EECS 470 Lecture 4. Pipelining & Hazards II. Winter Prof. Ronald Dreslinski h8p://

Size: px
Start display at page:

Download "EECS 470 Lecture 4. Pipelining & Hazards II. Winter Prof. Ronald Dreslinski h8p://"

Transcription

1 Wenisch Portions ustin, Brehob, Falsafi, Hill, Hoe, ipasti, artin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar EECS 4 ecture 4 Pipelining & Hazards II Winter 29 GS STTION Prof. Ronald Dreslinski h8p:// Slides developed in part by Profs. ustin, Brehob, Falsafi, Hill, Hoe, ipasti, artin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar, and Wenisch of Carnegie ellon niversity, Purdue niversity, niversity of ichigan, niversity of Pennsylvania, and niversity of Wisconsin. EECS 4 ecture 4 Slide

2 nnouncements Wenisch Portions ustin, Brehob, Falsafi, Hill, Hoe, ipasti, artin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar Programming assignment #2 due Tuesday /29 Electronic hand-in by :59pm HW # 2 released, Due Thursday / EECS 4 ecture 4 Slide 2

3 Readings Wenisch Portions ustin, Brehob, Falsafi, Hill, Hoe, ipasti, artin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar For Thursday /9: H & P Chapter C.5-C.,.-.,. EECS 4 ecture 4 Slide

4 Sample Code (Simple) Wenisch Portions ustin, Brehob, Falsafi, Hill, Hoe, ipasti, artin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar Run the following code on a pipelined path: add 2 ; reg = reg reg 2 nand ; reg 6 = reg 4 & reg 5 lw ; reg 4 = em[reg22] add ; reg 5 = reg 2 reg 5 sw ; em[reg] =reg EECS 4 ecture Slide 4

5 Wenisch et al. 2 instruction reg regb R val valb offset target eq? result valb ory result m dest Bits -2 Bits 6-8 Bits dest op / E dest op E/ em dest op em/ 5

6 Wenisch et al. 2 Initial State noop Bits -2 Bits 6-8 Bits R noop / E noop E/ em ory noop em/ dest 6

7 Wenisch et al. 2 add 2 Fetch: add 2 Time: add 2 Bits -2 Bits 6-8 Bits R noop / E noop E/ em ory noop em/ dest

8 Wenisch et al. 2 nand add 2 Fetch: nand Time: 2 2 nand Bits -2 Bits 6-8 Bits R add / E noop E/ em ory noop em/ dest 8

9 Wenisch et al. 2 lw nand add 2 Fetch: lw Time: lw Bits -2 Bits 6-8 Bits R nand / E add E/ em ory noop em/ dest 9

10 Wenisch et al. 2 add lw nand add 2 Fetch: add Time: 4 4 add Bits -2 Bits 6-8 Bits R lw / E nand E/ em 45 ory 45 add em/ dest

11 Wenisch et al. 2 sw add lw nand add Fetch: sw Time: 5 5 sw 2 5 Bits -2 Bits 6-8 Bits R add / E lw E/ em - 6 ory - 6 nand 45 em/ dest

12 Wenisch et al. 2 sw add lw nand No more instructions Time: 6 Bits -2 Bits 6-8 Bits R sw / E add E/ em 29 4 ory lw - 6 em/ dest 2

13 Wenisch et al. 2 sw add lw No more instructions Time: Bits -2 Bits 6-8 Bits R / E sw E/ em 6 5 ory 6 5 add 99 4 em/ dest

14 Wenisch et al. 2 sw add R ory 55 6 dest No more instructions Time: 8 Bits -2 Bits 6-8 Bits / E E/ em sw 5 em/ 4

15 Wenisch et al. 2 sw R ory dest No more instructions Bits -2 Bits 6-8 Bits Time: 9 / E E/ em em/ 5

16 Outline: Wenisch Portions ustin, Brehob, Falsafi, Hill, Hoe, ipasti, artin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar nderstanding the Execution Core. s 5-stage pipeline (review) 2. Implemen]ng pipeline interlocks (review). Scoreboard scheduling (CDC 66) 4. Tomasulo s OoO scheduling algorithm (IB 6) 5. Precise interrupts with a Reorder Buffer (P6) 6. odern OoO (IPS K, Netburst) EECS 4 ecture 4 Slide 6

17 Time graphs Wenisch Portions ustin, Brehob, Falsafi, Hill, Hoe, ipasti, artin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar Time: add fetch decode execute ory writeback nand fetch decode execute ory writeback lw fetch decode execute ory writeback add fetch decode execute ory writeback sw fetch decode execute ory writeback EECS 4 ecture 4 Slide

18 Balancing Pipeline Stages Wenisch Portions ustin, Brehob, Falsafi, Hill, Hoe, ipasti, artin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar IF T IF = 6 units Without pipelining T cyc T IF T T E T E T = E T = 2 units T E = 9 units Pipelined T cyc max{t IF,T,T E,T E,T } = 9 E T E = 5 units Speedup= / 9 EECS 4 T = 9 units Can we do be*er in terms of either performance or efficiency? ecture 4 Slide 8

19 Balancing Pipeline Stages Wenisch Portions ustin, Brehob, Falsafi, Hill, Hoe, ipasti, artin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar Two ethods for Stage Quan]za]on: erging of mul]ple stages Further subdividing a stage Recent Trends: Deeper pipelines (more and more stages) Pipeline depth growing more slowly since Pen]um 4. ul]ple pipelines (subpipelines) Pipelined ory/cache accesses (tricky) EECS 4 ecture 4 Slide 9

20 Wenisch Portions ustin, Brehob, Falsafi, Hill, Hoe, ipasti, artin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar The Cost of Deeper Pipelines ruc]on pipelines are not ideal i.e. ruc:ons in different stages can have dependencies Suppose add 2 nand 4 5 RW!! add nand t t t 2 t t 4 F t D t E t 2 t W t 4 t 5 t 5 F F D D E E Stall W E W F F D D E Stall D W E EECS 4 ecture 4 Slide 2

21 Wenisch Portions ustin, Brehob, Falsafi, Hill, Hoe, ipasti, artin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar Types of Dependencies and Hazards Dependence (Both ory and register) True dependence (RW) ruc:on must wait for all required input operands n]-dependence (WR) ater write must not clobber a s:ll-pending earlier read Output dependence (WW) Earlier write must not clobber already-completed later write Control Dependence (aka Procedural Dependence) Condi]onal branches may change instruc]on sequence ruc]ons aker cond. branch depend on outcome (more exact defini:on later) EECS 4 ecture 4 Slide 2

22 Terminology Wenisch Portions ustin, Brehob, Falsafi, Hill, Hoe, ipasti, artin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar Pipeline Hazards: Poten]al viola]ons of program dependences ust ensure program dependences are not violated Hazard Resolu]on: Sta]c ethod: Performed at compiled ]me in sokware Dynamic ethod: Performed at run ]me using hardware Pipeline Interlock: Hardware mechanisms for dynamic hazard resolu]on ust detect and enforce dependences at run ]me EECS 4 ecture 4 Slide 22

23 Wenisch Portions ustin, Brehob, Falsafi, Hill, Hoe, ipasti, artin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar Necessary Conditions for Hazards j:r k _ Reg Write j:r k _ Reg Write j:_ r k stage Reg Read Hazard Distance stage Y i:r k _ Reg Write i:_ r k Reg Read i:r k _ Reg Write WW Hazard WR Hazard RW Hazard EECS 4 dist(i,j) dist(,y)?? Hazard!! dist(i,j) > dist(,y)?? Safe ecture 4 Slide 2

24 Handling Hazards Wenisch Portions ustin, Brehob, Falsafi, Hill, Hoe, ipasti, artin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar voidance (sta]c) ake sure there are no hazards in the code Detect and Stall (dynamic) Stall un]l earlier instruc]ons finish Detect and Forward (dynamic) Get correct value from elsewhere in pipeline EECS 4 ecture 4 Slide 24

25 Handling Hazards: voidance Wenisch Portions ustin, Brehob, Falsafi, Hill, Hoe, ipasti, artin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar Programmer/compiler must know implementa]on details Insert nops between dependent instruc]ons add 2 nop nop nand 4 5 write in cycle 5 read in cycle 6 EECS 4 ecture 4 Slide 25

26 Problems with voidance Wenisch Portions ustin, Brehob, Falsafi, Hill, Hoe, ipasti, artin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar Binary compatability New implementa]ons may require more nops Code size Higher instruc]on cache footprint onger binary load ]mes Worse in machines that execute mul]ple instruc]ons / cycle Intel Itanium 25-4% of instruc]ons are nops Slower execu]on CPI=, but many instruc]ons are nops EECS 4 ecture 4 Slide 26

27 Handling Hazards: Detect & Stall Wenisch Portions ustin, Brehob, Falsafi, Hill, Hoe, ipasti, artin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar Detec]on Compare reg & regb with DestReg of preceding insn. bit comparators Stall Do not advance pipeline register for Fetch/Decode Pass nop to Execute EECS 4 ecture 4 Slide 2

28 Wenisch et al. 26 Fetch Decode Execute emory instruction reg regb R val valb offset target eq? result valb ory result m dest Bits -2 Bits 6-8 Bits dest op dest op dest op / E E/ em em/ 28

29 Wenisch et al. 26 Fetch Decode Execute emory instruction reg regb R val valb offset target eq? result valb ory result m dest dest dest dest op op op / E E/ em em/ 29

30 Wenisch et al. 26 End of Cycle add 2 reg regb R 4 val valb offset target eq? result valb ory result m op op op / E E/ em em/

31 Wenisch et al. 26 End of Cycle 2 nand 4 5 reg regb R 4 4 target eq? result valb ory result m add op op / E E/ em em/

32 Wenisch et al. 26 First half of cycle Hazard detection nand 4 5 reg regb R 4 4 target eq? result valb ory result m add op op / E E/ em em/ 2

33 Wenisch et al. 26 Hazard detected compare compare compare compare reg regb REG file / E

34 Wenisch et al. 26 Hazard detected compare reg regb 4

35 Wenisch et al. 26 First half of cycle en en 2 nand 4 5 Hazard reg regb R 4 4 target eq? result ory result m valb add / E E/ em em/ 5

36 Wenisch et al. 26 End of cycle 2 nand 4 5 reg regb R 4 2 ory result m noop add / E E/ em em/ 6

37 Wenisch et al. 26 First half of cycle 4 en en 2 nand 4 5 Hazard reg regb R 4 2 ory result m noop add / E E/ em em/

38 Wenisch et al. 26 End of cycle 4 2 nand 4 5 reg regb R 4 ory 2 noop noop add / E E/ em em/ 8

39 Wenisch et al. 26 First half of cycle 5 2 nand 4 5 No Hazard reg regb R 4 ory 2 noop noop add / E E/ em em/ 9

40 Wenisch et al. 26 End of cycle 5 add 5 reg regb R ory nand noop noop / E E/ em em/ 4

41 Wenisch Portions ustin, Brehob, Falsafi, Hill, Hoe, ipasti, artin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar Problems with Detect & Stall CPI increases on every hazard re these stalls necessary? Not always! The new value for is in the E/em register Reroute the result to the nand Called forwarding or bypassing EECS 4 ecture 4 Slide 4

42 Handling Hazards: Detect & Forward Wenisch Portions ustin, Brehob, Falsafi, Hill, Hoe, ipasti, artin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar Detec]on Same as detect and stall, but each possible hazard requires different forwarding paths Forward dd paths for all possible sources dd mux in front of to select source bypassing logic oken a cri]cal path in wide-issue machines # paths grows quadra]cally with machine width EECS 4 ecture 4 Slide 42

43 Wenisch et al. 26 First half of cycle 2 nand 4 5 Hazard reg regb R ory add fwd fwd fwd / E E/ em em/ 4

44 Wenisch et al. 26 End of cycle add 6 5 reg regb R ory nand add H / E E/ em em/ 44

45 Wenisch et al. 26 First half of cycle 4 add 6 New Hazard 5 reg regb R ory nand add H / E E/ em em/ 45

46 Wenisch et al. 26 End of cycle 4 4 lw 6 reg regb 5 R ory 2 add nand add H2 / E H E/ em em/ 46

47 Wenisch et al. 26 First half of cycle 5 4 lw 6 No Hazard reg regb 5 R ory 2 add nand add H2 / E H E/ em em/ 4

48 Wenisch et al. 26 End of cycle 5 5 sw reg regb 5 R ory -2 lw add nand / E H2 E/ em H em/ 48

49 Wenisch et al. 26 First half of cycle 6 en en 5 sw Hazard 6 reg regb 6 5 R ory -2 lw add nand / E H2 E/ em H em/ 49

50 Wenisch et al. 26 End of cycle 6 5 sw reg regb 6 R ory 22 noop lw add / E E/ em H2 em/ 5

51 Wenisch et al. 26 First half of cycle 5 sw Hazard 6 reg regb 6 R ory 22 noop lw add / E E/ em H2 em/ 5

52 Wenisch et al. 26 End of cycle reg regb 6 R ory 99 sw noop lw H / E E/ em em/ 52

53 Wenisch et al. 26 First half of cycle 8 reg regb 6 R ory 99 sw noop lw H / E E/ em em/ 5

54 Wenisch et al. 26 End of cycle 8 reg regb R ory sw noop / E H E/ em em/ 54

55 oad Delay Slot (IPS ) Wenisch Portions ustin, Brehob, Falsafi, Hill, Hoe, ipasti, artin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar i: j: k: t t t 2 t t 4 t 5 F D E W F D E W F D E W h: R k -- i: R k E[ - ] j: -- R k k: -- R k - The effect of a delayed oad is not visible to the instructions in its delay slots. Which (R k ) do we really mean? EECS 4 ecture 4 Slide 55

56 Control Hazards Wenisch Portions ustin, Brehob, Falsafi, Hill, Hoe, ipasti, artin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar beq sub 4 5 beq sub t t t 2 t t 4 t 5 F D E W F D E W squash EECS 4 ecture 4 Slide 56

57 Handling Control Hazards Wenisch Portions ustin, Brehob, Falsafi, Hill, Hoe, ipasti, artin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar voidance (sta]c) No branches? Convert branches to predica]on Control dependence becomes dependence Detect and Stall (dynamic) Stop fetch un]l branch resolves Speculate and squash (dynamic) Keep going past branch, throw away instruc]ons if wrong EECS 4 ecture 4 Slide 5

58 voidance: if-conversion Wenisch Portions ustin, Brehob, Falsafi, Hill, Hoe, ipasti, artin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar if (a == b) { x; y = n / d; } sub t a, b jnz t, 2 add x x, # div y n, d sub t a, b add(t) x x, # div(t) y n, d sub t a, b add t2 x, # div t n, d cmov(t) x t2 cmov(t) y t EECS 4 ecture 4 Slide 58

59 Handling Control Hazards: Detect & Stall Wenisch Portions ustin, Brehob, Falsafi, Hill, Hoe, ipasti, artin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar Detec]on In decode, check if opcode is branch or jump Stall Hold next instruc]on in Fetch Pass noop to Decode EECS 4 ecture 4 Slide 59

60 Wenisch Portions ustin, Brehob, Falsafi, Hill, Hoe, ipasti, artin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar Problems with Detect & Stall CPI increases on every branch re these stalls necessary? Not always! Branch is only taken half the ]me ssume branch is NOT taken Keep fetching, treat branch as noop If wrong, make sure bad instruc]ons don t complete EECS 4 ecture 4 Slide 6

61 Handling Control Hazards: Speculate & Squash Wenisch Portions ustin, Brehob, Falsafi, Hill, Hoe, ipasti, artin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar Speculate ssume branch is not taken Squash Overwrite opcodes in Fetch, Decode, Execute with noop Pass target to Fetch EECS 4 ecture 4 Slide 6

62 62 Wenisch et al. 26 REG file ory / E E/ em em/ sign ext Control equal beq sub add nand add sub beq beq noop noop noop

63 Wenisch Portions ustin, Brehob, Falsafi, Hill, Hoe, ipasti, artin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar Problems with Speculate & Squash lways assumes branch is not taken Can we do bewer? Yes. Predict branch direc]on and target! Why possible? Program behavior repeats. ore on branch predic]on to come... EECS 4 ecture 4 Slide 6

64 Wenisch Portions ustin, Brehob, Falsafi, Hill, Hoe, ipasti, artin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar Branch Delay Slot (IPS, SPRC) branch: next: target: t t t 2 t t 4 t 5 F D E W F Squash F D E W - ruction in delay slot executes even on taken branch branch: delay: target: F D E W F D E W F D E W i: beq, 2, tgt j: add, 4, 5 What can we put here? EECS 4 ecture 4 Slide 64

65 Pipeline Hazard Checklist Wenisch Portions ustin, Brehob, Falsafi, Hill, Hoe, ipasti, artin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar emory Dependences Output Dependence (WW) n] Dependence (WR) True Dependence (RW) Register Dependences Output Dependence (WW) n] Dependence (WR) True Dependence (RW) Control Dependences EECS 4 ecture 4 Slide 65

EECS 470 Lecture 5. Intro to Dynamic Scheduling (Scoreboarding) Fall 2018 Jon Beaumont

EECS 470 Lecture 5. Intro to Dynamic Scheduling (Scoreboarding) Fall 2018 Jon Beaumont Intro to Dynamic Scheduling (Scoreboarding) Fall 2018 Jon Beaumont http://www.eecs.umich.edu/courses/eecs470 Many thanks to Prof. Martin and Roth of University of Pennsylvania for most of these slides.

More information

Issue. Execute. Finish

Issue. Execute. Finish Specula1on & Precise Interrupts Fall 2017 Prof. Ron Dreslinski h6p://www.eecs.umich.edu/courses/eecs470 In Order Out of Order In Order Issue Execute Finish Fetch Decode Dispatch Complete Retire Instruction/Decode

More information

EECS 470. Tomasulo s Algorithm. Lecture 4 Winter 2018

EECS 470. Tomasulo s Algorithm. Lecture 4 Winter 2018 omasulo s Algorithm Winter 2018 Slides developed in part by Profs. Austin, Brehob, Falsafi, Hill, Hoe, Lipasti, Martin, Roth, Shen, Smith, Sohi, yson, Vijaykumar, and Wenisch of Carnegie Mellon University,

More information

EECS 470 Lecture 8. P6 µarchitecture. Fall 2018 Jon Beaumont Core 2 Microarchitecture

EECS 470 Lecture 8. P6 µarchitecture. Fall 2018 Jon Beaumont   Core 2 Microarchitecture P6 µarchitecture Fall 2018 Jon Beaumont http://www.eecs.umich.edu/courses/eecs470 Core 2 Microarchitecture Many thanks to Prof. Martin and Roth of University of Pennsylvania for most of these slides. Portions

More information

Tomasolu s s Algorithm

Tomasolu s s Algorithm omasolu s s Algorithm Fall 2007 Prof. homas Wenisch http://www.eecs.umich.edu/courses/eecs4 70 Floating Point Buffers (FLB) ag ag ag Storage Bus Floating Point 4 3 Buffers FLB 6 5 5 4 Control 2 1 1 Result

More information

EECS 470. Lecture 9. MIPS R10000 Case Study. Fall 2018 Jon Beaumont

EECS 470. Lecture 9. MIPS R10000 Case Study. Fall 2018 Jon Beaumont MIPS R10000 Case Study Fall 2018 Jon Beaumont http://www.eecs.umich.edu/courses/eecs470 Multiprocessor SGI Origin Using MIPS R10K Many thanks to Prof. Martin and Roth of University of Pennsylvania for

More information

EECE 321: Computer Organiza5on

EECE 321: Computer Organiza5on EECE 321: Computer Organiza5on Mohammad M. Mansour Dept. of Electrical and Compute Engineering American University of Beirut Lecture 21: Pipelining Processor Pipelining Same principles can be applied to

More information

Instruction Level Parallelism. Data Dependence Static Scheduling

Instruction Level Parallelism. Data Dependence Static Scheduling Instruction Level Parallelism Data Dependence Static Scheduling Basic Block A straight line code sequence with no branches in except to the entry and no branches out except at the exit Loop: L.D ADD.D

More information

ECE 2300 Digital Logic & Computer Organization. More Pipelined Microprocessor

ECE 2300 Digital Logic & Computer Organization. More Pipelined Microprocessor ECE 2300 Digital ogic & Computer Organization Spring 2018 ore Pipelined icroprocessor ecture 18: 1 nnouncements No instructor office hour today Rescheduled to onday pril 16, 4:00-5:30pm Prelim 2 review

More information

7/11/2012. Single Cycle (Review) CSE 2021: Computer Organization. Multi-Cycle Implementation. Single Cycle with Jump. Pipelining Analogy

7/11/2012. Single Cycle (Review) CSE 2021: Computer Organization. Multi-Cycle Implementation. Single Cycle with Jump. Pipelining Analogy CSE 2021: Computer Organization Single Cycle (Review) Lecture-10 CPU Design : Pipelining-1 Overview, Datapath and control Shakil M. Khan CSE-2021 July-12-2012 2 Single Cycle with Jump Multi-Cycle Implementation

More information

Chapter 4. Pipelining Analogy. The Processor. Pipelined laundry: overlapping execution. Parallelism improves performance. Four loads: Non-stop:

Chapter 4. Pipelining Analogy. The Processor. Pipelined laundry: overlapping execution. Parallelism improves performance. Four loads: Non-stop: Chapter 4 The Processor Part II Pipelining Analogy Pipelined laundry: overlapping execution Parallelism improves performance Four loads: Speedup = 8/3.5 = 2.3 Non-stop: Speedup p = 2n/(0.5n + 1.5) 4 =

More information

U. Wisconsin CS/ECE 752 Advanced Computer Architecture I

U. Wisconsin CS/ECE 752 Advanced Computer Architecture I U. Wisconsin CS/ECE 752 Advanced Computer Architecture I Prof. Karu Sankaralingam Unit 5: Dynamic Scheduling I Slides developed by Amir Roth of University of Pennsylvania with sources that included University

More information

Instruction Level Parallelism III: Dynamic Scheduling

Instruction Level Parallelism III: Dynamic Scheduling Instruction Level Parallelism III: Dynamic Scheduling Reading: Appendix A (A-67) H&P Chapter 2 Instruction Level Parallelism III: Dynamic Scheduling 1 his Unit: Dynamic Scheduling Application OS Compiler

More information

7/19/2012. IF for Load (Review) CSE 2021: Computer Organization. EX for Load (Review) ID for Load (Review) WB for Load (Review) MEM for Load (Review)

7/19/2012. IF for Load (Review) CSE 2021: Computer Organization. EX for Load (Review) ID for Load (Review) WB for Load (Review) MEM for Load (Review) CSE 2021: Computer Organization IF for Load (Review) Lecture-11 CPU Design : Pipelining-2 Review, Hazards Shakil M. Khan CSE-2021 July-19-2012 2 ID for Load (Review) EX for Load (Review) CSE-2021 July-19-2012

More information

A B C D. Ann, Brian, Cathy, & Dave each have one load of clothes to wash, dry, and fold. Time

A B C D. Ann, Brian, Cathy, & Dave each have one load of clothes to wash, dry, and fold. Time Pipelining Readings: 4.5-4.8 Example: Doing the laundry A B C D Ann, Brian, Cathy, & Dave each have one load of clothes to wash, dry, and fold Washer takes 30 minutes Dryer takes 40 minutes Folder takes

More information

Pipelining A B C D. Readings: Example: Doing the laundry. Ann, Brian, Cathy, & Dave. each have one load of clothes to wash, dry, and fold

Pipelining A B C D. Readings: Example: Doing the laundry. Ann, Brian, Cathy, & Dave. each have one load of clothes to wash, dry, and fold Pipelining Readings: 4.5-4.8 Example: Doing the laundry Ann, Brian, Cathy, & Dave A B C D each have one load of clothes to wash, dry, and fold Washer takes 30 minutes Dryer takes 40 minutes Folder takes

More information

CSE 2021: Computer Organization

CSE 2021: Computer Organization CSE 2021: Computer Organization Lecture-11 CPU Design : Pipelining-2 Review, Hazards Shakil M. Khan IF for Load (Review) CSE-2021 July-14-2011 2 ID for Load (Review) CSE-2021 July-14-2011 3 EX for Load

More information

Pipelined Processor Design

Pipelined Processor Design Pipelined Processor Design COE 38 Computer Architecture Prof. Muhamed Mudawar Computer Engineering Department King Fahd University of Petroleum and Minerals Presentation Outline Pipelining versus Serial

More information

CS 110 Computer Architecture Lecture 11: Pipelining

CS 110 Computer Architecture Lecture 11: Pipelining CS 110 Computer Architecture Lecture 11: Pipelining Instructor: Sören Schwertfeger http://shtech.org/courses/ca/ School of Information Science and Technology SIST ShanghaiTech University Slides based on

More information

Out-of-Order Execution. Register Renaming. Nima Honarmand

Out-of-Order Execution. Register Renaming. Nima Honarmand Out-of-Order Execution & Register Renaming Nima Honarmand Out-of-Order (OOO) Execution (1) Essence of OOO execution is Dynamic Scheduling Dynamic scheduling: processor hardware determines instruction execution

More information

Computer Architecture

Computer Architecture Computer Architecture An Introduction Virendra Singh Associate Professor Computer Architecture and Dependable Systems Lab Department of Electrical Engineering Indian Institute of Technology Bombay http://www.ee.iitb.ac.in/~viren/

More information

Computer Science 246. Advanced Computer Architecture. Spring 2010 Harvard University. Instructor: Prof. David Brooks

Computer Science 246. Advanced Computer Architecture. Spring 2010 Harvard University. Instructor: Prof. David Brooks Advanced Computer Architecture Spring 2010 Harvard University Instructor: Prof. dbrooks@eecs.harvard.edu Lecture Outline Instruction-Level Parallelism Scoreboarding (A.8) Instruction Level Parallelism

More information

CSE502: Computer Architecture CSE 502: Computer Architecture

CSE502: Computer Architecture CSE 502: Computer Architecture CSE 502: Computer Architecture Out-of-Order Execution and Register Rename In Search of Parallelism rivial Parallelism is limited What is trivial parallelism? In-order: sequential instructions do not have

More information

CSE502: Computer Architecture CSE 502: Computer Architecture

CSE502: Computer Architecture CSE 502: Computer Architecture CSE 502: Computer Architecture Out-of-Order Execution and Register Rename In Search of Parallelism rivial Parallelism is limited What is trivial parallelism? In-order: sequential instructions do not have

More information

IF ID EX MEM WB 400 ps 225 ps 350 ps 450 ps 300 ps

IF ID EX MEM WB 400 ps 225 ps 350 ps 450 ps 300 ps CSE 30321 Computer Architecture I Fall 2011 Homework 06 Pipelined Processors 75 points Assigned: November 1, 2011 Due: November 8, 2011 PLEASE DO THE ASSIGNMENT ON THIS HANDOUT!!! Problem 1: (15 points)

More information

CS521 CSE IITG 11/23/2012

CS521 CSE IITG 11/23/2012 Parallel Decoding and issue Parallel execution Preserving the sequential consistency of execution and exception processing 1 slide 2 Decode/issue data Issue bound fetch Dispatch bound fetch RS RS RS RS

More information

Instruction Level Parallelism Part II - Scoreboard

Instruction Level Parallelism Part II - Scoreboard Course on: Advanced Computer Architectures Instruction Level Parallelism Part II - Scoreboard Prof. Cristina Silvano Politecnico di Milano email: cristina.silvano@polimi.it 1 Basic Assumptions We consider

More information

Asanovic/Devadas Spring Pipeline Hazards. Krste Asanovic Laboratory for Computer Science M.I.T.

Asanovic/Devadas Spring Pipeline Hazards. Krste Asanovic Laboratory for Computer Science M.I.T. Pipeline Hazards Krste Asanovic Laboratory for Computer Science M.I.T. Pipelined DLX Datapath without interlocks and jumps 31 0x4 RegDst RegWrite inst Inst rs1 rs2 rd1 ws wd rd2 GPRs Imm Ext A B OpSel

More information

Precise State Recovery. Out-of-Order Pipelines

Precise State Recovery. Out-of-Order Pipelines Precise State Recovery in Out-of-Order Pipelines Nima Honarmand Recall Our Generic OOO Pipeline Instruction flow (pipeline front-end) is in-order Register and memory execution are OOO And, we need a final

More information

EN164: Design of Computing Systems Lecture 22: Processor / ILP 3

EN164: Design of Computing Systems Lecture 22: Processor / ILP 3 EN164: Design of Computing Systems Lecture 22: Processor / ILP 3 Professor Sherief Reda http://scale.engin.brown.edu Electrical Sciences and Computer Engineering School of Engineering Brown University

More information

Dynamic Scheduling II

Dynamic Scheduling II so far: dynamic scheduling (out-of-order execution) Scoreboard omasulo s algorithm register renaming: removing artificial dependences (WAR/WAW) now: out-of-order execution + precise state advanced topic:

More information

Lecture Topics. Announcements. Today: Pipelined Processors (P&H ) Next: continued. Milestone #4 (due 2/23) Milestone #5 (due 3/2)

Lecture Topics. Announcements. Today: Pipelined Processors (P&H ) Next: continued. Milestone #4 (due 2/23) Milestone #5 (due 3/2) Lecture Topics Today: Pipelined Processors (P&H 4.5-4.10) Next: continued 1 Announcements Milestone #4 (due 2/23) Milestone #5 (due 3/2) 2 1 ISA Implementations Three different strategies: single-cycle

More information

IF ID EX MEM WB 400 ps 225 ps 350 ps 450 ps 300 ps

IF ID EX MEM WB 400 ps 225 ps 350 ps 450 ps 300 ps CSE 30321 Computer Architecture I Fall 2010 Homework 06 Pipelined Processors 85 points Assigned: November 2, 2010 Due: November 9, 2010 PLEASE DO THE ASSIGNMENT ON THIS HANDOUT!!! Problem 1: (25 points)

More information

CSE502: Computer Architecture CSE 502: Computer Architecture

CSE502: Computer Architecture CSE 502: Computer Architecture CSE 502: Computer Architecture Speculation and raps in Out-of-Order Cores What is wrong with omasulo s? Branch instructions Need branch prediction to guess what to fetch next Need speculative execution

More information

Dynamic Scheduling I

Dynamic Scheduling I basic pipeline started with single, in-order issue, single-cycle operations have extended this basic pipeline with multi-cycle operations multiple issue (superscalar) now: dynamic scheduling (out-of-order

More information

Lecture 4: Introduction to Pipelining

Lecture 4: Introduction to Pipelining Lecture 4: Introduction to Pipelining Pipelining Laundry Example Ann, Brian, Cathy, Dave each have one load of clothes to wash, dry, and fold Washer takes 30 minutes A B C D Dryer takes 40 minutes Folder

More information

Pipelined Beta. Handouts: Lecture Slides. Where are the registers? Spring /10/01. L16 Pipelined Beta 1

Pipelined Beta. Handouts: Lecture Slides. Where are the registers? Spring /10/01. L16 Pipelined Beta 1 Pipelined Beta Where are the registers? Handouts: Lecture Slides L16 Pipelined Beta 1 Increasing CPU Performance MIPS = Freq CPI MIPS = Millions of Instructions/Second Freq = Clock Frequency, MHz CPI =

More information

Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides Some material adapted from Hennessy & Patterson / 2003 Elsevier

Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides Some material adapted from Hennessy & Patterson / 2003 Elsevier Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides Some material adapted from Hennessy & Patterson / 2003 Elsevier Science !!! Basic MIPS integer pipeline Branches with one

More information

RISC Central Processing Unit

RISC Central Processing Unit RISC Central Processing Unit Lan-Da Van ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Spring, 2014 ldvan@cs.nctu.edu.tw http://www.cs.nctu.edu.tw/~ldvan/

More information

COSC4201. Scoreboard

COSC4201. Scoreboard COSC4201 Scoreboard Prof. Mokhtar Aboelaze York University Based on Slides by Prof. L. Bhuyan (UCR) Prof. M. Shaaban (RIT) 1 Overcoming Data Hazards with Dynamic Scheduling In the pipeline, if there is

More information

Problem: hazards delay instruction completion & increase the CPI. Compiler scheduling (static scheduling) reduces impact of hazards

Problem: hazards delay instruction completion & increase the CPI. Compiler scheduling (static scheduling) reduces impact of hazards Dynamic Scheduling Pipelining: Issue instructions in every cycle (CPI 1) Problem: hazards delay instruction completion & increase the CPI Compiler scheduling (static scheduling) reduces impact of hazards

More information

6.S084 Tutorial Problems L19 Control Hazards in Pipelined Processors

6.S084 Tutorial Problems L19 Control Hazards in Pipelined Processors 6.S084 Tutorial Problems L19 Control Hazards in Pipelined Processors Options for dealing with data and control hazards: stall, bypass, speculate 6.S084 Worksheet - 1 of 10 - L19 Control Hazards in Pipelined

More information

CMP 301B Computer Architecture. Appendix C

CMP 301B Computer Architecture. Appendix C CMP 301B Computer Architecture Appendix C Dealing with Exceptions What should be done when an exception arises and many instructions are in the pipeline??!! Force a trap instruction in the next IF stage

More information

RISC Design: Pipelining

RISC Design: Pipelining RISC Design: Pipelining Virendra Singh Associate Professor Computer Architecture and Dependable Systems Lab Department of Electrical Engineering Indian Institute of Technology Bombay http://www.ee.iitb.ac.in/~viren/

More information

Parallel architectures Electronic Computers LM

Parallel architectures Electronic Computers LM Parallel architectures Electronic Computers LM 1 Architecture Architecture: functional behaviour of a computer. For instance a processor which executes DLX code Implementation: a logical network implementing

More information

Chapter 16 - Instruction-Level Parallelism and Superscalar Processors

Chapter 16 - Instruction-Level Parallelism and Superscalar Processors Chapter 16 - Instruction-Level Parallelism and Superscalar Processors Luis Tarrataca luis.tarrataca@gmail.com CEFET-RJ L. Tarrataca Chapter 16 - Superscalar Processors 1 / 78 Table of Contents I 1 Overview

More information

CISC 662 Graduate Computer Architecture. Lecture 9 - Scoreboard

CISC 662 Graduate Computer Architecture. Lecture 9 - Scoreboard CISC 662 Graduate Computer Architecture Lecture 9 - Scoreboard Michela Taufer http://www.cis.udel.edu/~taufer/teaching/cis662f07 Powerpoint Lecture tes from John Hennessy and David Patterson s: Computer

More information

LECTURE 8. Pipelining: Datapath and Control

LECTURE 8. Pipelining: Datapath and Control LECTURE 8 Pipelining: Datapath and Control PIPELINED DATAPATH As with the single-cycle and multi-cycle implementations, we will start by looking at the datapath for pipelining. We already know that pipelining

More information

CMSC 611: Advanced Computer Architecture

CMSC 611: Advanced Computer Architecture CMSC 611: Advanced Computer Architecture Pipelining Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides Some material adapted from Hennessy & Patterson / 2003 Elsevier Science

More information

Project 5: Optimizer Jason Ansel

Project 5: Optimizer Jason Ansel Project 5: Optimizer Jason Ansel Overview Project guidelines Benchmarking Library OoO CPUs Project Guidelines Use optimizations from lectures as your arsenal If you decide to implement one, look at Whale

More information

CSE502: Computer Architecture CSE 502: Computer Architecture

CSE502: Computer Architecture CSE 502: Computer Architecture CSE 502: Computer Architecture Out-of-Order Schedulers Data-Capture Scheduler Dispatch: read available operands from ARF/ROB, store in scheduler Commit: Missing operands filled in from bypass Issue: When

More information

ECE 4750 Computer Architecture, Fall 2016 T09 Advanced Processors: Superscalar Execution

ECE 4750 Computer Architecture, Fall 2016 T09 Advanced Processors: Superscalar Execution ECE 4750 Computer Architecture, Fall 2016 T09 Advanced Processors: Superscalar Execution School of Electrical and Computer Engineering Cornell University revision: 2016-11-28-17-33 1 In-Order Dual-Issue

More information

ECE473 Computer Architecture and Organization. Pipeline: Introduction

ECE473 Computer Architecture and Organization. Pipeline: Introduction Computer Architecture and Organization Pipeline: Introduction Lecturer: Prof. Yifeng Zhu Fall, 2015 Portions of these slides are derived from: Dave Patterson UCB Lec 11.1 The Laundry Analogy Student A,

More information

CS420/520 Computer Architecture I

CS420/520 Computer Architecture I CS42/52 Computer rchitecture I Designing a Pipeline Processor (C4: ppendix ) Dr. Xiaobo Zhou Department of Computer Science CS42/52 pipeline. UC. Colorado Springs dapted from UCB97 & UCB3 Branch Jump Recap:

More information

Single vs. Mul2- cycle MIPS. Single Clock Cycle Length

Single vs. Mul2- cycle MIPS. Single Clock Cycle Length Single vs. Mul2- cycle MIPS Single Clock Cycle Length Suppose we have 2ns 2ns ister read 2ns ister write 2ns ory read 2ns ory write 2ns 2ns What is the clock cycle length? 1 Single Cycle Length Worst case

More information

Pipelining and ISA Design

Pipelining and ISA Design Pipelined instuc.on Execu.on 1 Pipelining and ISA Design MIPS Instuc:on Set designed fo pipelining All instuc:ons ae 32- bits Easie to fetch and decode in one cycle x86: 1- to 17- byte instuc:ons (x86

More information

Suggested Readings! Lecture 12" Introduction to Pipelining! Example: We have to build x cars...! ...Each car takes 6 steps to build...! ! Readings!

Suggested Readings! Lecture 12 Introduction to Pipelining! Example: We have to build x cars...! ...Each car takes 6 steps to build...! ! Readings! 1! CSE 30321 Lecture 12 Introduction to Pipelining! CSE 30321 Lecture 12 Introduction to Pipelining! 2! Suggested Readings!! Readings!! H&P: Chapter 4.5-4.7!! (Over the next 3-4 lectures)! Lecture 12"

More information

Computer Hardware. Pipeline

Computer Hardware. Pipeline Computer Hardware Pipeline Conventional Datapath 2.4 ns is required to perform a single operation (i.e. 416.7 MHz). Register file MUX B 0.6 ns Clock 0.6 ns 0.2 ns Function unit 0.8 ns MUX D 0.2 ns c. Production

More information

OOO Execution & Precise State MIPS R10000 (R10K)

OOO Execution & Precise State MIPS R10000 (R10K) OOO Execution & Precise State in MIPS R10000 (R10K) Nima Honarmand CDB. CDB.V Spring 2018 :: CSE 502 he Problem with P6 Map able + Regfile value R value Head Retire Dispatch op RS 1 2 V1 FU V2 ail Dispatch

More information

CS429: Computer Organization and Architecture

CS429: Computer Organization and Architecture CS429: Computer Organization and Architecture Dr. Bill Young Department of Computer Sciences University of Texas at Austin Last updated: November 8, 2017 at 09:27 CS429 Slideset 14: 1 Overview What s wrong

More information

Instructor: Dr. Mainak Chaudhuri. Instructor: Dr. S. K. Aggarwal. Instructor: Dr. Rajat Moona

Instructor: Dr. Mainak Chaudhuri. Instructor: Dr. S. K. Aggarwal. Instructor: Dr. Rajat Moona NPTEL Online - IIT Kanpur Instructor: Dr. Mainak Chaudhuri Instructor: Dr. S. K. Aggarwal Course Name: Department: Program Optimization for Multi-core Architecture Computer Science and Engineering IIT

More information

Department Computer Science and Engineering IIT Kanpur

Department Computer Science and Engineering IIT Kanpur NPTEL Online - IIT Bombay Course Name Parallel Computer Architecture Department Computer Science and Engineering IIT Kanpur Instructor Dr. Mainak Chaudhuri file:///e /parallel_com_arch/lecture1/main.html[6/13/2012

More information

You are Here! Processor Design Process. Agenda. Agenda 10/25/12. CS 61C: Great Ideas in Computer Architecture Single Cycle MIPS CPU Part II

You are Here! Processor Design Process. Agenda. Agenda 10/25/12. CS 61C: Great Ideas in Computer Architecture Single Cycle MIPS CPU Part II /26/2 CS 6C: Great Ideas in Computer Architecture Single Cycle MIPS CPU Part II /25/2 ructors: Krste Asanovic, Randy H. Katz hcp://inst.eecs.berkeley.edu/~cs6c/fa2 Fall 22 - - Lecture #26 Parallel Requests

More information

Computer Elements and Datapath. Microarchitecture Implementation of an ISA

Computer Elements and Datapath. Microarchitecture Implementation of an ISA 6.823, L5--1 Computer Elements and atapath Laboratory for Computer Science M.I.T. http://www.csg.lcs.mit.edu/6.823 status lines Microarchitecture Implementation of an ISA ler control points 6.823, L5--2

More information

FMP For More Practice

FMP For More Practice FP 6.-6 For ore Practice Labeling Pipeline Diagrams with 6.5 [2] < 6.3> To understand how pipeline works, let s consider these five instructions going through the pipeline: lw $, 2($) sub $, $2, $3 and

More information

DAT105: Computer Architecture

DAT105: Computer Architecture Department of Computer Science & Engineering Chalmers University of Techlogy DAT05: Computer Architecture Exercise 6 (Old exam questions) By Minh Quang Do 2007-2-2 Question 4a [2006/2/22] () Loop: LD F0,0(R)

More information

CS61C : Machine Structures

CS61C : Machine Structures Election Data is now available Puple Ameica! inst.eecs.bekeley.edu/~cs61c CS61C : Machine Stuctues Lectue 31 Pipelined Execution, pat II 2004-11-10 Lectue PSOE Dan Gacia www.cs.bekeley.edu/~ddgacia The

More information

Performance Metrics, Amdahl s Law

Performance Metrics, Amdahl s Law ecture 26 Computer Science 61C Spring 2017 March 20th, 2017 Performance Metrics, Amdahl s Law 1 New-School Machine Structures (It s a bit more complicated!) Software Hardware Parallel Requests Assigned

More information

Computer Architecture ( L), Fall 2017 HW 3: Branch handling and GPU SOLUTIONS

Computer Architecture ( L), Fall 2017 HW 3: Branch handling and GPU SOLUTIONS Computer Architecture (263-2210-00L), Fall 2017 HW 3: Branch handling and GPU SOLUTIONS Instructor: Prof. Onur Mutlu TAs: Hasan Hassan, Arash Tavakkol, Mohammad Sadr, Lois Orosa, Juan Gomez Luna Assigned:

More information

CS 61C: Great Ideas in Computer Architecture. Pipelining Hazards. Instructor: Senior Lecturer SOE Dan Garcia

CS 61C: Great Ideas in Computer Architecture. Pipelining Hazards. Instructor: Senior Lecturer SOE Dan Garcia CS 61C: Geat Ideas in Compute Achitectue Pipelining Hazads Instucto: Senio Lectue SOE Dan Gacia 1 Geat Idea #4: Paallelism So9wae Paallel Requests Assigned to compute e.g. seach Gacia Paallel Theads Assigned

More information

Tomasulo s Algorithm. Tomasulo s Algorithm

Tomasulo s Algorithm. Tomasulo s Algorithm Tomasulo s Algorithm Load and store buffers Contain data and addresses, act like reservation stations Branch Prediction Top-level design: 56 Tomasulo s Algorithm Three Steps: Issue Get next instruction

More information

Quantifying the Complexity of Superscalar Processors

Quantifying the Complexity of Superscalar Processors Quantifying the Complexity of Superscalar Processors Subbarao Palacharla y Norman P. Jouppi z James E. Smith? y Computer Sciences Department University of Wisconsin-Madison Madison, WI 53706, USA subbarao@cs.wisc.edu

More information

EECS150 - Digital Design Lecture 2 - Synchronous Digital Systems Review Part 1. Outline

EECS150 - Digital Design Lecture 2 - Synchronous Digital Systems Review Part 1. Outline EECS5 - Digital Design Lecture 2 - Synchronous Digital Systems Review Part January 2, 2 John Wawrzynek Electrical Engineering and Computer Sciences University of California, Berkeley http://www-inst.eecs.berkeley.edu/~cs5

More information

EC4205 Microprocessor and Microcontroller

EC4205 Microprocessor and Microcontroller EC4205 Microprocessor and Microcontroller Webcast link: https://sites.google.com/a/bitmesra.ac.in/aminulislam/home All announcement made through webpage: check back often Students are welcome outside the

More information

Multiple Predictors: BTB + Branch Direction Predictors

Multiple Predictors: BTB + Branch Direction Predictors Constructive Computer Architecture: Branch Prediction: Direction Predictors Arvind Computer Science & Artificial Intelligence Lab. Massachusetts Institute of Technology October 28, 2015 http://csg.csail.mit.edu/6.175

More information

A Static Power Model for Architects

A Static Power Model for Architects A Static Power Model for Architects J. Adam Butts and Guri Sohi University of Wisconsin-Madison {butts,sohi}@cs.wisc.edu 33rd International Symposium on Microarchitecture Monterey, California December,

More information

EE 457 Homework 5 Redekopp Name: Score: / 100_

EE 457 Homework 5 Redekopp Name: Score: / 100_ EE 457 Homework 5 Redekopp Name: Score: / 100_ Single-Cycle CPU The following exercises are taken from Hennessy and Patterson, CO&D 2 nd, 3 rd, and 4 th Ed. 1.) (6 pts.) Review your class notes. a. Is

More information

CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING UNIVERSITY OF WISCONSIN MADISON

CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING UNIVERSITY OF WISCONSIN MADISON CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING UNIVERSITY OF WISCONSIN MADISON Instructor: Andy Phelps TAs: Newsha Ardalani, Peter Ohmann, and Jai Menon Midterm Examination 2 In Class (50 minutes) Wednesday,

More information

Power Issues with Embedded Systems. Rabi Mahapatra Computer Science

Power Issues with Embedded Systems. Rabi Mahapatra Computer Science Power Issues with Embedded Systems Rabi Mahapatra Computer Science Plan for today Some Power Models Familiar with technique to reduce power consumption Reading assignment: paper by Bill Moyer on Low-Power

More information

CMSC 611: Advanced Computer Architecture

CMSC 611: Advanced Computer Architecture CMSC 611: Advanced Compute Achitectue Pipelining Some mateial adapted fom Mohamed Younis, UMBC CMSC 611 Sp 2003 couse slides Some mateial adapted fom Hennessy & Patteson / 2003 Elsevie Science Pipeline

More information

Reading Material + Announcements

Reading Material + Announcements Reading Material + Announcements Reminder HW 1» Before asking questions: 1) Read all threads on piazza, 2) Think a bit Ÿ Then, post question Ÿ talk to Animesh if you are stuck Today s class» Wrap up Control

More information

EECS 427 Lecture 13: Leakage Power Reduction Readings: 6.4.2, CBF Ch.3. EECS 427 F09 Lecture Reminders

EECS 427 Lecture 13: Leakage Power Reduction Readings: 6.4.2, CBF Ch.3. EECS 427 F09 Lecture Reminders EECS 427 Lecture 13: Leakage Power Reduction Readings: 6.4.2, CBF Ch.3 [Partly adapted from Irwin and Narayanan, and Nikolic] 1 Reminders CAD assignments Please submit CAD5 by tomorrow noon CAD6 is due

More information

Architectural Core Salvaging in a Multi-Core Processor for Hard-Error Tolerance

Architectural Core Salvaging in a Multi-Core Processor for Hard-Error Tolerance Architectural Core Salvaging in a Multi-Core Processor for Hard-Error Tolerance Michael D. Powell, Arijit Biswas, Shantanu Gupta, and Shubu Mukherjee SPEARS Group, Intel Massachusetts EECS, University

More information

Low Power Design Part I Introduction and VHDL design. Ricardo Santos LSCAD/FACOM/UFMS

Low Power Design Part I Introduction and VHDL design. Ricardo Santos LSCAD/FACOM/UFMS Low Power Design Part I Introduction and VHDL design Ricardo Santos ricardo@facom.ufms.br LSCAD/FACOM/UFMS Motivation for Low Power Design Low power design is important from three different reasons Device

More information

DIGITAL DESIGN WITH SM CHARTS

DIGITAL DESIGN WITH SM CHARTS DIGITAL DESIGN WITH SM CHARTS By: Dr K S Gurumurthy, UVCE, Bangalore e-notes for the lectures VTU EDUSAT Programme Dr. K S Gurumurthy, UVCE, Blore Page 1 19/04/2005 DIGITAL DESIGN WITH SM CHARTS The utility

More information

Chapter 3. H/w s/w interface. hardware software Vijaykumar ECE495K Lecture Notes: Chapter 3 1

Chapter 3. H/w s/w interface. hardware software Vijaykumar ECE495K Lecture Notes: Chapter 3 1 Chapter 3 hardware software H/w s/w interface Problems Algorithms Prog. Lang & Interfaces Instruction Set Architecture Microarchitecture (Organization) Circuits Devices (Transistors) Bits 29 Vijaykumar

More information

Outline Single Cycle Processor Design Multi cycle Processor. Pipelined Processor Design. Overall clock period. Analyzing performance 3/18/2015

Outline Single Cycle Processor Design Multi cycle Processor. Pipelined Processor Design. Overall clock period. Analyzing performance 3/18/2015 3/8/5 Pipelined Processor Design. Sahu CSE, T Guwahai Please be updaed wih hp://ainga.iig.erne.in/~asahu/c/ Ouline Single Cycle Processor Design Muli cycle Processor Merging M and, emoving dder and dder

More information

EE382V-ICS: System-on-a-Chip (SoC) Design

EE382V-ICS: System-on-a-Chip (SoC) Design EE38V-CS: System-on-a-Chip (SoC) Design Hardware Synthesis and Architectures Source: D. Gajski, S. Abdi, A. Gerstlauer, G. Schirner, Embedded System Design: Modeling, Synthesis, Verification, Chapter 6:

More information

A LOW POWER DESIGN FOR ARITHMETIC AND LOGIC UNIT

A LOW POWER DESIGN FOR ARITHMETIC AND LOGIC UNIT A LOW POWER DESIGN FOR ARITHMETIC AND LOGIC UNIT NG KAR SIN (B.Tech. (Hons.), NUS) A THESIS SUBMITTED FOR THE DEGREE OF MASTER OF ENGINEERING DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING NATIONAL

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 23! Introduction to Synchronous Digital Systems (SDS) Switches, Transistors, Gates!!!Senior Lecturer SOE Dan Garcia!!!www.cs.berkeley.edu/~ddgarcia!

More information

CZ3001 ADVANCED COMPUTER ARCHITECTURE

CZ3001 ADVANCED COMPUTER ARCHITECTURE CZ3001 ADVANCED COMPUTER ARCHITECTURE Lab 3 Report Abstract Pipelining is a process in which successive steps of an instruction sequence are executed in turn by a sequence of modules able to operate concurrently,

More information

Electrical Engineering 40 Introduction to Microelectronic Circuits

Electrical Engineering 40 Introduction to Microelectronic Circuits Electrical Engineering 40 Introduction to Microelectronic Circuits Instructor: Prof. Andy Neureuther EECS Department University of California, Berkeley Lecture 1, Slide 1 Introduction Instructor: Prof.

More information

SATSim: A Superscalar Architecture Trace Simulator Using Interactive Animation

SATSim: A Superscalar Architecture Trace Simulator Using Interactive Animation SATSim: A Superscalar Architecture Trace Simulator Using Interactive Animation Mark Wolff Linda Wills School of Electrical and Computer Engineering Georgia Institute of Technology {wolff,linda.wills}@ece.gatech.edu

More information

Single-Cycle CPU The following exercises are taken from Hennessy and Patterson, CO&D 2 nd, 3 rd, and 4 th Ed.

Single-Cycle CPU The following exercises are taken from Hennessy and Patterson, CO&D 2 nd, 3 rd, and 4 th Ed. EE 357 Homework 7 Redekopp Name: Lec: 9:30 / 11:00 Score: Submit answers via Blackboard for all problems except 5.) and 6.). For those questions, submit a hardcopy with your answers, diagrams, circuit

More information

Understanding Engineers #2

Understanding Engineers #2 Understanding Engineers #! The graduate with a Science degree asks, "Why does it work?"! The graduate with an Engineering degree asks, "How does it work?"! The graduate with an Accounting degree asks,

More information

Finite State Machines

Finite State Machines Administrivia Finite State achines Alvin R. Lebeck PS 4 Week 5, Lecture ext uesday: Rajiv lecture on omputer Arithmetic idterm uesday ctober, in class closed book, closed notes Homework #3 is assigned

More information

a8259 Features General Description Programmable Interrupt Controller

a8259 Features General Description Programmable Interrupt Controller a8259 Programmable Interrupt Controller July 1997, ver. 1 Data Sheet Features Optimized for FLEX and MAX architectures Offers eight levels of individually maskable interrupts Expandable to 64 interrupts

More information

On the Rules of Low-Power Design

On the Rules of Low-Power Design On the Rules of Low-Power Design (and Why You Should Break Them) Prof. Todd Austin University of Michigan austin@umich.edu A long time ago, in a not so far away place The Rules of Low-Power Design P =

More information

ECOM 4311 Digital System Design using VHDL. Chapter 9 Sequential Circuit Design: Practice

ECOM 4311 Digital System Design using VHDL. Chapter 9 Sequential Circuit Design: Practice ECOM 4311 Digital System Design using VHDL Chapter 9 Sequential Circuit Design: Practice Outline 1. Poor design practice and remedy 2. More counters 3. Register as fast temporary storage 4. Pipelined circuit

More information

Final Report: DBmbench

Final Report: DBmbench 18-741 Final Report: DBmbench Yan Ke (yke@cs.cmu.edu) Justin Weisz (jweisz@cs.cmu.edu) Dec. 8, 2006 1 Introduction Conventional database benchmarks, such as the TPC-C and TPC-H, are extremely computationally

More information