 1/13 Enabling technology for suppressing nonlinear interchannel crosstalk in DWDM transoceanic systems H. Zhang R.B. Jander C. Davidson D. Kovsh, L. Liu A. Pilipetskii and N. Bergano April 2005 1/12 Main

More information

DWDM 101 BRKOPT Rodger Nutt High-End Routing and Optical BU Technical Leader

DWDM 101 BRKOPT Rodger Nutt High-End Routing and Optical BU Technical Leader DWDM 101 Rodger Nutt High-End Routing and Optical BU Technical Leader Agenda Introduction What is DWDM Fiber Types Linear Effects The BIG Three: Attenuation, Chromatic Dispersion, OSNR Solutions to the

More information

Good Things Come in Small Cubes. Cube Optics 100G Metro Evolution TREX14 01/06/14

Good Things Come in Small Cubes. Cube Optics 100G Metro Evolution TREX14 01/06/14 Good Things Come in Small Cubes Cube Optics 100G Metro Evolution TREX14 01/06/14 VO0030_5.0 01.06.2014 Page 2 Before we start talking about 100Gig Lets go back to basics and understand what we mean by

More information

4x100GE through 2 and 10km SMF Using DMT and 1.3mm LAN-WDM EMLs. Winston Way, Trevor Chan, NeoPhotonics, USA

4x100GE through 2 and 10km SMF Using DMT and 1.3mm LAN-WDM EMLs. Winston Way, Trevor Chan, NeoPhotonics, USA 4x100GE through 2 and 10km SMF Using and 1.3mm LAN-WDM EMLs Winston Way, Trevor Chan, NeoPhotonics, USA IEEE802.3 400GbE Study Group, November 2013 Objectives Study the technical feasibility of using to

More information

Radio over Fiber technology for 5G Cloud Radio Access Network Fronthaul

Radio over Fiber technology for 5G Cloud Radio Access Network Fronthaul Radio over Fiber technology for 5G Cloud Radio Access Network Fronthaul Using a highly linear fiber optic transceiver with IIP3 > 35 dbm, operating at noise level of -160dB/Hz, we demonstrate 71 km RF

More information

P2MP PMD Baseline. Prepared by Frank Effenberger Quantum Bridge Communications

P2MP PMD Baseline. Prepared by Frank Effenberger Quantum Bridge Communications P2MP PMD Baseline Prepared by Frank Effenberger Quantum Bridge Communications Supporters Tony Anderson Meir Bartur Vipul Bhatt Frank Effenberger Brian Ford John George Raanan Ivry Kent McCammon Tom Murphy

More information

Development of Small Optical Transceiver for 10G-EPON

Development of Small Optical Transceiver for 10G-EPON INFORMATION & COMMUNICATIONS Development of Small Optical Transceiver for Tomoyuki Funada*, Shuitsu Yuda, akihito IwaTa, naruto Tanaka, Hidemi Sone, daisuke umeda, Yasuyuki kawanishi and Yuuya Tanaka As

More information

DATASHEET. Data Center & Cloud Computing Infrastruture Solutions. 16 Channels C27-C42 Dual Fiber DWDM Mux Demux 1U Rack Mount, LC/UPC

DATASHEET. Data Center & Cloud Computing Infrastruture Solutions. 16 Channels C27-C42 Dual Fiber DWDM Mux Demux 1U Rack Mount, LC/UPC Data Center & Cloud Computing DATASHEET 16 Channels C27-C42 Dual Fiber DWDM Mux Demux 1U Rack Mount, LC/UPC Data Center & Cloud Computing Infrastruture Solutions REV.1.0 2018 01 Overview Copyright 2009-2015

More information

Prisma II Optical Receivers

Prisma II Optical Receivers Optoelectronics Prisma II Optical s Description The Prisma II optical network is an advanced transmission system designed to optimize network architectures and increase reliability, scalability, and cost

More information

Performance of A Multicast DWDM Network Applied to the Yemen Universities Network using Quality Check Algorithm

Performance of A Multicast DWDM Network Applied to the Yemen Universities Network using Quality Check Algorithm Performance of A Multicast DWDM Network Applied to the Yemen Universities Network using Quality Check Algorithm Khaled O. Basulaim, Samah Ali Al-Azani Dept. of Information Technology Faculty of Engineering,

More information

Introduction to BER testing of WDM systems

Introduction to BER testing of WDM systems Introduction to BER testing of WDM systems Application note 1299 Wavelength division multiplexing (WDM) is a new and exciting technology for migrating the core optical transmission network to higher bandwidths.

More information

INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA

INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA COMM.ENG INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA 9/9/2017 LECTURES 1 Objectives To give a background on Communication system components and channels (media) A distinction between analogue

More information

ITU-T. G Amendment 2 (08/2017) 40-Gigabit-capable passive optical networks 2 (NG-PON2): Physical media dependent (PMD) layer specification

ITU-T. G Amendment 2 (08/2017) 40-Gigabit-capable passive optical networks 2 (NG-PON2): Physical media dependent (PMD) layer specification I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n ITU-T TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU G.989.2 Amendment 2 (08/2017) SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL

More information

Understanding and Troubleshooting Linear Distortions: Micro-reflections, Amplitude Ripple/Tilt and Group Delay

Understanding and Troubleshooting Linear Distortions: Micro-reflections, Amplitude Ripple/Tilt and Group Delay Understanding and Troubleshooting Linear Distortions: Micro-reflections, Amplitude Ripple/Tilt and Group Delay RON HRANAC 1 A Clean Upstream: Or Is It? Graphic courtesy of Sunrise Telecom 2 Transmission

More information

A WDM passive optical network enabling multicasting with color-free ONUs

A WDM passive optical network enabling multicasting with color-free ONUs A WDM passive optical network enabling multicasting with color-free ONUs Yue Tian, Qingjiang Chang, and Yikai Su * State Key Laboratory of Advanced Optical Communication Systems and Networks, Department

More information

from ocean to cloud Copyright SubOptic2013 Page 1 of 5

from ocean to cloud Copyright SubOptic2013 Page 1 of 5 Applicability of Multi-wave-modulation Loading Scheme and ASE Dummy Loading Method in 40G PDM-PSK Coherent Systems for Full-capacity Performance Evaluation Jiping Wen, Xiaoyan Fan, Tiegang Zhou, Guohui

More information

Analysis of four channel CWDM Transceiver Modules based on Extinction Ratio and with the use of EDFA

Analysis of four channel CWDM Transceiver Modules based on Extinction Ratio and with the use of EDFA Analysis of four channel CWDM Transceiver Modules based on Extinction Ratio and with the use of EDFA P.P. Hema [1], Prof. A.Sangeetha [2] School of Electronics Engineering [SENSE], VIT University, Vellore

More information

SOA + PIN-PD receiver performance

SOA + PIN-PD receiver performance SOA + PIN-PD receiver performance Naruto TANAKA Daisuke UMEDA January 10-12 th, 2017 Sumitomo Electric Industries, LTD. Introduction 25G APD receiver sensitivity was discussed in previous meeting. We showed

More information

CXE880 FIBRE OPTIC NODE

CXE880 FIBRE OPTIC NODE Kari Mäki 29.4.2015 1(6) CXE880 FIBRE OPTIC NODE The CXE880 is a fibre deep optical node. It is designed for cases where high performance and cost effectiveness are a demand. Requirements of future networks,

More information

Testing of DWDM + CWDM high speed systems. Christian Till Technical Sales Engineer, EXFO

Testing of DWDM + CWDM high speed systems. Christian Till Technical Sales Engineer, EXFO Testing of DWDM + CWDM high speed systems Christian Till Technical Sales Engineer, EXFO Need more bandwidth? xwdm - Class of WDM Devices Wavelength Division Multiplexing (WDM) : Access 2 channels 1310nm,

More information

Annex 91A Coexistence of 1 Gb/s (symmetric), 10 Gb/s (symmetric) and 10/1 Gb/s (asymmetric) Ethernet Passive Optical Networks (EPONs)

Annex 91A Coexistence of 1 Gb/s (symmetric), 10 Gb/s (symmetric) and 10/1 Gb/s (asymmetric) Ethernet Passive Optical Networks (EPONs) Annex 91A Coexistence of 1 Gb/s (symmetric), 10 Gb/s (symmetric) and 10/1 Gb/s (asymmetric) Ethernet Passive Optical Networks (EPONs) 91A.1 Overview This clause provides information on building Ethernet

More information

1622A/B CWDM DFB Laser Module

1622A/B CWDM DFB Laser Module The 1622A/B ITU G.695 compliant CWDM forward path DFB laser components are designed for both broadcast and narrowcast analog applications. The highly linear, OC48 pinout compatible components feature options

More information

Unit-5. Lecture -4. Power Penalties,

Unit-5. Lecture -4. Power Penalties, Unit-5 Lecture -4 Power Penalties, Power Penalties When any signal impairments are present, a lower optical power level arrives at the receiver compared to the ideal reception case. This lower power results

More information

Density and Guard Band in Migration Scenarios to Coherent Ultra-Dense WDM

Density and Guard Band in Migration Scenarios to Coherent Ultra-Dense WDM Density and Guard Band in Migration Scenarios to Coherent Ultra-Dense WDM Jacklyn D. Reis jacklyn@ua.pt Darlene M. Neves darlene@ua.pt António L. Teixeira Nokia Siemens Networks teixeira@ua.pt Abstract

More information

Current Trends in Unrepeatered Systems

Current Trends in Unrepeatered Systems Current Trends in Unrepeatered Systems Wayne Pelouch (Xtera, Inc.) Email: wayne.pelouch@xtera.com Xtera, Inc. 500 W. Bethany Drive, suite 100, Allen, TX 75013, USA. Abstract: The current trends in unrepeatered

More information

Model OT-1000-HH 1GHz SuperMod Optical Transmitter, DWDM ADVANCED OPERATING MANUAL

Model OT-1000-HH 1GHz SuperMod Optical Transmitter, DWDM ADVANCED OPERATING MANUAL Model OT-1000-HH 1GHz SuperMod Optical Transmitter, DWDM ADVANCED OPERATING MANUAL The features mentioned in this Advanced OT-1000-HH Manual can be accessed only with the optional OT-NEC-A, Network Element

More information

Optical Measurements in 100 and 400 Gb/s Networks: Will Coherent Receivers Take Over? Fred Heismann

Optical Measurements in 100 and 400 Gb/s Networks: Will Coherent Receivers Take Over? Fred Heismann Optical Measurements in 100 and 400 Gb/s Networks: Will Coherent Receivers Take Over? Fred Heismann Chief Scientist Fiberoptic Test & Measurement Key Trends in DWDM and Impact on Test & Measurement Complex

More information

DATASHEET. Data Center & Cloud Computing Infrastruture Solutions

DATASHEET. Data Center & Cloud Computing Infrastruture Solutions Data Center & Cloud Computing DATASHEET 8 Channels C53-C60 Dual Fiber DWDM Mux Demux W/Expansion Port, FMU Plug-in Module, LC/UPC Data Center & Cloud Computing Infrastruture Solutions REV10 2018 01 Overview

More information

Multiplexing. Chapter 8. Frequency Division Multiplexing Diagram. Frequency Division Multiplexing. Multiplexing

Multiplexing. Chapter 8. Frequency Division Multiplexing Diagram. Frequency Division Multiplexing. Multiplexing Multiplexing Chapter 8 Multiplexing Frequency Division Multiplexing FDM Useful bandwidth of medium exceeds required bandwidth of channel Each signal is modulated to a different carrier frequency Carrier

More information

Enhanced continuous-wave four-wave mixing using Hybrid Modulation Technique

Enhanced continuous-wave four-wave mixing using Hybrid Modulation Technique International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2016 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Enhanced

More information

Performance Analysis of Direct Detection-Based Modulation Formats for WDM Long-Haul Transmission Systems Abstract 1.0 Introduction

Performance Analysis of Direct Detection-Based Modulation Formats for WDM Long-Haul Transmission Systems Abstract 1.0 Introduction Performance Analysis of Direct Detection-Based Modulation Formats for WDM Long-Haul Transmission Systems PRLightCOM Broadband Solutions Pvt. Ltd. Bangalore, Karnataka, INDIA Abstract During the last decade,

More information

Performance Analysis Of An Ultra High Capacity 1 Tbps DWDM-RoF System For Very Narrow Channel Spacing

Performance Analysis Of An Ultra High Capacity 1 Tbps DWDM-RoF System For Very Narrow Channel Spacing Performance Analysis Of An Ultra High Capacity 1 Tbps DWDM-RoF System For Very Narrow Channel Spacing Viyoma Sarup* and Amit Gupta Chandigarh University Punjab, India *viyoma123@gmail.com Abstract A RoF

More information

Optical Fibre Amplifiers Continued

Optical Fibre Amplifiers Continued 1 Optical Fibre Amplifiers Continued Stavros Iezekiel Department of Electrical and Computer Engineering University of Cyprus ECE 445 Lecture 09 Fall Semester 2016 2 ERBIUM-DOPED FIBRE AMPLIFIERS BASIC

More information

Optical Fiber Enabler of Wireless Devices in the Palms of Your Hands

Optical Fiber Enabler of Wireless Devices in the Palms of Your Hands Optical Fiber Enabler of Wireless Devices in the Palms of Your Hands A Presentation to EE1001 Class of Electrical Engineering Department at University of Minnesota Duluth By Professor Imran Hayee Smartphone

More information

Your one stop source for RF transmission in Cable and IPTV Headends Teleports and Broadcasting Satellite Ground Stations Satellite Operators

Your one stop source for RF transmission in Cable and IPTV Headends Teleports and Broadcasting Satellite Ground Stations Satellite Operators RF over Fiber Guide WE HAVE A PASSION......FOR OPTICAL SIGNALS Your one stop source for RF transmission in Cable and IPTV Headends Teleports and Broadcasting Satellite Ground Stations Satellite Operators

More information

40Gb/s Optical Transmission System Testbed

40Gb/s Optical Transmission System Testbed The University of Kansas Technical Report 40Gb/s Optical Transmission System Testbed Ron Hui, Sen Zhang, Ashvini Ganesh, Chris Allen and Ken Demarest ITTC-FY2004-TR-22738-01 January 2004 Sponsor: Sprint

More information

AC8000 FIBRE OPTIC PLATFORM

AC8000 FIBRE OPTIC PLATFORM Kari Mäki 5.5.2008 1(7) AC8000 FIBR PTIC PLATFRM The AC8000 is a dual active output node. It is based on fixed platform but flexible modular solution. There is possible to have an optical receiver with

More information