# Q Multiplication in the Wien-bridge Oscillator

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Multiplication in the Wien-bridge Oscillator The Wien-bridge oscillator earns its name from the typical bridge arrangement of the feedbac loops (fig.). This configuration is capable of delivering a clean output sine wave using a low- frequency-determining R-C networ and some negative feedbac. We are interested in computing a figure of merit or for the oscillator that will account for harmonic reection at the output, finding its relationship with the R-C networ s. We shall start considering a signal V fed bac from the output to the amplifier s inputs and resulting in a differential input signal (V - V -). We may write: V V V RC R C RC 3 RNL R R NL ( ) K () Here, it is assumed that the differential amplifier s input-impedance is very high. We can recognize the R-C frequency-sensitive networ as being a nd order bandpass filter. This type of filter has a transfer function in the Laplace domain given by: () s bs as cs with a, b and c being circuit constants. For steady-state sinusoidal operation the above expression may be written as: with s. a ( ) () b c

2 The resonant frequency o is given by: b ain at resonance is: c a The 3dB bandwidth can be shown to be: b c The networ s is: c b (3) Then, eq.() may be written as: (4) The amplitude-frequency response is described by: The phase-angle response may be obtained from eq.(4): tan π Φ We need now calculate the derivative of Φ() with respect to. From tables for derivatives we find that:

3 d dx tan ( y) y dy dx Then: dφ d Evaluating Φ () at o : or: Φ ' Φ ' ' Φ ( ) (5) At this point we can verify, using eq.(3), that the of the frequency-sensitive networ is /3. In the next section we will see how a multiplication taes place due to bridge operation in the oscillator. Multiplication Multiplying eq.() by A d yields the condition that must be satisfied for oscillations to tae place: [ ( ) K ] A (6) () is the transfer function of the frequency-sensitive networ. K is the transfer function of the non-linear networ. A d is the amplifier s open-loop gain. At the oscillation s frequency, () and K must be real if A d is a real quantity. For ideal OP-AMPS, A d is considered a real number, actually very large. For real-world devices with internal frequency compensation, A d is a complex quantity having a lowfrequency pole, and its magnitude rolls-off at db per decade above the corner frequency. It may be shown that A d can be considered to be a real quantity in eq.(6) if: d BW/f osc >>9 where BW is the gain-bandwidth product of the OP-AMP and f osc is the oscillation s frequency in hertz.

4 Selectivity of the frequency-dependent feedbac loop is given by its [eq.(5)]: dφ d Total selectivity resulting from the action of the two feedbac loops may be described by: dφ d For small variations of frequency and phase angles: Φ Φ From fig..b we may write: and for small phase shifts: ( ) sin Φ ( ) K sin Φ ( ) Φ ( ) K Φ We may deduce that: ( ) ( ) K (7) At the oscillation s frequency: ( ) K A d

5 and: ( ) 3 Then: A d (8) 3 Thus, the bridge is very nearly at balance and is many times. Typical open-loop voltage gain variation with frequency is indicated in fig.3 for an OP- AMP with internal frequency compensation. Here, o is the DC voltage gain expressed in decibels and f o is the low-frequency pole. is the voltage gain in decibels at frequency f. f u is the unity-gain frequency. The following holds due to the db per decade roll-off: BW A f A f f (9) do o d u At a frequency f, the open-loop voltage gain is: Substituting into eq. (8): BW A d () f BW 3 f

6 Then: BW 9 f The effective then varies inversely with frequency. A typical multiplication factor at Hz, with a 4MHz gain-bandwidth product OP- AMP is: This would give a value of for. For the case of the modified Wien-bridge oscillator using a single variable resistor for frequency control: ( ) RC R C ( ) [ ( ) ] RC () ( ) RC Eq.(7) yields the multiplication factor: () ( ) A d (3) ( ) is then given by: A d ( ) ( ) BW f [ ( ) ]

7 RC BW (4) π [ ( ) ] If ( )>>: π RC BW (5) is then approximately constant over one decade. ( ) Using eq.(4) we may calculate the ratio when varies between min and MAX. Then: Ratio ( MAX ) ( ) min MAX min min MAX ( ) ( ) ( ) ( ) 4 (6) Table I summarizes Ratio and values as given by eqs. (6) and (5), with as a parameter, for a Wien-bridge oscillator designed for operation over the Hz to Hz decade. TABLE I Ratio (aprox.) Calculations for have been made with BW 4MHz, R 47 ohms, and C 7.57nF. For other values of, C has been changed accordingly, so the same Hz to Hz decade may be tuned. From the total selectivity point of view, low values for are preferred. We may also observe that given any frequency decade, selectivity at the lower end is slightly greater than that at the upper end ( Ratio>). Eq. (5) indicates that higher decades exhibit smaller values (the higher the decade, the smaller the RC product). Some THD measurements made on the modified Wien-bridge oscillator with and a 6-Volt pea-amplitude output sine wave are shown below. Measurements were conducted using a 334A Hewlett-Pacard Distortion Analyzer.

8 Hz to Hz decade THD at: Hz Hz is:.%.3% Hz to Hz decade THD at: Hz Hz is:.9%.6% Hz to Hz decade THD at: Hz Hz is:.4%.7% Hz to Hz decade THD at: Hz Hz is: 3.8%.4% (using stabilising lamp) is:.47%.38% (using stabilising lamps in series) Some comments The lower end of the Hz to Hz decade is adversely affected by environmental noise and non-linear distortion introduced by the stabilising lamp. Three or four of these lamps should be series-connected in order to reduce THD to acceptable levels. Miniature lamp types should be preferred (they are less buly). Also, the oscillator should be adequately shielded from external noise sources, such as fluorescent lamps, computers, switch-mode power supplies, etc. When conducting measurements with the Distortion Analyzer at frequencies above Hz, a high-pass filter may be switched-in for noise reection. This may help lower the THD reading. Ramon Vargas Patron Lima-Peru, South America June nd 4

9

### Oscillator Principles

Oscillators Introduction Oscillators are circuits that generates a repetitive waveform of fixed amplitude and frequency without any external input signal. The function of an oscillator is to generate alternating

### An active filter offers the following advantages over a passive filter:

ACTIVE FILTERS An electric filter is often a frequency-selective circuit that passes a specified band of frequencies and blocks or attenuates signals of frequencies outside this band. Filters may be classified

### 11. Chapter: Amplitude stabilization of the harmonic oscillator

Punčochář, Mohylová: TELO, Chapter 10 1 11. Chapter: Amplitude stabilization of the harmonic oscillator Time of study: 3 hours Goals: the student should be able to define basic principles of oscillator

### Source Transformation

HW Chapter 0: 4, 20, 26, 44, 52, 64, 74, 92. Source Transformation Source transformation in frequency domain involves transforming a voltage source in series with an impedance to a current source in parallel

### Oscillations and Regenerative Amplification using Negative Resistance Devices

Oscillations and Regenerative Amplification using Negative Resistance Devices Ramon Vargas Patron rvargas@inictel.gob.pe INICTEL The usual procedure for the production of sustained oscillations in tuned

### Op-Amp Simulation Part II

Op-Amp Simulation Part II EE/CS 5720/6720 This assignment continues the simulation and characterization of a simple operational amplifier. Turn in a copy of this assignment with answers in the appropriate

### Lesson number one. Operational Amplifier Basics

What About Lesson number one Operational Amplifier Basics As well as resistors and capacitors, Operational Amplifiers, or Op-amps as they are more commonly called, are one of the basic building blocks

### EE301 ELECTRONIC CIRCUITS CHAPTER 2 : OSCILLATORS. Lecturer : Engr. Muhammad Muizz Bin Mohd Nawawi

EE301 ELECTRONIC CIRCUITS CHAPTER 2 : OSCILLATORS Lecturer : Engr. Muhammad Muizz Bin Mohd Nawawi 2.1 INTRODUCTION An electronic circuit which is designed to generate a periodic waveform continuously at

074 Part 2 Analog Electronics EXEISE POBLEM Ex 5.3: For the switched-capacitor circuit in Figure 5.3b), the parameters are: = 30 pf, 2 = 5pF, and F = 2 pf. The clock frequency is 00 khz. Determine the

### Feedback and Oscillator Circuits

Chapter 14 Chapter 14 Feedback and Oscillator Circuits Feedback Concepts The effects of negative feedback on an amplifier: Disadvantage Lower gain Advantages Higher input impedance More stable gain Improved

### Analog Design-filters

Analog Design-filters Introduction and Motivation Filters are networks that process signals in a frequency-dependent manner. The basic concept of a filter can be explained by examining the frequency dependent

### ITT Technical Institute ET245 Devices II Unit 5 Chapter

ITT Technical Institute ET245 Devices II Unit 5 Chapter 7.1 7.3 Unit 5 Agenda Lecture: Chapter 7, Sections 7.1 7.3 Lab 3, Linear Op amp Circuits continued from last week Assignment: Complete Problems (pg

### OPERATIONAL AMPLIFIER PREPARED BY, PROF. CHIRAG H. RAVAL ASSISTANT PROFESSOR NIRMA UNIVRSITY

OPERATIONAL AMPLIFIER PREPARED BY, PROF. CHIRAG H. RAVAL ASSISTANT PROFESSOR NIRMA UNIVRSITY INTRODUCTION Op-Amp means Operational Amplifier. Operational stands for mathematical operation like addition,

### Lecture # 11 Oscillators (RC Circuits)

December 2014 Benha University Faculty of Engineering at Shoubra ECE-312 Electronic Circuits (A) Lecture # 11 Oscillators (RC Circuits) Instructor: Dr. Ahmad El-Banna Agenda Introduction Feedback Oscillators

### Application Note AN45

Application Note Wien Bridge Oscillators using E 2 POTs by Applications Staff, October 1994 Wien Bridge Oscillators In 1939, William R. Hewlett (later of Hewlett-Packard fame) first combined the network

### GATE: Electronics MCQs (Practice Test 1 of 13)

GATE: Electronics MCQs (Practice Test 1 of 13) 1. Removing bypass capacitor across the emitter leg resistor in a CE amplifier causes a. increase in current gain b. decrease in current gain c. increase

### ELECTRICAL CIRCUITS 6. OPERATIONAL AMPLIFIERS PART III DYNAMIC RESPONSE

77 ELECTRICAL CIRCUITS 6. PERATAL AMPLIIERS PART III DYNAMIC RESPNSE Introduction In the first 2 handouts on op-amps the focus was on DC for the ideal and non-ideal opamp. The perfect op-amp assumptions

### Experiments #7. Operational Amplifier part 1

Experiments #7 Operational Amplifier part 1 1) Objectives: The objective of this lab is to study operational amplifier (op amp) and its applications. We will be simulating and building some basic op-amp

### Homework Assignment 01

Homework Assignment 01 In this homework set students review some basic circuit analysis techniques, as well as review how to analyze ideal op-amp circuits. Numerical answers must be supplied using engineering

### BENE 2163 ELECTRONIC SYSTEMS

UNIVERSITI TEKNIKAL MALAYSIA MELAKA FAKULTI KEJURUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER BENE 263 ELECTRONIC SYSTEMS LAB SESSION 3 WEIN BRIDGE OSCILLATOR Revised: February 20 Lab 3 Wien Bridge Oscillator

### Chapter.8: Oscillators

Chapter.8: Oscillators Objectives: To understand The basic operation of an Oscillator the working of low frequency oscillators RC phase shift oscillator Wien bridge Oscillator the working of tuned oscillator

### MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI-621213. QUESTION BANK DEPARTMENT: EEE SUBJECT CODE: EE2203 SEMESTER : III SUBJECT NAME: ELECTRONIC DEVICES &CIRCUITS UNIT 4-AMPLIFIERS AND OSCILLATORS PART

### PURPOSE: NOTE: Be sure to record ALL results in your laboratory notebook.

EE4902 Lab 9 CMOS OP-AMP PURPOSE: The purpose of this lab is to measure the closed-loop performance of an op-amp designed from individual MOSFETs. This op-amp, shown in Fig. 9-1, combines all of the major

### PHYSICS 330 LAB Operational Amplifier Frequency Response

PHYSICS 330 LAB Operational Amplifier Frequency Response Objectives: To measure and plot the frequency response of an operational amplifier circuit. History: Operational amplifiers are among the most widely

### A Novel Control Method to Minimize Distortion in AC Inverters. Dennis Gyma

A Novel Control Method to Minimize Distortion in AC Inverters Dennis Gyma Hewlett-Packard Company 150 Green Pond Road Rockaway, NJ 07866 ABSTRACT In PWM AC inverters, the duty-cycle modulator transfer

### EK307 Active Filters and Steady State Frequency Response

EK307 Active Filters and Steady State Frequency Response Laboratory Goal: To explore the properties of active signal-processing filters Learning Objectives: Active Filters, Op-Amp Filters, Bode plots Suggested

### Project Report Designing Wein-Bridge Oscillator

Abu Dhabi University EEN 360 - Electronic Devices and Circuits II Project Report Designing Wein-Bridge Oscillator Author: Muhammad Obaidullah 03033 Bilal Arshad 0929 Supervisor: Dr. Riad Kanan Section

### CHARACTERISTICS OF OPERATIONAL AMPLIFIERS - II

CHARACTERISTICS OF OPERATIONAL AMPLIFIERS - II OBJECTIVE The purpose of the experiment is to examine non-ideal characteristics of an operational amplifier. The characteristics that are investigated include

### FEEDBACK AMPLIFIER. Learning Objectives. A feedback amplifier is one in which a fraction of the amplifier output is fed back to the input circuit

C H P T E R6 Learning Objectives es Feedback mplifiers Principle of Feedback mplifiers dvantages of Negative Feedback Gain Stability Decreased Distortion Feedback Over Several Stages Increased Bandwidth

### Wien oscillators using current conveyors

PERGAMON Computers and Electrical Engineering 25 (1999) 45±55 Wien oscillators using current conveyors A.M. Soliman *, A.S. Elwakil Electronics and Communications Engineering Department, Cairo University,

### Electronics EECE2412 Spring 2016 Exam #1

Electronics EECE2412 Spring 2016 Exam #1 Prof. Charles A. DiMarzio Department of Electrical and Computer Engineering Northeastern University 18 February 2016 File:12140/exams/exam1 Name: : Row # : Seat

### ECEN Network Analysis Section 3. Laboratory Manual

ECEN 3714----Network Analysis Section 3 Laboratory Manual LAB 07: Active Low Pass Filter Oklahoma State University School of Electrical and Computer Engineering. Section 3 Laboratory manual - 1 - Spring

By Miro Oljaca and Bonnie C Baker Texas Instruments Start with the right op amp when driving SAR ADCs Using the right operational amplifier in front of your data converter will give you good performance.

### Mechatronics. Analog and Digital Electronics: Studio Exercises 1 & 2

Mechatronics Analog and Digital Electronics: Studio Exercises 1 & 2 There is an electronics revolution taking place in the industrialized world. Electronics pervades all activities. Perhaps the most important

### Project 6: Oscillator Circuits

: Oscillator Circuits Ariel Moss The purpose of this experiment was to design two oscillator circuits: a Wien-Bridge oscillator at 3 khz oscillation and a Hartley Oscillator using a BJT at 5 khz oscillation.

### Dual FET-Input, Low Distortion OPERATIONAL AMPLIFIER

www.burr-brown.com/databook/.html Dual FET-Input, Low Distortion OPERATIONAL AMPLIFIER FEATURES LOW DISTORTION:.3% at khz LOW NOISE: nv/ Hz HIGH SLEW RATE: 25V/µs WIDE GAIN-BANDWIDTH: MHz UNITY-GAIN STABLE

### Chapter 10: The Operational Amplifiers

Chapter 10: The Operational Amplifiers Electronic Devices Operational Amplifiers (op-amp) Op-amp is an electronic device that amplify the difference of voltage at its two inputs. It has two input terminals,

### v(t) = V p sin(2π ft +φ) = V p cos(2π ft +φ + π 2 )

1 Let us revisit sine and cosine waves. A sine wave can be completely defined with three parameters Vp, the peak voltage (or amplitude), its frequency w in radians/second or f in cycles/second (Hz), and

### UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering EXPERIMENT 5 GAIN-BANDWIDTH PRODUCT AND SLEW RATE OBJECTIVES In this experiment the student will explore two

### Study of Inductive and Capacitive Reactance and RLC Resonance

Objective Study of Inductive and Capacitive Reactance and RLC Resonance To understand how the reactance of inductors and capacitors change with frequency, and how the two can cancel each other to leave

### Chapter 14 Operational Amplifiers

1. List the characteristics of ideal op amps. 2. Identify negative feedback in op-amp circuits. 3. Analyze ideal op-amp circuits that have negative feedback using the summing-point constraint. ELECTRICAL

### DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 019.101 Introductory Analog Electronics Laboratory Laboratory No. READING ASSIGNMENT

### Module 4 Unit 4 Feedback in Amplifiers

Module 4 Unit 4 Feedback in mplifiers eview Questions:. What are the drawbacks in a electronic circuit not using proper feedback? 2. What is positive feedback? Positive feedback is avoided in amplifier

### AC Circuits. "Look for knowledge not in books but in things themselves." W. Gilbert ( )

AC Circuits "Look for knowledge not in books but in things themselves." W. Gilbert (1540-1603) OBJECTIVES To study some circuit elements and a simple AC circuit. THEORY All useful circuits use varying

### EK307 Passive Filters and Steady State Frequency Response

EK307 Passive Filters and Steady State Frequency Response Laboratory Goal: To explore the properties of passive signal-processing filters Learning Objectives: Passive filters, Frequency domain, Bode plots

### Function Generator MODEL FG-500 Instruction Manual ELENCO

Function Generator MODEL FG-500 Instruction Manual ELENCO Copyright 2012, 2003 Elenco Electronics, Inc. REV-D 753068 SPECIFICATIONS OUTPUT: Waveforms: Sine, triangle, square Impedance: 600Ω ±10% Frequency:

### PHYS 536 Active Filters

PHYS 536 Active Filters Introduction Active filters provide a sudden change in signal amplitude for a small change in frequency. Several filters can be used in series to increase the attenuation outside

### Chapter 2. The Fundamentals of Electronics: A Review

Chapter 2 The Fundamentals of Electronics: A Review Topics Covered 2-1: Gain, Attenuation, and Decibels 2-2: Tuned Circuits 2-3: Filters 2-4: Fourier Theory 2-1: Gain, Attenuation, and Decibels Most circuits

### EE105 Fall 2015 Microelectronic Devices and Circuits. Amplifier Gain

EE05 Fall 205 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 5 Sutardja Dai Hall (SDH) 2- Amplifier Gain Voltage Gain: Current Gain: Power Gain: Note: A v v O v I A i i O i

### Glossary of VCO terms

Glossary of VCO terms VOLTAGE CONTROLLED OSCILLATOR (VCO): This is an oscillator designed so the output frequency can be changed by applying a voltage to its control port or tuning port. FREQUENCY TUNING

### APPLICATION NOTE 6206 SIMPLE, EFFECTIVE METHOD AND CIRCUIT TO MEASURE VERY-LOW 1/F VOLTAGE REFERENCE NOISE (< 1ΜV P-P, 0.

Keywords: 0.1 to 10 Hz noise of voltage reference, low frequency noise or flicker noise of voltage reference, ultra low noise measurement of voltage reference APPLICATION NOTE 606 SIMPLE, EFFECTIVE METHOD

### PHYS 536 The Golden Rules of Op Amps. Characteristics of an Ideal Op Amp

PHYS 536 The Golden Rules of Op Amps Introduction The purpose of this experiment is to illustrate the golden rules of negative feedback for a variety of circuits. These concepts permit you to create and

### Amplitude Modulation Methods and Circuits

Amplitude Modulation Methods and Circuits By: Mark Porubsky Milwaukee Area Technical College Electronic Technology Electronic Communications Milwaukee, WI Purpose: The various parts of this lab unit will

### FREQUENCY RESPONSE AND PASSIVE FILTERS LABORATORY

FREQUENCY RESPONSE AND PASSIVE FILTERS LABORATORY In this experiment we will analytically determine and measure the frequency response of networks containing resistors, AC source/sources, and energy storage

### METHODS TO IMPROVE DYNAMIC RESPONSE OF POWER FACTOR PREREGULATORS: AN OVERVIEW

METHODS TO IMPROE DYNAMIC RESPONSE OF POWER FACTOR PREREGULATORS: AN OERIEW G. Spiazzi*, P. Mattavelli**, L. Rossetto** *Dept. of Electronics and Informatics, **Dept. of Electrical Engineering University

### A Simple Notch Type Harmonic Distortion Analyzer

by Kenneth A. Kuhn Nov. 28, 2009, rev. Nov. 29, 2009 Introduction This note describes a simple notch type harmonic distortion analyzer that can be constructed with basic parts. It is intended for use in

### I. Introduction to Simple Circuits of Resistors

2 Problem Set for Dr. Todd Huffman Michaelmas Term I. Introduction to Simple ircuits of esistors 1. For the following circuit calculate the currents through and voltage drops across all resistors. The

### Lecture 8: More on Operational Amplifiers (Op Amps)

Lecture 8: More on Operational mplifiers (Op mps) Input Impedance of Op mps and Op mps Using Negative Feedback: Consider a general feedback circuit as shown. ssume that the amplifier has input impedance

### EC202- ELECTRONIC CIRCUITS II Unit- I -FEEEDBACK AMPLIFIER

EC202- ELECTRONIC CIRCUITS II Unit- I -FEEEDBACK AMPLIFIER 1. What is feedback? What are the types of feedback? 2. Define positive feedback. What are its merits and demerits? 3. Define negative feedback.

### UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering And Computer Sciences MULTIFREQUENCY CELL IMPEDENCE MEASUREMENT

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering And Computer Sciences MULTIFREQUENCY CELL IMPEDENCE MEASUREMENT EE247 Term Project Eddie Ng Mounir Bohsali Professor

### When you have completed this exercise, you will be able to relate the gain and bandwidth of an op amp

Op Amp Fundamentals When you have completed this exercise, you will be able to relate the gain and bandwidth of an op amp In general, the parameters are interactive. However, in this unit, circuit input

### LC Resonant Circuits Dr. Roger King June Introduction

LC Resonant Circuits Dr. Roger King June 01 Introduction Second-order systems are important in a wide range of applications including transformerless impedance-matching networks, frequency-selective networks,

### EE 3305 Lab I Revised July 18, 2003

Operational Amplifiers Operational amplifiers are high-gain amplifiers with a similar general description typified by the most famous example, the LM741. The LM741 is used for many amplifier varieties

### Operational Amplifiers

Operational Amplifiers Table of contents 1. Design 1.1. The Differential Amplifier 1.2. Level Shifter 1.3. Power Amplifier 2. Characteristics 3. The Opamp without NFB 4. Linear Amplifiers 4.1. The Non-Inverting

### EXPERIMENT 4: RC, RL and RD CIRCUITs

EXPERIMENT 4: RC, RL and RD CIRCUITs Equipment List An assortment of resistor, one each of (330, 1k,1.5k, 10k,100k,1000k) Function Generator Oscilloscope 0.F Ceramic Capacitor 100H Inductor LED and 1N4001

### CEM3378/3379 Voltage Controlled Signal Processors

CEM3378/3379 Voltage Controlled Signal Processors The CEM3378 and CEM3379 contain general purpose audio signal processing blocks which are completely separate from each other. These devices are useful

### Function Generator Using Op Amp Ic 741 Theory

Function Generator Using Op Amp Ic 741 Theory Note: Op-Amps ua741, LM 301, LM311, LM 324 & AD 633 may be used To design an Inverting Amplifier for the given specifications using Op-Amp IC 741. THEORY:

### CHAPTER 6 INTRODUCTION TO SYSTEM IDENTIFICATION

CHAPTER 6 INTRODUCTION TO SYSTEM IDENTIFICATION Broadly speaking, system identification is the art and science of using measurements obtained from a system to characterize the system. The characterization

### For the filter shown (suitable for bandpass audio use) with bandwidth B and center frequency f, and gain A:

Basic Op Amps The operational amplifier (Op Amp) is useful for a wide variety of applications. In the previous part of this article basic theory and a few elementary circuits were discussed. In order to

### Electronics Prof D. C. Dube Department of Physics Indian Institute of Technology, Delhi

Electronics Prof D. C. Dube Department of Physics Indian Institute of Technology, Delhi Module No. # 04 Feedback in Amplifiers, Feedback Configurations and Multi Stage Amplifiers Lecture No. # 03 Input

### Filter Design, Active Filters & Review. EGR 220, Chapter 14.7, December 14, 2017

Filter Design, Active Filters & Review EGR 220, Chapter 14.7, 14.11 December 14, 2017 Overview ² Passive filters (no op amps) ² Design examples ² Active filters (use op amps) ² Course review 2 Example:

### Electronic PRINCIPLES

MALVINO & BATES Electronic PRINCIPLES SEVENTH EDITION Chapter 21 Active Filters Topics Covered in Chapter 21 Ideal responses Approximate responses Passive ilters First-order stages VCVS unity-gain second-order

### AUDIO OSCILLATOR DISTORTION

AUDIO OSCILLATOR DISTORTION Being an ardent supporter of the shunt negative feedback in audio and electronics, I would like again to demonstrate its advantages, this time on the example of the offered

### Laboratory 9. Required Components: Objectives. Optional Components: Operational Amplifier Circuits (modified from lab text by Alciatore)

Laboratory 9 Operational Amplifier Circuits (modified from lab text by Alciatore) Required Components: 1x 741 op-amp 2x 1k resistors 4x 10k resistors 1x l00k resistor 1x 0.1F capacitor Optional Components:

### ECE 4670 Spring 2014 Lab 1 Linear System Characteristics

ECE 4670 Spring 2014 Lab 1 Linear System Characteristics 1 Linear System Characteristics The first part of this experiment will serve as an introduction to the use of the spectrum analyzer in making absolute

### ECE3204 D2015 Lab 1. See suggested breadboard configuration on following page!

ECE3204 D2015 Lab 1 The Operational Amplifier: Inverting and Non-inverting Gain Configurations Gain-Bandwidth Product Relationship Frequency Response Limitation Transfer Function Measurement DC Errors

### ES250: Electrical Science. HW6: The Operational Amplifier

ES250: Electrical Science HW6: The Operational Amplifier Introduction This chapter introduces the operational amplifier or op amp We will learn how to analyze and design circuits that contain op amps,

### PHYS225 Lecture 15. Electronic Circuits

PHYS225 Lecture 15 Electronic Circuits Last lecture Difference amplifier Differential input; single output Good CMRR, accurate gain, moderate input impedance Instrumentation amplifier Differential input;

### Feed Forward Linearization of Power Amplifiers

EE318 Electronic Design Lab Report, EE Dept, IIT Bombay, April 2007 Feed Forward Linearization of Power Amplifiers Group-D16 Nachiket Gajare ( 04d07015) < nachiketg@ee.iitb.ac.in> Aditi Dhar ( 04d07030)

### School of Sciences. ELECTRONICS II ECE212A 2 nd Assignment

School of Sciences SPRING SEMESTER 2010 INSTRUCTOR: Dr Konstantinos Katzis COURSE / SECTION: ECE212N COURSE TITLE: Electronics II OFFICE RM#: 124 (1 st floor) OFFICE TEL#: 22713296 OFFICE HOURS: Monday

### Other useful blocks. Differentiator i = CdV/dt. = -RCdV/dt or /v in. Summing amplifier weighted sum of inputs (consider currents)

Other useful blocks Differentiator i = CdV/dt = RCdV/dt or /v in = jωrc C R + Summing amplifier weighted sum of inputs (consider currents) v 1 R 1 v 2 v 3 R 3 + R f Differential amplifier = ( /R 1 )(v

### APPLICATION BULLETIN

APPLICATION BULLETIN Mailing Address: PO Box 100 Tucson, AZ 873 Street Address: 6730 S. Tucson Blvd. Tucson, AZ 8706 Tel: (0) 76-1111 Twx: 910-9-111 Telex: 066-691 FAX (0) 889-10 Immediate Product Info:

### Operational Amplifier BME 360 Lecture Notes Ying Sun

Operational Amplifier BME 360 Lecture Notes Ying Sun Characteristics of Op-Amp An operational amplifier (op-amp) is an analog integrated circuit that consists of several stages of transistor amplification

### Introduction to Phase Noise

hapter Introduction to Phase Noise brief introduction into the subject of phase noise is given here. We first describe the conversion of the phase fluctuations into the noise sideband of the carrier. We

### Poles and Zeros of H(s), Analog Computers and Active Filters

Poles and Zeros of H(s), Analog Computers and Active Filters Physics116A, Draft10/28/09 D. Pellett LRC Filter Poles and Zeros Pole structure same for all three functions (two poles) HR has two poles and

### Instrumentation Amplifiers Filters Integrators Differentiators Frequency-Gain Relation Non-Linear Op-Amp Applications DC Imperfections

Lecture Op-Amp Building Blocks and Applications Instrumentation Amplifiers Filters Integrators Differentiators Frequency-Gain elation Non-Linear Op-Amp Applications DC Imperfections ELG439 Check List for

### T.J.Moir AUT University Auckland. The Ph ase Lock ed Loop.

T.J.Moir AUT University Auckland The Ph ase Lock ed Loop. 1.Introduction The Phase-Locked Loop (PLL) is one of the most commonly used integrated circuits (ICs) in use in modern communications systems.

### Chapter 2. Signals and Spectra

Chapter 2 Signals and Spectra Outline Properties of Signals and Noise Fourier Transform and Spectra Power Spectral Density and Autocorrelation Function Orthogonal Series Representation of Signals and Noise

### 220 S. MAHESHWARI AND I. A. KHAN 2 DEVICE PROPOSED The already reported CDBA is characterized by the following port relationship [7]. V p V n 0, I z I

Active and Passive Electronic Components December 2004, No. 4, pp. 219±227 CURRENT-CONTROLLED CURRENT DIFFERENCING BUFFERED AMPLIFIER: IMPLEMENTATION AND APPLICATIONS SUDHANSHU MAHESHWARI* and IQBAL A.

### Electronic Measurements & Instrumentation. 1. Draw the Maxwell s Bridge Circuit and derives the expression for the unknown element at balance?

UNIT -6 1. Draw the Maxwell s Bridge Circuit and derives the expression for the unknown element at balance? Ans: Maxwell's bridge, shown in Fig. 1.1, measures an unknown inductance in of standard arm offers

### Wideband highly linear gain

Wideband Gain Block Amplifier Design echniques Here is a thorough review of the device design requirements for a general-purpose amplifier FIC By Chris Arnott F Micro Devices Wideband highly linear gain

### Other Effects in PLLs. Behzad Razavi Electrical Engineering Department University of California, Los Angeles

Other Effects in PLLs Behzad Razavi Electrical Engineering Department University of California, Los Angeles Example of Up and Down Skew and Width Mismatch Approximating the pulses on the control line by

### Low voltage high performance mixer FM IF system

DESCRIPTION The is a low voltage high performance monolithic FM IF system incorporating a mixer/oscillator, two limiting intermediate frequency amplifiers, quadrature detector, logarithmic received signal

### VHF LAND MOBILE SERVICE

RFS21 December 1991 (Issue 1) SPECIFICATION FOR RADIO APPARATUS: VHF LAND MOBILE SERVICE USING AMPLITUDE MODULATION WITH 12.5 khz CARRIER FREQUENCY SEPARATION Communications Division Ministry of Commerce

### Operational Amplifiers

Fundamentals of op-amp Operation modes Golden rules of op-amp Op-amp circuits Inverting & non-inverting amplifier Unity follower, integrator & differentiator Introduction An operational amplifier, or op-amp,

### Laboratory Exercises for Analog Circuits and Electronics as Hardware Homework with Student Laptop Computer Instrumentation

Laboratory Exercises for Analog Circuits and Electronics as Hardware Homework with Student Laptop Computer Instrumentation Marion O. Hagler Department of Electrical and Computer Engineering Mississippi

### Introduction to Op Amps By Russell Anderson, Burr-Brown Corp

Introduction to Op Amps By ussell Anderson, BurrBrown Corp Introduction Analog design can be intimidating. If your engineering talents have been focused in digital, software or even scientific fields,

### Third Year (Electrical & Telecommunication Engineering)

Z PRACTICAL WORK BOOK For The Course EE-315 Electric Filter For Third Year (Electrical & Telecommunication Engineering) Name of Student: Class: Batch : Discipline: Class Roll No.: Examination Seat No.