Q Multiplication in the Wienbridge Oscillator

 Luke Owen Bradford
 7 months ago
 Views:
Transcription
1 Multiplication in the Wienbridge Oscillator The Wienbridge oscillator earns its name from the typical bridge arrangement of the feedbac loops (fig.). This configuration is capable of delivering a clean output sine wave using a low frequencydetermining RC networ and some negative feedbac. We are interested in computing a figure of merit or for the oscillator that will account for harmonic reection at the output, finding its relationship with the RC networ s. We shall start considering a signal V fed bac from the output to the amplifier s inputs and resulting in a differential input signal (V  V ). We may write: V V V RC R C RC 3 RNL R R NL ( ) K () Here, it is assumed that the differential amplifier s inputimpedance is very high. We can recognize the RC frequencysensitive networ as being a nd order bandpass filter. This type of filter has a transfer function in the Laplace domain given by: () s bs as cs with a, b and c being circuit constants. For steadystate sinusoidal operation the above expression may be written as: with s. a ( ) () b c
2 The resonant frequency o is given by: b ain at resonance is: c a The 3dB bandwidth can be shown to be: b c The networ s is: c b (3) Then, eq.() may be written as: (4) The amplitudefrequency response is described by: The phaseangle response may be obtained from eq.(4): tan π Φ We need now calculate the derivative of Φ() with respect to. From tables for derivatives we find that:
3 d dx tan ( y) y dy dx Then: dφ d Evaluating Φ () at o : or: Φ ' Φ ' ' Φ ( ) (5) At this point we can verify, using eq.(3), that the of the frequencysensitive networ is /3. In the next section we will see how a multiplication taes place due to bridge operation in the oscillator. Multiplication Multiplying eq.() by A d yields the condition that must be satisfied for oscillations to tae place: [ ( ) K ] A (6) () is the transfer function of the frequencysensitive networ. K is the transfer function of the nonlinear networ. A d is the amplifier s openloop gain. At the oscillation s frequency, () and K must be real if A d is a real quantity. For ideal OPAMPS, A d is considered a real number, actually very large. For realworld devices with internal frequency compensation, A d is a complex quantity having a lowfrequency pole, and its magnitude rollsoff at db per decade above the corner frequency. It may be shown that A d can be considered to be a real quantity in eq.(6) if: d BW/f osc >>9 where BW is the gainbandwidth product of the OPAMP and f osc is the oscillation s frequency in hertz.
4 Selectivity of the frequencydependent feedbac loop is given by its [eq.(5)]: dφ d Total selectivity resulting from the action of the two feedbac loops may be described by: dφ d For small variations of frequency and phase angles: Φ Φ From fig..b we may write: and for small phase shifts: ( ) sin Φ ( ) K sin Φ ( ) Φ ( ) K Φ We may deduce that: ( ) ( ) K (7) At the oscillation s frequency: ( ) K A d
5 and: ( ) 3 Then: A d (8) 3 Thus, the bridge is very nearly at balance and is many times. Typical openloop voltage gain variation with frequency is indicated in fig.3 for an OP AMP with internal frequency compensation. Here, o is the DC voltage gain expressed in decibels and f o is the lowfrequency pole. is the voltage gain in decibels at frequency f. f u is the unitygain frequency. The following holds due to the db per decade rolloff: BW A f A f f (9) do o d u At a frequency f, the openloop voltage gain is: Substituting into eq. (8): BW A d () f BW 3 f
6 Then: BW 9 f The effective then varies inversely with frequency. A typical multiplication factor at Hz, with a 4MHz gainbandwidth product OP AMP is: This would give a value of for. For the case of the modified Wienbridge oscillator using a single variable resistor for frequency control: ( ) RC R C ( ) [ ( ) ] RC () ( ) RC Eq.(7) yields the multiplication factor: () ( ) A d (3) ( ) is then given by: A d ( ) ( ) BW f [ ( ) ]
7 RC BW (4) π [ ( ) ] If ( )>>: π RC BW (5) is then approximately constant over one decade. ( ) Using eq.(4) we may calculate the ratio when varies between min and MAX. Then: Ratio ( MAX ) ( ) min MAX min min MAX ( ) ( ) ( ) ( ) 4 (6) Table I summarizes Ratio and values as given by eqs. (6) and (5), with as a parameter, for a Wienbridge oscillator designed for operation over the Hz to Hz decade. TABLE I Ratio (aprox.) Calculations for have been made with BW 4MHz, R 47 ohms, and C 7.57nF. For other values of, C has been changed accordingly, so the same Hz to Hz decade may be tuned. From the total selectivity point of view, low values for are preferred. We may also observe that given any frequency decade, selectivity at the lower end is slightly greater than that at the upper end ( Ratio>). Eq. (5) indicates that higher decades exhibit smaller values (the higher the decade, the smaller the RC product). Some THD measurements made on the modified Wienbridge oscillator with and a 6Volt peaamplitude output sine wave are shown below. Measurements were conducted using a 334A HewlettPacard Distortion Analyzer.
8 Hz to Hz decade THD at: Hz Hz is:.%.3% Hz to Hz decade THD at: Hz Hz is:.9%.6% Hz to Hz decade THD at: Hz Hz is:.4%.7% Hz to Hz decade THD at: Hz Hz is: 3.8%.4% (using stabilising lamp) is:.47%.38% (using stabilising lamps in series) Some comments The lower end of the Hz to Hz decade is adversely affected by environmental noise and nonlinear distortion introduced by the stabilising lamp. Three or four of these lamps should be seriesconnected in order to reduce THD to acceptable levels. Miniature lamp types should be preferred (they are less buly). Also, the oscillator should be adequately shielded from external noise sources, such as fluorescent lamps, computers, switchmode power supplies, etc. When conducting measurements with the Distortion Analyzer at frequencies above Hz, a highpass filter may be switchedin for noise reection. This may help lower the THD reading. Ramon Vargas Patron LimaPeru, South America June nd 4
9
Oscillator Principles
Oscillators Introduction Oscillators are circuits that generates a repetitive waveform of fixed amplitude and frequency without any external input signal. The function of an oscillator is to generate alternating
More information11. Chapter: Amplitude stabilization of the harmonic oscillator
Punčochář, Mohylová: TELO, Chapter 10 1 11. Chapter: Amplitude stabilization of the harmonic oscillator Time of study: 3 hours Goals: the student should be able to define basic principles of oscillator
More informationOscillations and Regenerative Amplification using Negative Resistance Devices
Oscillations and Regenerative Amplification using Negative Resistance Devices Ramon Vargas Patron rvargas@inictel.gob.pe INICTEL The usual procedure for the production of sustained oscillations in tuned
More informationOpAmp Simulation Part II
OpAmp Simulation Part II EE/CS 5720/6720 This assignment continues the simulation and characterization of a simple operational amplifier. Turn in a copy of this assignment with answers in the appropriate
More informationLesson number one. Operational Amplifier Basics
What About Lesson number one Operational Amplifier Basics As well as resistors and capacitors, Operational Amplifiers, or Opamps as they are more commonly called, are one of the basic building blocks
More informationTest Your Understanding
074 Part 2 Analog Electronics EXEISE POBLEM Ex 5.3: For the switchedcapacitor circuit in Figure 5.3b), the parameters are: = 30 pf, 2 = 5pF, and F = 2 pf. The clock frequency is 00 khz. Determine the
More informationLecture # 11 Oscillators (RC Circuits)
December 2014 Benha University Faculty of Engineering at Shoubra ECE312 Electronic Circuits (A) Lecture # 11 Oscillators (RC Circuits) Instructor: Dr. Ahmad ElBanna Agenda Introduction Feedback Oscillators
More informationApplication Note AN45
Application Note Wien Bridge Oscillators using E 2 POTs by Applications Staff, October 1994 Wien Bridge Oscillators In 1939, William R. Hewlett (later of HewlettPackard fame) first combined the network
More informationELECTRICAL CIRCUITS 6. OPERATIONAL AMPLIFIERS PART III DYNAMIC RESPONSE
77 ELECTRICAL CIRCUITS 6. PERATAL AMPLIIERS PART III DYNAMIC RESPNSE Introduction In the first 2 handouts on opamps the focus was on DC for the ideal and nonideal opamp. The perfect opamp assumptions
More informationBENE 2163 ELECTRONIC SYSTEMS
UNIVERSITI TEKNIKAL MALAYSIA MELAKA FAKULTI KEJURUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER BENE 263 ELECTRONIC SYSTEMS LAB SESSION 3 WEIN BRIDGE OSCILLATOR Revised: February 20 Lab 3 Wien Bridge Oscillator
More informationProject Report Designing WeinBridge Oscillator
Abu Dhabi University EEN 360  Electronic Devices and Circuits II Project Report Designing WeinBridge Oscillator Author: Muhammad Obaidullah 03033 Bilal Arshad 0929 Supervisor: Dr. Riad Kanan Section
More informationA Novel Control Method to Minimize Distortion in AC Inverters. Dennis Gyma
A Novel Control Method to Minimize Distortion in AC Inverters Dennis Gyma HewlettPackard Company 150 Green Pond Road Rockaway, NJ 07866 ABSTRACT In PWM AC inverters, the dutycycle modulator transfer
More informationFEEDBACK AMPLIFIER. Learning Objectives. A feedback amplifier is one in which a fraction of the amplifier output is fed back to the input circuit
C H P T E R6 Learning Objectives es Feedback mplifiers Principle of Feedback mplifiers dvantages of Negative Feedback Gain Stability Decreased Distortion Feedback Over Several Stages Increased Bandwidth
More informationECEN Network Analysis Section 3. Laboratory Manual
ECEN 3714Network Analysis Section 3 Laboratory Manual LAB 07: Active Low Pass Filter Oklahoma State University School of Electrical and Computer Engineering. Section 3 Laboratory manual  1  Spring
More informationMechatronics. Analog and Digital Electronics: Studio Exercises 1 & 2
Mechatronics Analog and Digital Electronics: Studio Exercises 1 & 2 There is an electronics revolution taking place in the industrialized world. Electronics pervades all activities. Perhaps the most important
More informationSAR (successiveapproximationregister) ADCs
By Miro Oljaca and Bonnie C Baker Texas Instruments Start with the right op amp when driving SAR ADCs Using the right operational amplifier in front of your data converter will give you good performance.
More informationDual FETInput, Low Distortion OPERATIONAL AMPLIFIER
www.burrbrown.com/databook/.html Dual FETInput, Low Distortion OPERATIONAL AMPLIFIER FEATURES LOW DISTORTION:.3% at khz LOW NOISE: nv/ Hz HIGH SLEW RATE: 25V/µs WIDE GAINBANDWIDTH: MHz UNITYGAIN STABLE
More informationProject 6: Oscillator Circuits
: Oscillator Circuits Ariel Moss The purpose of this experiment was to design two oscillator circuits: a WienBridge oscillator at 3 khz oscillation and a Hartley Oscillator using a BJT at 5 khz oscillation.
More informationStudy of Inductive and Capacitive Reactance and RLC Resonance
Objective Study of Inductive and Capacitive Reactance and RLC Resonance To understand how the reactance of inductors and capacitors change with frequency, and how the two can cancel each other to leave
More informationUNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering
UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering EXPERIMENT 5 GAINBANDWIDTH PRODUCT AND SLEW RATE OBJECTIVES In this experiment the student will explore two
More informationv(t) = V p sin(2π ft +φ) = V p cos(2π ft +φ + π 2 )
1 Let us revisit sine and cosine waves. A sine wave can be completely defined with three parameters Vp, the peak voltage (or amplitude), its frequency w in radians/second or f in cycles/second (Hz), and
More informationAC Circuits. "Look for knowledge not in books but in things themselves." W. Gilbert ( )
AC Circuits "Look for knowledge not in books but in things themselves." W. Gilbert (15401603) OBJECTIVES To study some circuit elements and a simple AC circuit. THEORY All useful circuits use varying
More informationChapter 14 Operational Amplifiers
1. List the characteristics of ideal op amps. 2. Identify negative feedback in opamp circuits. 3. Analyze ideal opamp circuits that have negative feedback using the summingpoint constraint. ELECTRICAL
More informationModule 4 Unit 4 Feedback in Amplifiers
Module 4 Unit 4 Feedback in mplifiers eview Questions:. What are the drawbacks in a electronic circuit not using proper feedback? 2. What is positive feedback? Positive feedback is avoided in amplifier
More informationFunction Generator MODEL FG500 Instruction Manual ELENCO
Function Generator MODEL FG500 Instruction Manual ELENCO Copyright 2012, 2003 Elenco Electronics, Inc. REVD 753068 SPECIFICATIONS OUTPUT: Waveforms: Sine, triangle, square Impedance: 600Ω ±10% Frequency:
More informationEE105 Fall 2015 Microelectronic Devices and Circuits. Amplifier Gain
EE05 Fall 205 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 5 Sutardja Dai Hall (SDH) 2 Amplifier Gain Voltage Gain: Current Gain: Power Gain: Note: A v v O v I A i i O i
More informationAPPLICATION NOTE 6206 SIMPLE, EFFECTIVE METHOD AND CIRCUIT TO MEASURE VERYLOW 1/F VOLTAGE REFERENCE NOISE (< 1ΜV PP, 0.
Keywords: 0.1 to 10 Hz noise of voltage reference, low frequency noise or flicker noise of voltage reference, ultra low noise measurement of voltage reference APPLICATION NOTE 606 SIMPLE, EFFECTIVE METHOD
More informationPHYS 536 The Golden Rules of Op Amps. Characteristics of an Ideal Op Amp
PHYS 536 The Golden Rules of Op Amps Introduction The purpose of this experiment is to illustrate the golden rules of negative feedback for a variety of circuits. These concepts permit you to create and
More informationMETHODS TO IMPROVE DYNAMIC RESPONSE OF POWER FACTOR PREREGULATORS: AN OVERVIEW
METHODS TO IMPROE DYNAMIC RESPONSE OF POWER FACTOR PREREGULATORS: AN OERIEW G. Spiazzi*, P. Mattavelli**, L. Rossetto** *Dept. of Electronics and Informatics, **Dept. of Electrical Engineering University
More informationFREQUENCY RESPONSE AND PASSIVE FILTERS LABORATORY
FREQUENCY RESPONSE AND PASSIVE FILTERS LABORATORY In this experiment we will analytically determine and measure the frequency response of networks containing resistors, AC source/sources, and energy storage
More informationAmplitude Modulation Methods and Circuits
Amplitude Modulation Methods and Circuits By: Mark Porubsky Milwaukee Area Technical College Electronic Technology Electronic Communications Milwaukee, WI Purpose: The various parts of this lab unit will
More informationI. Introduction to Simple Circuits of Resistors
2 Problem Set for Dr. Todd Huffman Michaelmas Term I. Introduction to Simple ircuits of esistors 1. For the following circuit calculate the currents through and voltage drops across all resistors. The
More informationLC Resonant Circuits Dr. Roger King June Introduction
LC Resonant Circuits Dr. Roger King June 01 Introduction Secondorder systems are important in a wide range of applications including transformerless impedancematching networks, frequencyselective networks,
More informationWhen you have completed this exercise, you will be able to relate the gain and bandwidth of an op amp
Op Amp Fundamentals When you have completed this exercise, you will be able to relate the gain and bandwidth of an op amp In general, the parameters are interactive. However, in this unit, circuit input
More informationCHAPTER 6 INTRODUCTION TO SYSTEM IDENTIFICATION
CHAPTER 6 INTRODUCTION TO SYSTEM IDENTIFICATION Broadly speaking, system identification is the art and science of using measurements obtained from a system to characterize the system. The characterization
More informationEE 3305 Lab I Revised July 18, 2003
Operational Amplifiers Operational amplifiers are highgain amplifiers with a similar general description typified by the most famous example, the LM741. The LM741 is used for many amplifier varieties
More informationAUDIO OSCILLATOR DISTORTION
AUDIO OSCILLATOR DISTORTION Being an ardent supporter of the shunt negative feedback in audio and electronics, I would like again to demonstrate its advantages, this time on the example of the offered
More informationFilter Design, Active Filters & Review. EGR 220, Chapter 14.7, December 14, 2017
Filter Design, Active Filters & Review EGR 220, Chapter 14.7, 14.11 December 14, 2017 Overview ² Passive filters (no op amps) ² Design examples ² Active filters (use op amps) ² Course review 2 Example:
More informationECE3204 D2015 Lab 1. See suggested breadboard configuration on following page!
ECE3204 D2015 Lab 1 The Operational Amplifier: Inverting and Noninverting Gain Configurations GainBandwidth Product Relationship Frequency Response Limitation Transfer Function Measurement DC Errors
More informationIntroduction to Phase Noise
hapter Introduction to Phase Noise brief introduction into the subject of phase noise is given here. We first describe the conversion of the phase fluctuations into the noise sideband of the carrier. We
More informationFeed Forward Linearization of Power Amplifiers
EE318 Electronic Design Lab Report, EE Dept, IIT Bombay, April 2007 Feed Forward Linearization of Power Amplifiers GroupD16 Nachiket Gajare ( 04d07015) < nachiketg@ee.iitb.ac.in> Aditi Dhar ( 04d07030)
More informationEE 318 Electronic Design Lab. Hifi Audio Transmitter from first principles
EE 318 Electronic Design Lab Hifi Audio Transmitter from first principles Supervised by Prof. Jayanta Mukherjee Prof. Dipankar Prof. L. Subramaniam By Group9 Vipul Chaudhary (08d07039) Vineet Raj (08d07040)
More informationPoles and Zeros of H(s), Analog Computers and Active Filters
Poles and Zeros of H(s), Analog Computers and Active Filters Physics116A, Draft10/28/09 D. Pellett LRC Filter Poles and Zeros Pole structure same for all three functions (two poles) HR has two poles and
More informationT.J.Moir AUT University Auckland. The Ph ase Lock ed Loop.
T.J.Moir AUT University Auckland The Ph ase Lock ed Loop. 1.Introduction The PhaseLocked Loop (PLL) is one of the most commonly used integrated circuits (ICs) in use in modern communications systems.
More information220 S. MAHESHWARI AND I. A. KHAN 2 DEVICE PROPOSED The already reported CDBA is characterized by the following port relationship [7]. V p V n 0, I z I
Active and Passive Electronic Components December 2004, No. 4, pp. 219±227 CURRENTCONTROLLED CURRENT DIFFERENCING BUFFERED AMPLIFIER: IMPLEMENTATION AND APPLICATIONS SUDHANSHU MAHESHWARI* and IQBAL A.
More informationChapter 2. Signals and Spectra
Chapter 2 Signals and Spectra Outline Properties of Signals and Noise Fourier Transform and Spectra Power Spectral Density and Autocorrelation Function Orthogonal Series Representation of Signals and Noise
More informationVHF LAND MOBILE SERVICE
RFS21 December 1991 (Issue 1) SPECIFICATION FOR RADIO APPARATUS: VHF LAND MOBILE SERVICE USING AMPLITUDE MODULATION WITH 12.5 khz CARRIER FREQUENCY SEPARATION Communications Division Ministry of Commerce
More informationOperational Amplifiers & Linear Integrated Circuits: Theory and Application
Operational Amplifiers & Linear Integrated Circuits: Theory and Application Laboratory Manual/3E James M. Fiore 2 Laboratory Manual for Operational Amplifiers & LIC Operational Amplifiers & Linear Integrated
More informationIntroduction to Op Amps By Russell Anderson, BurrBrown Corp
Introduction to Op Amps By ussell Anderson, BurrBrown Corp Introduction Analog design can be intimidating. If your engineering talents have been focused in digital, software or even scientific fields,
More informationLaboratory Exercises for Analog Circuits and Electronics as Hardware Homework with Student Laptop Computer Instrumentation
Laboratory Exercises for Analog Circuits and Electronics as Hardware Homework with Student Laptop Computer Instrumentation Marion O. Hagler Department of Electrical and Computer Engineering Mississippi
More informationAnalog Filter and. Circuit Design Handbook. Arthur B. Williams. Singapore Sydney Toronto. Mc Graw Hill Education
Analog Filter and Circuit Design Handbook Arthur B. Williams Mc Graw Hill Education New York Chicago San Francisco Athens London Madrid Mexico City Milan New Delhi Singapore Sydney Toronto Contents Preface
More informationLAB 4: OPERATIONAL AMPLIFIER CIRCUITS
LAB 4: OPERATIONAL AMPLIFIER CIRCUITS ELEC 225 Introduction Operational amplifiers (OAs) are highly stable, high gain, difference amplifiers that can handle signals from zero frequency (dc signals) up
More informationCHAPTER. deltasigma modulators 1.0
CHAPTER 1 CHAPTER Conventional deltasigma modulators 1.0 This Chapter presents the traditional first and secondorder DSM. The main sources for nonideal operation are described together with some commonly
More informationThe measurement of loop gain in feedback seismometers Brett M. Nordgren April 9, 1999 Rev.
Introduction The measurement of loop gain in feedback seismometers Brett M. Nordgren http://bnordgren.org/contactb.html April 9, 1999 Rev. October 5, 2004 In reading the messages coming through PSNL,
More informationSeries and Parallel Resonance
School of Engineering Department of Electrical and Computer Engineering 33:4 Principles of Electrical Engineering II aboratory Experiment 1 Series and Parallel esonance 1 Introduction Objectives To introduce
More informationThird Year (Electrical & Telecommunication Engineering)
Z PRACTICAL WORK BOOK For The Course EE315 Electric Filter For Third Year (Electrical & Telecommunication Engineering) Name of Student: Class: Batch : Discipline: Class Roll No.: Examination Seat No.
More informationFilters And Waveform Shaping
Physics 3330 Experiment #3 Fall 2001 Purpose Filters And Waveform Shaping The aim of this experiment is to study the frequency filtering properties of passive (R, C, and L) circuits for sine waves, and
More information2. BANDPASS NOISE MEASUREMENTS
2. BANDPASS NOISE MEASUREMENTS 2.1 Object The objectives of this experiment are to use the Dynamic Signal Analyzer or DSA to measure the spectral density of a noise signal, to design a secondorder bandpass
More informationDept. of Electrical, Computer and Biomedical Engineering. Inverting and non inverting amplifier
Dept. of Electrical, Computer and Biomedical Engineering Inverting and non inverting amplifier Purpose of this lab Build an inverting and a non inverting amplifier based on a TL081 op amp  use the NI
More informationOperational Amplifiers
Operational Amplifiers Continuing the discussion of Op Amps, the next step is filters. There are many different types of filters, including low pass, high pass and band pass. We will discuss each of the
More informationProblems from the 3 rd edition
(2.11) Find the energies of the signals: a) sin t, 0 t π b) sin t, 0 t π c) 2 sin t, 0 t π d) sin (t2π), 2π t 4π Problems from the 3 rd edition Comment on the effect on energy of sign change, time shifting
More informationLIC & COMMUNICATION LAB MANUAL
LIC & Communication Lab Manual LIC & COMMUNICATION LAB MANUAL FOR V SEMESTER B.E (E& ( E&C) (For private circulation only) NAME: DEPARTMENT OF ELECTRONICS & COMMUNICATION SRI SIDDHARTHA INSTITUTE OF TECHNOLOGY
More information6. HARDWARE PROTOTYPE AND EXPERIMENTAL RESULTS
6. HARDWARE PROTOTYPE AND EXPERIMENTAL RESULTS Laboratory based hardware prototype is developed for the zsource inverter based conversion set up in line with control system designed, simulated and discussed
More informationThe quality of the transmission signal The characteristics of the transmission medium. Some type of transmission medium is required for transmission:
Data Transmission The successful transmission of data depends upon two factors: The quality of the transmission signal The characteristics of the transmission medium Some type of transmission medium is
More informationCHAPTER 3 ACTIVE INDUCTANCE SIMULATION
CHAPTER 3 ACTIVE INDUCTANCE SIMULATION The content and results of the following papers have been reported in this chapter. 1. Rajeshwari Pandey, Neeta Pandey Sajal K. Paul A. Singh B. Sriram, and K. Trivedi
More information( ) = V s ( jω ) = 2 kω, a = 4, R s. = 500 nf Draw a Bode diagram of the magnitude and phase of the frequency. Let R p. response H jω. V in.
Let R p = 2 kω, a = 4, = 6 kω, = 500 nf Draw a Bode diagram of the magnitude and phase of the frequency response H jω = V s ( jω ) ( jω ). V in The secondary impedance is Z s ( jω ) = R / jω s = +/ jω
More informationLaboratory 4 Operational Amplifier Department of Mechanical and Aerospace Engineering University of California, San Diego MAE170
Laboratory 4 Operational Amplifier Department of Mechanical and Aerospace Engineering University of California, San Diego MAE170 Megan Ong Diana Wu Wong B01 Tuesday 11am April 28 st, 2015 Abstract: The
More informationIFB270 Advanced Electronic Circuits
IFB270 Advanced Electronic Circuits Chapter 12: The operational amplifier Prof. Manar Mohaisen Department of EEC Engineering Review of the Precedent Lecture Introduce the four layer diode Introduce the
More informationA thirdorder activer filter with feedforward input signal
Sādhanā Vol. 28, Part 6, December 2003, pp. 1019 1026. Printed in India A thirdorder activer filter with feedforward input signal G N SHINDE 1,PBPATIL 2 and P R MIRKUTE 1 1 Department of Electronics,
More informationCapacitive Touch Sensing Tone Generator. Corey Cleveland and Eric Ponce
Capacitive Touch Sensing Tone Generator Corey Cleveland and Eric Ponce Table of Contents Introduction Capacitive Sensing Overview Reference Oscillator Capacitive Grid Phase Detector Signal Transformer
More informationEE 442 Homework #3 Solutions (Spring 2016 Due February 13, 2017 ) Print out homework and do work on the printed pages.
NAME Solutions EE 44 Homework #3 Solutions (Spring 06 Due February 3, 07 ) Print out homework and do work on the printed pages. Textbook: B. P. Lathi & Zhi Ding, Modern Digital and Analog Communication
More informationAnalysis and Design of a Simple Operational Amplifier
by Kenneth A. Kuhn December 26, 2004, rev. Jan. 1, 2009 Introduction The purpose of this article is to introduce the student to the internal circuits of an operational amplifier by studying the analysis
More informationLab 9 AC FILTERS AND RESONANCE
091 Name Date Partners ab 9 A FITES AND ESONANE OBJETIES OEIEW To understand the design of capacitive and inductive filters To understand resonance in circuits driven by A signals In a previous lab, you
More informationPole, zero and Bode plot
Pole, zero and Bode plot EC04 305 Lecture notes YESAREKEY December 12, 2007 Authored by: Ramesh.K Pole, zero and Bode plot EC04 305 Lecture notes A rational transfer function H (S) can be expressed as
More informationBUCK Converter Control Cookbook
BUCK Converter Control Cookbook Zach Zhang, Alpha & Omega Semiconductor, Inc. A Buck converter consists of the power stage and feedback control circuit. The power stage includes power switch and output
More informationUNIT I LINEAR WAVESHAPING
UNIT I LINEAR WAVESHAPING. High pass, low pass RC circuits, their response for sinusoidal, step, pulse, square and ramp inputs. RC network as differentiator and integrator, attenuators, its applications
More informationSingle Supply, Rail to Rail Low Power FETInput Op Amp AD820
a FEATURES True Single Supply Operation Output Swings RailtoRail Input Voltage Range Extends Below Ground Single Supply Capability from + V to + V Dual Supply Capability from. V to 8 V Excellent Load
More informationHigh CommonMode Rejection. Differential Line Receiver SSM2141 REV. B FUNCTIONAL BLOCK DIAGRAM FEATURES. High CommonMode Rejection
a FEATURES High CommonMode Rejection DC: 100 db typ 60 Hz: 100 db typ 20 khz: 70 db typ 40 khz: 62 db typ Low Distortion: 0.001% typ Fast Slew Rate: 9.5 V/ s typ Wide Bandwidth: 3 MHz typ Low Cost Complements
More informationVoltage Controlled SAW Oscillator Mechanical Shock Compensator
Voltage Controlled SAW Oscillator Mechanical Shock Compensator ECE 4901  Senior Design I Fall 2012 Project Proposal ECE Project Members: Joseph HiltzMaher Max Madore Shalin Shah Shaun Hew Faculty Advisor:
More informationMassachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electronic Circuits Spring 2007
Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.002 Electronic Circuits Spring 2007 Homework #11 Handout S07053 Issued 4/26/2007 Due 5/11/2007 Introduction
More informationUNIT2 Angle Modulation System
UNIT2 Angle Modulation System Introduction There are three parameters of a carrier that may carry information: Amplitude Frequency Phase Frequency Modulation Power in an FM signal does not vary with modulation
More informationCopyright 2014, R. Eckweiler & OCARC, Inc. Page 1 of 6
HOM rev. new Heathkit of the Month: by Bob Eckweiler, AF6C Heathkit of the Month #59  IG72 Audio Generator TEST EQUIPMENT Heathkit IG72 Audio Generator. Introduction: The IG72 Audio Oscillator is a
More informationExperiment 8 Frequency Response
Experiment 8 Frequency Response W.T. Yeung, R.A. Cortina, and R.T. Howe UC Berkeley EE 105 Spring 2005 1.0 Objective This lab will introduce the student to frequency response of circuits. The student will
More informationAccurate Harmonics Measurement by Sampler Part 2
Accurate Harmonics Measurement by Sampler Part 2 Akinori Maeda Verigy Japan akinori.maeda@verigy.com September 2011 Abstract of Part 1 The Total Harmonic Distortion (THD) is one of the major frequency
More informationSignal Characteristics
Data Transmission The successful transmission of data depends upon two factors:» The quality of the transmission signal» The characteristics of the transmission medium Some type of transmission medium
More informationOn Determining Loop Gain through Circuit Simulation
John E. Post, KA5GSQ EmbryRiddle Aeronautical University, 3700 Willow Creek Rd, Prescott, AZ, 8630; john.post@erau.edu On Determining Loop Gain through Circuit Simulation Loop gain is a fundamental parameter
More informationPiezoelectric Discriminators
Introduction Piezoelectric Discriminators Ceramic discriminators are designed to be used in quadrature detection circuits to remove a FM carrier wave. These circuits receive a FM signal, like in a FM radio,
More information10MHz Adjustable Photoreceivers Models 2051 & 2053
USER S GUIDE 10MHz Adjustable Photoreceivers Models 2051 & 2053 2584 Junction Avenue San Jose, CA 951341902 USA phone: (408) 919 1500 email: contact@newfocus.com www.newfocus.com Warranty New Focus,
More informationPiecewise Linear Circuits
Kenneth A. Kuhn March 24, 2004 Introduction Piecewise linear circuits are used to approximate nonlinear functions such as sine, squareroot, logarithmic, exponential, etc. The quality of the approximation
More informationAPPLICATION NOTE. Making Accurate Voltage Noise and Current Noise Measurements on Operational Amplifiers Down to 0.1Hz. Abstract
APPLICATION NOTE Making Accurate Voltage Noise and Current Noise Measurements on Operational Amplifiers Down to 0.1Hz AN1560 Rev.1.00 Abstract Making accurate voltage and current noise measurements on
More informationADI 2006 RF Seminar. Chapter II RF/IF Components and Specifications for Receivers
ADI 2006 RF Seminar Chapter II RF/IF Components and Specifications for Receivers 1 RF/IF Components and Specifications for Receivers Fixed Gain and Variable Gain Amplifiers IQ Demodulators AnalogtoDigital
More informationTL082 Wide Bandwidth Dual JFET Input Operational Amplifier
TL082 Wide Bandwidth Dual JFET Input Operational Amplifier General Description These devices are low cost, high speed, dual JFET input operational amplifiers with an internally trimmed input offset voltage
More informationVoltageMode GridTie Inverter with Active Power Factor Correction
VoltageMode GridTie Inverter with Active Power Factor Correction Kasemsan Siri Electronics and Power Systems Department, Engineering and Technology Group, The Aerospace Corporation, Tel: 3103362931
More informationMIC7122. General Description. Features. Applications. Ordering Information. Pin Configuration. Pin Description. RailtoRail Dual Op Amp
MIC722 RailtoRail Dual Op Amp General Description The MIC722 is a dual highperformance CMOS operational amplifier featuring railtorail inputs and outputs. The input commonmode range extends beyond
More informationAN671 APPLICATION NOTE One Technology Way P.O. Box 9106 Norwood, MA Tel: 781/ Fax: 781/
APPLICATION NOTE One Technology Way P.O. Box 910 Norwood, MA 0202910 Tel: 781/3294700 Fax: 781/328703 www.analog.com Reducing RFI Rectification Errors in InAmp Circuits By Charles Kitchin, Lew Counts,
More informationIntegrators, differentiators, and simple filters
BEE 233 Laboratory4 Integrators, differentiators, and simple filters 1. Objectives Analyze and measure characteristics of circuits built with opamps. Design and test circuits with opamps. Plot gain vs.
More informationTwo Sinus Generators Document version 1.01
Two Sinus Generators Document version 1.01 by Stefan Spännare Email: stefans@astro.lu.se January 25, 2004 Contents 1. Introduction 2. Disclaimer 3. Circuit information 3.1 Comments and changes by the author
More informationEvaluation Board Analog Output Functions and Characteristics
Evaluation Board Analog Output Functions and Characteristics Application Note July 2002 AN1023 Introduction The ISL5239 Evaluation Board includes the circuit provisions to convert the baseband digital
More informationBasic Operational Amplifier Circuits
Basic Operational Amplifier Circuits Comparators A comparator is a specialized nonlinear opamp circuit that compares two input voltages and produces an output state that indicates which one is greater.
More information