Development of near and mid-ir ultrashort pulse laser systems at Q-Peak. Evgueni Slobodtchikov Q-Peak, Inc.

Size: px
Start display at page:

Download "Development of near and mid-ir ultrashort pulse laser systems at Q-Peak. Evgueni Slobodtchikov Q-Peak, Inc."

Transcription

1 Development of near and mid-ir ultrashort pulse laser systems at Q-Peak Evgueni Slobodtchikov Q-Peak, Inc.

2 Outline Motivation In search of Ti:Sapphire of infrared Yb:doped laser crystals Mid-IR laser crystals Pump lasers Fiber-coupled diode lasers Tm:fiber lasers CPA approach On the way to a working prototype Conclusion

3 Titan-ML first commercial mode-locked Ti:sapphire laser (1992) GVD COMPENSATING PRISMS BRF AO-MODULATOR Ti:SAPPHIRE CRYSTAL PUMP

4 Motivation Recent advances: high power cw fiber-coupled diode lasers, high-power Tm:fiber lasers, development of new laser materials. Ultimate goal: development of practical femtosecond laser sources in near (~1 μm-wavelength) and mid-infrared (IR) (2-5 μm wavelength) spectral ranges with high pulse energy output (above 1 mj). List of outside-of-lab applications for fs lasers is growing rapidly. Some of them are: LIBS Industrial micromachining Medical Imaging Rapid prototyping

5 In search of Ti:Sapphire for the infrared 1. Ti:S is the ideal crystal for generating of high power ultrafast laser pulses. BUT it can not be diode-pumped and requires expensive green pump lasers. 2. The spectral bandwidth of Ti:S is outstanding (>200 nm) and can support pulses as short as 5 fs pulses but such pulses don t survive in the real world (dispersion, nonlinear effects). 3. Most of real world applications need sub-ps pulses with only a few nm bandwidth. BUT systems must be compact, efficient, inexpensive and reliable.

6 Ytterbium doped crystals A very simple structure No undesired effects Weak quantum defect Low thermal load Diode pumping around 980 nm Broad emission spectrum (100 fs pulses possible) Yb 3+ 2 F 5/2 2 F 7/2 Crystal field N nm 1.05 μm 2 F 5/2 N 1 2 F 7/2

7 Yb-doped laser media for near-ir lasing Material Δt (fs) λ central (nm) σ emission (x10-20 cm 2 ) τ fluo (ms) K (W/m/K) Yb:CALGO Yb:phosphate glass Yb:YVO 4 61 (KLM) Yb:BOYS Yb:SYS Yb:KYW 71 (KLM) Yb:GdCOB Yb:KGW Yb:CaF

8 Absorption and emission spectrum of Yb: CaF 2

9 Mid-IR laser materials Co 2+ :MgF 2 (P. Moulton et al.) Tuning range μm Continuous-wave output only at 77 K with 2.5 W output power Pulsed at room temperature with output up to 6 W Fe 2+ :ZnSe (W. Krupke et al.) Lasing around 4.5 μm, only pulsed around 100 K but recent work shows progress (Mirov et al.) Cr 2+ -doped II-VI media (W. Krupke et al.)

10 Cr:ZnSe is " Ti:Sapphire of mid- IR The fractional tuning range (Δλ/λ 0 ) of Cr:ZnSe is equal to 0.49 and is comparable with that of Ti:Sapphire (Δλ/λ ); the material has a high gain cross section Gain spectrum Ti:Sapphire Cr:Forsterite Cr:YAG Cr:ZnS Cr:ZnSe Cr:CdSe Semi-log plot, keeping Δλ/λ 0 constant Wavelength (nm, log scale) Access to µm region, smooth tunability with highest efficiency at Watt-level powers opens up new possibilities: superbroadband spectrum (>1100nm) high-power (>1 W) narrow-line sources high efficiency (>60%).

11 Properties in comparison Cr:ZnSe Cr:ZnS Ti:Sapphire Crystal structure Cubic Cubic-uniaxial Uniaxial Thermal conductivity 18 W/m C 17 W/m C 27 W/m C (cubic) 28 W/m C Thermooptics dn/dt / C / C / C Third order nonlinearity n m 2 /W at 1.6 µm*) < m 2 /W m 2 /W Two-photon absorption band gap 2.83 ev 3.84 ev ~8 ev Second-order nonlinearity very high: 30 pm/v <30 pm/v absent Peak emission cross-section σ em cm 2 at λ nm cm nm cm nm Fluorescence bandwidth Δλ 1000 nm (50 THz) 800 nm (43 THz) 300 nm (130 THz) Relative bandwidth Δλ/λ Peak pump cross-section σ abs cm 2 at λ max 1780 nm cm nm cm nm Lifetime at room temp. 6 µs 4.3 µs 3 µs I sat = hν/σ em τ 11 kw/cm 2 14 kw/cm kw/cm 2 Direct diode pumping Yes Yes No

12 Pumping options for Cr 2+ -doped lasers Er:fiber Tm:YALO Tm:YAG Tm:fiber InGaAsP diodes Co:MgF 2 GaSb diodes Cr:ZnS Cr:ZnSe Wavelength, nm I. Sorokina et all., International Symposium on Lasers and Nonlinear Optical Materials) Meeting, Keystone, CO, July 2003.

13 State-of-the-art in Cr:ZnSe lasers Laser characteristics Output parameter Reference CW, output power, W 5.26 Slobodtchikov et al., 2008 (to be published) CW, tuning range, nm Sorokina et al., 2004 CW, efficiency, % 70 Mond et al., 2001 Pulsed, output power, W 10 khz Carrig et al., 2004 Pulsed, output energy, mj 200 μs Koranda et al., 2006 Pulsed, tuning range, nm Demirbas et al., 2006 SBR mode-locked mw Sorokina et al., 2007 KLM mode-locked ~ mw Moskalev et al., 2008

14 Diode lasers for end-pumping of near-ir lasers

15 High-power FC diode lasers (~$100s/W)

16 Low-power FC diode lasers (~$50/W)

17 Fiber laser for end-pumping of mid-ir lasers

18 Rare-earth laser transitions in fibers Energy (wavenumber/10000) 1550 nm nm

19 Recent advances in Tm-doped fiber-laser efficiencies show levels approaching Yb fibers Slope Efficiency (%) :1 limit Date

20 Q-Peak Tm:fiber-laser testbed power meter 2050 nm output Single-ended pump Active fiber coil clamp Dichroic mirror HR at 2050 nm HT at 790 nm clamp focusing head focusing head 793-nm pump 400-um, 0.2 NA fiber delivery Heat sink Meniscus 2.5-cm R concave surface HR at 2050 nm HT at 790 nm Pump Laser A Pump Laser B

21 Output power of directly diode-pumped Tm:fiber laser (2007 result) W Output power (W) % slope 59.1% slope LMA HI2 fiber data conduction cooled Linear fit 50 LMA HI2 fiber data water cooled 25 Linear fit Launched pump power (W)

22 100W prototype of directly diode-pumped Tm:fiber laser (NUFERN) NUFERN, presented at SSDLTR2007

23 Pumping options for Cr:ZnSe laser Femtosecond oscillator can be pumped directly by Tm:fiber laser. Similar to Ti:S due to short upper state life time (6 μs) the amplifier has to be pumped by high energy source. Ho:YLF laser can be used as an energy storage: can be pumped by Tm:fiber laser 2.05 μm output is ideally suited for high energy pumping of Cr:ZnSe with low thermal stress. InGaAsP diodes Er:fiber Co:MgF 2 Tm:YALO Tm:YAG Wavelength, nm Tm:fiber Ho:YLF GaSb diodes Cr:ZnS Cr:ZnSe

24 Tm:fiber laser pumped single-crystal Ho:YLF oscillator Tm-fiber laser PBS λ/2 Pump to AMP #1 DM OC Master Oscillator Ho:YLF AO HR DM DM Dichroic Mirror, AOM Acousto-Optic Modulator, OC Output Coupler, HR High Reflector

25 Ho:YLF Oscillator 30 1 khz 0.5 khz Energy per pulse, mj khz 1 khz Pulsewidth, ns Input power, W Q-Peak, presented at SSDLTR 2006

26 CPA approach for ultrashort pulse generation

27 Setup of typical CPA Ti:Sapphire system SHG CW Nd:doped pump laser 5 W at 532 nm SHG Nd:doped Q-switched pump laser 5 mj, 1 khz, 532 nm femtosecond KLM mode-locked Ti:S laser 50 fs, 10 nj, 800 nm 100 MHz Pulse stretcher 100 fs 100 ps Ti:S regenerative amplifier 1 mj, 1 khz, 800 nm output 800 nm, fs, 1 mj, 1 khz Pulse compressor

28 Our approach Chirped Pulse Amplification (CPA) technique provides a simple, reliable, working solution. Direct diode-pumping reduces number of sub-systems shrinking the size and increasing reliability. Significant gain narrowing in Yb: doped amplifier leads to longer pulse BUT simplifies the design of pulse compressor for smaller and more rugged system. Fiber-based pump lasers provide the possibility of designing a compact system, with low sensitivity to misalignment and therefore amenable to mobility as desirable for many applications. The high peak power of generated mid-ir laser pulses will make possible highly efficient OPG conversion in 3-5 μm wavelength range.

29 Near-IR diode-pumped Yb:doped CPA system Diode-pumped Yb:KGW oscillator 150 fs, 2.5 nj, 1050 nm, 100 MHz Pulse stretcher 150 fs 600 ps Diode-pumped Yb:CaF2 regenerative amplifier 1.5 mj, 250 Hz, 1050 nm output 1050 nm, fs, 1 mj, 250 Hz Pulse compressor

30 Mid-IR fiber laser-pumped Cr:ZnSe CPA system 1.94 μm Tm:fiber CW pump laser 5 W 60 W 2.05 μm Ho:YLF Q-switched pump laser 17 mj, 1 khz 2.5 μm Femtosecond Cr:ZnSe laser 100 fs, 10 nj, 100 MHz Pulse stretcher 100 fs 100 ps 2.5 μm Cr:ZnSe regenerative amplifier 8 mj, 1 khz Output: 2.5 μm fs ~ 1 mj 1 khz Pulse compressor

31 On the way to a working prototype

32 1.5 W, 170 fs Yb:KGW femtosecond laser The spectrum (9 nm FWHM) and the pulse duration (170 fs) of the output of femtosecond Yb:KGW laser.

33 Yb:CaF2 regenerative amplifier The experimental results so far: Pulse energy 0.68 mj at repetition rate 250 Hz. Pulse duration 600 fs with 3 nm FWHM bandwidth.

34 3D model of the packaged diode-pumped Yb:doped system Femtosecond oscillator Stretcher-compressor Regenerative amplifier Electronics section: 2 FC pump diodes, power supply control electronics, TE coolers air-cooling

35 Mid-IR CPA laser system

36 Multi wavelength and pulse format outputs of mid-ir system 1.94 μm Tm:fiber CW pump laser 5 W 60 W 2.05 μm Ho:YLF Q-switched pump laser 17 mj, 1 khz 2.5 μm Femtosecond Cr:ZnSe laser 100 fs, 10 nj, 100 MHz Pulse stretcher 100 fs 100 ps pico 2.5 μm Cr:ZnSe regenerative amplifier 8 mj, 1 khz Output for FEMTO and PICO config OPG femto Pulse compressor Output for NANO config ZGP based OPO

37 Conclusions Standard diffraction grating based pulse stretching/compression technique can be used in compact, transportable laser systems. We demonstrated a feasibility to construct a compact, efficient and inexpensive near-ir amplified femtosecond high power laser system based on Yb:doped crystals. For mid-ir generation Cr:ZnSe can be used to build a Ti:sapphirelike femtosecond source. Recent progress in the development of high-power directly diodepumped Tm:doped fiber lasers make power scaling of mid-ir laser system straightforward.

38 Acknowledgments Program is supported by SBIR Phase II programs from AFRL (DE) and ARL

Progress in ultrafast Cr:ZnSe Lasers. Evgueni Slobodtchikov, Peter Moulton

Progress in ultrafast Cr:ZnSe Lasers. Evgueni Slobodtchikov, Peter Moulton Progress in ultrafast Cr:ZnSe Lasers Evgueni Slobodtchikov, Peter Moulton Topics Diode-pumped Cr:ZnSe femtosecond oscillator CPA Cr:ZnSe laser system with 1 GW output This work was supported by SBIR Phase

More information

Survey Report: Laser R&D

Survey Report: Laser R&D Survey Report: Laser R&D Peter Moulton VP/CTO, Q-Peak, Inc. DLA-2011 ICFA Mini-Workshop on Dielectric Laser Accelerators September 15, 2011 SLAC, Menlo Park, CA Outline DLA laser requirements (one version)

More information

Femtosecond pulse generation

Femtosecond pulse generation Femtosecond pulse generation Marc Hanna Laboratoire Charles Fabry Institut d Optique, CNRS, Université Paris-Saclay Outline Introduction 1 Fundamentals of modelocking 2 Femtosecond oscillator technology

More information

High-power operation of Tm:YLF, Ho:YLF and Er:YLF lasers

High-power operation of Tm:YLF, Ho:YLF and Er:YLF lasers High-power operation of Tm:YLF, Ho:YLF and Er:YLF lasers Peter F. Moulton Solid State and Diode Laser Technology Review 2003 20 May Albuquerque, NM Outline High-power Tm:YLF-pumped Ho:YLF laser ZGP OPO

More information

High-power, high-energy diode-pumped Tm:YLF-Ho:YLF laser

High-power, high-energy diode-pumped Tm:YLF-Ho:YLF laser High-power, high-energy diode-pumped Tm:YLF-Ho:YLF laser Alex Dergachev, and Peter F. Moulton Q-Peak, Inc. 135 South Road, Bedford, Massachusetts 01730 Tel.: (781) 275-9535, FAX: (781) 275-9726 E-mail:

More information

Power Scaling of Tm:fiber Lasers to the kw Level

Power Scaling of Tm:fiber Lasers to the kw Level Power Scaling of Tm:fiber Lasers to the kw Level Peter F. Moulton Q-Peak, Inc. CREOL Industrial Affiliates Day 2009 High Power Optical Sources for the 21st Century April 17, 2009 Outline Background Fundamentals

More information

Integrated disruptive components for 2µm fibre Lasers ISLA. 2 µm Sub-Picosecond Fiber Lasers

Integrated disruptive components for 2µm fibre Lasers ISLA. 2 µm Sub-Picosecond Fiber Lasers Integrated disruptive components for 2µm fibre Lasers ISLA 2 µm Sub-Picosecond Fiber Lasers Advantages: 2 - microns wavelength offers eye-safety potentially higher pulse energy and average power in single

More information

High-Power Femtosecond Lasers

High-Power Femtosecond Lasers High-Power Femtosecond Lasers PHAROS is a single-unit integrated femtosecond laser system combining millijoule pulse energies and high average power. PHAROS features a mechanical and optical design optimized

More information

Survey Report: Laser R&D

Survey Report: Laser R&D Survey Report: Laser R&D Peter Moulton VP/CTO, Q-Peak, Inc. DLA-2011 ICFA Mini-Workshop on Dielectric Laser Accelerators September 15, 2011 SLAC, Menlo Park, CA Outline DLA laser requirements (one version)

More information

Romania and High Power Lasers Towards Extreme Light Infrastructure in Romania

Romania and High Power Lasers Towards Extreme Light Infrastructure in Romania Romania and High Power Lasers Towards Extreme Light Infrastructure in Romania Razvan Dabu, Daniel Ursescu INFLPR, Magurele, Romania Contents GiWALAS laser facility TEWALAS laser facility CETAL project

More information

Review of MPS Solid State Laser Systems

Review of MPS Solid State Laser Systems Review of MPS Solid State Laser Systems P.F. Moulton Q-Peak 135 South Road Bedford, MA 01730 LEOS 2006 Montreal, Canada November 2, 2006 Outline General design Specific systems Nd:YLF, 1047 and 1053 nm

More information

High Power and Energy Femtosecond Lasers

High Power and Energy Femtosecond Lasers High Power and Energy Femtosecond Lasers PHAROS is a single-unit integrated femtosecond laser system combining millijoule pulse energies and high average powers. PHAROS features a mechanical and optical

More information

Sub-300 fs, 0.5 mj pulse at 1kHz from Ho:YLF amplifier and Kagome pulse compression

Sub-300 fs, 0.5 mj pulse at 1kHz from Ho:YLF amplifier and Kagome pulse compression Sub-300 fs, 0.5 mj pulse at 1kHz from Ho:YLF amplifier and Kagome pulse compression K. Murari 1,2,3, H. Cankaya 1,2, B. Debord 5, P. Li 1, G. Cirmi 1,2, G. M. Rossi 1,2, S. Fang 1,2, O. D. Mücke 1,2, P.

More information

Vertical External Cavity Surface Emitting Laser

Vertical External Cavity Surface Emitting Laser Chapter 4 Optical-pumped Vertical External Cavity Surface Emitting Laser The booming laser techniques named VECSEL combine the flexibility of semiconductor band structure and advantages of solid-state

More information

Directly Chirped Laser Source for Chirped Pulse Amplification

Directly Chirped Laser Source for Chirped Pulse Amplification Directly Chirped Laser Source for Chirped Pulse Amplification Input pulse (single frequency) AWG RF amp Output pulse (chirped) Phase modulator Normalized spectral intensity (db) 64 65 66 67 68 69 1052.4

More information

High peak power pulsed single-mode linearly polarized LMA fiber amplifier and Q-switch laser

High peak power pulsed single-mode linearly polarized LMA fiber amplifier and Q-switch laser High peak power pulsed single-mode linearly polarized LMA fiber amplifier and Q-switch laser V. Khitrov*, B. Samson, D. Machewirth, D. Yan, K. Tankala, A. Held Nufern, 7 Airport Park Road, East Granby,

More information

High Power Compact Fiber Chirped Pulse Amplifiers at 1558-nm using Er/Yb LMA Fibers and Chirped Volume Bragg Grating Compressors

High Power Compact Fiber Chirped Pulse Amplifiers at 1558-nm using Er/Yb LMA Fibers and Chirped Volume Bragg Grating Compressors High Power Compact Fiber Chirped Pulse Amplifiers at 1558-nm using Er/Yb LMA Fibers and Chirped Volume Bragg Grating Compressors Ming-Yuan Cheng, Almantas Galvanauskas University of Michigan Vadim Smirnov,

More information

High Power Thin Disk Lasers. Dr. Adolf Giesen. German Aerospace Center. Institute of Technical Physics. Folie 1. Institute of Technical Physics

High Power Thin Disk Lasers. Dr. Adolf Giesen. German Aerospace Center. Institute of Technical Physics. Folie 1. Institute of Technical Physics High Power Thin Disk Lasers Dr. Adolf Giesen German Aerospace Center Folie 1 Research Topics - Laser sources and nonlinear optics Speiser Beam control and optical diagnostics Riede Atm. propagation and

More information

Continuum White Light Generation. WhiteLase: High Power Ultrabroadband

Continuum White Light Generation. WhiteLase: High Power Ultrabroadband Continuum White Light Generation WhiteLase: High Power Ultrabroadband Light Sources Technology Ultrafast Pulses + Fiber Laser + Non-linear PCF = Spectral broadening from 400nm to 2500nm Ultrafast Fiber

More information

Faraday Rotators and Isolators

Faraday Rotators and Isolators Faraday Rotators and I. Introduction The negative effects of optical feedback on laser oscillators and laser diodes have long been known. Problems include frequency instability, relaxation oscillations,

More information

Nd: YAG Laser Energy Levels 4 level laser Optical transitions from Ground to many upper levels Strong absorber in the yellow range None radiative to

Nd: YAG Laser Energy Levels 4 level laser Optical transitions from Ground to many upper levels Strong absorber in the yellow range None radiative to Nd: YAG Lasers Dope Neodynmium (Nd) into material (~1%) Most common Yttrium Aluminum Garnet - YAG: Y 3 Al 5 O 12 Hard brittle but good heat flow for cooling Next common is Yttrium Lithium Fluoride: YLF

More information

taccor Optional features Overview Turn-key GHz femtosecond laser

taccor Optional features Overview Turn-key GHz femtosecond laser taccor Turn-key GHz femtosecond laser Self-locking and maintaining Stable and robust True hands off turn-key system Wavelength tunable Integrated pump laser Overview The taccor is a unique turn-key femtosecond

More information

Lasers à fibres ns et ps de forte puissance. Francois SALIN EOLITE systems

Lasers à fibres ns et ps de forte puissance. Francois SALIN EOLITE systems Lasers à fibres ns et ps de forte puissance Francois SALIN EOLITE systems Solid-State Laser Concepts rod temperature [K] 347 -- 352 342 -- 347 337 -- 342 333 -- 337 328 -- 333 324 -- 328 319 -- 324 315

More information

Development of Mid-infrared Solid-State Lasers

Development of Mid-infrared Solid-State Lasers Development of Mid-infrared Solid-State Lasers M. J. Daniel Esser Team members: C. Jacobs, W. Koen, H. Strauss, D. Preussler, L. R. Botha O. J. P. Collett and C. Bollig Laser Sources Group CSIR National

More information

Laser Development at Q-Peak for Remote Sensing. Peter Moulton Q-Peak, Inc. MRS Spring Meeting March 29, 2005 Paper FF1.1

Laser Development at Q-Peak for Remote Sensing. Peter Moulton Q-Peak, Inc. MRS Spring Meeting March 29, 2005 Paper FF1.1 Laser Development at Q-Peak for Remote Sensing Peter Moulton Q-Peak, Inc. MRS Spring Meeting March 29, 2005 Paper FF1.1 Outline Introduction to Q-Peak Early systems: lamp-pumped (mostly) High-energy Ti:sapphire

More information

Quantum-Well Semiconductor Saturable Absorber Mirror

Quantum-Well Semiconductor Saturable Absorber Mirror Chapter 3 Quantum-Well Semiconductor Saturable Absorber Mirror The shallow modulation depth of quantum-dot saturable absorber is unfavorable to increasing pulse energy and peak power of Q-switched laser.

More information

X-CAN. A coherent amplification network of femtosecond fiber amplifiers

X-CAN. A coherent amplification network of femtosecond fiber amplifiers X-CAN A coherent amplification network of femtosecond fiber amplifiers Jean-Christophe Chanteloup, Louis Daniault LULI, Ecole Polytechnique, CNRS, CEA, UPMC, Route de Saclay, 91128, Palaiseau, France Gérard

More information

MULTI-STAGE YTTERBIUM FIBER-AMPLIFIER SEEDED BY A GAIN-SWITCHED LASER DIODE

MULTI-STAGE YTTERBIUM FIBER-AMPLIFIER SEEDED BY A GAIN-SWITCHED LASER DIODE MULTI-STAGE YTTERBIUM FIBER-AMPLIFIER SEEDED BY A GAIN-SWITCHED LASER DIODE Authors: M. Ryser, S. Pilz, A. Burn, V. Romano DOI: 10.12684/alt.1.101 Corresponding author: e-mail: M. Ryser manuel.ryser@iap.unibe.ch

More information

Single-frequency operation of a Cr:YAG laser from nm

Single-frequency operation of a Cr:YAG laser from nm Single-frequency operation of a Cr:YAG laser from 1332-1554 nm David Welford and Martin A. Jaspan Paper CThJ1, CLEO/QELS 2000 San Francisco, CA May 11, 2000 Outline Properties of Cr:YAG Cr:YAG laser design

More information

Fiber Lasers for EUV Lithography

Fiber Lasers for EUV Lithography Fiber Lasers for EUV Lithography A. Galvanauskas, Kai Chung Hou*, Cheng Zhu CUOS, EECS Department, University of Michigan P. Amaya Arbor Photonics, Inc. * Currently with Cymer, Inc 2009 International Workshop

More information

VELA PHOTOINJECTOR LASER. E.W. Snedden, Lasers and Diagnostics Group

VELA PHOTOINJECTOR LASER. E.W. Snedden, Lasers and Diagnostics Group VELA PHOTOINJECTOR LASER E.W. Snedden, Lasers and Diagnostics Group Contents Introduction PI laser step-by-step: Ti:Sapphire oscillator Regenerative amplifier Single-pass amplifier Frequency mixing Emphasis

More information

Fiber Laser Chirped Pulse Amplifier

Fiber Laser Chirped Pulse Amplifier Fiber Laser Chirped Pulse Amplifier White Paper PN 200-0200-00 Revision 1.2 January 2009 Calmar Laser, Inc www.calmarlaser.com Overview Fiber lasers offer advantages in maintaining stable operation over

More information

Generation of 15-nJ pulses from a highly efficient, low-cost. multipass-cavity Cr 3+ :LiCAF laser

Generation of 15-nJ pulses from a highly efficient, low-cost. multipass-cavity Cr 3+ :LiCAF laser Generation of 15-nJ pulses from a highly efficient, low-cost multipass-cavity Cr 3+ :LiCAF laser Umit Demirbas 1, Alphan Sennaroglu 1-2, Franz X. Kärtner 1, and James G. Fujimoto 1 1 Department of Electrical

More information

Development of scalable laser technology for EUVL applications

Development of scalable laser technology for EUVL applications Development of scalable laser technology for EUVL applications Tomáš Mocek, Ph.D. Chief Scientist & Project Leader HiLASE Centre CZ.1.05/2.1.00/01.0027 Lasers for real-world applications Laser induced

More information

Designing for Femtosecond Pulses

Designing for Femtosecond Pulses Designing for Femtosecond Pulses White Paper PN 200-1100-00 Revision 1.1 July 2013 Calmar Laser, Inc www.calmarlaser.com Overview Calmar s femtosecond laser sources are passively mode-locked fiber lasers.

More information

Spider Pulse Characterization

Spider Pulse Characterization Spider Pulse Characterization Spectral and Temporal Characterization of Ultrashort Laser Pulses The Spider series by APE is an all-purpose and frequently used solution for complete characterization of

More information

A new picosecond Laser pulse generation method.

A new picosecond Laser pulse generation method. PULSE GATING : A new picosecond Laser pulse generation method. Picosecond lasers can be found in many fields of applications from research to industry. These lasers are very common in bio-photonics, non-linear

More information

Multiwavelength mid-ir spatially-dispersive CW laser based on polycrystalline Cr 2+ :ZnSe

Multiwavelength mid-ir spatially-dispersive CW laser based on polycrystalline Cr 2+ :ZnSe Multiwavelength mid-ir spatially-dispersive CW laser based on polycrystalline Cr 2+ :ZnSe I. S. Moskalev, V. V. Fedorov and S. B. Mirov Univ. of Alabama at Birmingham, Department of Physics, 310 Campbell

More information

dnx/dt = -9.3x10-6 / C dny/dt = -13.6x10-6 / C dnz/dt = ( λ)x10-6 / C

dnx/dt = -9.3x10-6 / C dny/dt = -13.6x10-6 / C dnz/dt = ( λ)x10-6 / C Lithium Triborate Crystal LBO Lithium triborate (LiB3O5 or LBO) is an excellent nonlinear optical crystal for many applications. It is grown by an improved flux method. AOTK s LBO is Featured by High damage

More information

Lithium Triborate (LiB 3 O 5, LBO) Introductions

Lithium Triborate (LiB 3 O 5, LBO) Introductions s Laser s NLO s Birefringent s AO and EO s Lithium Triborate (LiB 3 O 5, ) Introductions Banner Union provide the high quality Broad transparency range from 160nm to 2600nm; High optical homogeneity (δn

More information

SCS Optical Laser Delivery

SCS Optical Laser Delivery SCS Optical Laser Delivery Robert Carley Instrument Scientist SCS Group Schenefeld, 23 January 2017 2 Overiew Pump-probe laser at European XFEL Laser system Burst mode operation Sample heating SCS optical

More information

156 micro-j ultrafast Thulium-doped fiber laser

156 micro-j ultrafast Thulium-doped fiber laser SPIE Paper Number: 8601-117 SPIE Photonics West 2013 2-7 February 2013 San Francisco, California, USA 156 micro-j ultrafast Thulium-doped fiber laser Peng Wan*, Lih-Mei Yang and Jian Liu PolarOnyx Inc.,

More information

Regenerative Amplification in Alexandrite of Pulses from Specialized Oscillators

Regenerative Amplification in Alexandrite of Pulses from Specialized Oscillators Regenerative Amplification in Alexandrite of Pulses from Specialized Oscillators In a variety of laser sources capable of reaching high energy levels, the pulse generation and the pulse amplification are

More information

Thin-Disc-Based Driver

Thin-Disc-Based Driver Thin-Disc-Based Driver Jochen Speiser German Aerospace Center (DLR) Institute of Technical Physics Solid State Lasers and Nonlinear Optics Folie 1 German Aerospace Center! Research Institution! Space Agency!

More information

Fiber lasers and their advanced optical technologies of Fujikura

Fiber lasers and their advanced optical technologies of Fujikura Fiber lasers and their advanced optical technologies of Fujikura Kuniharu Himeno 1 Fiber lasers have attracted much attention in recent years. Fujikura has compiled all of the optical technologies required

More information

Ultrafast instrumentation (No Alignment!)

Ultrafast instrumentation (No Alignment!) Ultrafast instrumentation (No Alignment!) We offer products specialized in ultrafast metrology with strong expertise in the production and characterization of high energy ultrashort pulses. We provide

More information

Development of Nano Second Pulsed Lasers Using Polarization Maintaining Fibers

Development of Nano Second Pulsed Lasers Using Polarization Maintaining Fibers Development of Nano Second Pulsed Lasers Using Polarization Maintaining Fibers Shun-ichi Matsushita*, * 2, Taizo Miyato*, * 2, Hiroshi Hashimoto*, * 2, Eisuke Otani* 2, Tatsuji Uchino* 2, Akira Fujisaki*,

More information

Mira OPO-X. Fully Automated IR/Visible OPO for femtosecond and picosecond Ti:Sapphire Lasers. Superior Reliability & Performance. Mira OPO-X Features:

Mira OPO-X. Fully Automated IR/Visible OPO for femtosecond and picosecond Ti:Sapphire Lasers. Superior Reliability & Performance. Mira OPO-X Features: Fully Automated IR/Visible OPO for femtosecond and picosecond Ti:Sapphire Lasers Mira OPO-X is a synchronously pumped, widely tunable, optical parametric oscillator (OPO) accessory that dramatically extends

More information

1 kw, 15!J linearly polarized fiber laser operating at 977 nm

1 kw, 15!J linearly polarized fiber laser operating at 977 nm 1 kw, 15!J linearly polarized fiber laser operating at 977 nm V. Khitrov, D. Machewirth, B. Samson, K. Tankala Nufern, 7 Airport Park Road, East Granby, CT 06026 phone: (860) 408-5000; fax: (860)408-5080;

More information

Lithium Triborate (LiB 3 O 5, LBO)

Lithium Triborate (LiB 3 O 5, LBO) NLO Cr ys tals Introduction Lithium Triborate (LiB 3 O 5, LBO) Lithium Triborate (LiB 3 O 5 or LBO) is an excellent nonlinear optical crystal discovered and developed by FIRSM, CAS (Fujian Institute of

More information

High-Power, Passively Q-switched Microlaser - Power Amplifier System

High-Power, Passively Q-switched Microlaser - Power Amplifier System High-Power, Passively Q-switched Microlaser - Power Amplifier System Yelena Isyanova Q-Peak, Inc.,135 South Road, Bedford, MA 01730 isyanova@qpeak.com Jeff G. Manni JGM Associates, 6 New England Executive

More information

A CW seeded femtosecond optical parametric amplifier

A CW seeded femtosecond optical parametric amplifier Science in China Ser. G Physics, Mechanics & Astronomy 2004 Vol.47 No.6 767 772 767 A CW seeded femtosecond optical parametric amplifier ZHU Heyuan, XU Guang, WANG Tao, QIAN Liejia & FAN Dianyuan State

More information

FPPO 1000 Fiber Laser Pumped Optical Parametric Oscillator: FPPO 1000 Product Manual

FPPO 1000 Fiber Laser Pumped Optical Parametric Oscillator: FPPO 1000 Product Manual Fiber Laser Pumped Optical Parametric Oscillator: FPPO 1000 Product Manual 2012 858 West Park Street, Eugene, OR 97401 www.mtinstruments.com Table of Contents Specifications and Overview... 1 General Layout...

More information

1 Watt femtosecond mid-ir Cr:ZnS laser

1 Watt femtosecond mid-ir Cr:ZnS laser 1 Watt femtosecond mid-ir Cr:ZnS laser Evgeni Sorokin* a, Nikolai Tolstik b, Irina T. Sorokina b a Photonics institute, TU Wien - Vienna University of Technology, Vienna, Austria; b Department of Physics,

More information

High Average Power Cryogenic Lasers Will Enable New Applications

High Average Power Cryogenic Lasers Will Enable New Applications High Average Power Cryogenic Lasers Will Enable New Applications David C. Brown and Sten Tornegard For military applications, efficiency, size and weight, reliability, performance, and cost are the fundamental

More information

Testing with Femtosecond Pulses

Testing with Femtosecond Pulses Testing with Femtosecond Pulses White Paper PN 200-0200-00 Revision 1.3 January 2009 Calmar Laser, Inc www.calmarlaser.com Overview Calmar s femtosecond laser sources are passively mode-locked fiber lasers.

More information

A 243mJ, Eye-Safe, Injection-Seeded, KTA Ring- Cavity Optical Parametric Oscillator

A 243mJ, Eye-Safe, Injection-Seeded, KTA Ring- Cavity Optical Parametric Oscillator Utah State University DigitalCommons@USU Space Dynamics Lab Publications Space Dynamics Lab 1-1-2011 A 243mJ, Eye-Safe, Injection-Seeded, KTA Ring- Cavity Optical Parametric Oscillator Robert J. Foltynowicz

More information

Development of high average power fiber lasers for advanced accelerators

Development of high average power fiber lasers for advanced accelerators Development of high average power fiber lasers for advanced accelerators Almantas Galvanauskas Center for Ultrafast Optical Science (CUOS), University of Michigan 16 th Advanced Accelerator Concepts Workshop

More information

Progress on High Power Single Frequency Fiber Amplifiers at 1mm, 1.5mm and 2mm

Progress on High Power Single Frequency Fiber Amplifiers at 1mm, 1.5mm and 2mm Nufern, East Granby, CT, USA Progress on High Power Single Frequency Fiber Amplifiers at 1mm, 1.5mm and 2mm www.nufern.com Examples of Single Frequency Platforms at 1mm and 1.5mm and Applications 2 Back-reflection

More information

How to build an Er:fiber femtosecond laser

How to build an Er:fiber femtosecond laser How to build an Er:fiber femtosecond laser Daniele Brida 17.02.2016 Konstanz Ultrafast laser Time domain : pulse train Frequency domain: comb 3 26.03.2016 Frequency comb laser Time domain : pulse train

More information

Simultaneous pulse amplification and compression in all-fiber-integrated pre-chirped large-mode-area Er-doped fiber amplifier

Simultaneous pulse amplification and compression in all-fiber-integrated pre-chirped large-mode-area Er-doped fiber amplifier Simultaneous pulse amplification and compression in all-fiber-integrated pre-chirped large-mode-area Er-doped fiber amplifier Gong-Ru Lin 1 *, Ying-Tsung Lin, and Chao-Kuei Lee 2 1 Graduate Institute of

More information

Fundamental Optics ULTRAFAST THEORY ( ) = ( ) ( q) FUNDAMENTAL OPTICS. q q = ( A150 Ultrafast Theory

Fundamental Optics ULTRAFAST THEORY ( ) = ( ) ( q) FUNDAMENTAL OPTICS. q q = ( A150 Ultrafast Theory ULTRAFAST THEORY The distinguishing aspect of femtosecond laser optics design is the need to control the phase characteristic of the optical system over the requisite wide pulse bandwidth. CVI Laser Optics

More information

Dr. Rüdiger Paschotta RP Photonics Consulting GmbH. Competence Area: Fiber Devices

Dr. Rüdiger Paschotta RP Photonics Consulting GmbH. Competence Area: Fiber Devices Dr. Rüdiger Paschotta RP Photonics Consulting GmbH Competence Area: Fiber Devices Topics in this Area Fiber lasers, including exotic types Fiber amplifiers, including telecom-type devices and high power

More information

J-KAREN-P Session 1, 10:00 10:

J-KAREN-P Session 1, 10:00 10: J-KAREN-P 2018 Session 1, 10:00 10:25 2018 5 8 Outline Introduction Capabilities of J-KAREN-P facility Optical architecture Status and implementation of J-KAREN-P facility Amplification performance Recompression

More information

High-peak power laser system used in Yb doped LMA fiber

High-peak power laser system used in Yb doped LMA fiber High-peak power laser system used in Yb doped LMA fiber Institute of Laser Engineering, Osaka University, Suita, Osaka, Japan YOSHIDA Hidetsugu, TSUBAKIMOTO Koji, FUJITA Hisanori, NAKATSUKA Masahiro, MIYANAGA

More information

High power VCSEL array pumped Q-switched Nd:YAG lasers

High power VCSEL array pumped Q-switched Nd:YAG lasers High power array pumped Q-switched Nd:YAG lasers Yihan Xiong, Robert Van Leeuwen, Laurence S. Watkins, Jean-Francois Seurin, Guoyang Xu, Alexander Miglo, Qing Wang, and Chuni Ghosh Princeton Optronics,

More information

High energy femtosecond OPA pumped by 1030 nm Nd:KGW laser.

High energy femtosecond OPA pumped by 1030 nm Nd:KGW laser. High energy femtosecond OPA pumped by 1030 nm Nd:KGW laser. V. Kozich 1, A. Moguilevski, and K. Heyne Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany Abstract

More information

The Realization of Ultra-Short Laser Sources. with Very High Intensity

The Realization of Ultra-Short Laser Sources. with Very High Intensity Adv. Studies Theor. Phys., Vol. 3, 2009, no. 10, 359-367 The Realization of Ultra-Short Laser Sources with Very High Intensity Arqile Done University of Gjirokastra, Department of Mathematics Computer

More information

Recent Progress in Pulsed Optical Synchronization Systems

Recent Progress in Pulsed Optical Synchronization Systems FLS 2010 Workshop March 4 th, 2010 Recent Progress in Pulsed Optical Synchronization Systems Franz X. Kärtner Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics,

More information

Recent advances in high-performance 2.X µm Vertical External Cavity Surface Emitting Laser (VECSEL)

Recent advances in high-performance 2.X µm Vertical External Cavity Surface Emitting Laser (VECSEL) Recent advances in high-performance 2.X µm Vertical External Cavity Surface Emitting Laser (VECSEL) Joachim Wagner*, M. Rattunde, S. Kaspar, C. Manz, A. Bächle Fraunhofer-Institut für Angewandte Festkörperphysik

More information

Introduction Compact 0.56 PW laser system Scalability to multi-petawatt power Conclusion

Introduction Compact 0.56 PW laser system Scalability to multi-petawatt power Conclusion Petawatt OPCPA Lasers: Status and Perspectives V.V.Lozhkarev, G.I.Freidman, V.N.Ginzburg, E.V.Katin, E.A.Khazanov, A.V.Kirsanov, G.A.Luchinin, A.N.Mal'shakov, M.A.Martyanov, O.V.Palashov, A.K.Poteomkin,

More information

1.2. Optical parametric chirped pulse

1.2. Optical parametric chirped pulse OPCPA and new amplification techniques Hugo Filipe de Almeida Pires Recent developments in high intensity lasers have allowed increasingly higher powers, up to the Petawatt (10 15 W) level. This redefinition

More information

Development of 10 khz multi-mj fs Pulse High-efficiency Yb:YAG Laser

Development of 10 khz multi-mj fs Pulse High-efficiency Yb:YAG Laser Development of 10 khz multi-mj fs Pulse High-efficiency Yb:YAG Laser Isao Matsushima* a, Akihiro Tanabashi b, Kazuyuki Akagawa b a National Institute of Advanced Industrial Science and Technology (AIST),

More information

APE Autocorrelator Product Family

APE Autocorrelator Product Family APE Autocorrelator Product Family APE Autocorrelators The autocorrelator product family by APE includes a variety of impressive features and properties, designed to cater for a wide range of ultrafast

More information

Fiber lasers: The next generation

Fiber lasers: The next generation Fiber lasers: The next generation David N Payne Optoelectronics Research Centre and SPI Lasers kw fibre laser No connection! After the telecoms EDFA The fibre laser another fibre revolution? Fibre laser

More information

Lecture 08. Fundamentals of Lidar Remote Sensing (6)

Lecture 08. Fundamentals of Lidar Remote Sensing (6) Lecture 08. Fundamentals of Lidar Remote Sensing (6) Basic Lidar Architecture q Basic Lidar Architecture q Configurations vs. Arrangements q Transceiver with HOE q A real example: STAR Na Doppler Lidar

More information

The Proposed MIT X-ray Laser Facility: Laser Seeding to Achieve the Transform Limit

The Proposed MIT X-ray Laser Facility: Laser Seeding to Achieve the Transform Limit MIT X-ray Laser Project The Proposed MIT X-ray Laser Facility: Laser Seeding to Achieve the Transform Limit 30 or more independent beamlines Fully coherent milli-joule pulses at khz rates Wavelength range

More information

High Average Power, High Repetition Rate Side-Pumped Nd:YVO 4 Slab Laser

High Average Power, High Repetition Rate Side-Pumped Nd:YVO 4 Slab Laser High Average Power, High Repetition Rate Side-Pumped Nd:YVO Slab Laser Kevin J. Snell and Dicky Lee Q-Peak Incorporated 135 South Rd., Bedford, MA 173 (71) 75-9535 FAX (71) 75-97 e-mail: ksnell@qpeak.com,

More information

A 100 W all-fiber linearly-polarized Yb-doped single-mode fiber laser at 1120 nm

A 100 W all-fiber linearly-polarized Yb-doped single-mode fiber laser at 1120 nm A 1 W all-fiber linearly-polarized Yb-doped single-mode fiber laser at 112 nm Jianhua Wang, 1,2 Jinmeng Hu, 1 Lei Zhang, 1 Xijia Gu, 3 Jinbao Chen, 2 and Yan Feng 1,* 1 Shanghai Key Laboratory of Solid

More information

A transportable optical frequency comb based on a mode-locked fibre laser

A transportable optical frequency comb based on a mode-locked fibre laser A transportable optical frequency comb based on a mode-locked fibre laser B. R. Walton, H. S. Margolis, V. Tsatourian and P. Gill National Physical Laboratory Joint meeting for Time and Frequency Club

More information

HIGH POWER LASERS FOR 3 RD GENERATION GRAVITATIONAL WAVE DETECTORS

HIGH POWER LASERS FOR 3 RD GENERATION GRAVITATIONAL WAVE DETECTORS HIGH POWER LASERS FOR 3 RD GENERATION GRAVITATIONAL WAVE DETECTORS P. Weßels for the LZH high power laser development team Laser Zentrum Hannover, Germany 23.05.2011 OUTLINE Requirements on lasers for

More information

Yb-doped Mode-locked fiber laser based on NLPR Yan YOU

Yb-doped Mode-locked fiber laser based on NLPR Yan YOU Yb-doped Mode-locked fiber laser based on NLPR 20120124 Yan YOU Mode locking method-nlpr Nonlinear polarization rotation(nlpr) : A power-dependent polarization change is converted into a power-dependent

More information

PGx11 series. Transform Limited Broadly Tunable Picosecond OPA APPLICATIONS. Available models

PGx11 series. Transform Limited Broadly Tunable Picosecond OPA APPLICATIONS. Available models PGx1 PGx3 PGx11 PT2 Transform Limited Broadly Tunable Picosecond OPA optical parametric devices employ advanced design concepts in order to produce broadly tunable picosecond pulses with nearly Fourier-transform

More information

TEPZZ 9 45ZZA_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION

TEPZZ 9 45ZZA_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION (19) TEPZZ 9 4ZZA_T (11) EP 2 924 00 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication:.09.1 Bulletin 1/ (21) Application number: 119873.7 (1) Int Cl.: G02F 1/39 (06.01) G02F 1/37 (06.01) H01S

More information

Laser systems for science instruments

Laser systems for science instruments European XFEL Users Meeting 27-20 January 2016, Main Auditorium (Bldg. 5), DESY, Hamburg Laser systems for science instruments M. J. Lederer WP78, European XFEL GmbH, Albert-Einstein-Ring 19, 22761 Hamburg,

More information

Laser Science and Technology at LLE

Laser Science and Technology at LLE Laser Science and Technology at LLE Nd:glass High energy Electrical Yb:YAG High peak power Mechanical OPCPA High average power Eye injuries OPO Exotic wavelengths Fire J. Bromage Group Leader, Sr. Scientist

More information

Optimization of supercontinuum generation in photonic crystal fibers for pulse compression

Optimization of supercontinuum generation in photonic crystal fibers for pulse compression Optimization of supercontinuum generation in photonic crystal fibers for pulse compression Noah Chang Herbert Winful,Ted Norris Center for Ultrafast Optical Science University of Michigan What is Photonic

More information

High average power picosecond pulse generation from a thulium-doped all-fiber MOPA system

High average power picosecond pulse generation from a thulium-doped all-fiber MOPA system High average power picosecond pulse generation from a thulium-doped all-fiber MOPA system Jiang Liu, Qian Wang, and Pu Wang * National Center of Laser Technology, Institute of Laser Engineering, Beijing

More information

6.1 Thired-order Effects and Stimulated Raman Scattering

6.1 Thired-order Effects and Stimulated Raman Scattering Chapter 6 Third-order Effects We are going to focus attention on Raman laser applying the stimulated Raman scattering, one of the third-order nonlinear effects. We show the study of Nd:YVO 4 intracavity

More information

Chirped Pulse Amplification

Chirped Pulse Amplification Chirped Pulse Amplification Short pulse oscillator t Dispersive delay line t Solid state amplifiers t Pulse compressor t Higher laser peak powers (laser intensity) reduce pulse duration increase pulse

More information

Ph 77 ADVANCED PHYSICS LABORATORY ATOMIC AND OPTICAL PHYSICS

Ph 77 ADVANCED PHYSICS LABORATORY ATOMIC AND OPTICAL PHYSICS Ph 77 ADVANCED PHYSICS LABORATORY ATOMIC AND OPTICAL PHYSICS Diode Laser Characteristics I. BACKGROUND Beginning in the mid 1960 s, before the development of semiconductor diode lasers, physicists mostly

More information

A continuous-wave Raman silicon laser

A continuous-wave Raman silicon laser A continuous-wave Raman silicon laser Haisheng Rong, Richard Jones,.. - Intel Corporation Ultrafast Terahertz nanoelectronics Lab Jae-seok Kim 1 Contents 1. Abstract 2. Background I. Raman scattering II.

More information

Optically switched erbium fibre laser using a tunable fibre-bragg grating

Optically switched erbium fibre laser using a tunable fibre-bragg grating Optically switched erbium fibre laser using a tunable fibre-bragg grating Robert J. Williams, * Nemanja Jovanovic, Graham D. Marshall and Michael J. Withford. Centre for Ultrahigh bandwidth Devices for

More information

International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research)

International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) International Journal of Emerging Technologies in Computational

More information

Recent Progress on the 10PW laser Project at SIOM

Recent Progress on the 10PW laser Project at SIOM Recent Progress on the 10PW laser Project at SIOM Ruxin Li, Yuxin Leng, Xiaoyan Liang, and Zhizhan Xu State Key Laboratory of High Field Laser Physics Shanghai Institute of Optics and Fine Mechanics (SIOM),

More information

PITZ Laser Systems. Light Amplification by Stimulated Emission of Radiation. Cavity. What is a Laser? General introduction: systems, layouts

PITZ Laser Systems. Light Amplification by Stimulated Emission of Radiation. Cavity. What is a Laser? General introduction: systems, layouts PITZ Laser Systems General introduction: systems, layouts Matthias Groß PITZ Laser Systems Technisches Seminar Zeuthen, 14.11.2017 What is a Laser? > General setup Light Amplification by Stimulated Emission

More information

High Energy Non - Collinear OPA

High Energy Non - Collinear OPA High Energy Non - Collinear OPA Basics of Operation FEATURES Pulse Duration less than 10 fs possible High Energy (> 80 microjoule) Visible Output Wavelength Tuning Computer Controlled Tuning Range 250-375,

More information

Theoretical Approach. Why do we need ultra short technology?? INTRODUCTION:

Theoretical Approach. Why do we need ultra short technology?? INTRODUCTION: Theoretical Approach Why do we need ultra short technology?? INTRODUCTION: Generating ultrashort laser pulses that last a few femtoseconds is a highly active area of research that is finding applications

More information

Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers

Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers 1.0 Modulation depth 0.8 0.6 0.4 0.2 0.0 Laser 3 Laser 2 Laser 4 2 3 4 5 6 7 8 Absorbed pump power (W) Laser 1 W. Guan and J. R.

More information

The Theta Laser A Low Noise Chirped Pulse Laser. Dimitrios Mandridis

The Theta Laser A Low Noise Chirped Pulse Laser. Dimitrios Mandridis CREOL Affiliates Day 2011 The Theta Laser A Low Noise Chirped Pulse Laser Dimitrios Mandridis dmandrid@creol.ucf.edu April 29, 2011 Objective: Frequency Swept (FM) Mode-locked Laser Develop a frequency

More information