R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

Size: px
Start display at page:

Download "R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder"

Transcription

1 R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

2 DCM flyback converter v ac i ac EMI filter i g v g Flyback converter n : 1 L D 1 i v C R Q 1 D Operation in DCM: we found in Chapter 11 that the converter input port obeys Ohm s law with effective resistance = 2n 2 L/D 2 T s. Hence, simply connect input port to AC line. Fundamentals of Power Electronics 20 Chapter 18: PWM Rectifiers

3 Averaged large-signal model EMI filter i ac i g T Averaged model i T v ac v g 2n 2 L D 2 T s p T v T C R D Under steady-state conditions, operate with constant D Adjust D to control average power drawn from AC line Fundamentals of Power Electronics 21 Chapter 18: PWM Rectifiers

4 Converter design Select L small enough that DCM operation occurs throughout AC line cycle. DCM occurs provided that d 3 > 0, or d 2 <1D But d 2 =D v g nv Substitute and solve for D: D < 1 1 v g nv Converter operates in DCM in every switching period where above inequality is satisfied. i 1 Area q 1 i pk i 1 Ts t d 1 T s d 2 T s d 3 T s T s To obtain DCM at all points on input AC sinusoid: worst case is at maximum v g = V M : D < 1 1 V M nv Fundamentals of Power Electronics 22 Chapter 18: PWM Rectifiers

5 Choice of L to obtain DCM everywhere along AC sinusoid We have: D < 1 1 V M nv with V rms V ac,rms = R Re Substitute expression for to obtain Solve for L: D = 2nV V M L < L crit = L RTs RT s 4 1 nv V M 2 Worst-case design For variations in load resistance and ac input voltage, the worst case occurs at maximum load power and minimum ac input voltage. The inductance should be chosen as follows: L < L crit-min = R min T s 4 1 nv V M-min 2 Fundamentals of Power Electronics 23 Chapter 18: PWM Rectifiers

6 18.3 Control of the Current Waveform Average current control Feedforward Current programmed control Critical conduction mode and hysteretic control Nonlinear carrier control Fundamentals of Power Electronics 24 Chapter 18: PWM Rectifiers

7 Average current control i g Boost example Low frequency (average) component of input current is controlled to follow input voltage v g L Gate driver v Pulse width modulator Current reference v r v a R s i g Ts G c (s) Compensator Fundamentals of Power Electronics 25 Chapter 18: PWM Rectifiers

8 Block diagram Current reference derived from input voltage waveform v ac Multiplier allows control of emulated resistance value Compensation of current loop i ac v control Multiplier X i g v g v g R s i g v a Controller Boost converter L v r = k x v g v control v err Q 1 D 1 PWM G c (s) Compensator i C v R Fundamentals of Power Electronics 26 Chapter 18: PWM Rectifiers

9 The emulated resistance Current sensor has gain R s : i g i ac Boost converter L D 1 i v a =R s i g Ts v ac v g Q 1 C v R If loop is well designed, then: v a v r Multiplier: v r =k x v g v control Hence the emulated resistance is: = v g i g = v r k x v control v control Multiplier X v g R s i g v a v r = k x v g v control Controller v err PWM G c (s) Compensator which can be simplified to v a R s v control = R s k x v control Fundamentals of Power Electronics 27 Chapter 18: PWM Rectifiers

10 System model using LFR Average current control i g Ts Ideal rectifier (LFR) i Ts i ac p Ts v ac v g Ts C v Ts R = R s k x v control v control Fundamentals of Power Electronics 28 Chapter 18: PWM Rectifiers

11 Use of multiplier to control average power As discussed in Chapter 17, an output voltage feedback loop adjusts the emulated resistance such that the rectifier power equals the dc load power: P av = V 2 g,rms = P load v g v g i g Gate driver Pulse width modulator C v An analog multiplier introduces the dependence of on v. x y Multiplier k x xy v ref1 v control v a v err G c (s) Compensator G cv (s) v v ref2 Voltage reference Fundamentals of Power Electronics 29 Chapter 18: PWM Rectifiers

12 Feedforward Feedforward is sometimes used to cancel out disturbances in the input voltage v g. v g i g v To maintain a given power throughput P av, the reference voltage v ref1 should be Gate driver v ref 1 = P avv g R s 2 V g,rms v g Pulse width modulator Peak detector VM x z y multiplier k v xy z 2 v a v ref1 v control G c (s) Compensator G cv (s) v ref2 Voltage reference Fundamentals of Power Electronics 30 Chapter 18: PWM Rectifiers

13 Feedforward, continued Controller with feedforward produces the following reference: i g v ref 1 = k vv control v g V M 2 The average power is then given by P av = k vv control 2R s v g v g Gate driver Pulse width modulator v Peak detector VM x z y multiplier k v xy z 2 v ref1 v control v a G c (s) Compensator G cv (s) v ref2 Voltage reference Fundamentals of Power Electronics 31 Chapter 18: PWM Rectifiers

14 Modeling the inner wide-bandwidth average current controller Averaged (but not linearized) boost converter model: L i Ts i 1 Ts v g Ts v 1 Ts i 2 Ts v 2 Ts C R v Ts Averaged switch network In Chapter 7, we perturbed and linearized using the assumptions v g Ts = V g v g d=d d d'=d' d i Ts = i 1 Ts = I i v Ts = v 2 Ts = V v v 1 Ts = V 1 v 1 i 2 Ts = I 2 i 2 Problem: variations in v g, i 1, and d are not small. So we are faced with the design of a control system that exhibits significant nonlinear time-varying behavior. Fundamentals of Power Electronics 32 Chapter 18: PWM Rectifiers

15 Linearizing the equations of the boost rectifier When the rectifier operates near steady-state, it is true that v Ts = V v with v << V In the special case of the boost rectifier, this is sufficient to linearize the equations of the average current controller. The boost converter average inductor voltage is L substitute: L di g Ts dt di g Ts dt = v g Ts d'v d'v = v g Ts d'v d'v Fundamentals of Power Electronics 33 Chapter 18: PWM Rectifiers

16 Linearized boost rectifier model L di g Ts dt = v g Ts d'v d'v The nonlinear term is much smaller than the linear ac term. Hence, it can be discarded to obtain L Equivalent circuit: di g Ts dt = v g Ts d'v L i g Ts i g (s) d(s) = V sl v g Ts d'v Fundamentals of Power Electronics 34 Chapter 18: PWM Rectifiers

17 The quasi-static approximation The above approach is not sufficient to linearize the equations needed to design the rectifier averaged current controllers of buck-boost, Cuk, SEPIC, and other converter topologies. These are truly nonlinear timevarying systems. An approximate approach that is sometimes used in these cases: the quasi-static approximation Assume that the ac line variations are much slower than the converter dynamics, so that the rectifier always operates near equilibrium. The quiescent operating point changes slowly along the input sinusoid, and we can find the slowly-varying equilibrium duty ratio as in Section The converter small-signal transfer functions derived in Chapters 7 and 8 are evaluated, using the time-varying operating point. The poles, zeroes, and gains vary slowly as the operating point varies. An average current controller is designed, that has a positive phase margin at each operating point. Fundamentals of Power Electronics 35 Chapter 18: PWM Rectifiers

18 Quasi-static approximation: discussion In the literature, several authors have reported success using this method Should be valid provided that the converter dynamics are suffieiently fast, such that the converter always operates near the assumed operating points No good condition on system parameters, which can justify the approximation, is presently known for the basic converter topologies It is well-understood in the field of control systems that, when the converter dynamics are not sufficiently fast, then the quasi-static approximation yields neither necessary nor sufficient conditions for stability. Such behavior can be observed in rectifier systems. Worstcase analysis to prove stability should employ simulations. Fundamentals of Power Electronics 36 Chapter 18: PWM Rectifiers

19 Current programmed control Current programmed control is a natural approach to obtain input resistor emulation: Peak transistor current is programmed to follow input voltage. Peak transistor current differs from average inductor current, because of inductor current ripple and artificial ramp. This leads to significant input current waveform distortion. v control i g v g v g Multiplier X i s i a Boost converter L D 1 Q 1 m a Clock 0 i c Comparator = k x v g v control Current-programmed controller i 2 T s C S Q R Latch v R Fundamentals of Power Electronics 37 Chapter 18: PWM Rectifiers

20 CPM boost converter: Static input characteristics i g Ts = v g Li 2 c f s V v g v g m a L i c 1 v g V m a v g L T s in DCM in CCM 1 Static input characteristics of CPM boost, with minimum slope compensation: Mode boundary: CCM occurs when or, i g Ts > T sv 2L i c > T sv L It is desired that v g V m a L V 1 v g V v g V Minimum slope compensation: 1 v g V i c = v 0.2 g 0 m a = V 2L Fundamentals of Power Electronics 38 Chapter 18: PWM Rectifiers R j g = i g base Ts V = 0.1R base = 0.2R base = 0.33R base DCM = 0.5R base CCM m a = V 2L R base = 2L T s = R base = 2R base = 4R base = v g V 10R base

21 Input current waveforms with current mode control i g Peak i g Sinusoid = 0.1R base Re = 0.33Rbase = 2R base m a = V 2L R base = 2L T s ωt Substantial distortion can occur Can meet harmonic limits if the range of operating points is not too large Difficult to meet harmonic limits in a universal input supply Fundamentals of Power Electronics 39 Chapter 18: PWM Rectifiers

22 Critical conduction mode and hysteretic control Variable switching frequency schemes Hysteretic control Critical conduction mode (boundary between CCM and DCM) i g i g Hysteretic control ωt Critical conduction mode t on ωt Fundamentals of Power Electronics 40 Chapter 18: PWM Rectifiers

23 An implementation of critical conduction control EMI filter i g Boost converter i i ac L D 1 v ac v g Q 1 C v R v control v g Multiplier X R s va Zero current i g detector S Q v r = k x v g v control Comparator Controller R Latch Fundamentals of Power Electronics 41 Chapter 18: PWM Rectifiers

24 Pros and cons of critical conduction control Simple, low-cost controller ICs Low-frequency harmonics are very small, with constant transistor on-time (for boost converter) Small inductor Increased peak current Increased conduction loss, reduced switching loss Requires larger input filter Variable switching frequency smears out the current EMI spectrum Cannot synchronize converter switching frequencies Fundamentals of Power Electronics 42 Chapter 18: PWM Rectifiers

25 Analysis i g Transistor is on for fixed time t on Transistor off-time ends when inductor current reaches zero Ratio of v g to i g is = 2L t on t on ωt On time, as a function of load power and line voltage: t on = 4LP V M 2 Inductor volt-second balance: v g t on v g V t off =0 Solve for t off : t off = t on v g V v g Fundamentals of Power Electronics 43 Chapter 18: PWM Rectifiers

26 Switching frequency variations Solve for how the controller varies the switching frequency over the ac line period: 1 T s = t off t on T s = 4LP V M 2 1 v g V For sinusoidal line voltage variations, the switching frequency will therefore vary as follows: f s = 1 = V 2 M T s 4LP 1V M V sin (ωt) Minimum and maximum limits on switching frequency: max f s = V 2 M 4LP min f s = V 2 M 4LP 1V M V These equations can be used to select the value of the inductance L. Fundamentals of Power Electronics 44 Chapter 18: PWM Rectifiers

27 Nonlinear carrier control Can attain simple control of input current waveform without sensing the ac input voltage, and with operation in continuous conduction mode The integral of the sensed switch current (charge) is compared to a nonlinear carrier waveform (i.e., a nonlinear ramp), on a cycle-bycycle basis Carrier waveform depends on converter topology Very low harmonics in CCM. Waveform distortion occurs in DCM. Peak current mode control is also possible, with a different carrier Fundamentals of Power Electronics 45 Chapter 18: PWM Rectifiers

28 Controller block diagram Nonlinear carrier charge control of boost converter Boost converter i g L D 1 i s v g n : 1 i s Q 1 C v R C i i s /n v i Comparator Latch R Q v c v i v c Nonlinear carrier generator 0 T s S Q 0 v i dt s T s v control Clock Nonlinear-carrier charge controller Fundamentals of Power Electronics 46 Chapter 18: PWM Rectifiers

29 Derivation of NLC approach The average switch current is i s Ts = 1 T s t t T s i s (τ)dτ We could make the controller regulate the average switch current by Integrating the monitored switch current Resetting the integrator to zero at the beginning of each switching period Turning off the transistor when the integrator reaches a reference value In the controller diagram, the integrator follows this equation: i.e., v i = 1 C i 0 dt s v i (dt s )= i s T s nc i f s i s (τ) n dτ for 0 < t < dt s for interval 0 < t < T s Fundamentals of Power Electronics 47 Chapter 18: PWM Rectifiers

30 How to control the average switch current Input resistor emulation: i g Ts = v g Ts (v control ) Relate average switch current to input current (assuming CCM): i s Ts = d i g Ts Relate input voltage to output voltage (assuming CCM): v g Ts = d v Ts Substitute above equations to find how average switch current should be controlled: i s Ts = d 1d v Ts (v control ) Fundamentals of Power Electronics 48 Chapter 18: PWM Rectifiers

31 Implementation using nonlinear carrier Desired control, from previous slide: i s Ts = d 1d v Ts (v control ) Generate carrier waveform as follows (replace d by t/t s ): v c =v control t Ts 1 t T s for 0 t T s v c (t T s )=v c The controller switches the transistor off when the integrator voltage equals the carrier waveform. This leads to: v i (dt s )=v c (dt s )=v control d 1d i s Ts nc i f s = v control d 1d (v control )=d 1d v Ts i s Ts = v Ts nc i f s v control Fundamentals of Power Electronics 49 Chapter 18: PWM Rectifiers

32 Generating the parabolic carrier v control Removal of dc component v c Integrator with reset Integrator with reset Clock (one approach, suitable for discrete circuitry) Note that no separate multiplier circuit is needed Fundamentals of Power Electronics 50 Chapter 18: PWM Rectifiers

33 18.4 Single-phase converter systems containing ideal rectifiers It is usually desired that the output voltage v be regulated with high accuracy, using a wide-bandwidth feedback loop For a given constant load characteristic, the instantaneous load current and power are then also constant: p load =vi=vi The instantaneous input power of a single-phase ideal rectifier is not constant: with p ac =v g i g v g =V M sin (ωt) i g = v g so p ac = V 2 M sin R 2 ωt = V 2 M e 2 1 cos 2ωt Fundamentals of Power Electronics 51 Chapter 18: PWM Rectifiers

34 Power flow in single-phase ideal rectifier system Ideal rectifier is lossless, and contains no internal energy storage. Hence instantaneous input and output powers must be equal An energy storage element must be added Capacitor energy storage: instantaneous power flowing into capacitor is equal to difference between input and output powers: p C = de C dt = d 1 2 Cv 2 C dt = p ac p load Energy storage capacitor voltage must be allowed to vary, in accordance with this equation Fundamentals of Power Electronics 52 Chapter 18: PWM Rectifiers

35 Capacitor energy storage in 1ø system p ac P load v c = d 1 2 Cv 2 C dt = p ac p load Fundamentals of Power Electronics 53 Chapter 18: PWM Rectifiers t

36 Single-phase system with internal energy storage i g Ideal rectifier (LFR) i 2 p load = VI = P load v ac i ac v g p ac Ts C v C Dcdc converter v i load Energy storage capacitor Energy storage capacitor voltage v C must be independent of input and output voltage waveforms, so that it can vary according to = d 1 2 Cv 2 C dt = p ac p load This system is capable of Wide-bandwidth control of output voltage Wide-bandwidth control of input current waveform Internal independent energy storage Fundamentals of Power Electronics 54 Chapter 18: PWM Rectifiers

37 Hold up time Internal energy storage allows the system to function in other situations where the instantaneous input and output powers differ. A common example: continue to supply load power in spite of failure of ac line for short periods of time. Hold up time: the duration which the dc output voltage v remains regulated after v ac has become zero A typical hold-up time requirement: supply load for one complete missing ac line cycle, or 20 msec in a 50 Hz system During the hold-up time, the load power is supplied entirely by the energy storage capacitor Fundamentals of Power Electronics 55 Chapter 18: PWM Rectifiers

38 Energy storage element Instead of a capacitor, and inductor or higher-order LC network could store the necessary energy. But, inductors are not good energy-storage elements Example 100 V 100 µf capacitor 100 A 100 µh inductor each store 1 Joule of energy But the capacitor is considerably smaller, lighter, and less expensive So a single big capacitor is the best solution Fundamentals of Power Electronics 56 Chapter 18: PWM Rectifiers

39 Inrush current A problem caused by the large energy storage capacitor: the large inrush current observed during system startup, necessary to charge the capacitor to its equilibrium value. Boost converter is not capable of controlling this inrush current. Even with d = 0, a large current flows through the boost converter diode to the capacitor, as long as v < v g. Additional circuitry is needed to limit the magnitude of this inrush current. Converters having buck-boost characteristics are capable of controlling the inrush current. Unfortunately, these converters exhibit higher transistor stresses. Fundamentals of Power Electronics 57 Chapter 18: PWM Rectifiers

40 Universal input The capability to operate from the ac line voltages and frequencies found everywhere in the world: 50Hz and 60Hz Nominal rms line voltages of 100V to 260V: 100V, 110V, 115V, 120V, 132V, 200V, 220V, 230V, 240V, 260V Regardless of the input voltage and frequency, the near-ideal rectifier produces a constant nominal dc output voltage. With a boost converter, this voltage is 380 or 400V. Fundamentals of Power Electronics 58 Chapter 18: PWM Rectifiers

41 Low-frequency model of dc-dc converter Dc-dc converter produces well-regulated dc load voltage V. Load therefore draws constant current I. Load power is therefore the constant value P load = VI. To the extent that dc-dc converter losses can be neglected, then dc-dc converter input power is P load, regardless of capacitor voltage v c. Dc-dc converter input port behaves as a power sink. A low frequency converter model is i 2 p load = VI = P load i C v C P load V v load Energy storage capacitor Dc-dc converter Fundamentals of Power Electronics 59 Chapter 18: PWM Rectifiers

42 Low-frequency energy storage process, 1ø system A complete low-frequency system model: i g i 2 i ac p ac Ts p load = VI = P load i v ac v g C v C P load V v load Ideal rectifier (LFR) Energy storage capacitor Dc-dc converter Difference between rectifier output power and dc-dc converter input power flows into capacitor In equilibrium, average rectifier and load powers must be equal But the system contains no mechanism to accomplish this An additional feeback loop is necessary, to adjust such that the rectifier average power is equal to the load power Fundamentals of Power Electronics 60 Chapter 18: PWM Rectifiers

43 Obtaining average power balance i g i 2 p load = VI = P load i ac p ac Ts i v ac v g C v C P load V v load Ideal rectifier (LFR) Energy storage capacitor Dc-dc converter If the load power exceeds the average rectifier power, then there is a net discharge in capacitor energy and voltage over one ac line cycle. There is a net increase in capacitor charge when the reverse is true. This suggests that rectifier and load powers can be balanced by regulating the energy storage capacitor voltage. Fundamentals of Power Electronics 61 Chapter 18: PWM Rectifiers

44 A complete 1ø system containing three feedback loops v ac i g i ac v g Boost converter L D 1 Q 1 i 2 v C C DCDC Converter i Load v v control Multiplier X v g R s i g v a PWM d v ref1 = k x v g v control v err G c (s) Compensator Wide-bandwidth input current controller v Compensator and modulator v ref3 Wide-bandwidth output voltage controller v C Compensator v ref2 Low-bandwidth energy-storage capacitor voltage controller Fundamentals of Power Electronics 62 Chapter 18: PWM Rectifiers

45 Bandwidth of capacitor voltage loop The energy-storage-capacitor voltage feedback loop causes the dc component of v c to be equal to some reference value Average rectifier power is controlled by variation of. must not vary too quickly; otherwise, ac line current harmonics are generated Extreme limit: loop has infinite bandwidth, and v c is perfectly regulated to be equal to a constant reference value Energy storage capacitor voltage then does not change, and this capacitor does not store or release energy Instantaneous load and ac line powers are then equal Input current becomes i ac = p ac v ac = p load v ac = P load V M sin ωt Fundamentals of Power Electronics 63 Chapter 18: PWM Rectifiers

46 Input current waveform, extreme limit i ac = p ac v ac = p load v ac = P load V M sin ωt THD Power factor 0 v ac i ac t So bandwidth of capacitor voltage loop must be limited, and THD increases rapidly with increasing bandwidth Fundamentals of Power Electronics 64 Chapter 18: PWM Rectifiers

47 Modeling the outer low-bandwidth control system This loop maintains power balance, stabilizing the rectifier output voltage against variations in load power, ac line voltage, and component values The loop must be slow, to avoid introducing variations in at the harmonics of the ac line frequency Objective of our modeling efforts: low-frequency small-signal model that predicts transfer functions at frequencies below the ac line frequency Fundamentals of Power Electronics 65 Chapter 18: PWM Rectifiers

48 Large signal model averaged over switching period T s Ideal rectifier (LFR) i g Ts p Ts i 2 Ts v g Ts (v control ) C v Ts Load ac input dc output v control Ideal rectifier model, assuming that inner wide-bandwidth loop operates ideally High-frequency switching harmonics are removed via averaging Ac line-frequency harmonics are included in model Nonlinear and time-varying Fundamentals of Power Electronics 66 Chapter 18: PWM Rectifiers

49 Predictions of large-signal model If the input voltage is Ideal rectifier (LFR) i g Ts p Ts i 2 Ts v g = 2v g,rms sin ωt v g Ts (v control ) C v Ts Load Then the instantaneous power is: ac input v control dc output p Ts = 2 v g Ts (v control ) = 2 v g,rms (v control ) 1 cos 2ωt which contains a constant term plus a secondharmonic term Fundamentals of Power Electronics 67 Chapter 18: PWM Rectifiers

50 Separation of power source into its constant and time-varying components i 2 Ts V 2 g,rms cos R 2 2ωt e 2 V g,rms C v Ts Load Rectifier output port The second-harmonic variation in power leads to second-harmonic variations in the output voltage and current Fundamentals of Power Electronics 68 Chapter 18: PWM Rectifiers

51 Removal of even harmonics via averaging v v Ts v T2L t T 2L = 1 2 2π ω = π ω Fundamentals of Power Electronics 69 Chapter 18: PWM Rectifiers

52 Resulting averaged model i 2 T2L 2 V g,rms C v T2L Load Rectifier output port Time invariant model Power source is nonlinear Fundamentals of Power Electronics 70 Chapter 18: PWM Rectifiers

53 Perturbation and linearization The averaged model predicts that the rectifier output current is i 2 T2L = p T 2L v T2L = 2 v g,rms (v control ) v T2L = f v g,rms, v T2L, v control ) Let with v T2L = V v i 2 T2L = I 2 i 2 v g,rms = V g,rms v g,rms v control =V control v control V >> v I 2 >> i 2 V g,rms >> v g,rms V control >> v control Fundamentals of Power Electronics 71 Chapter 18: PWM Rectifiers

54 Linearized result where I 2 i 2 =g 2 v g,rms j 2 v v control r 2 g 2 = df v g,rms, V, V control ) dv g,rms v g,rms = V g,rms = 2 (V control ) V g,rms V 1 r 2 = df V g,rms, v T2L, V control ) = I 2 dv V T2L v = V T2L j 2 = df V g,rms, V, v control ) dv control v control = V control = 2 V g,rms VR 2 e (V control ) d (v control ) dv control v control = V control Fundamentals of Power Electronics 72 Chapter 18: PWM Rectifiers

55 Small-signal equivalent circuit i 2 g 2 v g,rms j 2 v control C v R r 2 Rectifier output port Predicted transfer functions Control-to-output v(s) v control (s) = j 2 R r 2 1 1sC R r 2 Line-to-output v(s) v g,rms (s) = g 2 R r 2 1 1sC R r 2 Fundamentals of Power Electronics 73 Chapter 18: PWM Rectifiers

56 Model parameters Table 18.1 Small-signal model parameters for several types of rectifier control schemes Controller type g 2 j 2 r 2 Average current control with feedforward, Fig Current-programmed control, Fig Nonlinear-carrier charge control of boost rectifier, Fig Boost with critical conduction mode control, Fig P av VV g,rms 2P av VV g,rms 2P av VV g,rms P av VV control V 2 P av P av VV control V 2 P av P av VV control V 2 2P av P av VV control V 2 P av DCM buck-boost, flyback, SEPIC, or Cuk converters 2P av VV g,rms 2P av VD V 2 P av Fundamentals of Power Electronics 74 Chapter 18: PWM Rectifiers

57 Constant power load i g i 2 p load = VI = P load i ac p ac Ts i v ac v g C v C P load V v load Ideal rectifier (LFR) Energy storage capacitor Dc-dc converter Rectifier and dc-dc converter operate with same average power Incremental resistance R of constant power load is negative, and is R = V 2 P av which is equal in magnitude and opposite in polarity to rectifier incremental output resistance r 2 for all controllers except NLC Fundamentals of Power Electronics 75 Chapter 18: PWM Rectifiers

58 Transfer functions with constant power load When r 2 = R, the parallel combination r 2 R becomes equal to zero. The small-signal transfer functions then reduce to v(s) v control (s) = j 2 sc v(s) v g,rms (s) = g 2 sc Fundamentals of Power Electronics 76 Chapter 18: PWM Rectifiers

59 18.5 RMS values of rectifier waveforms Doubly-modulated transistor current waveform, boost rectifier: i Q Computation of rms value of this waveform is complex and tedious Approximate here using double integral Generate tables of component rms and average currents for various rectifier converter topologies, and compare t Fundamentals of Power Electronics 77 Chapter 18: PWM Rectifiers

60 RMS transistor current RMS transistor current is i Q I Qrms = 1 Tac 0 T ac i Q 2 dt Express as sum of integrals over all switching periods contained in one ac line period: t T ac /T s I Qrms = 1 T 1 s i 2 Q dt Tac Ts n =1 nt s (n-1)t s Quantity in parentheses is the value of i Q2, averaged over the n th switching period. Fundamentals of Power Electronics 78 Chapter 18: PWM Rectifiers

61 Approximation of RMS expression T ac /T s n =1 I Qrms = 1 T 1 s i 2 Q dt Tac Ts nt s (n-1)t s When T s << T ac, then the summation can be approximated by an integral, which leads to the double-average: I Qrms 1 Tac T ac /T s nt s lim Ts T 1 0 s i 2 Q (τ)dτ Ts n=1 (n-1)t s = 1 1 i 2 Q (τ)dτdt Tac Ts 0 T ac t tt s = i Q 2 Ts T ac Fundamentals of Power Electronics 79 Chapter 18: PWM Rectifiers

62 Boost rectifier example For the boost converter, the transistor current i Q is equal to the input current when the transistor conducts, and is zero when the transistor is off. The average over one switching period of i Q2 is therefore If the input voltage is i Q 2 tt s t = 1 i T s T 2 Q dt s = di 2 ac v ac =V M sin ωt then the input current will be given by i ac = V M Re and the duty cycle will ideally be sin ωt V v ac = 1 1d (this neglects converter dynamics) Fundamentals of Power Electronics 80 Chapter 18: PWM Rectifiers

63 Boost rectifier example Duty cycle is therefore d=1 V M V Evaluate the first integral: i Q 2 = V 2 M T 2 s sin ωt Now plug this into the RMS formula: I Qrms = 1 Tac i Q 2 1 V M V sin ωt sin 2 ωt 0 T ac T s dt = 1 Tac 0 T ac 2 V M 2 1 V M V sin ωt sin 2 ωt dt I Qrms = 2 2 V M Tac 2 sin 2 ωt V M sin 3 V 0 T ac /2 ωt dt Fundamentals of Power Electronics 81 Chapter 18: PWM Rectifiers

64 Integration of powers of sin θ over complete half-cycle n 1 π 0 π sin n (θ)dθ 1 π 0 π sin n (θ)dθ = (n 1) π n (n 1) n if n is odd if n is even 1 2 π π π Fundamentals of Power Electronics 82 Chapter 18: PWM Rectifiers

65 Boost example: transistor RMS current I Qrms = V M π V M V = I ac rms 1 8 3π V M V Transistor RMS current is minimized by choosing V as small as possible: V = V M. This leads to I Qrms = 0.39I ac rms When the dc output voltage is not too much greater than the peak ac input voltage, the boost rectifier exhibits very low transistor current. Efficiency of the boost rectifier is then quite high, and 95% is typical in a 1kW application. Fundamentals of Power Electronics 83 Chapter 18: PWM Rectifiers

66 Table of rectifier current stresses for various topologies Table Summary of rectifier current stresses for several converter topologies rms Average Peak CCM boost Transistor I ac rms 1 8 3π V M V I ac rms 2 2 π 1 π 8 V M I ac rms 2 V Diode I dc 16 3π V V M I dc 2 I dc V VM Inductor I ac rms I ac rms 2 2 π I ac rms 2 CCM flyback, with n:1 isolation transformer and input filter Transistor, xfmr primary L 1 I ac rms 1 8 3π V M nv I ac rms I ac rms 2 2 π I ac rms 2 2 π I ac rms 2 1 V n I ac rms 2 C 1 I 8 V M ac rms 3π nv 0 I ac rms 2 max 1, V M nv Diode, xfmr secondary I dc π nv V M I dc 2I dc 1 nv V M Fundamentals of Power Electronics 84 Chapter 18: PWM Rectifiers

67 Table of rectifier current stresses continued CCM SEPIC, nonisolated Transistor L 1 C 1 I ac rms 1 8 3π I ac rms V M I 2 2 ac rms V π I ac rms 2 1 V M V I ac rms 2 2 π I ac rms 8 3π V M V 0 I ac rms 2 I ac rms max 1, V M V L 2 Diode I ac rms V M V 3 2 I ac rms 2 I dc π V V M I dc V M V I ac rms V M V 2 2I dc 1 V V M CCM SEPIC, with n:1 isolation transformer transistor L 1 C 1, xfmr primary Diode, xfmr secondary I ac rms 1 8 3π I ac rms I 8 V M ac rms 3π nv V M nv I ac rms 2 2 π I ac rms 2 1 V M nv I ac rms 2 2 π I dc π nv V M I dc with, in all cases, I ac rms = I dc 2 V V M, ac input voltage = V M sin(ωt) dc output voltage = V I ac rms 2 Fundamentals of Power Electronics 85 Chapter 18: PWM Rectifiers 0 I ac rms 2I dc 2 max 1, n 1 nv V M

68 Comparison of rectifier topologies Boost converter Lowest transistor rms current, highest efficiency Isolated topologies are possible, with higher transistor stress No limiting of inrush current Output voltage must be greater than peak input voltage Buck-boost, SEPIC, and Cuk converters Higher transistor rms current, lower efficiency Isolated topologies are possible, without increased transistor stress Inrush current limiting is possible Output voltage can be greater than or less than peak input voltage Fundamentals of Power Electronics 86 Chapter 18: PWM Rectifiers

69 Comparison of rectifier topologies 1kW, 240Vrms example. Output voltage: 380Vdc. Input current: 4.2Arms Converter Transistor rms current Transistor voltage Diode rms current Transistor rms current, 120V Diode rms current, 120V Boost 2 A 380 V 3.6 A 6.6 A 5.1 A Nonisolated SEPIC Isolated SEPIC 5.5 A 719 V 4.85 A 9.8 A 6.1 A 5.5 A 719 V 36.4 A 11.4 A 42.5 A Isolated SEPIC example has 4:1 turns ratio, with 42V 23.8A dc load Fundamentals of Power Electronics 87 Chapter 18: PWM Rectifiers

70 18.6 Modeling losses and efficiency in CCM high-quality rectifiers Objective: extend procedure of Chapter 3, to predict the output voltage, duty cycle variations, and efficiency, of PWM CCM low harmonic rectifiers. Approach: Use the models developed in Chapter 3. Integrate over one ac line cycle to determine steady-state waveforms and average power. Boost example i L D g R L 1 i i g R L DR on D' : 1 V F i v g Q 1 C R v v g R v Dc-dc boost converter circuit Averaged dc model Fundamentals of Power Electronics 88 Chapter 18: PWM Rectifiers

71 Modeling the ac-dc boost rectifier Boost rectifier circuit v ac i g i ac v g R L L Q 1 D 1 i d C i v R controller Averaged model i g R L d R on d' : 1 V F i d i = I v g C R (large) v = V Fundamentals of Power Electronics 89 Chapter 18: PWM Rectifiers

72 Boost rectifier waveforms v g 300 i g 10 Typical waveforms v g i g (low frequency components) i g = v g d i d i = I ωt Fundamentals of Power Electronics 90 Chapter 18: PWM Rectifiers

73 Example: boost rectifier with MOSFET on-resistance i g d R on d' : 1 i d i = I v g C R (large) v = V Averaged model Inductor dynamics are neglected, a good approximation when the ac line variations are slow compared to the converter natural frequencies Fundamentals of Power Electronics 91 Chapter 18: PWM Rectifiers

74 Expression for controller duty cycle d Solve input side of model: i g dr on = v g d'v with i g = v g v g =V M sin ωt v g i g d R on d' : 1 i d i = I C R (large) v = V eliminate i g : v g dr on = v g d'v solve for d: d= v v g v v g R on Again, these expressions neglect converter dynamics, and assume that the converter always operates in CCM. Fundamentals of Power Electronics 92 Chapter 18: PWM Rectifiers

75 Expression for the dc load current Solve output side of model, using charge balance on capacitor C: I = i d T ac i d =d'i g =d' v g v g i g d R on d' : 1 i d i = I C R (large) v = V Butd is: d'= v g 1 R on v v g R on hence i d can be expressed as i d = v g 2 1 R on v v g R on Next, average i d over an ac line period, to find the dc load current I. Fundamentals of Power Electronics 93 Chapter 18: PWM Rectifiers

76 Dc load current I Now substitute v g = V M sin ωt, and integrate to find i d T ac : I = i d T ac = 2 T ac 0 T ac /2 1 2 V M This can be written in the normalized form v V M R on R on sin 2 ωt sin ωt dt I = 2 T ac 2 V M V 1 R sin 2 ωt on 1asin ωt 0 T ac /2 dt with a = V M V R on Fundamentals of Power Electronics 94 Chapter 18: PWM Rectifiers

77 Integration By waveform symmetry, we need only integrate from 0 to T ac /4. Also, make the substitution θ = ωt: I = V 2 M V 1 R π/2 on 2 sin 2 θ π 1asin θ dθ 0 This integral is obtained not only in the boost rectifier, but also in the buck-boost and other rectifier topologies. The solution is 4 π 0 π/2 sin 2 θ 1asin θ dθ = F(a)= 2 a 2 π 4 sin1 2a π a 2 cos 1 1a 2 a Result is in closed form a is a measure of the loss resistance relative to a is typically much smaller than unity Fundamentals of Power Electronics 95 Chapter 18: PWM Rectifiers

78 The integral F(a) 4 π 0 π/2 sin 2 θ 1asin θ dθ Approximation via polynomial: F(a) a 0.78a 2 For a 0.15, this approximate expression is within 0.1% of the exact value. If the a 2 term is omitted, then the accuracy drops to ±2% for a The accuracy of F(a) coincides with the accuracy of the rectifier efficiency η. = F(a)= 2 a 2 π F(a) Fundamentals of Power Electronics 96 Chapter 18: PWM Rectifiers sin1 2a π a 2 cos 1 a 1a 2 a

79 Solution for converter efficiency η Converter average input power is P in = p in Tac = V M 2 2 Average load power is P out = VI = V V M 2 V 1 R on F(a) 2 with a = V M V R on So the efficiency is η = P out P in = 1 R on F(a) Polynomial approximation: η 1 R on V M V R on 0.78 V M V R on 2 Fundamentals of Power Electronics 97 Chapter 18: PWM Rectifiers

80 Boost rectifier efficiency η R on / = 0.05 η = P out P in = 1 R on F(a) R on / = 0.1 R on / = 0.15 R on / = V M /V To obtain high efficiency, choose V slightly larger than V M Efficiencies in the range 90% to 95% can then be obtained, even with R on as high as 0.2 Losses other than MOSFET on-resistance are not included here Fundamentals of Power Electronics 98 Chapter 18: PWM Rectifiers

81 Design example Let us design for a given efficiency. Consider the following specifications: Output voltage 390 V Output power 500 W rms input voltage 120 V Efficiency 95% Assume that losses other than the MOSFET conduction loss are negligible. Average input power is P in = P out η = 500 W 0.95 = 526 W Then the emulated resistance is 2 = V g, rms = P in (120 V)2 526 W = 27.4 Ω Fundamentals of Power Electronics 99 Chapter 18: PWM Rectifiers

82 Design example η Also, 1 V M V = V 390 V = % efficiency with V M /V = occurs with R on / R on / = 0.05 R on / = 0.1 R on / = 0.15 R on / = 0.2 So we require a MOSFET with on resistance of R on (0.075) = (0.075) (27.4 Ω)=2Ω V M /V Fundamentals of Power Electronics 100 Chapter 18: PWM Rectifiers

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder 17.1 The single-phase full-wave rectifier i g i L L D 4 D 1 v g Z i C v R D 3 D 2 Full-wave rectifier

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder 18.5 RMS values of rectifier waveforms Doubly-modulated transistor current waveform, boost rectifier:

More information

Advances in Averaged Switch Modeling

Advances in Averaged Switch Modeling Advances in Averaged Switch Modeling Robert W. Erickson Power Electronics Group University of Colorado Boulder, Colorado USA 80309-0425 rwe@boulder.colorado.edu http://ece-www.colorado.edu/~pwrelect 1

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder 6.3.5. Boost-derived isolated converters A wide variety of boost-derived isolated dc-dc converters

More information

Chapter 6: Converter circuits

Chapter 6: Converter circuits Chapter 6. Converter Circuits 6.1. Circuit manipulations 6.2. A short list of converters 6.3. Transformer isolation 6.4. Converter evaluation and design 6.5. Summary of key points Where do the boost, buck-boost,

More information

Fundamentals of Power Electronics

Fundamentals of Power Electronics Fundamentals of Power Electronics SECOND EDITION Robert W. Erickson Dragan Maksimovic University of Colorado Boulder, Colorado Preface 1 Introduction 1 1.1 Introduction to Power Processing 1 1.2 Several

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder B.3 Simulation of Current Mode Controllers Develop a model of the currentprogrammed controller,

More information

Lecture 41 SIMPLE AVERAGING OVER T SW to ACHIEVE LOW FREQUENCY MODELS

Lecture 41 SIMPLE AVERAGING OVER T SW to ACHIEVE LOW FREQUENCY MODELS Lecture 41 SIMPLE AVERAGING OVER T SW to ACHIEVE LOW FREQUENCY MODELS. Goals and Methodology to Get There 0. Goals 0. Methodology. BuckBoost and Other Converter Models 0. Overview of Methodology 0. Example

More information

Lecture 6 ECEN 4517/5517

Lecture 6 ECEN 4517/5517 Lecture 6 ECEN 4517/5517 Experiment 4: inverter system Battery 12 VDC HVDC: 120-200 VDC DC-DC converter Isolated flyback DC-AC inverter H-bridge v ac AC load 120 Vrms 60 Hz d d Feedback controller V ref

More information

Power Management for Computer Systems. Prof. C Wang

Power Management for Computer Systems. Prof. C Wang ECE 5990 Power Management for Computer Systems Prof. C Wang Fall 2010 Course Outline Fundamental of Power Electronics cs for Computer Systems, Handheld Devices, Laptops, etc More emphasis in DC DC converter

More information

Chapter 1: Introduction

Chapter 1: Introduction 1.1. Introduction to power processing 1.2. Some applications of power electronics 1.3. Elements of power electronics Summary of the course 2 1.1 Introduction to Power Processing Power input Switching converter

More information

CHAPTER 3. SINGLE-STAGE PFC TOPOLOGY GENERALIZATION AND VARIATIONS

CHAPTER 3. SINGLE-STAGE PFC TOPOLOGY GENERALIZATION AND VARIATIONS CHAPTER 3. SINGLE-STAGE PFC TOPOLOG GENERALIATION AND VARIATIONS 3.1. INTRODUCTION The original DCM S 2 PFC topology offers a simple integration of the DCM boost rectifier and the PWM DC/DC converter.

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder 16.4. Power phasors in sinusoidal systems Apparent power is the product of the rms voltage and

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder Construction of transfer function v 2 (s) v (s) = Z 2Z Z Z 2 Z = Z out Z R C Z = L Q = R /R 0 f

More information

Resonant Power Conversion

Resonant Power Conversion Resonant Power Conversion Prof. Bob Erickson Colorado Power Electronics Center Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder Outline. Introduction to resonant

More information

Lecture 8 ECEN 4517/5517

Lecture 8 ECEN 4517/5517 Lecture 8 ECEN 4517/5517 Experiment 4 Lecture 7: Step-up dcdc converter and PWM chip Lecture 8: Design of analog feedback loop Part I Controller IC: Demonstrate operating PWM controller IC (UC 3525) Part

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder Inclusion of Switching Loss in the Averaged Equivalent Circuit Model The methods of Chapter 3 can

More information

2.4 Modeling and Analysis of Three Phase Four Leg Inverter

2.4 Modeling and Analysis of Three Phase Four Leg Inverter 2.4 Modeling and Analysis of Three Phase Four Leg Inverter The main feature of a three phase inverter, with an additional neutral leg, is its ability to deal with load unbalance in a standalone power supply

More information

S. General Topological Properties of Switching Structures, IEEE Power Electronics Specialists Conference, 1979 Record, pp , June 1979.

S. General Topological Properties of Switching Structures, IEEE Power Electronics Specialists Conference, 1979 Record, pp , June 1979. Problems 179 [22] [23] [24] [25] [26] [27] [28] [29] [30] J. N. PARK and T. R. ZALOUM, A Dual Mode Forward/Flyback Converter, IEEE Power Electronics Specialists Conference, 1982 Record, pp. 3-13, June

More information

Lecture 4 ECEN 4517/5517

Lecture 4 ECEN 4517/5517 Lecture 4 ECEN 4517/5517 Experiment 3 weeks 2 and 3: interleaved flyback and feedback loop Battery 12 VDC HVDC: 120-200 VDC DC-DC converter Isolated flyback DC-AC inverter H-bridge v ac AC load 120 Vrms

More information

Elements of Power Electronics PART II: Topologies and applications

Elements of Power Electronics PART II: Topologies and applications Elements of Power Electronics PART II: Topologies and applications Fabrice Frébel (fabrice.frebel@ulg.ac.be) September 2 st, 207 PART II: Topologies and applications Chapter 6: Converter Circuits Applications

More information

A New Quadratic Boost Converter with PFC Applications

A New Quadratic Boost Converter with PFC Applications Proceedings of the th WSEAS International Conference on CICUITS, uliagmeni, Athens, Greece, July -, 6 (pp3-8) A New Quadratic Boost Converter with PFC Applications DAN LASCU, MIHAELA LASCU, IOAN LIE, MIHAIL

More information

Constant-Frequency Soft-Switching Converters. Soft-switching converters with constant switching frequency

Constant-Frequency Soft-Switching Converters. Soft-switching converters with constant switching frequency Constant-Frequency Soft-Switching Converters Introduction and a brief survey Active-clamp (auxiliary-switch) soft-switching converters, Active-clamp forward converter Textbook 20.4.2 and on-line notes

More information

Final Exam. Anyone caught copying or allowing someone to copy from them will be ejected from the exam.

Final Exam. Anyone caught copying or allowing someone to copy from them will be ejected from the exam. Final Exam EECE 493-101 December 4, 2008 Instructor: Nathan Ozog Name: Student Number: Read all of the following information before starting the exam: The duration of this exam is 3 hours. Anyone caught

More information

LECTURE 40 Introduction to Converter Dynamics A. AC Model Construction 1. Actual Switch mode Non-Linear System 2. Small AC Models by two Analytical

LECTURE 40 Introduction to Converter Dynamics A. AC Model Construction 1. Actual Switch mode Non-Linear System 2. Small AC Models by two Analytical LECTURE 40 Introduction to Converter Dynamics A. AC Model Construction 1. Actual Switch mode Non-Linear System 2. Small AC Models by two Analytical Paths a. Circuit averaging over T s b. State space Averaging

More information

A HIGH RELIABILITY SINGLE-PHASE BOOST RECTIFIER SYSTEM FOR DIFFERENT LOAD VARIATIONS. Prasanna Srikanth Polisetty

A HIGH RELIABILITY SINGLE-PHASE BOOST RECTIFIER SYSTEM FOR DIFFERENT LOAD VARIATIONS. Prasanna Srikanth Polisetty GRT A HIGH RELIABILITY SINGLE-PHASE BOOST RECTIFIER SYSTEM FOR DIFFERENT LOAD VARIATIONS Prasanna Srikanth Polisetty Department of Electrical and Electronics Engineering, Newton s College of Engineering

More information

Chapter 3 : Closed Loop Current Mode DC\DC Boost Converter

Chapter 3 : Closed Loop Current Mode DC\DC Boost Converter Chapter 3 : Closed Loop Current Mode DC\DC Boost Converter 3.1 Introduction DC/DC Converter efficiently converts unregulated DC voltage to a regulated DC voltage with better efficiency and high power density.

More information

Single Phase Bridgeless SEPIC Converter with High Power Factor

Single Phase Bridgeless SEPIC Converter with High Power Factor International Journal of Emerging Engineering Research and Technology Volume 2, Issue 6, September 2014, PP 117-126 ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online) Single Phase Bridgeless SEPIC Converter

More information

ELEC387 Power electronics

ELEC387 Power electronics ELEC387 Power electronics Jonathan Goldwasser 1 Power electronics systems pp.3 15 Main task: process and control flow of electric energy by supplying voltage and current in a form that is optimally suited

More information

EEL 646 POWER ELECTRONICS II. Issa Batarseh. January 13, 2015

EEL 646 POWER ELECTRONICS II. Issa Batarseh. January 13, 2015 EEL 646 POWER ELECTRONICS II Issa Batarseh January 13, 2015 Agenda About the course Syllabus Review Course Topics Review of Power Electronics I Questions Introduction (cont d) Introduction (cont d) 5

More information

Chapter 2 Buck PWM DC DC Converter

Chapter 2 Buck PWM DC DC Converter Chapter 2 Buck PWM DC DC Converter H. Wang, Power Management and High-speed I/O in CMOS Systems 1/25 Buck Circuit and Its equivalent circuits CCM: continuous conduction mode DCM: discontinuous conduction

More information

Chapter 2 Shunt Active Power Filter

Chapter 2 Shunt Active Power Filter Chapter 2 Shunt Active Power Filter In the recent years of development the requirement of harmonic and reactive power has developed, causing power quality problems. Many power electronic converters are

More information

Linear Peak Current Mode Controlled Non-inverting Buck-Boost Power-Factor-Correction Converter

Linear Peak Current Mode Controlled Non-inverting Buck-Boost Power-Factor-Correction Converter Linear Peak Current Mode Controlled Non-inverting Buck-Boost Power-Factor-Correction Converter Mr.S.Naganjaneyulu M-Tech Student Scholar Department of Electrical & Electronics Engineering, VRS&YRN College

More information

Conventional Single-Switch Forward Converter Design

Conventional Single-Switch Forward Converter Design Maxim > Design Support > Technical Documents > Application Notes > Amplifier and Comparator Circuits > APP 3983 Maxim > Design Support > Technical Documents > Application Notes > Power-Supply Circuits

More information

Getting the Most From Your Portable DC/DC Converter: How To Maximize Output Current For Buck And Boost Circuits

Getting the Most From Your Portable DC/DC Converter: How To Maximize Output Current For Buck And Boost Circuits Getting the Most From Your Portable DC/DC Converter: How To Maximize Output Current For Buck And Boost Circuits Upal Sengupta, Texas nstruments ABSTRACT Portable product design requires that power supply

More information

IMPLEMENTATION OF A DOUBLE AC/DC/AC CONVERTER WITH POWER FACTOR CORRECTION (PFC) FOR NON-LINEAR LOAD APPLICATIONS

IMPLEMENTATION OF A DOUBLE AC/DC/AC CONVERTER WITH POWER FACTOR CORRECTION (PFC) FOR NON-LINEAR LOAD APPLICATIONS IMPLEMENTATION OF A DOUBLE AC/DC/AC CONERTER WITH POWER FACTOR CORRECTION (PFC) FOR NON-LINEAR LOAD APPLICATIONS E.Alvear 1, M.Sanchez 1 and J.Posada 2 1 Department of Automation and Electronics, Electronics

More information

METHODS TO IMPROVE DYNAMIC RESPONSE OF POWER FACTOR PREREGULATORS: AN OVERVIEW

METHODS TO IMPROVE DYNAMIC RESPONSE OF POWER FACTOR PREREGULATORS: AN OVERVIEW METHODS TO IMPROE DYNAMIC RESPONSE OF POWER FACTOR PREREGULATORS: AN OERIEW G. Spiazzi*, P. Mattavelli**, L. Rossetto** *Dept. of Electronics and Informatics, **Dept. of Electrical Engineering University

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder pn junction! Junction diode consisting of! p-doped silicon! n-doped silicon! A p-n junction where

More information

CHAPTER 5 The Parallel Resonant Converter

CHAPTER 5 The Parallel Resonant Converter CHAPTER 5 The Parallel Resonant Converter T he objective of this chapter is to describe the operation of the parallel resonant converter in detail. The concepts developed in chapter 3 are used to derive

More information

Lecture 19 - Single-phase square-wave inverter

Lecture 19 - Single-phase square-wave inverter Lecture 19 - Single-phase square-wave inverter 1. Introduction Inverter circuits supply AC voltage or current to a load from a DC supply. A DC source, often obtained from an AC-DC rectifier, is converted

More information

A Novel Concept in Integrating PFC and DC/DC Converters *

A Novel Concept in Integrating PFC and DC/DC Converters * A Novel Concept in Integrating PFC and DC/DC Converters * Pit-Leong Wong and Fred C. Lee Center for Power Electronics Systems The Bradley Department of Electrical and Computer Engineering Virginia Polytechnic

More information

Chapter 2 MODELING AND CONTROL OF PEBB BASED SYSTEMS

Chapter 2 MODELING AND CONTROL OF PEBB BASED SYSTEMS Chapter 2 MODELING AND CONTROL OF PEBB BASED SYSTEMS 2.1 Introduction The PEBBs are fundamental building cells, integrating state-of-the-art techniques for large scale power electronics systems. Conventional

More information

MICROCONTROLLER BASED BOOST PID MUNAJAH BINTI MOHD RUBAEE

MICROCONTROLLER BASED BOOST PID MUNAJAH BINTI MOHD RUBAEE MICROCONTROLLER BASED BOOST PID MUNAJAH BINTI MOHD RUBAEE This thesis is submitted as partial fulfillment of the requirement for the award of Bachelor of Electrical Engineering (Power System) Faculty of

More information

I. Erickson Problem 6.4 A DCM Two Transistor Flyback Converter

I. Erickson Problem 6.4 A DCM Two Transistor Flyback Converter Lecture 15 The Forward PWM Converter Circuit Topology and Illustrative Examples 1 I Erickson Problem 64 A DCM Two Transistor Flyback Converter II Forward Converter A Overview B Forward Converter with a

More information

CHAPTER 5 MODIFIED SINUSOIDAL PULSE WIDTH MODULATION (SPWM) TECHNIQUE BASED CONTROLLER

CHAPTER 5 MODIFIED SINUSOIDAL PULSE WIDTH MODULATION (SPWM) TECHNIQUE BASED CONTROLLER 74 CHAPTER 5 MODIFIED SINUSOIDAL PULSE WIDTH MODULATION (SPWM) TECHNIQUE BASED CONTROLLER 5.1 INTRODUCTION Pulse Width Modulation method is a fixed dc input voltage is given to the inverters and a controlled

More information

LECTURE 4. Introduction to Power Electronics Circuit Topologies: The Big Three

LECTURE 4. Introduction to Power Electronics Circuit Topologies: The Big Three 1 LECTURE 4 Introduction to Power Electronics Circuit Topologies: The Big Three I. POWER ELECTRONICS CIRCUIT TOPOLOGIES A. OVERVIEW B. BUCK TOPOLOGY C. BOOST CIRCUIT D. BUCK - BOOST TOPOLOGY E. COMPARISION

More information

OWING TO THE growing concern regarding harmonic

OWING TO THE growing concern regarding harmonic IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 46, NO. 4, AUGUST 1999 749 Integrated High-Quality Rectifier Regulators Michael T. Madigan, Member, IEEE, Robert W. Erickson, Senior Member, IEEE, and

More information

Bridgeless Cuk Power Factor Corrector with Regulated Output Voltage

Bridgeless Cuk Power Factor Corrector with Regulated Output Voltage Bridgeless Cuk Power Factor Corrector with Regulated Output Voltage Ajeesh P R 1, Prof. Dinto Mathew 2, Prof. Sera Mathew 3 1 PG Scholar, 2,3 Professors, Department of Electrical and Electronics Engineering,

More information

Current Rebuilding Concept Applied to Boost CCM for PF Correction

Current Rebuilding Concept Applied to Boost CCM for PF Correction Current Rebuilding Concept Applied to Boost CCM for PF Correction Sindhu.K.S 1, B. Devi Vighneshwari 2 1, 2 Department of Electrical & Electronics Engineering, The Oxford College of Engineering, Bangalore-560068,

More information

Digital Control Techniques for Single-Phase Power Factor Correction Rectifiers

Digital Control Techniques for Single-Phase Power Factor Correction Rectifiers University of Colorado, Boulder CU Scholar Electrical, Computer & Energy Engineering Graduate Theses & Dissertations Electrical, Computer & Energy Engineering Spring 1-1-2010 Digital Control Techniques

More information

CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL

CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL 14 CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL 2.1 INTRODUCTION Power electronics devices have many advantages over the traditional power devices in many aspects such as converting

More information

A Novel Control Method to Minimize Distortion in AC Inverters. Dennis Gyma

A Novel Control Method to Minimize Distortion in AC Inverters. Dennis Gyma A Novel Control Method to Minimize Distortion in AC Inverters Dennis Gyma Hewlett-Packard Company 150 Green Pond Road Rockaway, NJ 07866 ABSTRACT In PWM AC inverters, the duty-cycle modulator transfer

More information

CHAPTER IV DESIGN AND ANALYSIS OF VARIOUS PWM TECHNIQUES FOR BUCK BOOST CONVERTER

CHAPTER IV DESIGN AND ANALYSIS OF VARIOUS PWM TECHNIQUES FOR BUCK BOOST CONVERTER 59 CHAPTER IV DESIGN AND ANALYSIS OF VARIOUS PWM TECHNIQUES FOR BUCK BOOST CONVERTER 4.1 Conventional Method A buck-boost converter circuit is a combination of the buck converter topology and a boost converter

More information

New Techniques for Testing Power Factor Correction Circuits

New Techniques for Testing Power Factor Correction Circuits Keywords Venable, frequency response analyzer, impedance, injection transformer, oscillator, feedback loop, Bode Plot, power supply design, power factor correction circuits, current mode control, gain

More information

CHAPTER 4 MODIFIED H- BRIDGE MULTILEVEL INVERTER USING MPD-SPWM TECHNIQUE

CHAPTER 4 MODIFIED H- BRIDGE MULTILEVEL INVERTER USING MPD-SPWM TECHNIQUE 58 CHAPTER 4 MODIFIED H- BRIDGE MULTILEVEL INVERTER USING MPD-SPWM TECHNIQUE 4.1 INTRODUCTION Conventional voltage source inverter requires high switching frequency PWM technique to obtain a quality output

More information

CHAPTER 2 GENERAL STUDY OF INTEGRATED SINGLE-STAGE POWER FACTOR CORRECTION CONVERTERS

CHAPTER 2 GENERAL STUDY OF INTEGRATED SINGLE-STAGE POWER FACTOR CORRECTION CONVERTERS CHAPTER 2 GENERAL STUDY OF INTEGRATED SINGLE-STAGE POWER FACTOR CORRECTION CONVERTERS 2.1 Introduction Conventional diode rectifiers have rich input harmonic current and cannot meet the IEC PFC regulation,

More information

CHAPTER 4 MULTI-LEVEL INVERTER BASED DVR SYSTEM

CHAPTER 4 MULTI-LEVEL INVERTER BASED DVR SYSTEM 64 CHAPTER 4 MULTI-LEVEL INVERTER BASED DVR SYSTEM 4.1 INTRODUCTION Power electronic devices contribute an important part of harmonics in all kind of applications, such as power rectifiers, thyristor converters

More information

A Unity Power Factor Boost Rectifier with a Predictive Capacitor Model for High Bandwidth DC Bus Voltage Control

A Unity Power Factor Boost Rectifier with a Predictive Capacitor Model for High Bandwidth DC Bus Voltage Control A Unity Power Factor Boost Rectifier with a Predictive Capacitor Model for High Bandwidth DC Bus Voltage Control Peter Wolfs Faculty of Sciences, Engineering and Health Central Queensland University, Rockhampton

More information

CHAPTER 6 BRIDGELESS PFC CUK CONVERTER FED PMBLDC MOTOR

CHAPTER 6 BRIDGELESS PFC CUK CONVERTER FED PMBLDC MOTOR 105 CHAPTER 6 BRIDGELESS PFC CUK CONVERTER FED PMBLDC MOTOR 6.1 GENERAL The line current drawn by the conventional diode rectifier filter capacitor is peaked pulse current. This results in utility line

More information

CONTENTS. Chapter 1. Introduction to Power Conversion 1. Basso_FM.qxd 11/20/07 8:39 PM Page v. Foreword xiii Preface xv Nomenclature

CONTENTS. Chapter 1. Introduction to Power Conversion 1. Basso_FM.qxd 11/20/07 8:39 PM Page v. Foreword xiii Preface xv Nomenclature Basso_FM.qxd 11/20/07 8:39 PM Page v Foreword xiii Preface xv Nomenclature xvii Chapter 1. Introduction to Power Conversion 1 1.1. Do You Really Need to Simulate? / 1 1.2. What You Will Find in the Following

More information

FL103 Primary-Side-Regulation PWM Controller for LED Illumination

FL103 Primary-Side-Regulation PWM Controller for LED Illumination FL103 Primary-Side-Regulation PWM Controller for LED Illumination Features Low Standby Power: < 30mW High-Voltage Startup Few External Component Counts Constant-Voltage (CV) and Constant-Current (CC) Control

More information

Power Factor Pre-regulator Using Constant Tolerance Band Control Scheme

Power Factor Pre-regulator Using Constant Tolerance Band Control Scheme Power Factor Pre-regulator Using Constant Tolerance Band Control Scheme Akanksha Mishra, Anamika Upadhyay Akanksha Mishra is a lecturer ABIT, Cuttack, India (Email: misakanksha@gmail.com) Anamika Upadhyay

More information

Preliminary. Synchronous Buck PWM DC-DC Controller FP6329/A. Features. Description. Applications. Ordering Information.

Preliminary. Synchronous Buck PWM DC-DC Controller FP6329/A. Features. Description. Applications. Ordering Information. Synchronous Buck PWM DC-DC Controller Description The is designed to drive two N-channel MOSFETs in a synchronous rectified buck topology. It provides the output adjustment, internal soft-start, frequency

More information

DESIGN AND ANALYSIS OF FEEDBACK CONTROLLERS FOR A DC BUCK-BOOST CONVERTER

DESIGN AND ANALYSIS OF FEEDBACK CONTROLLERS FOR A DC BUCK-BOOST CONVERTER DESIGN AND ANALYSIS OF FEEDBACK CONTROLLERS FOR A DC BUCK-BOOST CONVERTER Murdoch University: The Murdoch School of Engineering & Information Technology Author: Jason Chan Supervisors: Martina Calais &

More information

CHAPTER 5 DESIGN OF SINUSOIDAL PULSE WIDTH MODULATION TECHNIQUES FOR ZETA CONVERTER USING FPGA

CHAPTER 5 DESIGN OF SINUSOIDAL PULSE WIDTH MODULATION TECHNIQUES FOR ZETA CONVERTER USING FPGA 82 CHAPTER 5 DESIGN OF SINUSOIDAL PULSE WIDTH MODULATION TECHNIQUES FOR ZETA CONVERTER USING FPGA 5.1 Introduction Similar to the SEPIC DC/DC converter topology, the ZETA converter topology provides a

More information

Using the EVM: PFC Design Tips and Techniques

Using the EVM: PFC Design Tips and Techniques PFC Design Tips and Techniques Features: Bare die attach with epoxy Gold wire bondable Integral precision resistors Reduced size and weight High temperature operation Solder ready surfaces for flip chips

More information

A NOVEL BUCK-BOOST INVERTER FOR PHOTOVOLTAIC SYSTEMS

A NOVEL BUCK-BOOST INVERTER FOR PHOTOVOLTAIC SYSTEMS A NOVE BUCK-BOOST INVERTER FOR PHOTOVOTAIC SYSTEMS iuchen Chang, Zhumin iu, Yaosuo Xue and Zhenhong Guo Dept. of Elec. & Comp. Eng., University of New Brunswick, Fredericton, NB, Canada Phone: (506) 447-345,

More information

55:141 Advanced Circuit Techniques Switching Regulators

55:141 Advanced Circuit Techniques Switching Regulators 55:141 Advanced Circuit Techniques Switching Regulators Material: ecture Notes, Handouts, and Sections of Chapter 11 of Franco A. Kruger 55:141: Advanced Circuit Techniques The University of Iowa Switching

More information

Reduction of Voltage Stresses in Buck-Boost-Type Power Factor Correctors Operating in Boundary Conduction Mode

Reduction of Voltage Stresses in Buck-Boost-Type Power Factor Correctors Operating in Boundary Conduction Mode Reduction of oltage Stresses in Buck-Boost-Type Power Factor Correctors Operating in Boundary Conduction Mode ars Petersen Institute of Electric Power Engineering Technical University of Denmark Building

More information

Digital Control Techniques for Efficiency Improvements in Single-Phase Boost Power Factor Correction Rectifiers

Digital Control Techniques for Efficiency Improvements in Single-Phase Boost Power Factor Correction Rectifiers University of Colorado, Boulder CU Scholar Electrical, Computer & Energy Engineering Graduate Theses & Dissertations Electrical, Computer & Energy Engineering Spring 1-1-2010 Digital Control Techniques

More information

Vishay Siliconix AN724 Designing A High-Frequency, Self-Resonant Reset Forward DC/DC For Telecom Using Si9118/9 PWM/PSM Controller.

Vishay Siliconix AN724 Designing A High-Frequency, Self-Resonant Reset Forward DC/DC For Telecom Using Si9118/9 PWM/PSM Controller. AN724 Designing A High-Frequency, Self-Resonant Reset Forward DC/DC For Telecom Using Si9118/9 PWM/PSM Controller by Thong Huynh FEATURES Fixed Telecom Input Voltage Range: 30 V to 80 V 5-V Output Voltage,

More information

Power supplies are one of the last holdouts of true. The Purpose of Loop Gain DESIGNER SERIES

Power supplies are one of the last holdouts of true. The Purpose of Loop Gain DESIGNER SERIES DESIGNER SERIES Power supplies are one of the last holdouts of true analog feedback in electronics. For various reasons, including cost, noise, protection, and speed, they have remained this way in the

More information

55:141 Advanced Circuit Techniques Switching Regulators

55:141 Advanced Circuit Techniques Switching Regulators 55:141 Advanced Circuit Techniques Switching Regulators Material: ecture Notes, Handouts, and Sections of Chapter 11 of Franco A. Kruger 55:141: Advanced Circuit Techniques The University of Iowa Switching

More information

CHAPTER 3 APPLICATION OF THE CIRCUIT MODEL FOR PHOTOVOLTAIC ENERGY CONVERSION SYSTEM

CHAPTER 3 APPLICATION OF THE CIRCUIT MODEL FOR PHOTOVOLTAIC ENERGY CONVERSION SYSTEM 63 CHAPTER 3 APPLICATION OF THE CIRCUIT MODEL FOR PHOTOVOLTAIC ENERGY CONVERSION SYSTEM 3.1 INTRODUCTION The power output of the PV module varies with the irradiation and the temperature and the output

More information

I DT. Power factor improvement using DCM Cuk converter with coupled inductor. -7- I Fig. 1 Cuk converter

I DT. Power factor improvement using DCM Cuk converter with coupled inductor. -7- I Fig. 1 Cuk converter Power factor improvement using DCM Cuk converter with coupled inductor G. Ranganathan L. Umanand Abstract: Most of the power factor regulator topologies in continuous conduction mode result in bulky magnetics,

More information

An Improvement in the Virtually Isolated Transformerless Off - Line Power Supply

An Improvement in the Virtually Isolated Transformerless Off - Line Power Supply An Improvement in the Virtually Isolated Transformerless Off - Line Power Supply Spiros Cofinas Department of Electrotechnics and Computer Science Hellenic Naval Academy Terma Hatzikyriakou, Piraeus GREECE

More information

CHAPTER 3 CUK CONVERTER BASED MPPT SYSTEM USING ADAPTIVE PAO ALGORITHM

CHAPTER 3 CUK CONVERTER BASED MPPT SYSTEM USING ADAPTIVE PAO ALGORITHM 52 CHAPTER 3 CUK CONVERTER BASED MPPT SYSTEM USING ADAPTIVE PAO ALGORITHM 3.1 INTRODUCTION The power electronics interface, connected between a solar panel and a load or battery bus, is a pulse width modulated

More information

WD3122EC. Descriptions. Features. Applications. Order information. High Efficiency, 28 LEDS White LED Driver. Product specification

WD3122EC. Descriptions. Features. Applications. Order information. High Efficiency, 28 LEDS White LED Driver. Product specification High Efficiency, 28 LEDS White LED Driver Descriptions The is a constant current, high efficiency LED driver. Internal MOSFET can drive up to 10 white LEDs in series and 3S9P LEDs with minimum 1.1A current

More information

AN726. Vishay Siliconix AN726 Design High Frequency, Higher Power Converters With Si9166

AN726. Vishay Siliconix AN726 Design High Frequency, Higher Power Converters With Si9166 AN726 Design High Frequency, Higher Power Converters With Si9166 by Kin Shum INTRODUCTION The Si9166 is a controller IC designed for dc-to-dc conversion applications with 2.7- to 6- input voltage. Like

More information

7.2 SEPIC Buck-Boost Converters

7.2 SEPIC Buck-Boost Converters Boost-Buck Converter 131 5. The length of the trace from GATE output of the HV9930 to the GATE of the MOSFET should be as small as possible, with the source of the MOSFET and the GND of the HV9930 being

More information

Current-mode PWM controller

Current-mode PWM controller DESCRIPTION The is available in an 8-Pin mini-dip the necessary features to implement off-line, fixed-frequency current-mode control schemes with a minimal external parts count. This technique results

More information

4.5V to 32V Input High Current LED Driver IC For Buck or Buck-Boost Topology CN5816. Features: SHDN COMP OVP CSP CSN

4.5V to 32V Input High Current LED Driver IC For Buck or Buck-Boost Topology CN5816. Features: SHDN COMP OVP CSP CSN 4.5V to 32V Input High Current LED Driver IC For Buck or Buck-Boost Topology CN5816 General Description: The CN5816 is a current mode fixed-frequency PWM controller for high current LED applications. The

More information

5. Active Conditioning for a Distributed Power System

5. Active Conditioning for a Distributed Power System 5. Active Conditioning for a Distributed Power System 5.1 The Concept of the DC Bus Conditioning 5.1.1 Introduction In the process of the system integration, the greatest concern is the dc bus stability

More information

LM MHz Cuk Converter

LM MHz Cuk Converter LM2611 1.4MHz Cuk Converter General Description The LM2611 is a current mode, PWM inverting switching regulator. Operating from a 2.7-14V supply, it is capable of producing a regulated negative output

More information

Neuro Fuzzy Control Single Stage Single Phase AC-DC Converter for High Power factor

Neuro Fuzzy Control Single Stage Single Phase AC-DC Converter for High Power factor Neuro Fuzzy Control Single Stage Single Phase AC-DC Converter for High Power factor S. Lakshmi Devi M.Tech(PE),Department of EEE, Prakasam Engineering College,Kandukur,A.P K. Sudheer Assoc. Professor,

More information

UM1660. Low Power DC/DC Boost Converter UM1660S SOT23-5 UM1660DA DFN AAG PHO. General Description

UM1660. Low Power DC/DC Boost Converter UM1660S SOT23-5 UM1660DA DFN AAG PHO. General Description General Description Low Power DC/DC Boost Converter S SOT23-5 DA DFN6 2.0 2.0 The is a PFM controlled step-up DC-DC converter with a switching frequency up to 1MHz. The device is ideal to generate output

More information

5V, 3A, 1.5MHz Buck Constant Current Switching Regulator for White LED

5V, 3A, 1.5MHz Buck Constant Current Switching Regulator for White LED 5V, 3A, 1.5MHz Buck Constant Current Switching Regulator for White LED General Description The is a PWM control buck converter designed to provide a simple, high efficiency solution for driving high power

More information

IT is well known that the boost converter topology is highly

IT is well known that the boost converter topology is highly 320 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 21, NO. 2, MARCH 2006 Analysis and Design of a Low-Stress Buck-Boost Converter in Universal-Input PFC Applications Jingquan Chen, Member, IEEE, Dragan Maksimović,

More information

VOLTAGE MODE CONTROL OF SOFT SWITCHED BOOST CONVERTER BY TYPE II & TYPE III COMPENSATOR

VOLTAGE MODE CONTROL OF SOFT SWITCHED BOOST CONVERTER BY TYPE II & TYPE III COMPENSATOR 1002 VOLTAGE MODE CONTROL OF SOFT SWITCHED BOOST CONVERTER BY TYPE II & TYPE III COMPENSATOR NIKITA SINGH 1 ELECTRONICS DESIGN AND TECHNOLOGY, M.TECH NATIONAL INSTITUTE OF ELECTRONICS AND INFORMATION TECHNOLOGY

More information

Digital Simulation and Analysis of Sliding Mode Controller for DC-DC Converter using Simulink

Digital Simulation and Analysis of Sliding Mode Controller for DC-DC Converter using Simulink Volume-7, Issue-3, May-June 2017 International Journal of Engineering and Management Research Page Number: 367-371 Digital Simulation and Analysis of Sliding Mode Controller for DC-DC Converter using Simulink

More information

TSTE25 Power Electronics. Lecture 6 Tomas Jonsson ISY/EKS

TSTE25 Power Electronics. Lecture 6 Tomas Jonsson ISY/EKS TSTE25 Power Electronics Lecture 6 Tomas Jonsson ISY/EKS 2016-11-15 2 Outline DC power supplies DC-DC Converter Step-down (buck) Step-up (boost) Other converter topologies (overview) Exercises 7-1, 7-2,

More information

Module 5. DC to AC Converters. Version 2 EE IIT, Kharagpur 1

Module 5. DC to AC Converters. Version 2 EE IIT, Kharagpur 1 Module 5 DC to AC Converters Version EE II, Kharagpur 1 Lesson 34 Analysis of 1-Phase, Square - Wave Voltage Source Inverter Version EE II, Kharagpur After completion of this lesson the reader will be

More information

Positive to Negative Buck-Boost Converter Using LM267X SIMPLE SWITCHER Regulators

Positive to Negative Buck-Boost Converter Using LM267X SIMPLE SWITCHER Regulators Positive to Negative Buck-Boost Converter Using LM267X SIMPLE SWITCHER Regulators Abstract The 3rd generation Simple Switcher LM267X series of regulators are monolithic integrated circuits with an internal

More information

A Fast, Self-stabilizing, Boost DC-DC Converter - Sliding-mode Vs Hysteretic Controls

A Fast, Self-stabilizing, Boost DC-DC Converter - Sliding-mode Vs Hysteretic Controls A Fast, Self-stabilizing, Boost DC-DC Converter - Sliding-mode Vs Hysteretic Controls Neeraj Keskar Advisor: Prof. Gabriel A. Rincón-Mora Analog and Power IC Design Lab School of Electrical and Computer

More information

Chapter 9 Zero-Voltage or Zero-Current Switchings

Chapter 9 Zero-Voltage or Zero-Current Switchings Chapter 9 Zero-Voltage or Zero-Current Switchings converters for soft switching 9-1 Why resonant converters Hard switching is based on on/off Switching losses Electromagnetic Interference (EMI) because

More information

Comparison Between CCM Single-Stage And Two-Stage Boost PFC Converters *

Comparison Between CCM Single-Stage And Two-Stage Boost PFC Converters * Comparison Between CCM Single-Stage And Two-Stage Boost PFC Converters * Jindong Zhang 1, Milan M. Jovanoviü, and Fred C. Lee 1 1 Center for Power Electronics Systems The Bradley Department of Electrical

More information

6.334 Final Project Buck Converter

6.334 Final Project Buck Converter Nathan Monroe monroe@mit.edu 4/6/13 6.334 Final Project Buck Converter Design Input Filter Filter Capacitor - 40µF x 0µF Capstick CS6 film capacitors in parallel Filter Inductor - 10.08µH RM10/I-3F3-A630

More information

LM MHz Cuk Converter

LM MHz Cuk Converter LM2611 1.4MHz Cuk Converter General Description The LM2611 is a current mode, PWM inverting switching regulator. Operating from a 2.7-14V supply, it is capable of producing a regulated negative output

More information

EECS 473 Advanced Embedded Systems

EECS 473 Advanced Embedded Systems EECS 473 Advanced Embedded Systems Lecture 15: Power review & Switching power supplies (again) A number of slides taken from UT-Austin s EE462L power electronics class. http://users.ece.utexas.edu/~kwasinski/ee462ls14.html

More information

ECEN4797/5797 Lecture #11

ECEN4797/5797 Lecture #11 ECEN4797/5797 Lecture #11 Announcements On-campus students: pick up graded HW2, turn in HW3 Homework 4 is due in class on Friday, Sept. 23. The grace-period for offcampus students expires 5pm (Mountain)

More information