Real Implementation of a Single Sensor based PFC with Novel Converter Fed BLDC Motor Drive

Size: px
Start display at page:

Download "Real Implementation of a Single Sensor based PFC with Novel Converter Fed BLDC Motor Drive"

Transcription

1 GRD Journals- Global Research and Development Journal for Engineering Volume 1 Issue 8 July 2016 ISSN: Real Implementation of a Single Sensor based PFC with Novel Converter Fed BLDC Motor Drive Sreehari. B St. Thomas College Of Engineering And Technology, Kerala, India Jenopaul. P St. Thomas College Of Engineering And Technology, Kerala, India Abstract This paper proposed scheme for the Sensor-less BLDC motor drive fed by a Zeta based PFC converter operating in DICM. The front end Zeta DC-DC converter maintains the DC link voltage to a set reference value. Switch of the Zeta converter is to be operated at high switching frequency for effective control and small size of components like inductors. A sensor-less approach is used to detect the rotor position for electronic commutation. A blind startup is used for starting the BLDC motor. A high frequency MOSFET of suitable rating is used in the front end converter for its high frequency operation whereas an IGBT s (Insulated Gate Bipolar Transistor) are used in the VSI for low frequency operation. The proposed scheme maintains high power factor and low THD of the AC source current while controlling rotor speed equal to the set reference speed. Keywords- Zeta Converter, BLDC, DICM, power factor correction I. INTRODUCTION The requirement of improved power quality of the AC mains is becoming essential for any appliance as imposed by the International PQ (Power Quality) standards like IEC The requirement of power factor above 0.9 and THD (Total Harmonic Distortion) below 5% for Class-D (under 600 W, <16 A, single phase) applications, recommends the use of improved power quality converters for BLDC (Brush Less DC) motor drive[1]. There are many AC-DC converter topologies reported in the literature to meet the recommended PQ standards.bldc motor when fed by an uncontrolled bridge rectifier with DC link capacitor results in highly distorted supply current which results in low PF (Power Factor) and high THD (Total Harmonic Distortion); hence various improved power quality AC-DC converters are used in these drives. BLDC motor is an ideal motor for low-medium power applications because of its high efficiency, high torque/inertia ratio, low maintenance and a wide range of speed control[2]. It consists of three phase windings on the stator and permanent magnets on the rotor. Being an electronically commutated motor, the commutation losses in the BLDC motor are negligible[3].two stage PFC converters are widely in practice in which first stage is used for the power factor correction which is preferably a boost converter and second stage for voltage regulation which can be any converter topology depending upon the requirement [4-7].This two stage topology is complex and results in higher cost and more losses; hence a single stage Zeta converter is proposed in this paper which is used for DC link voltage control and power factor correction. The operation is studied for a Zeta converter working in DICM (Discontinuous Inductor Current Mode) hence a voltage follower approach is used. A voltage follower approach requires a single voltage sensor for the DC link voltage regulation while in case of CCM (Continuous Conduction Mode); current multiplier approach is normally used [8-9].This DC-DC converter has to operate over a wide range of output DC voltage for the speed control of BLDC motor unlike many applications which require a constant DC link voltage. Moreover a sensor less control of BLDC motor is used, to eliminate the requirement of Hall Effect position sensors and making the drive more cost effective. All rights reserved by 69

2 II. PROPOSED SPEED CONTROL SCHEME OF SENSOR LESS BLDC MOTOR DRIVE Fig. 1: Proposed speed control scheme The proposed scheme for the Sensor less BLDC motor drive fed by a Zeta based PFC converter operating in DICM mode is shown in Fig. 1. The front end Zeta DC-DC converter maintains the DC link voltage to a set reference value. Switch of the Zeta converter is to be operated at high switching frequency for effective control and small size of components like inductors. A sensor less approach is used to detect the rotor position for electronic commutation. A blind startup is used for starting the BLDC motor. A high frequency MOSFET of suitable rating is use d in the front end converter for its high frequency operation whereas an IGBT s (Insulated Gate Bipolar Transistor) are used in the VSI for low frequency operation. The proposed scheme maintains high power factor and low speed. A voltage follower approach is used for the control of Zeta DC-DC converter operating in DICM. The DC link voltage is controlled by a single voltage sensor. Vdc (sensed DC link voltage) is compared with Vdc* (reference voltage) to generate an error signal which is the difference of Vdc* and Vdc. The error signal is given to a PI (Proportional Integral) controller to give a controlled output. Finally, the controlled output is compared with the high frequency saw tooth signal to generate PWM (Pulse Width Modulation) pulse for the MOSFET of the Zeta converter. Arate limiter is used to limit the stator current during step change in speed. A. Zeta Converter Fig. 1(a): Zeta Converter 1) Principle of Operation When analyzing Zeta waveforms it shows that at equilibrium, L1 average current equals IIN and L2average current equals IOUT, since there is no DC current through the flying capacitor CFLY. Also there All rights reserved by 70

3 Fig. 2: Zeta converter during MOSFET ON time 2) Stage-1[M1ON] The switch M1 is in ON state, so voltages VL 1 and VL 2 are equal to Vin. In this time interval diode D1 is OFF with a reverse voltage equal to - (V in + V O ). Inductor L 1 and L 2 get energy from the voltage source, and their respective currents IL1 and IL2 are increased linearly by ratio Vin/L1 and Vin/L2 respectively. Consequently, the switch current IM 1 =IL 1 +IL 2 is increased linearly by a ratio Vin/L, where L=L 1.L 2 / (L 1 +L 2 ). At this moment, discharging of capacitor C fly and charging of capacitor C 0 take place. 3) Stage-2 [M1 OFF] There is no DC voltage across either inductor. Therefore, CFLY sees ground potential at its left side and VOUT at its right side, resulting in DC voltage across CFLY being equal to VOUT.In this stage, the switch M1 turns OFF and the diode D1 is forward biased starting to conduct. The voltage across L1 and L2 become equal to Vo and inductors L1 and L2 transfer energy to capacitor Cfly and load respectively. The current of L1 andl2 decreases linearly now by a ratio V0/L1 and V0/L2, respectively. The current in the diodeid1=il1+il2 also decreases linearly by ratio V0/L. At this moment, the voltage across switch M1 is VM=Vin + V0. Figure 4 shows the main wave forms of the ZETA converter, for one cycle of operation in the steady state continues mode. III. DESIGN OF PFC WITH ZETA CONVERTER The proposed drive system is designed for Zeta converter as PFC converter fed BLDC motor drive operating in DICM. The output inductor value is selected such that the current remains discontinuous in a single switching cycle. The average input voltage Vin after the rectifier is given as [1], Vin = 2 2.V S / π (1) where VS is the rms value of the supply voltage. Fig. 2. Waveform of output inductor current in DICM control The duty ratio D for the Zeta converter (buck-boost) is given as, D = V dc / (V in + V dc ) (2) where Vdc represents the DC link voltage of Zeta converter.if the permitted ripple of current in input inductor Li and output inductor Lo is given as ili and ilo respectively, then the inductor value Li and Lo are given as [3-4], Li = D.Vin / {fs.( ili)} (3) Lo = (1-D) Vdc / {fs.( ilo)} (4) where fs is the switching frequency. For the critical conduction mode, ilo = 2.Idc i.e. Lo(critical) = (1-D) Vdc / {fs. (2.Idc)} (5) The value of intermediate capacitor C1 is given as [6], C1 = D.Idc / {fs. ( VC1)} (6) where VC1 is the permitted ripple in C1.The value of DC link capacitor Cd is given as [8-11], Cd = Idc / (2.ω. Vdc) (7) where ω = 2π fl; fl is the line frequency. Equations (1)-(7) represent the design criteria of the Zeta converter in discontinuous conduction mode. B. Performance 1) Efficiency- Open Loop Zeta Converter Input Voltage Output Voltage Output Power Efficiency in % All rights reserved by 71

4 2) Efficiency-Closed Loop Zeta Converter Input Voltage Output Voltage Output Power Efficiency in % C. Modfied DC- DC Converter Bi directional DC DC Converters are useful in applications where power transfer takes place in either direction i.e power transfer between two DC DC sources. These converters are widely used in hybrid electric vehicles, photovoltaic hybrid power Systems, Fuel- cell hybrid power systems, uninterruptible power systems and battery charges. Many bi directional DC DC Converter topologies are proposed in literature out of the available models, bi - directional DC DC flyback converters are found to be simple in structure and easy in control. It is observed that the switches used in the switches used in these converters subjected to high voltage stress due to leakage energy released by transformer during energy transfer phase. For minimization of voltage stress of converter switches due this leakage energy release by transformer literature suggests energy regeneration techniques. These techniques suggest that the leakage inductor energy is recycled by clamping the voltage stress on the converter switches. In some of the literature isolated bi directional DC DC converters are proposed, these converter technologies includes half bridge, full bridge types. These technologies make use of adjustable turns transformers as a result of that these converters provide high step up and step down voltage gains. For non isolated applications non isolated bi-directional DC DC Converters are suggested. These converters include topologies like buck / boost, multilevel level converters, Three level Converters, Sepic / Zeta, Switched capacitor and coupled inductors. Three Level and Multi Level converters suffer with low step up and step down voltage gains. Sepic / Zeta converters uses two stages for power conversion, this results in more losses as a result conversion efficiency decreases. Multi-level type converters make use of magnetic less converter concept, and require more number of switches for energy conversion. This makes this topology with complicated structure and control circuit. If more step up and step down voltage gains are required the number switches are to be increased. This makes the control more complicated. The switched capacitor and coupled inductor converters can provide higher step up and step down voltage gains. And the voltages appearing across switches used in these topologies can be made minimum. Fig. 3.1: Circuit Diagram of Conventional Bi directional DC DC Converter. Figure 3.1 Show conventional DC DC converter with two switches S1 and S2. A modification is made to the above circuit such that the inductor is replaced with a coupled inductor and one more switch is added. New configuration is shown in figure 2. The preceding sections will discuss the modeling issues involved, results obtained. Fig. 3.2: Proposed DC DC Converter model diagram working as boost converter. All rights reserved by 72

5 D. Step Up Mode The proposed converter in step-up mode is shown in Fig 5. The pulse width modulation (PWM) technique is used to control the switches S1 and S2 simultaneously. The switch S3 is the Synchronous rectifier. 1) CCM Operation 1) Mode 1: During this time interval, S1 and S2 are turned on and S3 is turned off. The current flow path is shown in Fig 5(a). The energy of the low-voltage side VL is transferred to the coupled inductor. Meanwhile, the primary and secondary windings of the coupled inductor are in parallel. The energy stored in the capacitor CH is discharged to the load. Thus, the voltages across L1 and L2 are obtained as ul1=ul2=vl (8) By substituting above equations we get dil1(t)dt=dil2(t)dt=vl 1+k L, (9) 2) Mode-2: During this time interval S1 and S2 are turned on and S3 is turned off. The energy of the low-voltage side VL is transferred to the coupled inductor. Meanwhile, the primary and secondary windings of the coupled inductor are in parallel. The energy stored in the capacitor CH is discharged to the load. Thus, the voltages across L1 and L2 are obtained as il1=il2 ul1+ul2=vl VH (10) By substituting above equations we get dil1(t)dt=dil2(t)dt=vl VH2 1+k L, (11) By using the state-space averaging method, the following equation is derived from DVL 1+k L+ 1 D (VL VH)2 1+k L=0 (12) By simplifying we get GCCM(step up)=vhvl=1+d/1 D 2) DCM Operation 1) Mode 1: During this time interval, S1 and S2 are turned on and S3 is turned off. The operating principle is same as that for the mode 1 of CCM operation I L1p=I L2p=VLDTs /(1+k L) (13) 2) Mode 2: During this time interval, S1 and S2 are turned off and S3 is turned on. The low-voltage side VL and the coupled inductor are in series to transfer their energies to the capacitor CH and the load. Meanwhile, the primary and secondary windings of the coupled inductor are in series. The currents il1 and il2 through the primary and secondary windings of the coupled inductor are decreased to zero at t = t2. From eqn, another expression of IL1p and IL2p is given by IL1p=IL2p=(VH VL)D/2Ts2 1+k L (14) 3) Mode 3: During this S1 and S2 are still turned off and S3 is still turned on. The energy stored in the coupled inductor is zero. Thus, il1 and il2 are equal to zero. The energy stored in the capacitor CH is discharged to the load. From above equation, is derived as follows D2=2DVL/VH VL (15) From Fig, the average value of the output capacitor current during each switching period is given by IcH=12D2TsIL1p IoTs/Ts=1/2(D2IL1p Io) (16) By substituting above values we get IcH={D2VL2Ts/ 1+k L(VH VL)} VH/RH (17) Since IcH is equal to zero under steady state, above equations can be rewritten as follows: D2VL2Ts/ 1+k L(VH VL)=VH/RH (18) Then, the normalized inductor time constant is defined as TLH L/RHTs=Lfs/RH (19) where fs is the switching frequency. Substituting above equations we get, the voltage gain is given by GDCM(step up)=vh/vl=1/2+ ( 14+D2(1+k)τLH) (20) 3) Boundary Operating Condition of CCM and DCM When the proposed converter in step-up mode is operated in boundary conduction mode (BCM), the voltage gain of CCM operation is equal to the voltage gain of DCM operation. From above equations, the boundary normalized inductor time constant τlh,b can be derived as follows τlh,b=d(1 D) 2/ 2 (1+k) (1+d) (21) The curve of τ LH,B is plotted in Fig. If τlh is larger than τlh,b, the proposed converter in step-up mode is operated in CCM. All rights reserved by 73

6 IV. SIMULATION RESULTS Fig. 4: Simulation Results A. Simulink Model of Proposed System 1) Output Voltage Fig. 5: Output Voltage 2) Dc Link Voltage Fig. 6: DC Link Voltage All rights reserved by 74

7 3) Rotor Speed Fig. 7: Rotor Speed 4) Stator Current & EMF Fig. 8: Stator Current & EMF 5) Inductor Currents a) Hardware Implementation Fig. 9: Hardware Implementation All rights reserved by 75

8 V. CONCLUSION A simple control using a voltage follower approach has been used for voltage control and power factor correction of a PFC Zeta converter fed BLDC motor drive. A novel scheme of speed control using a single voltage sensor has been proposed for a fan load. A sensor less operation for the further reduction of position sensor has been used. A single stage PFC converter system has been designed and validated for the speed control with improved power quality at the AC mains for a wide range of speed. The performance of the proposed drive system has also been evaluated for varying input AC voltages and found satisfactory. The power quality indices for the speed control and supply voltage variation have been obtained within the limits by International power quality standard IEC The proposed drive system has been found a suitable candidate among various adjustable speed drives for many low power applications. REFERENCES [1] Limits for Harmonic Current Emissions (Equipment input current 16 A per phase), International Standard IEC , [2] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey and D.P. Kothari, A review of single-phase improved power quality AC-DC converters, IEEE Transactions on Industrial Electronics, vol. 50, no. 5, pp , Oct [3] T. Kenjo and S. Nagamori, Permanent Magnet Brushless DC Motors, Clarendon Press, Oxford, [4] T. J Sokira and W. Jaffe, Brushless DC Motors: Electronic Commutation and Control, Tab Books, USA, [5] R. Handershot and T.J.E Miller, Design of Brushless Permanent Magnet Motors, Clarendon Press, Oxford, [6] J. F. Gieras and M. Wing, Permanent Magnet Motor Technology Design and Application, Marcel Dekker Inc., New York, [7] N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics: Converters, Applications and Design, John Wiley and Sons Inc, USA,1995. [8] S. Singh and B. Singh, "Voltage controlled PFC Zeta converter based BLDC MOTOR drive for an air-conditioner," 2010 International Conference on Industrial and Information Systems (ICIIS), pp , 29th July st Aug [9] Bhim Singh, B.P.Singh and Sanjeet Dwivedi, AC-DC Zeta Converter for Power Quality Improvement of Direct Torque Controlled PMSMrive, Korean Journal of Power Electronics, Vol. 6, No. 2, pp , April [10] J. Uceeda, J. Sebastian and F.S. Dos Reis, Power Factor Preregulators Employing the Flyback and Zeta Converters in FM Mode, in Proceedings of IEEE CIEP 96, 1996, pp [11] D.C. Martins, Zeta Converter Operating in Continuous Conduction Mode Using the Unity Power Factor Technique, in Proceedings of IEE PEVSD 96, 1996, pp All rights reserved by 76

Speed control of power factor corrected converter fed BLDC motor

Speed control of power factor corrected converter fed BLDC motor Speed control of power factor corrected converter fed BLDC motor Rahul P. Argelwar 1, Suraj A. Dahat 2 Assistant Professor, Datta Meghe institude of Engineering, Technology & Research,Wardha. 1 Assistant

More information

ANALYSIS OF POWER QUALITY IMPROVEMENT OF BLDC MOTOR DRIVE USING CUK CONVERTER OPERATING IN DISCONTINUOUS CONDUCTION MODE

ANALYSIS OF POWER QUALITY IMPROVEMENT OF BLDC MOTOR DRIVE USING CUK CONVERTER OPERATING IN DISCONTINUOUS CONDUCTION MODE ANALYSIS OF POWER QUALITY IMPROVEMENT OF BLDC MOTOR DRIVE USING CUK CONVERTER OPERATING IN DISCONTINUOUS CONDUCTION MODE Bhushan P. Mokal 1, Dr. K. Vadirajacharya 2 1,2 Department of Electrical Engineering,Dr.

More information

ABSTRACT I. INTRODUCTION

ABSTRACT I. INTRODUCTION 2017 IJSRST Volume 3 Issue 8 Print ISSN: 2395-6011 Online ISSN: 2395-602X Themed Section: Science and Technology A Novel Zeta Converter with Pi Controller for Power Factor Correction in Induction Motor

More information

An Adjustable-Speed PFC Bridgeless Single Switch SEPIC Converter-Fed BLDC Motor

An Adjustable-Speed PFC Bridgeless Single Switch SEPIC Converter-Fed BLDC Motor An Adjustable-Speed PFC Bridgeless Single Switch SEPIC Converter-Fed BLDC Motor Tintu Rani Joy M. Tech Scholar St. Joseph college of Engineering and technology Palai Shiny K George, Assistant Professor

More information

BLDC Motor Speed Control and PFC Using Isolated Zeta Converter

BLDC Motor Speed Control and PFC Using Isolated Zeta Converter BLDC Motor Speed Control and PFC Using Isolated Zeta Converter Vimal M 1, Sunil Kumar P R 2 PG Student, Dept. of EEE. Government Engineering College Idukki, India 1 Asst. Professor, Dept. of EEE Government

More information

A BRUSHLESS DC MOTOR DRIVE WITH POWER FACTOR CORRECTION USING ISOLATED ZETA CONVERTER

A BRUSHLESS DC MOTOR DRIVE WITH POWER FACTOR CORRECTION USING ISOLATED ZETA CONVERTER A BRUSHLESS DC MOTOR DRIVE WITH POWER FACTOR CORRECTION USING ISOLATED ZETA CONVERTER Rajeev K R 1, Dr. Babu Paul 2, Prof. Smitha Paulose 3 1 PG Scholar, 2,3 Professor, Department of Electrical and Electronics

More information

Improved Power Quality Bridgeless Isolated Cuk Converter Fed BLDC Motor Drive

Improved Power Quality Bridgeless Isolated Cuk Converter Fed BLDC Motor Drive Improved Power Quality Bridgeless Isolated Cuk Converter Fed BLDC Motor Drive 1 Midhun Mathew John, 2 Phejil K Paul 1 PG Scholar, 2 Assistant Professor, 1 Electrical and Electronics Engineering 1 Mangalam

More information

PFC of VSI Based Bridgeless Canonical Switching Cell Converter Fed BLDC Motor Drive

PFC of VSI Based Bridgeless Canonical Switching Cell Converter Fed BLDC Motor Drive I J C T A, 9(2) 2016, pp. 797-808 International Science Press PFC of VSI Based Bridgeless Canonical Switching Cell Converter Fed BLDC Motor Drive Sai Teja Karamsetty 1 and Deepa T 2 ABSTRACT This paper

More information

Power quality improvement and ripple cancellation in zeta converters

Power quality improvement and ripple cancellation in zeta converters Power quality improvement and ripple cancellation in zeta converters Mariamma John 1, Jois.K.George 2 1 Student, Kottayam Institute of Technology and Science, Chengalam, Kottayam, India 2Assistant Professor,

More information

Cuk Converter Fed BLDC Motor

Cuk Converter Fed BLDC Motor Cuk Converter Fed BLDC Motor Neethu Salim, Neetha John, Benny Cherian PG Student, Department of EEE, Mar Athanasius College of Engineering, Kothamangalam, Kerala. neethusalim@hotmail.com, contact no:9048836836

More information

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SIENES & RESEARH TEHNOLOGY Analysis and Implementation of Efficient BLD Motor Drive with Different onverter Systems Angeline Jayachandran *1, Mrs. G.R.P Lakshmi

More information

Brushless DC Motor Drive using Modified Converter with Minimum Current Algorithm

Brushless DC Motor Drive using Modified Converter with Minimum Current Algorithm Brushless DC Motor Drive using Modified Converter with Minimum Current Algorithm Ajin Sebastian PG Student Electrical and Electronics Engineering Mar Athanasius College of Engineering Kerala, India Benny

More information

Voltage-Control Based Pmbldcm By Using Cuk Converter With Pfc

Voltage-Control Based Pmbldcm By Using Cuk Converter With Pfc International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 8, Issue 1 (July 2013), PP. 51-59 Voltage-Control Based Pmbldcm By Using Cuk Converter

More information

I. INTRODUCTION. 10

I. INTRODUCTION.  10 Closed-loop speed control of bridgeless PFC buck- boost Converter-Fed BLDC motor drive Sanjay S Siddaganga Institute Of Technology/Electrical & Electronics, Tumkur, India Email: sanjayshekhar04@gmail.com

More information

DESIGN OF A VOLTAGE-CONTROLLED PFC CUK CONVERTER-BASED PMBLDCM DRIVE for FAN

DESIGN OF A VOLTAGE-CONTROLLED PFC CUK CONVERTER-BASED PMBLDCM DRIVE for FAN DESIGN OF A VOLTAGE-CONTROLLED PFC CUK CONVERTER-BASED PMBLDCM DRIVE for FAN RAJESH.R PG student, ECE Department Anna University Chennai Regional Center, Coimbatore Tamilnadu, India Rajesh791096@gmail.com

More information

International Journal of Current Research and Modern Education (IJCRME) ISSN (Online): & Impact Factor: Special Issue, NCFTCCPS -

International Journal of Current Research and Modern Education (IJCRME) ISSN (Online): & Impact Factor: Special Issue, NCFTCCPS - POWER FACTOR CORRECTION IN BLDC MOTOR BASED ON CUK CONVERTER USING SPWM TECHNIQUE C. Kowsalya*, A. Nathiya**, S. Shalini*** & S. Sheela**** Department Electrical and Electronics Engineering, University

More information

Usha Nandhini.M #1, Kaliappan.S *2, Dr. R. Rajeswari #3 #1 PG Scholar, Department of EEE, Kumaraguru College of Technology, Coimbatore, India

Usha Nandhini.M #1, Kaliappan.S *2, Dr. R. Rajeswari #3 #1 PG Scholar, Department of EEE, Kumaraguru College of Technology, Coimbatore, India A Power Factor Corrector DC-DC Buck-Boost Converter fed BLDC Motor Usha Nandhini.M #1, Kaliappan.S *2, Dr. R. Rajeswari #3 #1 PG Scholar, Department of EEE, Kumaraguru College of Technology, Coimbatore,

More information

Study on DC-DC Converters for a Pfc BLDC Motor Drive

Study on DC-DC Converters for a Pfc BLDC Motor Drive IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, PP 81-88 www.iosrjournals.org Study on DC-DC Converters for a Pfc BLDC Motor Drive Baiju Antony 1,

More information

Power Factor Correction for Chopper Fed BLDC Motor

Power Factor Correction for Chopper Fed BLDC Motor ISSN No: 2454-9614 Power Factor Correction for Chopper Fed BLDC Motor S.Dhamodharan, D.Dharini, S.Esakki Raja, S.Steffy Minerva *Corresponding Author: S.Dhamodharan E-mail: esakkirajas@yahoo.com Department

More information

Analysis of a Sensor Based BLDC Motor With Bridgeless SEPIC Converter For PFC And Speed Control

Analysis of a Sensor Based BLDC Motor With Bridgeless SEPIC Converter For PFC And Speed Control Analysis of a Sensor Based BLDC Motor With Bridgeless SEPIC Converter For PFC And Speed Control Anju Rajan P, Divya Subramanian Abstract This paper presents a Power Factor Correction (PFC) single phase

More information

Voltage Controlled PFC Forward Converter Fed PMBLDCM Drive for Air-Conditioner

Voltage Controlled PFC Forward Converter Fed PMBLDCM Drive for Air-Conditioner 16th NATIONAL POWER SYSTEMS CONFERENCE, 15th-17th DECEMBER, 2010 417 Voltage Controlled PFC Forward Converter Fed PMBLDCM Drive for Air-Conditioner Sanjeev Singh and Bhim Singh Abstract In this paper,

More information

ISSN Vol.04,Issue.13, September-2016, Pages:

ISSN Vol.04,Issue.13, September-2016, Pages: WWW.IJITECH.ORG ISSN 2321-8665 Vol.04,Issue.13, September-2016, Pages:2452-2458 Position Control of BLDC Motor Drive with CUK Converter A. RAJENDER 1, G. SREEHARI 2 1 PG Scholar, Dept of EEE, Kasireddy

More information

A DCM Based PFC CUK Converter-Speed Adjustable BLDC Drive

A DCM Based PFC CUK Converter-Speed Adjustable BLDC Drive A DCM Based PFC CUK Converter-Speed Adjustable BLDC Drive Apparao Bera1,.N.Sirisha 2 1 PG Scholar, Pydah College of Engineering, Kakinada, AP, India. 2 Associate Professor, Pydah College of Engineering,

More information

REDUCTION OF HARMONIC DISTORTION IN BLDC DRIVE USING BL-BUCK BOOST CONVERTER BLDC DRIVE

REDUCTION OF HARMONIC DISTORTION IN BLDC DRIVE USING BL-BUCK BOOST CONVERTER BLDC DRIVE International Journal of Electrical Engineering & Technology (IJEET) Volume 7, Issue 5, Sep Oct, 2016, pp.79 88, Article ID: IJEET_07_05_008 Available online at http://www.iaeme.com/ijeet/issues.asp?jtype=ijeet&vtype=7&itype=5

More information

Simulation of Fuzzy Controller based Isolated Zeta Converter fed BLDC motor drive

Simulation of Fuzzy Controller based Isolated Zeta Converter fed BLDC motor drive Simulation of Fuzzy Controller based Isolated Zeta Converter fed BLDC motor drive 1 Sreelakshmi K, 2 Caroline Ann Sam 1 PG Student 2 Asst.Professor 1 EEE Department, 1 Rajagiri School of Engineering and

More information

A Power Factor Corrected Bridgeless Type III Cuk Derived Converter fed BLDC Motor Drive

A Power Factor Corrected Bridgeless Type III Cuk Derived Converter fed BLDC Motor Drive TELKOMNIKA Indonesian Journal of Electrical Engineering Vol. 14, No. 3, June 2015, pp. 420 ~ 427 DOI: 10.11591/telkomnika.v14i3.7893 420 A Power Factor Corrected Bridgeless Type III Cuk Derived Converter

More information

ADVANCES in NATURAL and APPLIED SCIENCES

ADVANCES in NATURAL and APPLIED SCIENCES ADVANCES in NATURAL and APPLIED SCIENCES ISSN: 1995-0772 Published BY AENSI Publication EISSN: 1998-1090 http://www.aensiweb.com/anas 2016 March 10(3): pages 190-197 Open Access Journal Power Factor Correction

More information

Cuk Converter Fed BLDC Motor with a Sensorless Control Method

Cuk Converter Fed BLDC Motor with a Sensorless Control Method Cuk Converter Fed BLDC Motor with a Sensorless Control Method Neethu Salim 1, Neetha John 2 1 PG Student, Department of EEE, Mar Athanasius College of Engineering, Kothamangalam, Kerala, India 2 Assistant

More information

PFC CUK CONVERTER FOR BLDC MOTOR DRIVES

PFC CUK CONVERTER FOR BLDC MOTOR DRIVES PFC CUK CONVERTER FOR BLDC MOTOR DRIVES N.GEETHANJALI* DR.M.RAVINDRA** PG SCHOLAR*ASSISTANT PROFESSOR** ANU BOSE INSTITUTE OF TECHNOLOGY,K.S.P ROAD, NEW PALONCHA, ABSTRACT: BHADRADRI KOTHAGUDEM(DIST) The

More information

HARDWARE IMPLEMENTATION OF PFC BUCK-BOOST CONVERTER DRIVEN PMBLDC MOTOR DRIVE FOR MINING APPLICATIONS

HARDWARE IMPLEMENTATION OF PFC BUCK-BOOST CONVERTER DRIVEN PMBLDC MOTOR DRIVE FOR MINING APPLICATIONS HARDWARE IMPLEMENTATION OF PFC BUCK-BOOST CONVERTER DRIVEN PMBLDC MOTOR DRIVE FOR MINING APPLICATIONS Parandhaman Balamurugan and Chandrahasan Umayal School of Electrical Engineering, VIT University, Chennai,

More information

ISSN Vol.04,Issue.04 February-2015, Pages:

ISSN Vol.04,Issue.04 February-2015, Pages: ISSN 2319-8885 Vol.04,Issue.04 February-2015, Pages:0667-0673 www.ijsetr.com Power Factor Correction of BLDC Motor Drive using Bridgeless Buck-Boost Converter C. SUBBARAMI REDDY 1, S.P.SATHYAVATHI 2 1

More information

Simulation of Fuzzy Controller Based PFC Cuk Converter Fed BLDC Motor Drive

Simulation of Fuzzy Controller Based PFC Cuk Converter Fed BLDC Motor Drive Simulation of Fuzzy Controller Based PFC Cuk Converter Fed BLDC Motor Drive K. Sakthi Priya 1, V. Jayalakshmi 2 1 P.G. Scholar, Department of Electrical and Electronics Engineering, Bharath University,

More information

CUK CONVERTER BASED POWER FACTOR CORRECTION AND SPEED CONTROL OF PMBLDC MOTOR USING PI CONTROLLER

CUK CONVERTER BASED POWER FACTOR CORRECTION AND SPEED CONTROL OF PMBLDC MOTOR USING PI CONTROLLER CUK CONVERTER BASED POWER FACTOR CORRECTION AND SPEED CONTROL OF PMBLDC MOTOR USING PI CONTROLLER SUJESH KUMAR K 1 AND KASSAHUN AWOKE TEBEJE 2 1, 2 Assistant Professor, Department of Electrical and Computer

More information

ISSN Vol.04,Issue.18, November-2016, Pages:

ISSN Vol.04,Issue.18, November-2016, Pages: WWW.IJITECH.ORG ISSN 2321-8665 Vol.04,Issue.18, November-2016, Pages:3513-3521 Power Quality Enhancement in BLDC Motor Drive Using Fuzzy Controller Based Bridge Less CUK Converter S. RAJESH 1, V. VEERA

More information

A High Torque Density Permanent Magnet BLDC Motor Using Fuzzy Controller For Power Factor Correction

A High Torque Density Permanent Magnet BLDC Motor Using Fuzzy Controller For Power Factor Correction A High Torque Density Permanent Magnet BLDC Motor Using Fuzzy Controller For Power Factor Correction P Suman M-tech Scholar Department of Electrical & Electronics Engineering, Kits Engineering College,

More information

An Investigation of Power Converters Fed BLDC Motor for Adjustable Speed

An Investigation of Power Converters Fed BLDC Motor for Adjustable Speed Circuits and Systems, 2016, 7, 1369-1378 Published Online June 2016 in SciRes. http://www.scirp.org/journal/cs http://dx.doi.org/10.4236/cs.2016.78120 An Investigation of Power Converters Fed BLDC Motor

More information

MULTI INPUT LUO CONVERTER BASED HYBRID ELECTRIC VEHICLE USING BLDC MOTOR

MULTI INPUT LUO CONVERTER BASED HYBRID ELECTRIC VEHICLE USING BLDC MOTOR MULTI INPUT LUO CONVERTER BASED HYBRID ELECTRIC VEHICLE USING BLDC MOTOR N.S.Pratheeba Assistant Professor/EEE, Francis Xavier Engineering College, Tirunelveli. pratheeba.ns@francisxavier.ac.in A.Amala

More information

Zeta Converter Fed Brushless DC Motor Drive for Power Factor Correction in Low Power Applications

Zeta Converter Fed Brushless DC Motor Drive for Power Factor Correction in Low Power Applications I J C T A, 9(14) 016, pp. 6583-6591 International Science Press Zeta Converter Fed Brushless DC Motor Drive for Power Factor Correction in Low Power Applications Anitha *, R. Uthra ** and Akshaya Saraswathi

More information

TABLE OF CONTENTS CHAPTER NO. TITLE PAGE NO. LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS AND ABBREVIATIONS

TABLE OF CONTENTS CHAPTER NO. TITLE PAGE NO. LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS AND ABBREVIATIONS vii TABLE OF CONTENTS CHAPTER NO. TITLE PAGE NO. ABSTRACT LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS AND ABBREVIATIONS iii xii xiii xxi 1 INTRODUCTION 1 1.1 GENERAL 1 1.2 LITERATURE SURVEY 1 1.3 OBJECTIVES

More information

A Voltage-Controlled Switched Boost Inverter-Based PMBLDCM Drive for Air Conditioners

A Voltage-Controlled Switched Boost Inverter-Based PMBLDCM Drive for Air Conditioners A Voltage-Controlled Switched Boost Inverter-Based PMBLDCM Drive for Air Conditioners K Sabarinath *, P RamaKrishna ** * Department of EEE, Amrita Sai Institute of Science & Technology, Paritala, Krishna

More information

CHAPTER 6 BRIDGELESS PFC CUK CONVERTER FED PMBLDC MOTOR

CHAPTER 6 BRIDGELESS PFC CUK CONVERTER FED PMBLDC MOTOR 105 CHAPTER 6 BRIDGELESS PFC CUK CONVERTER FED PMBLDC MOTOR 6.1 GENERAL The line current drawn by the conventional diode rectifier filter capacitor is peaked pulse current. This results in utility line

More information

BLDC Motor Drive with Power Factor Correction Using PWM Rectifier

BLDC Motor Drive with Power Factor Correction Using PWM Rectifier BLDC Motor Drive with Power Factor Correction Using PWM Rectifier P. Sarala, S.F. Kodad and B. Sarvesh Abstract Major constraints while using motor drive system are efficiency and cost. Commutation in

More information

A Novel FUZZY based PFC Half-Bridge Converter for Voltage Controlled Adjustable PMBLDCM for Hybrid Vehicle

A Novel FUZZY based PFC Half-Bridge Converter for Voltage Controlled Adjustable PMBLDCM for Hybrid Vehicle A Novel FUZZY based PFC Half-Bridge Converter for Voltage Controlled Adjustable PMBLDCM for Hybrid Vehicle Prof. Janardhan Reddy Middala St.Mary s Group of Institutions, Hyderabad. ABSTRACT: This paper

More information

Single Phase Bridgeless SEPIC Converter with High Power Factor

Single Phase Bridgeless SEPIC Converter with High Power Factor International Journal of Emerging Engineering Research and Technology Volume 2, Issue 6, September 2014, PP 117-126 ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online) Single Phase Bridgeless SEPIC Converter

More information

A CSC Converter fed Sensorless BLDC Motor Drive

A CSC Converter fed Sensorless BLDC Motor Drive A CSC Converter fed Sensorless BLDC Motor Drive Anit K. Jose P G Student St Joseph's College of Engg Pala Bissy Babu Assistant Professor St Joseph's College of Engg Pala Abstract: The Brushless Direct

More information

Simulation of Solar Powered PMBLDC Motor Drive

Simulation of Solar Powered PMBLDC Motor Drive Simulation of Solar Powered PMBLDC Motor Drive 1 Deepa A B, 2 Prof. Maheshkant pawar 1 Students, 2 Assistant Professor P.D.A College of Engineering Abstract - Recent global developments lead to the use

More information

Implementation Of Bl-Luo Converter Using FPGA

Implementation Of Bl-Luo Converter Using FPGA Implementation Of Bl-Luo Converter Using FPGA Archa.V. S PG Scholar, Dept of EEE, Mar Baselios College of Engineering and Technology, Trivandrum Asst. Prof. C. Sojy Rajan Assistant Professor, Dept of EEE,

More information

EFFICIENCY OPTIMIZATION CONVERTER TO DRIVE BRUSHLESS DC MOTOR

EFFICIENCY OPTIMIZATION CONVERTER TO DRIVE BRUSHLESS DC MOTOR EFFICIENCY OPTIMIZATION CONVERTER TO DRIVE BRUSHLESS DC MOTOR Darshan K 1, Ms.Deepa N P 2 1,2 Dayananda Sagar College Of Engineering Abstract- Power factor correction based efficiency optimization converter

More information

Comparative study on Bridge type Negative Luo converter fed BLDC motor drive.

Comparative study on Bridge type Negative Luo converter fed BLDC motor drive. IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 PP 45-52 www.iosrjen.org Comparative study on Bridge type Negative Luo converter fed BLDC motor drive. Baiju Antony 1, Gomathy

More information

A VARIABLE SPEED PFC CONVERTER FOR BRUSHLESS SRM DRIVE

A VARIABLE SPEED PFC CONVERTER FOR BRUSHLESS SRM DRIVE A VARIABLE SPEED PFC CONVERTER FOR BRUSHLESS SRM DRIVE Mrs. M. Rama Subbamma 1, Dr. V. Madhusudhan 2, Dr. K. S. R. Anjaneyulu 3 and Dr. P. Sujatha 4 1 Professor, Department of E.E.E, G.C.E.T, Y.S.R Kadapa,

More information

A BRIDGELESS CUK CONVERTER BASED INDUCTION MOTOR DRIVE FOR PFC APPLICATIONS

A BRIDGELESS CUK CONVERTER BASED INDUCTION MOTOR DRIVE FOR PFC APPLICATIONS INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET) Proceedings of the International Conference on Emerging Trends in Engineering and Management (ICETEM14) ISSN 0976 6545(Print) ISSN 0976

More information

Fig 1: Block diagram of open loop v/f control of induction motor

Fig 1: Block diagram of open loop v/f control of induction motor IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 12, Issue 1 Ver. III (Jan. Feb. 2017), PP 11-18 www.iosrjournals.org Comparison Analysis of

More information

CHAPTER 5 DESIGN OF SINUSOIDAL PULSE WIDTH MODULATION TECHNIQUES FOR ZETA CONVERTER USING FPGA

CHAPTER 5 DESIGN OF SINUSOIDAL PULSE WIDTH MODULATION TECHNIQUES FOR ZETA CONVERTER USING FPGA 82 CHAPTER 5 DESIGN OF SINUSOIDAL PULSE WIDTH MODULATION TECHNIQUES FOR ZETA CONVERTER USING FPGA 5.1 Introduction Similar to the SEPIC DC/DC converter topology, the ZETA converter topology provides a

More information

A Cost Effective PFC Bridgeless Buck Boost Converter-Fed BLDC Motor Drive

A Cost Effective PFC Bridgeless Buck Boost Converter-Fed BLDC Motor Drive NATIONAL CONFERENCE ON COMPUTING, COMMUNICATIONS AND ELECTRICAL ENGINEERING-2017 A Cost Effective PFC Bridgeless Buck Boost Converter-Fed BLDC Motor Drive B Vijay Kumar Reddy 1, CH.Mahesh Reddy 2, 1Assistant

More information

S. General Topological Properties of Switching Structures, IEEE Power Electronics Specialists Conference, 1979 Record, pp , June 1979.

S. General Topological Properties of Switching Structures, IEEE Power Electronics Specialists Conference, 1979 Record, pp , June 1979. Problems 179 [22] [23] [24] [25] [26] [27] [28] [29] [30] J. N. PARK and T. R. ZALOUM, A Dual Mode Forward/Flyback Converter, IEEE Power Electronics Specialists Conference, 1982 Record, pp. 3-13, June

More information

High Power Factor Bridgeless SEPIC Rectifier for Drive Applications

High Power Factor Bridgeless SEPIC Rectifier for Drive Applications High Power Factor Bridgeless SEPIC Rectifier for Drive Applications Basheer K 1, Divyalal R K 2 P.G. Student, Dept. of Electrical and Electronics Engineering, Govt. College of Engineering, Kannur, Kerala,

More information

I. INTRODUCTION II. LITERATURE REVIEW

I. INTRODUCTION II. LITERATURE REVIEW ISSN XXXX XXXX 2017 IJESC Research Article Volume 7 Issue No.11 Non-Isolated Voltage Quadrupler DC-DC Converter with Low Switching Voltage Stress Praveen Kumar Darur 1, Nandem Sandeep Kumar 2, Dr.P.V.N.Prasad

More information

Fig.1. A Block Diagram of dc-dc Converter System

Fig.1. A Block Diagram of dc-dc Converter System ANALYSIS AND SIMULATION OF BUCK SWITCH MODE DC TO DC POWER REGULATOR G. C. Diyoke Department of Electrical and Electronics Engineering Michael Okpara University of Agriculture, Umudike Umuahia, Abia State

More information

International Journal of Scientific Research and Reviews

International Journal of Scientific Research and Reviews Research article Available online www.ijsrr.org ISSN: 2279 0543 International Journal of Scientific Research and Reviews Performance Improvement of BLDC Motor Using Power Factor Improved CUK Converter

More information

Review and Analysis of a Coupled Inductor Based Bidirectional DC-DC Converter

Review and Analysis of a Coupled Inductor Based Bidirectional DC-DC Converter Volume 6, Issue 6, June 207 ISSN 239-4847 Review and Analysis of a Coupled Inductor Based Bidirectional DC-DC Converter Honey Sharma Indus Institute of Technology and Engineering, Indus University, Ahmedabad.

More information

AN EXPERIMENTAL INVESTIGATION OF PFC BLDC MOTOR DRIVE USING BRIDGELESS CUK DERIVED CONVERTER

AN EXPERIMENTAL INVESTIGATION OF PFC BLDC MOTOR DRIVE USING BRIDGELESS CUK DERIVED CONVERTER Volume 116 No. 11 2017, 141-149 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: 10.12732/ijpam.v116i11.15 ijpam.eu AN EXPERIMENTAL INVESTIGATION OF PFC

More information

International Journal of Advance Engineering and Research Development

International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor (SJIF): 4.14 International Journal of Advance Engineering and Research Development Volume 3, Issue 10, October -2016 e-issn (O): 2348-4470 p-issn (P): 2348-6406 Single

More information

Coupled Inductor Based Single Phase CUK Rectifier Module for Active Power Factor Correction

Coupled Inductor Based Single Phase CUK Rectifier Module for Active Power Factor Correction Bonfring International Journal of Power Systems and Integrated Circuits, Vol. 3, No. 3, September 2013 22 Coupled Inductor Based Single Phase CUK Rectifier Module for Active Power Factor Correction Jidhun

More information

Voltage Controlled Non Isolated Bidirectional DC-DC Converter with High Voltage Gain

Voltage Controlled Non Isolated Bidirectional DC-DC Converter with High Voltage Gain Voltage Controlled Non Isolated Bidirectional DC-DC Converter with High Voltage Gain Fathima Anooda M P PG Student Electrical and Electronics Engineering Mar Athanasius College of Engineering Kerala, India

More information

Design and Simulation of New Efficient Bridgeless AC- DC CUK Rectifier for PFC Application

Design and Simulation of New Efficient Bridgeless AC- DC CUK Rectifier for PFC Application Design and Simulation of New Efficient Bridgeless AC- DC CUK Rectifier for PFC Application Thomas Mathew.T PG Student, St. Joseph s College of Engineering, C.Naresh, M.E.(P.hd) Associate Professor, St.

More information

PF, THD. I. INTRODUCTION

PF, THD. I. INTRODUCTION Power Factor Corrected Zeta Converter Based SMPS with High Frequency Isolation Rajeev K R 1, Dr. Bos Mathew Jos 2, Prof. Acy M Kottalil 3 1,2,3 Dept. of Electrical and Electronic Engineering, Mar Athanasius

More information

A Single Phase Single Stage AC/DC Converter with High Input Power Factor and Tight Output Voltage Regulation

A Single Phase Single Stage AC/DC Converter with High Input Power Factor and Tight Output Voltage Regulation 638 Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29 A Single Phase Single Stage AC/DC Converter with High Input Power Factor and Tight Output Voltage Regulation A. K.

More information

Transformerless Buck-Boost Converter with Positive Output Voltage and Feedback

Transformerless Buck-Boost Converter with Positive Output Voltage and Feedback Transformerless Buck-Boost Converter with Positive Output Voltage and Feedback Aleena Paul K PG Student Electrical and Electronics Engineering Mar Athanasius College of Engineering Kerala, India Babu Paul

More information

Power Factor Corrected Zeta Converter Based Switched Mode Power Supply

Power Factor Corrected Zeta Converter Based Switched Mode Power Supply Power Factor Corrected Zeta Converter Based Switched Mode Power Supply Reshma Shabi 1, Dhanya B Nair 2 M-Tech Power Electronics, EEE, ICET Mulavoor, Kerala 1 Asst. Professor, EEE, ICET Mulavoor, Kerala

More information

TRACK VOLTAGE APPROACH USING CONVENTIONAL PI AND FUZZY LOGIC CONTROLLER FOR PERFORMANCE COMPARISON OF BLDC MOTOR DRIVE SYSTEM FED BY CUK CONVERTER

TRACK VOLTAGE APPROACH USING CONVENTIONAL PI AND FUZZY LOGIC CONTROLLER FOR PERFORMANCE COMPARISON OF BLDC MOTOR DRIVE SYSTEM FED BY CUK CONVERTER International Journal of Mechanical Engineering and Technology (IJMET) Volume 9, Issue 12, December 2018, pp. 778 786, Article ID: IJMET_09_12_078 Available online at http://www.ia aeme.com/ijmet/issues.asp?jtype=ijmet&vtype=

More information

Active Power Factor Correction for AC-DC Converter with PWM Inverter for UPS System

Active Power Factor Correction for AC-DC Converter with PWM Inverter for UPS System IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 02, 2015 ISSN (online): 2321-0613 Active Power Factor Correction for AC-DC Converter with PWM Inverter for UPS System Harish

More information

Review of DC-DC Converters for PFC in SMPS

Review of DC-DC Converters for PFC in SMPS IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, PP 35-43 www.iosrjournals.org Review of DC-DC Converters for PFC in SMPS Stephy Mathew 1, Nayana

More information

CURRENT FOLLOWER APPROACH BASED PI AND FUZZY LOGIC CONTROLLERS FOR BLDC MOTOR DRIVE SYSTEM FED FROM CUK CONVERTER

CURRENT FOLLOWER APPROACH BASED PI AND FUZZY LOGIC CONTROLLERS FOR BLDC MOTOR DRIVE SYSTEM FED FROM CUK CONVERTER CURRENT FOLLOWER APPROACH BASED PI AND FUZZY LOGIC CONTROLLERS FOR BLDC MOTOR DRIVE SYSTEM FED FROM CUK CONVERTER N. Mohanraj and R. Sankaran Shanmugha Arts, Science, Technology and Research Academy University,

More information

Modelling and Simulation of High Step up Dc-Dc Converter for Micro Grid Application

Modelling and Simulation of High Step up Dc-Dc Converter for Micro Grid Application Vol.3, Issue.1, Jan-Feb. 2013 pp-530-537 ISSN: 2249-6645 Modelling and Simulation of High Step up Dc-Dc Converter for Micro Grid Application B.D.S Prasad, 1 Dr. M Siva Kumar 2 1 EEE, Gudlavalleru Engineering

More information

Bridgeless PFC Cuk Derived Converter Fed BLDC Motor with PID and Fuzzy Logic Controller

Bridgeless PFC Cuk Derived Converter Fed BLDC Motor with PID and Fuzzy Logic Controller Bridgeless PFC Cuk Derived Converter Fed BLDC Motor with PID and Fuzzy Logic Controller 1 J. Pearly Catherine, 2 R. Balamurugan Department of Power Electronics and Drives, K.S.Rangasamy College of Technology

More information

SCOTT TRANSFORMER AND DIODE CLAMPED INVERTER FED INDUCTION MOTOR BASED ON FOC

SCOTT TRANSFORMER AND DIODE CLAMPED INVERTER FED INDUCTION MOTOR BASED ON FOC RESEARCH ARTICLE OPEN ACCESS SCOTT TRANSFORMER AND DIODE CLAMPED INVERTER FED INDUCTION MOTOR BASED ON FOC 1, Ms. Snehal M. Khobragade, 2, Prof.B.S.Dani Mtech(IDC) pursuing Priyadarshini college of Engineering

More information

High Voltage-Boosting Converter with Improved Transfer Ratio

High Voltage-Boosting Converter with Improved Transfer Ratio Electrical and Electronic Engineering 2017, 7(2): 28-32 DOI: 10.5923/j.eee.20170702.04 High Voltage-Boosting Converter with Improved Transfer Ratio Rahul V. A. *, Denita D Souza, Subramanya K. Department

More information

A Bridgeless High Gain Cuk Converter for Power Factor Correction and Reduction of Harmonic Distortion in BLDC Motor

A Bridgeless High Gain Cuk Converter for Power Factor Correction and Reduction of Harmonic Distortion in BLDC Motor I J C T A, 9(2) 2016, pp. 1071-1082 International Science Press A Bridgeless High Gain Cuk Converter for Power Factor Correction and Reduction of Harmonic Distortion in BLDC Motor D. Saravanan 1* and M.

More information

Bridgeless Cuk Power Factor Corrector with Regulated Output Voltage

Bridgeless Cuk Power Factor Corrector with Regulated Output Voltage Bridgeless Cuk Power Factor Corrector with Regulated Output Voltage Ajeesh P R 1, Prof. Dinto Mathew 2, Prof. Sera Mathew 3 1 PG Scholar, 2,3 Professors, Department of Electrical and Electronics Engineering,

More information

Design And Implementation Of PFC CUK Converter-Based PMBLDCM Drive

Design And Implementation Of PFC CUK Converter-Based PMBLDCM Drive RESEARCH ARTICLE OPEN ACCESS Design And Implementation Of PFC CUK Converter-Based PMBLDCM Drive S. Kaliappan*, R. Thenmozhi** *(Assistant Professor, Department of Electrical and Electronics Engineering,

More information

Amit Kumar Sinha 1, Gandhi. R 2

Amit Kumar Sinha 1, Gandhi. R 2 SEPIC Based PFC Converter for PMBLDCM Drive in Air Conditioning System Amit Kumar Sinha 1, Gandhi. R 2 PG Scholar (Power Electronic And Drive) Gnanamani College of Engineering, Namakkal sinhaa777@gmail.com

More information

A High Step-Up DC-DC Converter

A High Step-Up DC-DC Converter A High Step-Up DC-DC Converter Krishna V Department of Electrical and Electronics Government Engineering College Thrissur. Kerala Prof. Lalgy Gopy Department of Electrical and Electronics Government Engineering

More information

Single Phase Induction Motor Drive using Modified SEPIC Converter and Three Phase Inverter

Single Phase Induction Motor Drive using Modified SEPIC Converter and Three Phase Inverter Single Phase Induction Motor Drive using Modified SEPIC Converter and Three Phase Inverter Ajeesh P R PG Student, M. Tech Power Electronics, Mar Athanasius College of Engineering, Kerala, India, Dr. Babu

More information

Linear Peak Current Mode Controlled Non-inverting Buck-Boost Power-Factor-Correction Converter

Linear Peak Current Mode Controlled Non-inverting Buck-Boost Power-Factor-Correction Converter Linear Peak Current Mode Controlled Non-inverting Buck-Boost Power-Factor-Correction Converter Mr.S.Naganjaneyulu M-Tech Student Scholar Department of Electrical & Electronics Engineering, VRS&YRN College

More information

CHAPTER-III MODELING AND IMPLEMENTATION OF PMBLDC MOTOR DRIVE

CHAPTER-III MODELING AND IMPLEMENTATION OF PMBLDC MOTOR DRIVE CHAPTER-III MODELING AND IMPLEMENTATION OF PMBLDC MOTOR DRIVE 3.1 GENERAL The PMBLDC motors used in low power applications (up to 5kW) are fed from a single-phase AC source through a diode bridge rectifier

More information

POWER ISIPO 29 ISIPO 27

POWER ISIPO 29 ISIPO 27 SI NO. TOPICS FIELD ISIPO 01 A Low-Cost Digital Control Scheme for Brushless DC Motor Drives in Domestic Applications ISIPO 02 A Three-Level Full-Bridge Zero-Voltage Zero-Current Switching With a Simplified

More information

Vienna Rectifier Fed BLDC Motor

Vienna Rectifier Fed BLDC Motor Vienna Rectifier Fed BLDC Motor Dr. P. Sweety Jose 1, R.Gowthamraj 2 1 Assistant Professor, 2 PG Scholar, Dept. of Electrical & Electronics Engg., PSG College of Technology, Coimbatore 1 psj.eee@psgtech.ac.in

More information

CHAPTER 3. SINGLE-STAGE PFC TOPOLOGY GENERALIZATION AND VARIATIONS

CHAPTER 3. SINGLE-STAGE PFC TOPOLOGY GENERALIZATION AND VARIATIONS CHAPTER 3. SINGLE-STAGE PFC TOPOLOG GENERALIATION AND VARIATIONS 3.1. INTRODUCTION The original DCM S 2 PFC topology offers a simple integration of the DCM boost rectifier and the PWM DC/DC converter.

More information

PERFORMANCE EVALUATION OF THREE PHASE SCALAR CONTROLLED PWM RECTIFIER USING DIFFERENT CARRIER AND MODULATING SIGNAL

PERFORMANCE EVALUATION OF THREE PHASE SCALAR CONTROLLED PWM RECTIFIER USING DIFFERENT CARRIER AND MODULATING SIGNAL Journal of Engineering Science and Technology Vol. 10, No. 4 (2015) 420-433 School of Engineering, Taylor s University PERFORMANCE EVALUATION OF THREE PHASE SCALAR CONTROLLED PWM RECTIFIER USING DIFFERENT

More information

Design and Implementation of the Bridgeless AC-DC Adapter for DC Power Applications

Design and Implementation of the Bridgeless AC-DC Adapter for DC Power Applications IJSTE - International Journal of Science Technology & Engineering Volume 2 Issue 10 April 2016 ISSN (online): 2349-784X Design and Implementation of the Bridgeless AC-DC Adapter for DC Power Applications

More information

VIENNA RECTIFIER FED BLDC MOTOR

VIENNA RECTIFIER FED BLDC MOTOR VIENNA RECTIFIER FED BLDC MOTOR Dr. P. Sweety Jose #1, R.Gowthamraj *2, #Assistant Professor, * PG Scholar, Dept. of EEE, PSG College of Technology, Coimbatore, India 1psj.eee@psgtech.ac.in, 2 gowtham0932@gmail.com

More information

Double Boost SEPIC AC-DC Converter

Double Boost SEPIC AC-DC Converter Double Boost SEPIC AC-DC Converter Sona P 1, Kavitha Issac 2, Beena M Varghese 3 1 Student, Electrical and Electronics Engineering, Mar Athanasius College of Engineering, Kerala, India 2 Asst. Professor,

More information

Analyzing the Effect of Ramp Load on Closed Loop Buck Boost Fed DC Drive with PI Controller

Analyzing the Effect of Ramp Load on Closed Loop Buck Boost Fed DC Drive with PI Controller Analyzing the Effect of Ramp Load on Closed Loop Buck Boost Fed DC Drive with PI Controller G. Ramu 1, Umme Salma 2, C Dharma Raj 3 1,2 Department of Electrical and Electronics Engineering, GITAM (Deemed

More information

Webpage: Volume 3, Issue IV, April 2015 ISSN

Webpage:  Volume 3, Issue IV, April 2015 ISSN CLOSED LOOP CONTROLLED BRIDGELESS PFC BOOST CONVERTER FED DC DRIVE Manju Dabas Kadyan 1, Jyoti Dabass 2 1 Rattan Institute of Technology & Management, Department of Electrical Engg., Palwal-121102, Haryana,

More information

A New Closed Loop AC-DC Pseudo boost Based Converter System for CFL

A New Closed Loop AC-DC Pseudo boost Based Converter System for CFL A New Closed Loop AC-DC Pseudo boost Based Converter System for CFL Nithin Shaji 1, Sreekala. K 2 1 Dept. of EEE, Sree Narayana Gurukulam College Of Engineering, Kerala, India 2 Dept. of EEE, Sree Narayana

More information

A NOVEL SWITCHING PATTERN OF CASCADED MULTILEVEL INVERTERS FED BLDC DRIVE USING DIFFERENT MODULATION SCHEMES

A NOVEL SWITCHING PATTERN OF CASCADED MULTILEVEL INVERTERS FED BLDC DRIVE USING DIFFERENT MODULATION SCHEMES International Journal of Electrical and Electronics Engineering Research (IJEEER) ISSN(P): 2250-155X; ISSN(E): 2278-943X Vol. 3, Issue 5, Dec 2013, 243-252 TJPRC Pvt. Ltd. A NOVEL SWITCHING PATTERN OF

More information

CHAPTER 2 LITERATURE REVIEW

CHAPTER 2 LITERATURE REVIEW 20 CHAPTER 2 LITERATURE REVIEW 2.1 INTRODUCTION The two major challenges on which the improvements required for the permanent magnet brushless DC motor drive systems are: a) Harmonics present in the voltage

More information

Linear Transformer based Sepic Converter with Ripple Free Output for Wide Input Range Applications

Linear Transformer based Sepic Converter with Ripple Free Output for Wide Input Range Applications Linear Transformer based Sepic Converter with Ripple Free Output for Wide Input Range Applications Karthik Sitapati Professor, EEE department Dayananda Sagar college of Engineering Bangalore, India Kirthi.C.S

More information

A NEW C-DUMP CONVERTER WITH POWER FACTOR CORRECTION FEATURE FOR BLDC DRIVE

A NEW C-DUMP CONVERTER WITH POWER FACTOR CORRECTION FEATURE FOR BLDC DRIVE International Journal of Electrical and Electronics Engineering Research (IJEEER) ISSN 2250-155X Vol. 3, Issue 3, Aug 2013, 59-70 TJPRC Pvt. Ltd. A NEW C-DUMP CONVERTER WITH POWER FACTOR CORRECTION FEATURE

More information

An Interleaved High Step-Up Boost Converter With Voltage Multiplier Module for Renewable Energy System

An Interleaved High Step-Up Boost Converter With Voltage Multiplier Module for Renewable Energy System An Interleaved High Step-Up Boost Converter With Voltage Multiplier Module for Renewable Energy System Vahida Humayoun 1, Divya Subramanian 2 1 P.G. Student, Department of Electrical and Electronics Engineering,

More information