Q Multiplication in the Wien-bridge Oscillator

Size: px
Start display at page:

Download "Q Multiplication in the Wien-bridge Oscillator"

Transcription

1 Multiplication in the Wien-bridge Oscillator The Wien-bridge oscillator earns its name from the typical bridge arrangement of the feedbac loops (fig.). This configuration is capable of delivering a clean output sine wave using a low- frequency-determining R-C networ and some negative feedbac. We are interested in computing a figure of merit or for the oscillator that will account for harmonic reection at the output, finding its relationship with the R-C networ s. We shall start considering a signal V fed bac from the output to the amplifier s inputs and resulting in a differential input signal (V - V -). We may write: V V V RC R C RC 3 RNL R R NL ( ) K () Here, it is assumed that the differential amplifier s input-impedance is very high. We can recognize the R-C frequency-sensitive networ as being a nd order bandpass filter. This type of filter has a transfer function in the Laplace domain given by: () s bs as cs with a, b and c being circuit constants. For steady-state sinusoidal operation the above expression may be written as: with s. a ( ) () b c

2 The resonant frequency o is given by: b ain at resonance is: c a The 3dB bandwidth can be shown to be: b c The networ s is: c b (3) Then, eq.() may be written as: (4) The amplitude-frequency response is described by: The phase-angle response may be obtained from eq.(4): tan π Φ We need now calculate the derivative of Φ() with respect to. From tables for derivatives we find that:

3 d dx tan ( y) y dy dx Then: dφ d Evaluating Φ () at o : or: Φ ' Φ ' ' Φ ( ) (5) At this point we can verify, using eq.(3), that the of the frequency-sensitive networ is /3. In the next section we will see how a multiplication taes place due to bridge operation in the oscillator. Multiplication Multiplying eq.() by A d yields the condition that must be satisfied for oscillations to tae place: [ ( ) K ] A (6) () is the transfer function of the frequency-sensitive networ. K is the transfer function of the non-linear networ. A d is the amplifier s open-loop gain. At the oscillation s frequency, () and K must be real if A d is a real quantity. For ideal OP-AMPS, A d is considered a real number, actually very large. For real-world devices with internal frequency compensation, A d is a complex quantity having a lowfrequency pole, and its magnitude rolls-off at db per decade above the corner frequency. It may be shown that A d can be considered to be a real quantity in eq.(6) if: d BW/f osc >>9 where BW is the gain-bandwidth product of the OP-AMP and f osc is the oscillation s frequency in hertz.

4 Selectivity of the frequency-dependent feedbac loop is given by its [eq.(5)]: dφ d Total selectivity resulting from the action of the two feedbac loops may be described by: dφ d For small variations of frequency and phase angles: Φ Φ From fig..b we may write: and for small phase shifts: ( ) sin Φ ( ) K sin Φ ( ) Φ ( ) K Φ We may deduce that: ( ) ( ) K (7) At the oscillation s frequency: ( ) K A d

5 and: ( ) 3 Then: A d (8) 3 Thus, the bridge is very nearly at balance and is many times. Typical open-loop voltage gain variation with frequency is indicated in fig.3 for an OP- AMP with internal frequency compensation. Here, o is the DC voltage gain expressed in decibels and f o is the low-frequency pole. is the voltage gain in decibels at frequency f. f u is the unity-gain frequency. The following holds due to the db per decade roll-off: BW A f A f f (9) do o d u At a frequency f, the open-loop voltage gain is: Substituting into eq. (8): BW A d () f BW 3 f

6 Then: BW 9 f The effective then varies inversely with frequency. A typical multiplication factor at Hz, with a 4MHz gain-bandwidth product OP- AMP is: This would give a value of for. For the case of the modified Wien-bridge oscillator using a single variable resistor for frequency control: ( ) RC R C ( ) [ ( ) ] RC () ( ) RC Eq.(7) yields the multiplication factor: () ( ) A d (3) ( ) is then given by: A d ( ) ( ) BW f [ ( ) ]

7 RC BW (4) π [ ( ) ] If ( )>>: π RC BW (5) is then approximately constant over one decade. ( ) Using eq.(4) we may calculate the ratio when varies between min and MAX. Then: Ratio ( MAX ) ( ) min MAX min min MAX ( ) ( ) ( ) ( ) 4 (6) Table I summarizes Ratio and values as given by eqs. (6) and (5), with as a parameter, for a Wien-bridge oscillator designed for operation over the Hz to Hz decade. TABLE I Ratio (aprox.) Calculations for have been made with BW 4MHz, R 47 ohms, and C 7.57nF. For other values of, C has been changed accordingly, so the same Hz to Hz decade may be tuned. From the total selectivity point of view, low values for are preferred. We may also observe that given any frequency decade, selectivity at the lower end is slightly greater than that at the upper end ( Ratio>). Eq. (5) indicates that higher decades exhibit smaller values (the higher the decade, the smaller the RC product). Some THD measurements made on the modified Wien-bridge oscillator with and a 6-Volt pea-amplitude output sine wave are shown below. Measurements were conducted using a 334A Hewlett-Pacard Distortion Analyzer.

8 Hz to Hz decade THD at: Hz Hz is:.%.3% Hz to Hz decade THD at: Hz Hz is:.9%.6% Hz to Hz decade THD at: Hz Hz is:.4%.7% Hz to Hz decade THD at: Hz Hz is: 3.8%.4% (using stabilising lamp) is:.47%.38% (using stabilising lamps in series) Some comments The lower end of the Hz to Hz decade is adversely affected by environmental noise and non-linear distortion introduced by the stabilising lamp. Three or four of these lamps should be series-connected in order to reduce THD to acceptable levels. Miniature lamp types should be preferred (they are less buly). Also, the oscillator should be adequately shielded from external noise sources, such as fluorescent lamps, computers, switch-mode power supplies, etc. When conducting measurements with the Distortion Analyzer at frequencies above Hz, a high-pass filter may be switched-in for noise reection. This may help lower the THD reading. Ramon Vargas Patron rvargas@inictel.gob.pe Lima-Peru, South America June nd 4

9

Wien-Bridge oscillator has simplified frequency control

Wien-Bridge oscillator has simplified frequency control Wien-Bridge oscillator has simplified frequency control High-quality audio signal generators mae extensive use of the Wien-Bridge oscillator as a basic building bloc. The number of frequency decades covered

More information

Design of a Regenerative Receiver for the Short-Wave Bands A Tutorial and Design Guide for Experimental Work. Part I

Design of a Regenerative Receiver for the Short-Wave Bands A Tutorial and Design Guide for Experimental Work. Part I Design of a Regenerative Receiver for the Short-Wave Bands A Tutorial and Design Guide for Experimental Work Part I Ramón Vargas Patrón rvargas@inictel-uni.edu.pe INICTEL-UNI Regenerative Receivers remain

More information

Thursday, 1/23/19 Automatic Gain Control As previously shown, 1 0 is a nonlinear system that produces a limit cycle with a distorted sinusoid for

Thursday, 1/23/19 Automatic Gain Control As previously shown, 1 0 is a nonlinear system that produces a limit cycle with a distorted sinusoid for Thursday, 1/23/19 Automatic Gain Control As previously shown, 1 0 is a nonlinear system that produces a limit cycle with a distorted sinusoid for x(t), which is not a very good sinusoidal oscillator. A

More information

EMT212 Analog Electronic II. Chapter 4. Oscillator

EMT212 Analog Electronic II. Chapter 4. Oscillator EMT Analog Electronic II Chapter 4 Oscillator Objectives Describe the basic concept of an oscillator Discuss the basic principles of operation of an oscillator Analyze the operation of RC, LC and crystal

More information

Friday, 1/27/17 Constraints on A(jω)

Friday, 1/27/17 Constraints on A(jω) Friday, 1/27/17 Constraints on A(jω) The simplest electronic oscillators are op amp based, and A(jω) is typically a simple op amp fixed gain amplifier, such as the negative gain and positive gain amplifiers

More information

Assist Lecturer: Marwa Maki. Active Filters

Assist Lecturer: Marwa Maki. Active Filters Active Filters In past lecture we noticed that the main disadvantage of Passive Filters is that the amplitude of the output signals is less than that of the input signals, i.e., the gain is never greater

More information

Oscillator Principles

Oscillator Principles Oscillators Introduction Oscillators are circuits that generates a repetitive waveform of fixed amplitude and frequency without any external input signal. The function of an oscillator is to generate alternating

More information

Homework Assignment 03 Solution

Homework Assignment 03 Solution Homework Assignment 03 Solution Question 1 Determine the h 11 and h 21 parameters for the circuit. Be sure to supply the units and proper sign for each parameter. (8 points) Solution Setting v 2 = 0 h

More information

Figure 1: Closed Loop System

Figure 1: Closed Loop System SIGNAL GENERATORS 3. Introduction Signal sources have a variety of applications including checking stage gain, frequency response, and alignment in receivers and in a wide range of other electronics equipment.

More information

Communication Systems. Department of Electronics and Electrical Engineering

Communication Systems. Department of Electronics and Electrical Engineering COMM 704: Communication Lecture 6: Oscillators (Continued) Dr Mohamed Abd El Ghany Dr. Mohamed Abd El Ghany, Mohamed.abdel-ghany@guc.edu.eg Course Outline Introduction Multipliers Filters Oscillators Power

More information

An active filter offers the following advantages over a passive filter:

An active filter offers the following advantages over a passive filter: ACTIVE FILTERS An electric filter is often a frequency-selective circuit that passes a specified band of frequencies and blocks or attenuates signals of frequencies outside this band. Filters may be classified

More information

Low Pass Filter Introduction

Low Pass Filter Introduction Low Pass Filter Introduction Basically, an electrical filter is a circuit that can be designed to modify, reshape or reject all unwanted frequencies of an electrical signal and accept or pass only those

More information

11. Chapter: Amplitude stabilization of the harmonic oscillator

11. Chapter: Amplitude stabilization of the harmonic oscillator Punčochář, Mohylová: TELO, Chapter 10 1 11. Chapter: Amplitude stabilization of the harmonic oscillator Time of study: 3 hours Goals: the student should be able to define basic principles of oscillator

More information

Oscillators. An oscillator may be described as a source of alternating voltage. It is different than amplifier.

Oscillators. An oscillator may be described as a source of alternating voltage. It is different than amplifier. Oscillators An oscillator may be described as a source of alternating voltage. It is different than amplifier. An amplifier delivers an output signal whose waveform corresponds to the input signal but

More information

Source Transformation

Source Transformation HW Chapter 0: 4, 20, 26, 44, 52, 64, 74, 92. Source Transformation Source transformation in frequency domain involves transforming a voltage source in series with an impedance to a current source in parallel

More information

Electronics II. 3. measurement : Tuned circuits

Electronics II. 3. measurement : Tuned circuits Electronics II. 3. measurement : Tuned circuits This laboratory session involves circuits which contain a double-t (or TT), a passive RC circuit: Figure 1. Double T passive RC circuit module The upper

More information

Active Filter Design Techniques

Active Filter Design Techniques Active Filter Design Techniques 16.1 Introduction What is a filter? A filter is a device that passes electric signals at certain frequencies or frequency ranges while preventing the passage of others.

More information

Oscillations and Regenerative Amplification using Negative Resistance Devices

Oscillations and Regenerative Amplification using Negative Resistance Devices Oscillations and Regenerative Amplification using Negative Resistance Devices Ramon Vargas Patron rvargas@inictel.gob.pe INICTEL The usual procedure for the production of sustained oscillations in tuned

More information

Homework Assignment 06

Homework Assignment 06 Question 1 (2 points each unless noted otherwise) Homework Assignment 06 1. True or false: when transforming a circuit s diagram to a diagram of its small-signal model, we replace dc constant current sources

More information

University of Pittsburgh

University of Pittsburgh University of Pittsburgh Experiment #6 Lab Report Active Filters and Oscillators Submission Date: 7/9/28 Instructors: Dr. Ahmed Dallal Shangqian Gao Submitted By: Nick Haver & Alex Williams Station #2

More information

Op-Amp Simulation Part II

Op-Amp Simulation Part II Op-Amp Simulation Part II EE/CS 5720/6720 This assignment continues the simulation and characterization of a simple operational amplifier. Turn in a copy of this assignment with answers in the appropriate

More information

Lesson number one. Operational Amplifier Basics

Lesson number one. Operational Amplifier Basics What About Lesson number one Operational Amplifier Basics As well as resistors and capacitors, Operational Amplifiers, or Op-amps as they are more commonly called, are one of the basic building blocks

More information

Test Your Understanding

Test Your Understanding 074 Part 2 Analog Electronics EXEISE POBLEM Ex 5.3: For the switched-capacitor circuit in Figure 5.3b), the parameters are: = 30 pf, 2 = 5pF, and F = 2 pf. The clock frequency is 00 khz. Determine the

More information

EE301 ELECTRONIC CIRCUITS CHAPTER 2 : OSCILLATORS. Lecturer : Engr. Muhammad Muizz Bin Mohd Nawawi

EE301 ELECTRONIC CIRCUITS CHAPTER 2 : OSCILLATORS. Lecturer : Engr. Muhammad Muizz Bin Mohd Nawawi EE301 ELECTRONIC CIRCUITS CHAPTER 2 : OSCILLATORS Lecturer : Engr. Muhammad Muizz Bin Mohd Nawawi 2.1 INTRODUCTION An electronic circuit which is designed to generate a periodic waveform continuously at

More information

(b) 25% (b) increases

(b) 25% (b) increases Homework Assignment 07 Question 1 (2 points each unless noted otherwise) 1. In the circuit 10 V, 10, and 5K. What current flows through? Answer: By op-amp action the voltage across is and the current through

More information

Final Exam. 1. An engineer measures the (step response) rise time of an amplifier as t r = 0.1 μs. Estimate the 3 db bandwidth of the amplifier.

Final Exam. 1. An engineer measures the (step response) rise time of an amplifier as t r = 0.1 μs. Estimate the 3 db bandwidth of the amplifier. Final Exam Name: Score /100 Question 1 Short Takes 1 point each unless noted otherwise. 1. An engineer measures the (step response) rise time of an amplifier as t r = 0.1 μs. Estimate the 3 db bandwidth

More information

Assignment 11. 1) Using the LM741 op-amp IC a circuit is designed as shown, then find the output waveform for an input of 5kHz

Assignment 11. 1) Using the LM741 op-amp IC a circuit is designed as shown, then find the output waveform for an input of 5kHz Assignment 11 1) Using the LM741 op-amp IC a circuit is designed as shown, then find the output waveform for an input of 5kHz Vo = 1 x R1Cf 0 Vin t dt, voltage output for the op amp integrator 0.1 m 1

More information

UNIVERSITI MALAYSIA PERLIS

UNIVERSITI MALAYSIA PERLIS UNIVERSITI MALAYSIA PERLIS ANALOG ELECTRONICS II EMT 212 2009/2010 EXPERIMENT # 3 OP-AMP (OSCILLATORS) 1 1. OBJECTIVE: 1.1 To demonstrate the Wien bridge oscillator 1.2 To demonstrate the RC phase-shift

More information

Positive Feedback and Oscillators

Positive Feedback and Oscillators Physics 3330 Experiment #5 Fall 2011 Positive Feedback and Oscillators Purpose In this experiment we will study how spontaneous oscillations may be caused by positive feedback. You will construct an active

More information

Feedback and Oscillator Circuits

Feedback and Oscillator Circuits Chapter 14 Chapter 14 Feedback and Oscillator Circuits Feedback Concepts The effects of negative feedback on an amplifier: Disadvantage Lower gain Advantages Higher input impedance More stable gain Improved

More information

Homework Assignment 04

Homework Assignment 04 Question 1 (Short Takes) Homework Assignment 04 1. Consider the single-supply op-amp amplifier shown. What is the purpose of R 3? (1 point) Answer: This compensates for the op-amp s input bias current.

More information

Analog Design-filters

Analog Design-filters Analog Design-filters Introduction and Motivation Filters are networks that process signals in a frequency-dependent manner. The basic concept of a filter can be explained by examining the frequency dependent

More information

Lecture # 11 Oscillators (RC Circuits)

Lecture # 11 Oscillators (RC Circuits) December 2014 Benha University Faculty of Engineering at Shoubra ECE-312 Electronic Circuits (A) Lecture # 11 Oscillators (RC Circuits) Instructor: Dr. Ahmad El-Banna Agenda Introduction Feedback Oscillators

More information

ITT Technical Institute ET245 Devices II Unit 5 Chapter

ITT Technical Institute ET245 Devices II Unit 5 Chapter ITT Technical Institute ET245 Devices II Unit 5 Chapter 7.1 7.3 Unit 5 Agenda Lecture: Chapter 7, Sections 7.1 7.3 Lab 3, Linear Op amp Circuits continued from last week Assignment: Complete Problems (pg

More information

EXPERIMENT 1: Characteristics of Passive and Active Filters

EXPERIMENT 1: Characteristics of Passive and Active Filters Kathmandu University Department of Electrical and Electronics Engineering ELECTRONICS AND ANALOG FILTER DESIGN LAB EXPERIMENT : Characteristics of Passive and Active Filters Objective: To understand the

More information

1) Consider the circuit shown in figure below. Compute the output waveform for an input of 5kHz

1) Consider the circuit shown in figure below. Compute the output waveform for an input of 5kHz ) Consider the circuit shown in figure below. Compute the output waveform for an input of 5kHz Solution: a) Input is of constant amplitude of 2 V from 0 to 0. ms and 2 V from 0. ms to 0.2 ms. The output

More information

OPERATIONAL AMPLIFIER PREPARED BY, PROF. CHIRAG H. RAVAL ASSISTANT PROFESSOR NIRMA UNIVRSITY

OPERATIONAL AMPLIFIER PREPARED BY, PROF. CHIRAG H. RAVAL ASSISTANT PROFESSOR NIRMA UNIVRSITY OPERATIONAL AMPLIFIER PREPARED BY, PROF. CHIRAG H. RAVAL ASSISTANT PROFESSOR NIRMA UNIVRSITY INTRODUCTION Op-Amp means Operational Amplifier. Operational stands for mathematical operation like addition,

More information

Homework Assignment 03

Homework Assignment 03 Homework Assignment 03 Question 1 (Short Takes), 2 points each unless otherwise noted. 1. Two 0.68 μf capacitors are connected in series across a 10 khz sine wave signal source. The total capacitive reactance

More information

Application Note AN45

Application Note AN45 Application Note Wien Bridge Oscillators using E 2 POTs by Applications Staff, October 1994 Wien Bridge Oscillators In 1939, William R. Hewlett (later of Hewlett-Packard fame) first combined the network

More information

GATE: Electronics MCQs (Practice Test 1 of 13)

GATE: Electronics MCQs (Practice Test 1 of 13) GATE: Electronics MCQs (Practice Test 1 of 13) 1. Removing bypass capacitor across the emitter leg resistor in a CE amplifier causes a. increase in current gain b. decrease in current gain c. increase

More information

Applied Electronics II

Applied Electronics II Applied Electronics II Chapter 3: Operational Amplifier Part 1- Op Amp Basics School of Electrical and Computer Engineering Addis Ababa Institute of Technology Addis Ababa University Daniel D./Getachew

More information

ELECTRICAL CIRCUITS 6. OPERATIONAL AMPLIFIERS PART III DYNAMIC RESPONSE

ELECTRICAL CIRCUITS 6. OPERATIONAL AMPLIFIERS PART III DYNAMIC RESPONSE 77 ELECTRICAL CIRCUITS 6. PERATAL AMPLIIERS PART III DYNAMIC RESPNSE Introduction In the first 2 handouts on op-amps the focus was on DC for the ideal and non-ideal opamp. The perfect op-amp assumptions

More information

Experiment 1: Amplifier Characterization Spring 2019

Experiment 1: Amplifier Characterization Spring 2019 Experiment 1: Amplifier Characterization Spring 2019 Objective: The objective of this experiment is to develop methods for characterizing key properties of operational amplifiers Note: We will be using

More information

The diodes keep the output waveform from getting too large.

The diodes keep the output waveform from getting too large. Wien Bridge Oscillat CIRCUIT: The Wien bridge oscillat, see Fig., consists of two voltage dividers. It oscillates (approximately) sinusoidally at the frequency that produces the same voltage out of both

More information

ANALOG ELECTRONIC CIRCUITS LABORATORY MANUAL (CODE: EEE - 228)

ANALOG ELECTRONIC CIRCUITS LABORATORY MANUAL (CODE: EEE - 228) ANALOG ELECTRONIC CIRCUITS LABORATORY MANUAL (CODE: EEE - 228) DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING ANIL NEERUKONDA INSTITUTE OF TECHNOLOGY & SCIENCES (Affiliated to AU, Approved by AICTE

More information

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab Objectives Boise State University Department of Electrical and Computer Engineering ECE L Circuit Analysis and Design Lab Experiment #0: Frequency esponse Measurements The objectives of this laboratory

More information

Experiments #7. Operational Amplifier part 1

Experiments #7. Operational Amplifier part 1 Experiments #7 Operational Amplifier part 1 1) Objectives: The objective of this lab is to study operational amplifier (op amp) and its applications. We will be simulating and building some basic op-amp

More information

BENE 2163 ELECTRONIC SYSTEMS

BENE 2163 ELECTRONIC SYSTEMS UNIVERSITI TEKNIKAL MALAYSIA MELAKA FAKULTI KEJURUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER BENE 263 ELECTRONIC SYSTEMS LAB SESSION 3 WEIN BRIDGE OSCILLATOR Revised: February 20 Lab 3 Wien Bridge Oscillator

More information

EE233 Autumn 2016 Electrical Engineering University of Washington. EE233 HW7 Solution. Nov. 16 th. Due Date: Nov. 23 rd

EE233 Autumn 2016 Electrical Engineering University of Washington. EE233 HW7 Solution. Nov. 16 th. Due Date: Nov. 23 rd EE233 HW7 Solution Nov. 16 th Due Date: Nov. 23 rd 1. Use a 500nF capacitor to design a low pass passive filter with a cutoff frequency of 50 krad/s. (a) Specify the cutoff frequency in hertz. fc c 50000

More information

The steeper the phase shift as a function of frequency φ(ω) the more stable the frequency of oscillation

The steeper the phase shift as a function of frequency φ(ω) the more stable the frequency of oscillation It should be noted that the frequency of oscillation ω o is determined by the phase characteristics of the feedback loop. the loop oscillates at the frequency for which the phase is zero The steeper the

More information

Homework Assignment 13

Homework Assignment 13 Question 1 Short Takes 2 points each. Homework Assignment 13 1. Classify the type of feedback uses in the circuit below (i.e., shunt-shunt, series-shunt, ) Answer: Series-shunt. 2. True or false: an engineer

More information

Operational Amplifiers

Operational Amplifiers Questions Easy Operational Amplifiers 1. Which of the following statements are true? a. An op-amp has two inputs and three outputs b. An op-amp has one input and two outputs c. An op-amp has two inputs

More information

ECEN 325 Lab 5: Operational Amplifiers Part III

ECEN 325 Lab 5: Operational Amplifiers Part III ECEN Lab : Operational Amplifiers Part III Objectives The purpose of the lab is to study some of the opamp configurations commonly found in practical applications and also investigate the non-idealities

More information

Homework Assignment 01

Homework Assignment 01 Homework Assignment 01 In this homework set students review some basic circuit analysis techniques, as well as review how to analyze ideal op-amp circuits. Numerical answers must be supplied using engineering

More information

Chapter.8: Oscillators

Chapter.8: Oscillators Chapter.8: Oscillators Objectives: To understand The basic operation of an Oscillator the working of low frequency oscillators RC phase shift oscillator Wien bridge Oscillator the working of tuned oscillator

More information

PHYSICS 330 LAB Operational Amplifier Frequency Response

PHYSICS 330 LAB Operational Amplifier Frequency Response PHYSICS 330 LAB Operational Amplifier Frequency Response Objectives: To measure and plot the frequency response of an operational amplifier circuit. History: Operational amplifiers are among the most widely

More information

EECS40 RLC Lab guide

EECS40 RLC Lab guide EECS40 RLC Lab guide Introduction Second-Order Circuits Second order circuits have both inductor and capacitor components, which produce one or more resonant frequencies, ω0. In general, a differential

More information

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI-621213. QUESTION BANK DEPARTMENT: EEE SUBJECT CODE: EE2203 SEMESTER : III SUBJECT NAME: ELECTRONIC DEVICES &CIRCUITS UNIT 4-AMPLIFIERS AND OSCILLATORS PART

More information

PURPOSE: NOTE: Be sure to record ALL results in your laboratory notebook.

PURPOSE: NOTE: Be sure to record ALL results in your laboratory notebook. EE4902 Lab 9 CMOS OP-AMP PURPOSE: The purpose of this lab is to measure the closed-loop performance of an op-amp designed from individual MOSFETs. This op-amp, shown in Fig. 9-1, combines all of the major

More information

EXPERIMENT 8: LRC CIRCUITS

EXPERIMENT 8: LRC CIRCUITS EXPERIMENT 8: LRC CIRCUITS Equipment List S 1 BK Precision 4011 or 4011A 5 MHz Function Generator OS BK 2120B Dual Channel Oscilloscope V 1 BK 388B Multimeter L 1 Leeds & Northrup #1532 100 mh Inductor

More information

21/10/58. M2-3 Signal Generators. Bill Hewlett and Dave Packard s 1 st product (1939) US patent No HP 200A s schematic

21/10/58. M2-3 Signal Generators. Bill Hewlett and Dave Packard s 1 st product (1939) US patent No HP 200A s schematic M2-3 Signal Generators Bill Hewlett and Dave Packard s 1 st product (1939) US patent No.2267782 1 HP 200A s schematic 2 1 The basic structure of a sinusoidal oscillator. A positive feedback loop is formed

More information

EE 368 Electronics Lab. Experiment 10 Operational Amplifier Applications (2)

EE 368 Electronics Lab. Experiment 10 Operational Amplifier Applications (2) EE 368 Electronics Lab Experiment 10 Operational Amplifier Applications (2) 1 Experiment 10 Operational Amplifier Applications (2) Objectives To gain experience with Operational Amplifier (Op-Amp). To

More information

CHARACTERISTICS OF OPERATIONAL AMPLIFIERS - II

CHARACTERISTICS OF OPERATIONAL AMPLIFIERS - II CHARACTERISTICS OF OPERATIONAL AMPLIFIERS - II OBJECTIVE The purpose of the experiment is to examine non-ideal characteristics of an operational amplifier. The characteristics that are investigated include

More information

DISCRETE DIFFERENTIAL AMPLIFIER

DISCRETE DIFFERENTIAL AMPLIFIER DISCRETE DIFFERENTIAL AMPLIFIER This differential amplifier was specially designed for use in my VK-1 audio oscillator and VK-2 distortion meter where the requirements of ultra-low distortion and ultra-low

More information

ELC224 Final Review (12/10/2009) Name:

ELC224 Final Review (12/10/2009) Name: ELC224 Final Review (12/10/2009) Name: Select the correct answer to the problems 1 through 20. 1. A common-emitter amplifier that uses direct coupling is an example of a dc amplifier. 2. The frequency

More information

EE 370/L Feedback and Control Systems Lab Section Post-Lab Report. EE 370L Feedback and Control Systems Lab

EE 370/L Feedback and Control Systems Lab Section Post-Lab Report. EE 370L Feedback and Control Systems Lab EE 370/L Feedback and Control Systems Lab Post-Lab Report EE 370L Feedback and Control Systems Lab LABORATORY 10: LEAD-LAG COMPENSATOR DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING UNIVERSITY OF NEVADA,

More information

A Novel Control Method to Minimize Distortion in AC Inverters. Dennis Gyma

A Novel Control Method to Minimize Distortion in AC Inverters. Dennis Gyma A Novel Control Method to Minimize Distortion in AC Inverters Dennis Gyma Hewlett-Packard Company 150 Green Pond Road Rockaway, NJ 07866 ABSTRACT In PWM AC inverters, the duty-cycle modulator transfer

More information

(i) Determine the admittance parameters of the network of Fig 1 (f) and draw its - equivalent circuit.

(i) Determine the admittance parameters of the network of Fig 1 (f) and draw its - equivalent circuit. I.E.S-(Conv.)-1995 ELECTRONICS AND TELECOMMUNICATION ENGINEERING PAPER - I Some useful data: Electron charge: 1.6 10 19 Coulomb Free space permeability: 4 10 7 H/m Free space permittivity: 8.85 pf/m Velocity

More information

Homework Assignment 10

Homework Assignment 10 Homework Assignment 10 Question The amplifier below has infinite input resistance, zero output resistance and an openloop gain. If, find the value of the feedback factor as well as so that the closed-loop

More information

EK307 Active Filters and Steady State Frequency Response

EK307 Active Filters and Steady State Frequency Response EK307 Active Filters and Steady State Frequency Response Laboratory Goal: To explore the properties of active signal-processing filters Learning Objectives: Active Filters, Op-Amp Filters, Bode plots Suggested

More information

Filters and Tuned Amplifiers

Filters and Tuned Amplifiers CHAPTER 6 Filters and Tuned Amplifiers Introduction 55 6. Filter Transmission, Types, and Specification 56 6. The Filter Transfer Function 60 6.7 Second-Order Active Filters Based on the Two-Integrator-Loop

More information

CHAPTER 9. Sinusoidal Steady-State Analysis

CHAPTER 9. Sinusoidal Steady-State Analysis CHAPTER 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source A sinusoidal voltage source (independent or dependent) produces a voltage that varies sinusoidally with time. A sinusoidal current source

More information

Analog Electronics. Lecture Pearson Education. Upper Saddle River, NJ, All rights reserved.

Analog Electronics. Lecture Pearson Education. Upper Saddle River, NJ, All rights reserved. Analog Electronics V Lecture 5 V Operational Amplifers Op-amp is an electronic device that amplify the difference of voltage at its two inputs. V V 8 1 DIP 8 1 DIP 20 SMT 1 8 1 SMT Operational Amplifers

More information

Project Report Designing Wein-Bridge Oscillator

Project Report Designing Wein-Bridge Oscillator Abu Dhabi University EEN 360 - Electronic Devices and Circuits II Project Report Designing Wein-Bridge Oscillator Author: Muhammad Obaidullah 03033 Bilal Arshad 0929 Supervisor: Dr. Riad Kanan Section

More information

An Analog Phase-Locked Loop

An Analog Phase-Locked Loop 1 An Analog Phase-Locked Loop Greg Flewelling ABSTRACT This report discusses the design, simulation, and layout of an Analog Phase-Locked Loop (APLL). The circuit consists of five major parts: A differential

More information

FEEDBACK AMPLIFIER. Learning Objectives. A feedback amplifier is one in which a fraction of the amplifier output is fed back to the input circuit

FEEDBACK AMPLIFIER. Learning Objectives. A feedback amplifier is one in which a fraction of the amplifier output is fed back to the input circuit C H P T E R6 Learning Objectives es Feedback mplifiers Principle of Feedback mplifiers dvantages of Negative Feedback Gain Stability Decreased Distortion Feedback Over Several Stages Increased Bandwidth

More information

When input, output and feedback voltages are all symmetric bipolar signals with respect to ground, no biasing is required.

When input, output and feedback voltages are all symmetric bipolar signals with respect to ground, no biasing is required. 1 When input, output and feedback voltages are all symmetric bipolar signals with respect to ground, no biasing is required. More frequently, one of the items in this slide will be the case and biasing

More information

OP AMP NOISE FACTOR CALCULATIONS

OP AMP NOISE FACTOR CALCULATIONS Practical RF System Design. William F. Egan Copyright 2003 John Wiley & Sons, Inc. ISBN: 0-471-20023-9 APPENDIX A OP AMP NOISE FACTOR CALCULATIONS This appendix details the effects of certain changes in

More information

An Oscillator is a circuit which produces a periodic waveform at its output with only the dc supply voltage at the input. The output voltage can be

An Oscillator is a circuit which produces a periodic waveform at its output with only the dc supply voltage at the input. The output voltage can be An Oscillator is a circuit which produces a periodic waveform at its output with only the dc supply voltage at the input. The output voltage can be either sinusoidal or non sinusoidal depending upon the

More information

Wien oscillators using current conveyors

Wien oscillators using current conveyors PERGAMON Computers and Electrical Engineering 25 (1999) 45±55 Wien oscillators using current conveyors A.M. Soliman *, A.S. Elwakil Electronics and Communications Engineering Department, Cairo University,

More information

Course Outline. Time vs. Freq. Domain Analysis. Frequency Response. Amme 3500 : System Dynamics & Control. Design via Frequency Response

Course Outline. Time vs. Freq. Domain Analysis. Frequency Response. Amme 3500 : System Dynamics & Control. Design via Frequency Response Course Outline Amme 35 : System Dynamics & Control Design via Frequency Response Week Date Content Assignment Notes Mar Introduction 2 8 Mar Frequency Domain Modelling 3 5 Mar Transient Performance and

More information

ECE-342 Test 1: Sep 27, :00-8:00, Closed Book. Name : SOLUTION

ECE-342 Test 1: Sep 27, :00-8:00, Closed Book. Name : SOLUTION ECE-342 Test 1: Sep 27, 2011 6:00-8:00, Closed Book Name : SOLUTION All solutions must provide units as appropriate. Use the physical constants and data as provided on the formula sheet the last page of

More information

Analog Circuits and Systems

Analog Circuits and Systems Analog Circuits and Systems Prof. K Radhakrishna Rao Lecture 31: Waveform Generation 1 Review Phase Locked Loop (self tuned filter) 2 nd order High Q low-pass output phase compared with the input 90 phase

More information

55:041 Electronic Circuits The University of Iowa Fall Exam 3. Question 1 Unless stated otherwise, each question below is 1 point.

55:041 Electronic Circuits The University of Iowa Fall Exam 3. Question 1 Unless stated otherwise, each question below is 1 point. Exam 3 Name: Score /65 Question 1 Unless stated otherwise, each question below is 1 point. 1. An engineer designs a class-ab amplifier to deliver 2 W (sinusoidal) signal power to an resistive load. Ignoring

More information

Homework Assignment 10

Homework Assignment 10 Homework Assignment 10 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. What is the 3-dB bandwidth of the amplifier shown below if r π = 2.5K, r o = 100K, g m = 40 ms, and C L =

More information

SAR (successive-approximation-register) ADCs

SAR (successive-approximation-register) ADCs By Miro Oljaca and Bonnie C Baker Texas Instruments Start with the right op amp when driving SAR ADCs Using the right operational amplifier in front of your data converter will give you good performance.

More information

Tabor Electronics Signal Amplifiers. Quick Start Guide

Tabor Electronics Signal Amplifiers. Quick Start Guide Tabor Electronics Signal Amplifiers Quick Start Guide Tabor Signal Amplifiers- Quick Start Guide - FAQ No. 0309757 Introduction Amplification is an increase in size of a signal by some factor which is

More information

Electronics EECE2412 Spring 2016 Exam #1

Electronics EECE2412 Spring 2016 Exam #1 Electronics EECE2412 Spring 2016 Exam #1 Prof. Charles A. DiMarzio Department of Electrical and Computer Engineering Northeastern University 18 February 2016 File:12140/exams/exam1 Name: : Row # : Seat

More information

EE 230 Lecture 17. Nonideal Op Amp Characteristics

EE 230 Lecture 17. Nonideal Op Amp Characteristics EE 3 Lecture 17 Nonideal Op Amp Characteristics Quiz 11 The dc gain of this circuit was measured to be 5 and the 3dB bandwidth was measured to be 6KHz. Determine as many of the following as possible from

More information

Dev Bhoomi Institute Of Technology Department of Electronics and Communication Engineering PRACTICAL INSTRUCTION SHEET REV. NO. : REV.

Dev Bhoomi Institute Of Technology Department of Electronics and Communication Engineering PRACTICAL INSTRUCTION SHEET REV. NO. : REV. Dev Bhoomi Institute Of Technology Department of Electronics and Communication Engineering PRACTICAL INSTRUCTION SHEET LABORATORY MANUAL EXPERIMENT NO. ISSUE NO. : ISSUE DATE: July 200 REV. NO. : REV.

More information

Mechatronics. Analog and Digital Electronics: Studio Exercises 1 & 2

Mechatronics. Analog and Digital Electronics: Studio Exercises 1 & 2 Mechatronics Analog and Digital Electronics: Studio Exercises 1 & 2 There is an electronics revolution taking place in the industrialized world. Electronics pervades all activities. Perhaps the most important

More information

Project 6: Oscillator Circuits

Project 6: Oscillator Circuits : Oscillator Circuits Ariel Moss The purpose of this experiment was to design two oscillator circuits: a Wien-Bridge oscillator at 3 khz oscillation and a Hartley Oscillator using a BJT at 5 khz oscillation.

More information

ECEN Network Analysis Section 3. Laboratory Manual

ECEN Network Analysis Section 3. Laboratory Manual ECEN 3714----Network Analysis Section 3 Laboratory Manual LAB 07: Active Low Pass Filter Oklahoma State University School of Electrical and Computer Engineering. Section 3 Laboratory manual - 1 - Spring

More information

Homework Assignment 06

Homework Assignment 06 Homework Assignment 06 Question 1 (Short Takes) One point each unless otherwise indicated. 1. Consider the current mirror below, and neglect base currents. What is? Answer: 2. In the current mirrors below,

More information

Dual FET-Input, Low Distortion OPERATIONAL AMPLIFIER

Dual FET-Input, Low Distortion OPERATIONAL AMPLIFIER www.burr-brown.com/databook/.html Dual FET-Input, Low Distortion OPERATIONAL AMPLIFIER FEATURES LOW DISTORTION:.3% at khz LOW NOISE: nv/ Hz HIGH SLEW RATE: 25V/µs WIDE GAIN-BANDWIDTH: MHz UNITY-GAIN STABLE

More information

Chapter 13 Oscillators and Data Converters

Chapter 13 Oscillators and Data Converters Chapter 13 Oscillators and Data Converters 13.1 General Considerations 13.2 Ring Oscillators 13.3 LC Oscillators 13.4 Phase Shift Oscillator 13.5 Wien-Bridge Oscillator 13.6 Crystal Oscillators 13.7 Chapter

More information

High Current, High Power OPERATIONAL AMPLIFIER

High Current, High Power OPERATIONAL AMPLIFIER High Current, High Power OPERATIONAL AMPLIFIER FEATURES HIGH OUTPUT CURRENT: A WIDE POWER SUPPLY VOLTAGE: ±V to ±5V USER-SET CURRENT LIMIT SLEW RATE: V/µs FET INPUT: I B = pa max CLASS A/B OUTPUT STAGE

More information

UNIT 2. Q.1) Describe the functioning of standard signal generator. Ans. Electronic Measurements & Instrumentation

UNIT 2. Q.1) Describe the functioning of standard signal generator. Ans.   Electronic Measurements & Instrumentation UNIT 2 Q.1) Describe the functioning of standard signal generator Ans. STANDARD SIGNAL GENERATOR A standard signal generator produces known and controllable voltages. It is used as power source for the

More information

Chapter 10: The Operational Amplifiers

Chapter 10: The Operational Amplifiers Chapter 10: The Operational Amplifiers Electronic Devices Operational Amplifiers (op-amp) Op-amp is an electronic device that amplify the difference of voltage at its two inputs. It has two input terminals,

More information

Table of Contents Lesson One Lesson Two Lesson Three Lesson Four Lesson Five PREVIEW COPY

Table of Contents Lesson One Lesson Two Lesson Three Lesson Four Lesson Five PREVIEW COPY Oscillators Table of Contents Lesson One Lesson Two Lesson Three Introduction to Oscillators...3 Flip-Flops...19 Logic Clocks...37 Lesson Four Filters and Waveforms...53 Lesson Five Troubleshooting Oscillators...69

More information