IEEE 802.3af DTE Power via MDI PSE-PD Inter-operate - Stability Analysis

Size: px
Start display at page:

Download "IEEE 802.3af DTE Power via MDI PSE-PD Inter-operate - Stability Analysis"

Transcription

1 IEEE80.3af, September 001 IEEE 80.3af DTE Power via MDI PSE-PD Inter-operate - Stability Analysis Presented by Yair Darshan, PowerDsine yaird@powerdsine.com 1

2 IEEE 80.3af, September 001. Objectives! Specify the requirements to ensure PSE - PD stability at Normal Powering Mode! Strategy! Using Impedance Design Criteria " Specify PD input impedance without input filter " Specify PD input filter output impedance " Specify PSE power supply output impedance

3 System Description at Normal Powering Mode IEEE 80.3af, September 001. PSE Lc/ Rc/ PD Zin(s) Rs1 Control Ls1 Cs1 C1 Cc/ Cc/ C Rs Ls Cs Converter V o u t Rpse Lc/ Rc/ Rpd Inrush Current limit at ON mode Cable: Low Frequency representation, f<fbw Inrush Current limit at ON mode Zo_pd(s) d Controller Zo1(s) Zo_pse(s) M1 L Figure -1 Diode C R Vout 3

4 IEEE 80.3af, September 001. Simplified System at Normal Powering Mode PSE Zout1 Zout Zc PD Zout3 Zout4 PSE PS PSE Output Port Circuitry Cable PD Output Port Circuitry EMI Filter Zin Zo1(s) Zo_pse(s) Zo_pd(s) Zin(s) 4

5 Problem Definition IEEE 80.3af, September 001.! Under Specific Combinations of PSE output impedance and PD input Impedance " PSE - PD stability at Normal Powering Mode may be impaired " PD Power Supply Dynamic Performance will be changed The reason:! PD Power Supply Close Loop Transfer Function May be Impaired if Additional Frequency Dependent Elements are Connected From the Power Source (PSE) to the Load (PD s DC/DC converter) 5

6 IEEE 80.3af, September 001. List of Possible Stability Problems! At specific frequency the source Output Impedance will increase to a level that PD input voltage will drop below UVLO level. " Startup Problems " Stability Problems during Load Changes! Due to impairment of the PD PS Open Loop Transfer Function, marginal stability at small signal is expected 6

7 Proposed Strategy - Worst Case Analysis IEEE 80.3af, September 001. Pros! Shortest way to get results! Solves PSE-PD inter-operate problem! Simple design rules for PD and PSE Cons! Required large design margin compared to case when PSE-PD system is designed by the same vendor. 7

8 IEEE 80.3af, September 001. Worst Case Analysis Assumptions! Cable length = 0 (Cable length =100m effects is discussed in (5) ) " Higher Quality Factor of the LC filters! Inrush Current Limiter In PSE and PD is ON. " Series Switch Resistance =0 (Higher Quality Factor of the LC filters)! PSE contains LC filter at its output! PD contains LC filter at its input! PD DC/DC converter control method is Voltage Mode " Current Mode Control is easier case(3,4) 8

9 Analysis Information IEEE 80.3af, September 001.! Low frequency analysis, f<0.5fs. Fs=Converter Switching Frequency. " Fs=100KHz was used as a typical case.! Cable is modeled as low frequency device! System is at Normal Powering Mode " PD converter short circuit condition at output is ignored.! PD:Full Load = 1.95W average at its input! Min Load = 10mA! Typical results where simulated by the system model elements presented in July 001. The control scheme was modified to voltage mode control. 9

10 Design Criteria IEEE 80.3af, September 001.! To keep PSE-PD system stable, we need to keep PD stable at the following design options (See Figure 1 and Annex A):! 1. PD with its EMI filter. Meeting Zo_pd << Zin (See Annex A for Zin details) " Cable length=0, Rpse=0, Rpd=0 " PSE source without output filter!. PD with PSE PS output filter. Zo_pse << Zin " Cable length=0, Rpse=0, Rpd=0, C1=0, C=0. " PD converter without input filter! 3. PD with PSE output filter and PD input filter. Zo_pd << Zin " Cable length=0, Rpse=0, Rpd=0, C1=0, C=0. 10

11 PSE Power Supply Output Impedance - Zo1 -Connected to resistive load (Min load= 10% of Full Load) -Control method: Voltage Mode.0 Min load 1.0 Full load mHz 1.0Hz 100Hz 10KHz 1.0MHz Figure - Zo1 Frequency 11

12 PD Converter Input Impedance - Zi(f) at full load (1.95W,37V) - Without input filter effect - With zero output impedance DC source. - Control method: Voltage Mode, 400 Zin Phase -00 Positive Impedance Negative Impedance mHz 1.0Hz 10Hz 100Hz 1.0KHz 10KHz Figure -3 Zi P(Zi) Frequency 1

13 IEEE 80.3af, September 001. PD EMI Filter output impedance, Zo_pd vs. cable length. EMI Filter: L=100uH, C=330uH, Rs=0.1 Ohm { *Length} R4 L14 {1ph+1uH*Length} R1 {Rs} L1 100u Zo_pd V5 0V C17 {1pf+50pf*Length} C18 {1pf+50pf*Length} C1 330u PARAMETERS: Rs = 0.1 Length = 0.01 R Long Cable 0 10 Short Cable 0 10Hz 100Hz 1.0KHz Frequency 10KHz Zo_pd 13

14 PD DC/DC Converter Open Loop Transfer Function - Without input filter effect - With zero output impedance DC source. - Control method: Voltage Mode 100 Full load Min load d db(gain) 90d 0d 10mHz 1.0Hz 100Hz 10KHz Phase Frequency Figure MHz 14

15 IEEE 80.3af, September PD DC/DC Converter Open Loop Transfer Function - With LC filter effect, Full load - Control method: Voltage Mode Phase With LC filter effect 100 Gain 0 Marginal stability mHz 1.0Hz 10Hz 100Hz 1.0KHz 10KHz P(Vout/Vc) db(vout/vc) Frequency 15

16 Impedance Allocation Map Measured from PSE PS to PD DC/DC converter input Zin, Zo, Zo1 IEEE 80.3af, September 001. (44V 0.35A 0Ω) Ra = = Ω 0.35A (44V 0.4A 0Ω) Rp = = 90Ω 0.4A Rp Zin _ min = = 30Ω 3 (to allow design margin for PD DC/DC output filter (L,C,R) effects Average Peak Current (worst case) 0dB Margin for short cable Figure -5 Zo _ pse + Zo _ pd = 3Ω Zo _ pd Zo _ pse PD + PSE effects PD input filter output impedance PSE port output impedance F[KHz] 16

17 IEEE 80.3af, September 001. Impedance Allocation Map Measured from PSE Port to PD DC/DC converter input Zin, Zo, Zo1 (44V 0.35A 0Ω) Ra = = Ω 0.35A (44V 0.4A 0Ω) Rp = = 90Ω 0.4A Rp Zin _ min = = 30Ω 3 (to allow design margin for PD DC/DC output filter (L,C,R) effects Average Peak Current (worst case) 0dB Margin for short cable Zo _ pd Zo1 =. 7Ω = 0. 3Ω PD input filter-output impedance " PSE Output voltage should be 44V min when the load is changed dynamically from No load to full load at frequency rage from DC to 100Khz. " Check worst case at PSE output impedance resonance frequency if applicable. F[KHz] 17

18 Proposed Requirements for PD! PD converter input EMI filter or Cable inductance followed by capacitor IEEE 80.3af, September 001. " PD designer will ensure stable operation of its DC/DC converter in a presence of an input filter powered through short cable (<1m) and long cable (>100m). " Input filter cutoff frequency << Averaging LC filter cutoff frequency. (See Annex A) " The absolute value of the filter output impedance (Zo_pd) will not exceed.7ω with short cable (<1m) for Pmax=1.95W assuming PSE output impedance <0.1Ω. " For Pmax< 1.95W, Zo_pd min will be Zo_pd=.7Ω 1.95/Pmax.! PD converter input impedance (without input-filter output impedance effect), Zin " PD converter input impedance (Zin) will be 30Ω min at max. load condition, Pmax. (1.95W avg, 14.8W peak) " For loads Pmax< 1.95W, Zin_min will be Zin_min= 30Ω 1.95/Pmax.! All the above requirements should be met well above Fbw.! Fbw=DC/DC converter closed loop cross over frequency. 18

19 Proposed Requirements for PSE Output Port IEEE 80.3af, September 001.! PSE PS output impedance (Zo1) shall be 0.3Ω max from DC to 100KHz at full load (Pmax=15.4W). " For Pmax<15.4W, Zo1= 0.3Ω*15.4/ Pmax! PSE Port Output voltage should be 44V min when the load is changed dynamically from No Load to Full Load at frequency range from DC to 100KHz. (Compensating for Rpse)! Check worst case at PSE output port impedance resonance frequency if applicable. 44V min 644ms 680ms 70ms 760ms 791ms V(PSE_OUT) Time 19

20 IEEE 80.3af, September 001. Proposed Requirements for PSE and PD - Summary PSE <0.3 Ohm Lc/ Rc/ PD Zin(s)>30 Rs1 Control Ls1 Cs1 C1 C Rs Ls Cs Converter V o u t Rpse Lc/ Rc/ Rpd Cable: Low Frequency representation, f<fbw Zo_pd(s)<3 zero cable lenght and Zo_pse=0 d Controller 44V min V(PSE_OUT) Time 0

21 What s next? IEEE 80.3af, September 001. Recommendations to IEEE80.3af group:! PD and PSE requirements should be used as design guidelines.! If easy test set-up is found to confirm the requirements at PORT level, it can be used as a requirement. " To be discussed with the group for the best option. 1

22 Annex A - Design Criteria IEEE 80.3af, September 001.! Converter operating mode: " Continuous Current Conduction mode. Direct duty cycle control (voltage mode control).! D= PWM controller duty cycle! Doff = 1 D! R= Converter output load! L= Converter Integrating Inductance! C= Converter output capacitance! Gvd(s)= DC/DC converter transfer function from output to control variable, d.! Z N Z D d( Vout) = 0 dt d( D) = 0 dt! Converter output is shorted. (Not required to keep stability. It is required to keep converter output impedance unaffected by the presence of an input filter.)

23 Annex A - Design Criteria cont. IEEE 80.3af, September 001.! Worst case analysis " Cable length = 0 " Rpse=0 " Rpd=0! To keep PD converter control transfer function unaffected by the input filter and its associated circuits, the following inequalities should be met (): Gvd( s) = ( Gvd( s) Zo _ 1+ pd( s) 0) 1+ Zo _ pd( s) Zn( s) Zo _ pd( s) Zd( s)! Hence, the following inequalities should be met:! Zo_pd(s) << Z N (s)! Zo_pd(s) << Z D (s) 3

24 Annex A - Design Criteria cont. IEEE 80.3af, September 001. Converter Z N (s) Z D (s) Z E (s) Buck R D L R 1+ s + s LC sl Boost Buck-Boost (Flyback) L Doff R 1 s Doff R Doff D D L 1 s Doff R R D R ( 1+ src) ( 1+ src) D L s LC sl Doff R 1+ s + Doff R Doff Doff R 1+ s D L Doff R ( 1+ src) s LC + Doff sl D Analytical expressions for Zn, Zd, Ze. Design Requirement: Plot Zn, Zd, Ze as function of frequency vs. Zo_pd and keep Zo_pd << Zn, Zd, Ze values. 4

25 Annex A - Design Criteria cont. Zin Averaging Filter Buck M1 L D V1 D D C R Vout V1 D L C R Vout M1 Boost Buck-Boost (Flyback) L D (Can be implemented with coupled inductor to have positive output) V1 D M1 C R Vout Figure -7 5

26 References IEEE 80.3af, September 001.! (1) R.D. Middlebrook, Slobodan C uk, Input filter considerations in design and application of switching regulator Advances in Switched-Mode Power Conversion Volumes 1 and, Pp ! () Robert W. Erickson, Dragan Maksimovic, Fundamentals of Power Electronic nd edition pp , ! (3) Sandra Y. Erich and William M. Pollvka, Input Filter Design for Current-Programmed Regulators IEEE 1990.! (4) Yungteak Jang and Robert W. Erickson. Physical Origins of Input Filter Oscillations in Current Programmed Converters 1991 IEEE Applied Power Electronics Conference.! (5) Yair Darshan, IEEE 80.3af Remote Powering Considerations presented at May 000 Interim. 6

IEEE 802.3af DTE Power via MDI. Optimizing disconnect detection ac probing signal

IEEE 802.3af DTE Power via MDI. Optimizing disconnect detection ac probing signal IEEE802.3af, May 2002 IEEE 802.3af DTE Power via MDI Optimizing disconnect detection ac probing signal AD HOC A.I. 2.4! Yair Darshan, PowerDsine! yaird@powerdsine.com 1 Test objectives! To set the optimum

More information

IEEE802.3af DTE Power via MDI task Force.

IEEE802.3af DTE Power via MDI task Force. IEEE802.3af DTE Power via MDI task Force. Proposal for Test Circuits and s Rev 002 Yair Darshan June 27, 2002 Conceptual approach: 1. Each test setup contains the necessary information for the specified

More information

IEEE 802.3af DTE Power via MDI. When PSE is periodically detecting.

IEEE 802.3af DTE Power via MDI. When PSE is periodically detecting. IEEE802.3af, May 2002 IEEE 802.3af DTE Power via MDI When PSE is periodically detecting. Probing signal spectrum measurements and more. Ad hoc A.I. 6.3! Yair Darshan, PowerDsine! yaird@powerdsine.com!

More information

Introductory discussion of PSE- PD Power issues. Focusing on Startup and Normal powering modes. Part A: Normal Powering Mode

Introductory discussion of PSE- PD Power issues. Focusing on Startup and Normal powering modes. Part A: Normal Powering Mode Introductory discussion of PSE- PD Power issues. Focusing on Startup and Normal powering modes. Part A: Normal Powering Mode In order to close a number of parameters, it is necessary to discuss two of

More information

Lecture 8 ECEN 4517/5517

Lecture 8 ECEN 4517/5517 Lecture 8 ECEN 4517/5517 Experiment 4 Lecture 7: Step-up dcdc converter and PWM chip Lecture 8: Design of analog feedback loop Part I Controller IC: Demonstrate operating PWM controller IC (UC 3525) Part

More information

DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION. 500KHz, 18V, 2A Synchronous Step-Down Converter

DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION. 500KHz, 18V, 2A Synchronous Step-Down Converter DESCRIPTION The is a fully integrated, high-efficiency 2A synchronous rectified step-down converter. The operates at high efficiency over a wide output current load range. This device offers two operation

More information

IEEE 802.3af DTE Power via MDI System Considerations - System Modeling

IEEE 802.3af DTE Power via MDI System Considerations - System Modeling IEEE82.3af, March 2 IEEE 82.3af DTE Power via MDI System Considerations System Modeling Presented by Yair Darshan, PowerDsine yaird@powerdsine.com IEEE 82.3af, March. 2.! Objectives! Identifying system

More information

BUCK Converter Control Cookbook

BUCK Converter Control Cookbook BUCK Converter Control Cookbook Zach Zhang, Alpha & Omega Semiconductor, Inc. A Buck converter consists of the power stage and feedback control circuit. The power stage includes power switch and output

More information

Power supplies are one of the last holdouts of true. The Purpose of Loop Gain DESIGNER SERIES

Power supplies are one of the last holdouts of true. The Purpose of Loop Gain DESIGNER SERIES DESIGNER SERIES Power supplies are one of the last holdouts of true analog feedback in electronics. For various reasons, including cost, noise, protection, and speed, they have remained this way in the

More information

ENGR4300 Test 3A Fall 2002

ENGR4300 Test 3A Fall 2002 1. 555 Timer (20 points) Figure 1: 555 Timer Circuit For the 555 timer circuit in Figure 1, find the following values for R1 = 1K, R2 = 2K, C1 = 0.1uF. Show all work. a) (4 points) T1: b) (4 points) T2:

More information

Practical Control Design for Power Supplies. Power Seminar 2004/2005

Practical Control Design for Power Supplies. Power Seminar 2004/2005 Practical Control Design for Power Supplies Power Seminar 24/25 Practical Control Design for Power Supplies Refresher on closed loop feedback Special features of switch mode power supplies Stabilization

More information

Add names. Midspan / Channel Requirements below 1MHz, New material +Updates. Yair Darshan, May, 2008 Page 1

Add names.  Midspan / Channel Requirements below 1MHz, New material +Updates. Yair Darshan, May, 2008 Page 1 IEEE P802.3at Task Force Power Via MDI Enhancements Midspan Adhoc Midspan/Channel Requirements below 1MHz New Material +Updates May 7, 2008 Yair Darshan / Microsemi Corporation Add names Midspan / Channel

More information

Fundamentals of Power Electronics

Fundamentals of Power Electronics Fundamentals of Power Electronics SECOND EDITION Robert W. Erickson Dragan Maksimovic University of Colorado Boulder, Colorado Preface 1 Introduction 1 1.1 Introduction to Power Processing 1 1.2 Several

More information

Advances in Averaged Switch Modeling

Advances in Averaged Switch Modeling Advances in Averaged Switch Modeling Robert W. Erickson Power Electronics Group University of Colorado Boulder, Colorado USA 80309-0425 rwe@boulder.colorado.edu http://ece-www.colorado.edu/~pwrelect 1

More information

Minimizing Input Filter Requirements In Military Power Supply Designs

Minimizing Input Filter Requirements In Military Power Supply Designs Keywords Venable, frequency response analyzer, MIL-STD-461, input filter design, open loop gain, voltage feedback loop, AC-DC, transfer function, feedback control loop, maximize attenuation output, impedance,

More information

4.5V to 32V Input High Current LED Driver IC For Buck or Buck-Boost Topology CN5816. Features: SHDN COMP OVP CSP CSN

4.5V to 32V Input High Current LED Driver IC For Buck or Buck-Boost Topology CN5816. Features: SHDN COMP OVP CSP CSN 4.5V to 32V Input High Current LED Driver IC For Buck or Buck-Boost Topology CN5816 General Description: The CN5816 is a current mode fixed-frequency PWM controller for high current LED applications. The

More information

Resonant Power Conversion

Resonant Power Conversion Resonant Power Conversion Prof. Bob Erickson Colorado Power Electronics Center Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder Outline. Introduction to resonant

More information

UNISONIC TECHNOLOGIES CO., LTD UD38252

UNISONIC TECHNOLOGIES CO., LTD UD38252 UNISONIC TECHNOLOGIES CO., LTD UD38252 38V SYNCHRONOUS BUCK CONVERTER WITH CC/CV DESCRIPTION UTC UD38252 is a wide input voltage, high efficiency Active CC step-down DC/DC converter that operates in either

More information

Filter Design in Continuous Conduction Mode (CCM) of Operation; Part 2 Boost Regulator

Filter Design in Continuous Conduction Mode (CCM) of Operation; Part 2 Boost Regulator Application Note ANP 28 Filter Design in Continuous Conduction Mode (CCM) of Operation; Part 2 Boost Regulator Part two of this application note covers the filter design of voltage mode boost regulators

More information

Revised PSE and PD Ripple Limits. Andy Gardner

Revised PSE and PD Ripple Limits. Andy Gardner Revised PSE and PD Ripple Limits Andy Gardner Presentation Objectives To propose revised limits for PSE ripple voltage and PD ripple current required to ensure data integrity of the PHYs in response to

More information

6.334 Final Project Buck Converter

6.334 Final Project Buck Converter Nathan Monroe monroe@mit.edu 4/6/13 6.334 Final Project Buck Converter Design Input Filter Filter Capacitor - 40µF x 0µF Capstick CS6 film capacitors in parallel Filter Inductor - 10.08µH RM10/I-3F3-A630

More information

Lecture 4 ECEN 4517/5517

Lecture 4 ECEN 4517/5517 Lecture 4 ECEN 4517/5517 Experiment 3 weeks 2 and 3: interleaved flyback and feedback loop Battery 12 VDC HVDC: 120-200 VDC DC-DC converter Isolated flyback DC-AC inverter H-bridge v ac AC load 120 Vrms

More information

Constant Current Switching Regulator for White LED

Constant Current Switching Regulator for White LED Constant Current Switching Regulator for White LED FP7201 General Description The FP7201 is a Boost DC-DC converter specifically designed to drive white LEDs with constant current. The device can support

More information

3.1 ignored. (a) (b) (c)

3.1 ignored. (a) (b) (c) Problems 57 [2] [3] [4] S. Modeling, Analysis, and Design of Switching Converters, Ph.D. thesis, California Institute of Technology, November 1976. G. WESTER and R. D. MIDDLEBROOK, Low-Frequency Characterization

More information

Preliminary. Synchronous Buck PWM DC-DC Controller FP6329/A. Features. Description. Applications. Ordering Information.

Preliminary. Synchronous Buck PWM DC-DC Controller FP6329/A. Features. Description. Applications. Ordering Information. Synchronous Buck PWM DC-DC Controller Description The is designed to drive two N-channel MOSFETs in a synchronous rectified buck topology. It provides the output adjustment, internal soft-start, frequency

More information

A7221A DC-DC CONVERTER/BUCK (STEP-DOWN) 600KHz, 16V, 2A SYNCHRONOUS STEP-DOWN CONVERTER

A7221A DC-DC CONVERTER/BUCK (STEP-DOWN) 600KHz, 16V, 2A SYNCHRONOUS STEP-DOWN CONVERTER DESCRIPTION The is a fully integrated, high efficiency 2A synchronous rectified step-down converter. The operates at high efficiency over a wide output current load range. This device offers two operation

More information

23V 3A Step-Down DC/DC Converter

23V 3A Step-Down DC/DC Converter 23V 3A Step-Down DC/DC Converter FEATURES 3A Continuous Output Current Programmable Soft Start 100mΩ Internal Power MOSFET Switch Stable with Low ESR Output Ceramic Capacitors Up to 95% Efficiency 22µA

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder 18.2.2 DCM flyback converter v ac i ac EMI filter i g v g Flyback converter n : 1 L D 1 i v C R

More information

2A, 23V, 380KHz Step-Down Converter

2A, 23V, 380KHz Step-Down Converter 2A, 23V, 380KHz Step-Down Converter General Description The is a buck regulator with a built-in internal power MOSFET. It achieves 2A continuous output current over a wide input supply range with excellent

More information

1MHz,30V/1.5A High Performance, Boost Converter

1MHz,30V/1.5A High Performance, Boost Converter 1MHz,30V/1.A High Performance, Boost Converter General Description The is a current mode boost DC-DC converter. Its PWM circuitry with built-in 1.A current power MOSFET makes this converter highly power

More information

Switched-mode power supply control circuit

Switched-mode power supply control circuit DESCRIPTION The /SE6 is a control circuit for use in switched-mode power supplies. It contains an internal temperature- compensated supply, PWM, sawtooth oscillator, overcurrent sense latch, and output

More information

10 Mb/s Single Twisted Pair Ethernet PHY Coupling Network Steffen Graber Pepperl+Fuchs

10 Mb/s Single Twisted Pair Ethernet PHY Coupling Network Steffen Graber Pepperl+Fuchs 10 Mb/s Single Twisted Pair Ethernet PHY Coupling Network Steffen Graber Pepperl+Fuchs IEEE P802.3cg 10 Mb/s Single Twisted Pair Ethernet Task Force 6/21/2017 1 Overview Coupling Network Coupling Network

More information

Another Compensator Design Example

Another Compensator Design Example Another Compensator Design Example + V g i L (t) + L + _ f s = 1 MHz Dead-time control PWM 1/V M duty-cycle command Compensator G c c( (s) C error Point-of-Load Synchronous Buck Regulator + I out R _ +

More information

A Novel Control Method to Minimize Distortion in AC Inverters. Dennis Gyma

A Novel Control Method to Minimize Distortion in AC Inverters. Dennis Gyma A Novel Control Method to Minimize Distortion in AC Inverters Dennis Gyma Hewlett-Packard Company 150 Green Pond Road Rockaway, NJ 07866 ABSTRACT In PWM AC inverters, the duty-cycle modulator transfer

More information

Figure 1: Closed Loop System

Figure 1: Closed Loop System SIGNAL GENERATORS 3. Introduction Signal sources have a variety of applications including checking stage gain, frequency response, and alignment in receivers and in a wide range of other electronics equipment.

More information

Diode Embedded Step-up Converter for White LED Driver

Diode Embedded Step-up Converter for White LED Driver Diode Embedded Step-up Converter for White LED Driver Description The is a step-up current mode PWM DC/DC converter with an internal diode and 0.6Ω power N-channel MOSFET. It can support 2 to 4 white LEDs

More information

ACE726C. 500KHz, 18V, 2A Synchronous Step-Down Converter. Description. Features. Application

ACE726C. 500KHz, 18V, 2A Synchronous Step-Down Converter. Description. Features. Application Description The is a fully integrated, high-efficiency 2A synchronous rectified step-down converter. The operates at high efficiency over a wide output current load range. This device offers two operation

More information

Peak Current Mode Control Stability Analysis & Design. George Kaminski Senior System Application Engineer September 28, 2018

Peak Current Mode Control Stability Analysis & Design. George Kaminski Senior System Application Engineer September 28, 2018 Peak Current Mode Control Stability Analysis & Design George Kaminski Senior System Application Engineer September 28, 208 Agenda 2 3 4 5 6 7 8 Goals & Scope Peak Current Mode Control (Peak CMC) Modeling

More information

Project 6: Oscillator Circuits

Project 6: Oscillator Circuits : Oscillator Circuits Ariel Moss The purpose of this experiment was to design two oscillator circuits: a Wien-Bridge oscillator at 3 khz oscillation and a Hartley Oscillator using a BJT at 5 khz oscillation.

More information

Input Impedance Measurements for Stable Input-Filter Design

Input Impedance Measurements for Stable Input-Filter Design for Stable Input-Filter Design 1000 Converter Input Impedance 100 10 1 0,1 Filter Output Impedance 0,01 10 100 1000 10000 100000 By Florian Hämmerle 2017 by OMICRON Lab V1.0 Visit www.omicron-lab.com for

More information

idesyn id8802 2A, 23V, Synchronous Step-Down DC/DC

idesyn id8802 2A, 23V, Synchronous Step-Down DC/DC 2A, 23V, Synchronous Step-Down DC/DC General Description Applications The id8802 is a 340kHz fixed frequency PWM synchronous step-down regulator. The id8802 is operated from 4.5V to 23V, the generated

More information

Analog Technologies. ATI2202 Step-Down DC/DC Converter ATI2202. Fixed Frequency: 340 khz

Analog Technologies. ATI2202 Step-Down DC/DC Converter ATI2202. Fixed Frequency: 340 khz Step-Down DC/DC Converter Fixed Frequency: 340 khz APPLICATIONS LED Drive Low Noise Voltage Source/ Current Source Distributed Power Systems Networking Systems FPGA, DSP, ASIC Power Supplies Notebook Computers

More information

Input Filter Design for Switching Power Supplies Michele Sclocchi Application Engineer National Semiconductor

Input Filter Design for Switching Power Supplies Michele Sclocchi Application Engineer National Semiconductor Input Filter Design for Switching Power Supplies Michele Sclocchi Application Engineer National Semiconductor The design of a switching power supply has always been considered a kind of magic and art,

More information

Understanding, measuring, and reducing output noise in DC/DC switching regulators

Understanding, measuring, and reducing output noise in DC/DC switching regulators Understanding, measuring, and reducing output noise in DC/DC switching regulators Practical tips for output noise reduction Katelyn Wiggenhorn, Applications Engineer, Buck Switching Regulators Robert Blattner,

More information

ACT111A. 4.8V to 30V Input, 1.5A LED Driver with Dimming Control GENERAL DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION CIRCUIT

ACT111A. 4.8V to 30V Input, 1.5A LED Driver with Dimming Control GENERAL DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION CIRCUIT 4.8V to 30V Input, 1.5A LED Driver with Dimming Control FEATURES Up to 92% Efficiency Wide 4.8V to 30V Input Voltage Range 100mV Low Feedback Voltage 1.5A High Output Capacity PWM Dimming 10kHz Maximum

More information

FEATURES DESCRIPTION APPLICATIONS PACKAGE REFERENCE

FEATURES DESCRIPTION APPLICATIONS PACKAGE REFERENCE DESCRIPTION The is a monolithic synchronous buck regulator. The device integrates 100mΩ MOSFETS that provide 2A continuous load current over a wide operating input voltage of 4.75V to 25V. Current mode

More information

AT V Synchronous Buck Converter

AT V Synchronous Buck Converter 38V Synchronous Buck Converter FEATURES DESCRIPTION Wide 8V to 38V Operating Input Range Integrated two 140mΩ Power MOSFET Switches Feedback Voltage : 220mV Internal Soft-Start / VFB Over Voltage Protection

More information

EUP3410/ A,16V,380KHz Step-Down Converter DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit

EUP3410/ A,16V,380KHz Step-Down Converter DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit 2A,16V,380KHz Step-Down Converter DESCRIPTION The is a current mode, step-down switching regulator capable of driving 2A continuous load with excellent line and load regulation. The can operate with an

More information

3A, 23V, 380KHz Step-Down Converter

3A, 23V, 380KHz Step-Down Converter 3A, 23V, 380KHz Step-Down Converter General Description The is a buck regulator with a built in internal power MOSFET. It achieves 3A continuous output current over a wide input supply range with excellent

More information

2A, 23V, 380KHz Step-Down Converter

2A, 23V, 380KHz Step-Down Converter 2A, 23V, 380KHz Step-Down Converter FP6182 General Description The FP6182 is a buck regulator with a built in internal power MOSFET. It achieves 2A continuous output current over a wide input supply range

More information

Filter Network Design for VI Chip DC-DC Converter Modules

Filter Network Design for VI Chip DC-DC Converter Modules APPLICATION NOTE AN:03 Filter Network Design for VI Chip DCDC Modules Xiaoyan (Lucy) Yu Applications Engineer Contents Page Input Filter Design Stability Issue with an Input Filter 3 Output Filter Design

More information

UNISONIC TECHNOLOGIES CO., LTD UCC36351 Preliminary CMOS IC

UNISONIC TECHNOLOGIES CO., LTD UCC36351 Preliminary CMOS IC UNISONIC TECHNOLOGIES CO., LTD UCC36351 Preliminary CMOS IC 36V SYNCHRONOUS BUCK CONVERTER WITH CC/CV DESCRIPTION UTC UCC36351 is a wide input voltage, high efficiency Active CC step-down DC/DC converter

More information

38V Synchronous Buck Converter With CC/CV

38V Synchronous Buck Converter With CC/CV 38V Synchronous Buck Converter With CC/CV GENERAL DESCRIPTION MA5602 is a wide input voltage, high efficiency Active CC step-down DC/DC converter that operates in either CV (Constant Output Voltage) mode

More information

Final Exam. Anyone caught copying or allowing someone to copy from them will be ejected from the exam.

Final Exam. Anyone caught copying or allowing someone to copy from them will be ejected from the exam. Final Exam EECE 493-101 December 4, 2008 Instructor: Nathan Ozog Name: Student Number: Read all of the following information before starting the exam: The duration of this exam is 3 hours. Anyone caught

More information

5. Active Conditioning for a Distributed Power System

5. Active Conditioning for a Distributed Power System 5. Active Conditioning for a Distributed Power System 5.1 The Concept of the DC Bus Conditioning 5.1.1 Introduction In the process of the system integration, the greatest concern is the dc bus stability

More information

EUP3452A. 2A,30V,300KHz Step-Down Converter DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit

EUP3452A. 2A,30V,300KHz Step-Down Converter DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit 2A,30V,300KHz Step-Down Converter DESCRIPTION The is current mode, step-down switching regulator capable of driving 2A continuous load with excellent line and load regulation. The can operate with an input

More information

EMI Filter Design Example. This is a very small 1 hour session based on our 2 Day EMI Filter Design Workshop

EMI Filter Design Example. This is a very small 1 hour session based on our 2 Day EMI Filter Design Workshop Biricha Digital Power Ltd Parkway Dr Reading RG4 6XG UK April - 208 EMI Filter Design Example This is a very small hour session based on our 2 Day EMI Filter Design Workshop Dr Ali Shirsavar Biricha Digital

More information

EUP A,40V,200KHz Step-Down Converter

EUP A,40V,200KHz Step-Down Converter 3A,40V,200KHz Step-Down Converter DESCRIPTION The is current mode, step-down switching regulator capable of driving 3A continuous load with excellent line and load regulation. The operates with an input

More information

1.0MHz,24V/2.0A High Performance, Boost Converter

1.0MHz,24V/2.0A High Performance, Boost Converter 1.0MHz,24V/2.0A High Performance, Boost Converter General Description The LP6320C is a 1MHz PWM boost switching regulator designed for constant-voltage boost applications. The can drive a string of up

More information

Techcode. 1.6A 32V Synchronous Rectified Step-Down Converte TD1529. General Description. Features. Applications. Package Types DATASHEET

Techcode. 1.6A 32V Synchronous Rectified Step-Down Converte TD1529. General Description. Features. Applications. Package Types DATASHEET General Description Features The TD1529 is a monolithic synchronous buck regulator. The device integrates two 130mΩ MOSFETs, and provides 1.6A of continuous load current over a wide input voltage of 4.75V

More information

Chapter 6 Soft-Switching dc-dc Converters Outlines

Chapter 6 Soft-Switching dc-dc Converters Outlines Chapter 6 Soft-Switching dc-dc Converters Outlines Classification of soft-switching resonant converters Advantages and disadvantages of ZCS and ZVS Zero-current switching topologies The resonant switch

More information

Positive to Negative Buck-Boost Converter Using LM267X SIMPLE SWITCHER Regulators

Positive to Negative Buck-Boost Converter Using LM267X SIMPLE SWITCHER Regulators Positive to Negative Buck-Boost Converter Using LM267X SIMPLE SWITCHER Regulators Abstract The 3rd generation Simple Switcher LM267X series of regulators are monolithic integrated circuits with an internal

More information

A Primer on Simulation, Modeling, and Design of the Control Loops of Switching Regulators

A Primer on Simulation, Modeling, and Design of the Control Loops of Switching Regulators A Primer on Simulation, Modeling, and Design of the Control Loops of Switching egulators Bob Erickson and Dragan Maksimovic Colorado Power Electronics Center University of Colorado, Boulder IEEE APEC 3

More information

Chapter 6. Small signal analysis and control design of LLC converter

Chapter 6. Small signal analysis and control design of LLC converter Chapter 6 Small signal analysis and control design of LLC converter 6.1 Introduction In previous chapters, the characteristic, design and advantages of LLC resonant converter were discussed. As demonstrated

More information

Power Electronics. Exercise: Circuit Feedback

Power Electronics. Exercise: Circuit Feedback Lehrstuhl für Elektrische Antriebssysteme und Leistungselektronik Technische Universität München Prof Dr-Ing Ralph Kennel Aricsstr 21 Email: eat@eitumde Tel: +49 (0)89 289-28358 D-80333 München Internet:

More information

SC1101. Asynchronous Voltage Mode PWM Controller. POWER MANAGEMENT Description. Features. Applications. Typical Application Circuit

SC1101. Asynchronous Voltage Mode PWM Controller. POWER MANAGEMENT Description. Features. Applications. Typical Application Circuit Description The SC11 is a versatile, low-cost, voltage-mode PWM controller designed for low output voltage DC/DC power supply applications. A simple, fixed-voltage buck regulator can be implemented using

More information

340KHz, 36V/2.5A Step-down Converter With Soft-Start

340KHz, 36V/2.5A Step-down Converter With Soft-Start 340KHz, 36V/2.5A Step-down Converter With Soft-Start General Description The contains an independent 340KHz constant frequency, current mode, PWM step-down converters. The converter integrates a main switch

More information

Code: 9A Answer any FIVE questions All questions carry equal marks *****

Code: 9A Answer any FIVE questions All questions carry equal marks ***** II B. Tech II Semester (R09) Regular & Supplementary Examinations, April/May 2012 ELECTRONIC CIRCUIT ANALYSIS (Common to EIE, E. Con. E & ECE) Time: 3 hours Max Marks: 70 Answer any FIVE questions All

More information

Improvements of LLC Resonant Converter

Improvements of LLC Resonant Converter Chapter 5 Improvements of LLC Resonant Converter From previous chapter, the characteristic and design of LLC resonant converter were discussed. In this chapter, two improvements for LLC resonant converter

More information

SGM6132 3A, 28.5V, 1.4MHz Step-Down Converter

SGM6132 3A, 28.5V, 1.4MHz Step-Down Converter GENERAL DESCRIPTION The SGM6132 is a current-mode step-down regulator with an internal power MOSFET. This device achieves 3A continuous output current over a wide input supply range from 4.5V to 28.5V

More information

HM V 3A 500KHz Synchronous Step-Down Regulator

HM V 3A 500KHz Synchronous Step-Down Regulator Features Wide 4V to 18V Operating Input Range 3A Continuous Output Current 500KHz Switching Frequency Short Protection with Hiccup-Mode Built-in Over Current Limit Built-in Over Voltage Protection Internal

More information

Low-Noise 4.5A Step-Up Current Mode PWM Converter

Low-Noise 4.5A Step-Up Current Mode PWM Converter Low-Noise 4.5A Step-Up Current Mode PWM Converter FP6298 General Description The FP6298 is a current mode boost DC-DC converter. It is PWM circuitry with built-in 0.08Ω power MOSFET make this regulator

More information

LINEAR MODELING OF A SELF-OSCILLATING PWM CONTROL LOOP

LINEAR MODELING OF A SELF-OSCILLATING PWM CONTROL LOOP Carl Sawtell June 2012 LINEAR MODELING OF A SELF-OSCILLATING PWM CONTROL LOOP There are well established methods of creating linearized versions of PWM control loops to analyze stability and to create

More information

Cable Compensation of a Primary-Side-Regulation (PSR) Power Supply

Cable Compensation of a Primary-Side-Regulation (PSR) Power Supply Lion Huang AN011 April 014 Cable Compensation of a Primary-Side-Regulation (PSR) Power Supply Abstract Cable compensation has been used to compensate the voltage drop due to cable impedance for providing

More information

SGM6232 2A, 38V, 1.4MHz Step-Down Converter

SGM6232 2A, 38V, 1.4MHz Step-Down Converter GENERAL DESCRIPTION The is a current-mode step-down regulator with an internal power MOSFET. This device achieves 2A continuous output current over a wide input supply range from 4.5V to 38V with excellent

More information

An Oscillator Scheme for Quartz Crystal Characterization.

An Oscillator Scheme for Quartz Crystal Characterization. An Oscillator Scheme for Quartz Crystal Characterization. Wes Hayward, 15Nov07 The familiar quartz crystal is modeled with the circuit shown below containing a series inductor, capacitor, and equivalent

More information

UM1660. Low Power DC/DC Boost Converter UM1660S SOT23-5 UM1660DA DFN AAG PHO. General Description

UM1660. Low Power DC/DC Boost Converter UM1660S SOT23-5 UM1660DA DFN AAG PHO. General Description General Description Low Power DC/DC Boost Converter S SOT23-5 DA DFN6 2.0 2.0 The is a PFM controlled step-up DC-DC converter with a switching frequency up to 1MHz. The device is ideal to generate output

More information

HM1410 FEATURES APPLICATIONS PACKAGE REFERENCE HM1410

HM1410 FEATURES APPLICATIONS PACKAGE REFERENCE HM1410 DESCRIPTION The is a monolithic step-down switch mode converter with a built in internal power MOSFET. It achieves 2A continuous output current over a wide input supply range with excellent load and line

More information

LABORATORY #3 QUARTZ CRYSTAL OSCILLATOR DESIGN

LABORATORY #3 QUARTZ CRYSTAL OSCILLATOR DESIGN LABORATORY #3 QUARTZ CRYSTAL OSCILLATOR DESIGN OBJECTIVES 1. To design and DC bias the JFET transistor oscillator for a 9.545 MHz sinusoidal signal. 2. To simulate JFET transistor oscillator using MicroCap

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder 17.1 The single-phase full-wave rectifier i g i L L D 4 D 1 v g Z i C v R D 3 D 2 Full-wave rectifier

More information

LX12973 V 800mV, 1.5A, 1.1MHZ PWM

LX12973 V 800mV, 1.5A, 1.1MHZ PWM The LX12973 operates as a Current Mode PWM Buck regulator that switches to PFM mode with light loads. The entire regulator function is implemented with few external components. The LX12973 responds quickly

More information

MP1482 2A, 18V Synchronous Rectified Step-Down Converter

MP1482 2A, 18V Synchronous Rectified Step-Down Converter The Future of Analog IC Technology MY MP48 A, 8 Synchronous Rectified Step-Down Converter DESCRIPTION The MP48 is a monolithic synchronous buck regulator. The device integrates two 30mΩ MOSFETs, and provides

More information

WD3122EC. Descriptions. Features. Applications. Order information. High Efficiency, 28 LEDS White LED Driver. Product specification

WD3122EC. Descriptions. Features. Applications. Order information. High Efficiency, 28 LEDS White LED Driver. Product specification High Efficiency, 28 LEDS White LED Driver Descriptions The is a constant current, high efficiency LED driver. Internal MOSFET can drive up to 10 white LEDs in series and 3S9P LEDs with minimum 1.1A current

More information

TFT-LCD DC/DC Converter with Integrated Backlight LED Driver

TFT-LCD DC/DC Converter with Integrated Backlight LED Driver TFT-LCD DC/DC Converter with Integrated Backlight LED Driver Description The is a step-up current mode PWM DC/DC converter (Ch-1) built in an internal 1.6A, 0.25Ω power N-channel MOSFET and integrated

More information

EUP2511. HQI Boost Converter With 2.1A Switch In Tiny SOT-23 Package FEATURES DESCRIPTION APPLICATIONS. Typical Application Circuit

EUP2511. HQI Boost Converter With 2.1A Switch In Tiny SOT-23 Package FEATURES DESCRIPTION APPLICATIONS. Typical Application Circuit HQI Boost Converter With 2.1A Switch In Tiny SOT-23 Package DESCRIPTION The is a high performance current mode, PWM step-up converter. With an internal 2.1A, 150mΩ MOSFET, it can generate 5 at up to 900mA

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder Construction of transfer function v 2 (s) v (s) = Z 2Z Z Z 2 Z = Z out Z R C Z = L Q = R /R 0 f

More information

Design of DC-DC Converters using Tunable Piezoelectric Transformer

Design of DC-DC Converters using Tunable Piezoelectric Transformer Design of DC-DC Converters using Tunable Piezoelectric Transformer Mudit Khanna Master of Science In Electrical Engineering olando Burgos Khai D.T Ngo Shashank Priya Objectives and Scope Analyze the operation

More information

PD I Port_RMS_max requirement. Lennart Yseboodt, Matthias Wendt Philips Lighting Research March 7, 2017

PD I Port_RMS_max requirement. Lennart Yseboodt, Matthias Wendt Philips Lighting Research March 7, 2017 PD I Port_RMS_max requirement Lennart Yseboodt, Matthias Wendt Philips Lighting Research March 7, 2017 1 PD Input power/current requirements A PD has a number of input power / input current requirements

More information

VCC. UVLO internal bias & Vref. Vref OK. PWM Comparator. + + Ramp from Oscillator GND

VCC. UVLO internal bias & Vref. Vref OK. PWM Comparator. + + Ramp from Oscillator GND Block Diagram VCC 40V 16.0V/ 11.4V UVLO internal bias & Vref RT OSC EN Vref OK EN OUT Green-Mode Oscillator S COMP 2R R Q R PWM Comparator CS Leading Edge Blanking + + Ramp from Oscillator GND Absolute

More information

ESE319 Introduction to Microelectronics High Frequency BJT Model & Cascode BJT Amplifier

ESE319 Introduction to Microelectronics High Frequency BJT Model & Cascode BJT Amplifier High Frequency BJT Model & Cascode BJT Amplifier 1 Gain of 10 Amplifier Non-ideal Transistor C in R 1 V CC R 2 v s Gain starts dropping at > 1MHz. Why! Because of internal transistor capacitances that

More information

Low Cost, General Purpose High Speed JFET Amplifier AD825

Low Cost, General Purpose High Speed JFET Amplifier AD825 a FEATURES High Speed 41 MHz, 3 db Bandwidth 125 V/ s Slew Rate 8 ns Settling Time Input Bias Current of 2 pa and Noise Current of 1 fa/ Hz Input Voltage Noise of 12 nv/ Hz Fully Specified Power Supplies:

More information

AT V,3A Synchronous Buck Converter

AT V,3A Synchronous Buck Converter FEATURES DESCRIPTION Wide 8V to 40V Operating Input Range Integrated 140mΩ Power MOSFET Switches Output Adjustable from 1V to 25V Up to 93% Efficiency Internal Soft-Start Stable with Low ESR Ceramic Output

More information

Research and design of PFC control based on DSP

Research and design of PFC control based on DSP Acta Technica 61, No. 4B/2016, 153 164 c 2017 Institute of Thermomechanics CAS, v.v.i. Research and design of PFC control based on DSP Ma Yuli 1, Ma Yushan 1 Abstract. A realization scheme of single-phase

More information

HM V 2A 500KHz Synchronous Step-Down Regulator

HM V 2A 500KHz Synchronous Step-Down Regulator Features HM8114 Wide 4V to 30V Operating Input Range 2A Continuous Output Current Fixed 500KHz Switching Frequency No Schottky Diode Required Short Protection with Hiccup-Mode Built-in Over Current Limit

More information

L1 1 2 D1 B uF R5 18K (Option ) R4 1.1K

L1 1 2 D1 B uF R5 18K (Option ) R4 1.1K PWM CONTROL 3A STEP-DOWN CONVERTER FEATURES DESCRIPTION Input Voltage : 8V to 40V Output Voltage : 3.3V to 38V Duty Ratio : 0% to 100% PWM Control Oscillation Frequency Range is 50K~350KHz by Outside Resistance

More information

Type Ordering Code Package TDA Q67000-A5066 P-DIP-8-1

Type Ordering Code Package TDA Q67000-A5066 P-DIP-8-1 Control IC for Switched-Mode Power Supplies using MOS-Transistor TDA 4605-3 Bipolar IC Features Fold-back characteristics provides overload protection for external components Burst operation under secondary

More information

Current-mode PWM controller

Current-mode PWM controller DESCRIPTION The is available in an 8-Pin mini-dip the necessary features to implement off-line, fixed-frequency current-mode control schemes with a minimal external parts count. This technique results

More information

DC/DC Converter. Introduction

DC/DC Converter. Introduction DC/DC Converter Introduction This example demonstrates the use of Saber in the design of a DC/DC power converter. The converter is assumed to be a part of a larger system and is modeled at different levels

More information

Specify Gain and Phase Margins on All Your Loops

Specify Gain and Phase Margins on All Your Loops Keywords Venable, frequency response analyzer, power supply, gain and phase margins, feedback loop, open-loop gain, output capacitance, stability margins, oscillator, power electronics circuits, voltmeter,

More information

HIGH EFFICIENCY LLC RESONANT CONVERTER WITH DIGITAL CONTROL

HIGH EFFICIENCY LLC RESONANT CONVERTER WITH DIGITAL CONTROL HIGH EFFICIENCY LLC RESONANT CONVERTER WITH DIGITAL CONTROL ADRIANA FLORESCU, SERGIU OPREA Key words: LLC resonant converter, High efficiency, Digital control. This paper presents the theoretical analysis

More information