Switched MEMS Antenna for Handheld Devices

Size: px
Start display at page:

Download "Switched MEMS Antenna for Handheld Devices"

Transcription

1 Switched MEMS Antenna for Handheld Devices Marc MOWLÉR, M. Bilal KHALID, Björn LINDMARK and Björn OTTERSTEN Signal Processing Lab, School of Electrical Engineering, KTH, Stockholm, Sweden s: 1. Introduction Abstract: This paper presents the investigation results on the reconfigurable properties of a monopole antenna array. The antenna array comprises of four feed elements and four parasitic elements on a finite ground plane. This antenna is intended to improve the diversity gain for a Multiple Input Multiple Output (MIMO) communication system. We intend to combat the problem of signal deterioration in handheld devices by the use of reconfigurable antenna. A common communication problem seen in the handheld devices is the change in strength of radio signal when the orientation of the device is changed. Reconfigurable antennas can be used get rid of this nuisance so that what ever be the orientation, the handheld device still gets the best possible signal level. With our presented antenna, we can achieve up to sixteen different configurations depending upon the requirement. The different configurations are controlled with the help of RF switches which are implemented using micro-electromechanical systems (MEMS). The reconfigurable antenna was fabricated and tested for its impedance and radiation characteristics and the results were found to be in reasonable agreement with the simulations. Keywords: Antennas; MEMS; MIMO; handheld devices; reconfigurable antennas; switches; correlation; monopoles; parasitic elements With the recent advances in technology, handheld devices are becoming more and more common and their transmission and reception capabilities have become a more critical issue than ever before. Handheld devices are prone to severe signal degradation due to a number of factors such as proximity to a human body and clothing material, proximity to metallic objects like key chains, or attenuation due surrounding vegetation, etcetera [1]. Antennas in mobile devices are designed to operate best given a specific polarization, for example, the mobile phones antennas are designed to provide best performance in the scenario when the user has his head in an upright position and the mobile phone is at a 45 degrees angle relative to the vertical plane. However, if the user tries to use the phone while lying down or having the phone in some other orientation then the phone will not get good reception and the voice quality will degrade. The same is the case with all handheld devices. To eliminate the problem of signal quality loss, we can upgrade to multiple antennas to obtain a MIMO system, but an even better alternative is to use reconfigurable antenna arrays which can dynamically opt for a best possible configuration of the array to provide maximum signal strength to the device. We intend to combine the usefulness of MIMO and reconfigurable arrays to provide an antenna system which can not only provide high gain but also a very directional radiation pattern based on a given scenario. With the help of different configurations we can move between an omni-directional pattern and a narrow 3- db beam width pattern. Many of the concepts discussed in this paper will likely become

2 more practical and cost effective in the near future because of recent advances in the MEMS technology. In our antenna design, we have used an array of monopole elements. Monopole antennas are widely used in wireless communications because of their wide-band characteristics and design simplicity [2] [3]. For these reasons we implement a Multiple Input-Multiple Output (MIMO) system using an array of feed and parasitic monopoles. MIMO is a transmission technique which involves the use of multiple antennas at both the transmitter and the receiver to improve communication performance. The antennas at each end of the communications circuit are combined to minimize errors and optimize data speed. MIMO technology is very important in wireless communications due to its possibility to offer significant increase in data throughput and link range without the requirement of additional bandwidth or transmit power [4] [5] [6]. This could be achieved by having higher spectral efficiency and link reliability accomplished through diversity of paths [7]. With multiple antennas, the receiver can detect the same signal several times at different positions in space. Hence, when the correlation between received signals in different elements is low, a substantial increase in the capacity can occur. With the help of a reconfigurable antenna, we can attain better diversity and thus increase the throughput of the system [8] [9] [10] [11] [12]. In this paper, we describe a reconfigurable monopole antenna array operating in the 1.73 GHz band. We intend to improve a MIMO system by using reconfigurable antennas. Our main objective is to analyze the improvement in performance by the use of a reconfigurable antenna and to find how much we can gain when using this particular array. Our antenna comprises of four feed and four parasitic elements. The parasitic elements are connected to low-loss RF MEMS switches which can be turned on or off via a computer. The switches will be responsible for making or breaking the connection between the parasitic elements and connected loads. The usage of MEMS switches enables us to have a great amount of flexibility in terms of radiation patterns for an antenna and thus create diversity; this can be especially useful for handheld devices. Our present antenna is a prototype which will be modified in the future depending on how RF MEMS technology works out. The bottleneck in our current system is the unavailability of fast and miniature RF MEMS switches. Currently, we are limited by the MEMS switches available on the market. However, if the MEMS switch technology in the future provides other switches we may also investigate those. Especially, the MEMS technology promises more integrated solutions where the antenna and switch could be manufactured in one piece [13]. Since our antenna is a prototype of a reconfigurable antenna, therefore, we have used monopole elements. In the next step, the monopole array may be scaled down in size by using other antenna types such as patch or PIFA elements. Currently, the objective is to verify the functionality of the MEMS switches in combination with the antenna structure. In addition, we want to investigate and quantize the actual improvement of the overall MIMO system when using our reconfigurable MEMS array compared to using a non-reconfigurable solution. 2. Implementation of the Reconfigurable Antenna 2.1 Monopole Antenna Array We designed an antenna with eight quarter wavelength monopoles placed in a symmetric manner on an aluminium ground plane. Out of these eight elements, four are feed elements and the remaining four are connected to RF MEMS switches [14] to act as parasitic elements. The antenna is tuned to operate in the 1.73 GHz frequency band so that it can be

3 incorporated with the MIMO test-bed at the department's Signal Processing Lab [15] and utilized for capacity improvement measurements. Figure 1: Schematic of the reconfigurable antenna showing the placement of 4 feed elements and 4 parasitic elements. Figure 2: Photograph of the antenna array and switch-control circuit. RF switches are mounted under the metallic ground plane of the antenna. A schematic top view of the antenna can be seen in Fig. 1 along with a photograph showing the antenna connected to its switch control circuitry in Fig. 2. The MEMS switches are mounted under the aluminium ground plane. A close-up of RF MEMS switch and its PCB circuitry can be seen in Fig. 3. The four switches are placed symmetrically and are connected to ground plane instead of a load. So when a switch is turned on, it makes a connection between the parasitic element and the ground plane. When the switch is in off state, the parasitic element does not contribute to the radiation pattern of the antenna. The feed elements are placed on a circle of radius 0.3 λ, where as, the parasitic elements are

4 placed on a circle of radius 0.5 λ. This positioning is done so that the antenna is tuned to 1.73 GHz and we get configurations that are largely uncorrelated to one another. Another important reason to have this configuration is that we need to keep the antenna tuned to the frequency of 1.73 GHz for all the configurations. This is important because our aim is not to make a reconfigurable antenna that can operate in different frequency bands like in [1] [16] but to have an antenna that can provide best reception in a specific frequency band, which in our case is 1.73 GHz. Switch Figure 3: RF MEMS switch embedded in a PCB. Four of these switches control the connection between parasitic elements and the ground plane. 2.2 Switch-Control Unit To control the switches through a computer we designed an additional interface circuitry. This switch-control circuit comprises of a micro-controller and a transistors assembly. The transistors are responsible for supplying +68 volts to the MEMS switches for their operation. Depending on a desired radiation pattern, a user enters a command in a predesigned software. Based on the given command the MEMS switches are turned on or off and in this way, we can switch between different configurations. Light Emitting Diodes (LED s) are placed to signal the working of switches. Communication between microcontroller and computer can take place via either the serial port or the USB port. With our present setup, we are able to switch at the rate of fifty configurations per second. In practice, however, we might only need to switch four to five times per second depending on the rate of change of orientation in a hand-held device. We have analyzed three configurations of the antenna. They are (a) all switches off, that is, no parasitic is grounded; (b) one switch on, that is, only one parasitic is grounded; and (c) two switches on, that is, two parasitics are in contact with the ground plane. By two on switches we mean the two consecutive parasitics, for example, when we will be looking at feed element F1 (see Fig. 1), for configuration (b), we can switch on either of the parasitic P1 or P2 and for configuration (c), we will need to switch on both P1 and P2. 3. Measurements and Simulations Different configurations of reconfigurable antenna were first simulated in CST Microwave Studio [17] and then the results were compared against actual measurements in the lab. Fig. 4 shows the reflection factor for different configurations. The reflection factor is shown for feed element F1 for all three configurations. Since the antenna is symmetric in nature, therefore, we get similar results with other feed elements also. The measured results were obtained using the actual switches with the complete computer interface circuitry.

5 The measured results are in close proximity to the simulated results. The difference between experimental and simulation results could be due to the transmission lines surrounding the MEMS switch and due to the switch itself, which is non-ideal in nature. These factors lead to a slight deviation from the simulated results. From our experimental analysis we see that the reflection loss is -17 db, -21 db and -23 db for configurations (a), (b) and (c), respectively. The bandwidth is obtained to be approximately 250 MHz for all the three cases. From these results we conclude that the antenna is giving a good return loss and is tuned well to operate on the 1.73 GHz center frequency. Figure 4: Measured and simulated reflection factors for the three different configurations. Figure 5: Power radiated by the array in different configurations. Power patterns are shown in the θ = 60 o plane.

6 Fig. 5 shows the radiated power patterns for the monopole antenna in its different configurations. We observe that when all the switches are off, the antenna has an omnidirectional pattern. But when we turn on the switches, we start to get a more directional pattern with a high gain in a given direction. In this way, we can avoid signal fading by switching between different configurations. To investigate the behavior of our antenna in a multipath environment, we calculated the correlation of the E-fields between the three different configurations. Following [18] [19], the correlation between the two configurations for completely random incoming polarization is expressed as Eq. 1: (1) where S(Ω) is the angular distribution. We assume an ideal multipath environment, which corresponds to S(Ω) = 1 for the angular interval of Ω = ΔΘ 360 o and zero otherwise. Fig. 6 shows the correlation plots between different configurations. From these we observe that even though the radiation pattern of feed element F1 does not change much when we move from conf. (b) to conf. (c) but feed element F2 sees a large difference in its radiation pattern and in this way we are able to steer the main beam of the whole antenna. Figure 6: The integrand of Eq.1 representing the correlation for feed element F1 and F2 for the different configurations. E N1 means the e-field of feed F1 for conf. (a), E O1 means the e-field of feed F1 for conf. (b), and E T1 means the e-field of feed F1 for conf. (c); likewise for feed F2. Values are given on a scale of

7 To study the effects of different antenna configurations on channel capacity, we performed measurements to obtain the channel matrix H. With the help of channel matrix H, we are able to describe the properties of wireless channel and based on these we can calculate the Shannon capacity of our MIMO system [20]. Fig. 7 shows the h 11 parameter of H matrix for different configurations of the antenna. We observe that the channel properties change when we switch from one configuration to another. Thus, based on a given scenario we are not only able to increase the gain of our antenna but also optimize channel capacity. 4. Conclusions Figure 7: Channel parameter h 11 for the sixteen different configurations of the antenna. We have presented a reconfigurable monopole antenna and have analyzed it in terms of reflection losses and radiation patterns for different configurations. We have also analyzed the correlation of the different configurations, which may indicate how much diversity could be achieved. We found that the correlations between different configurations were reasonably low, so we may be able to successfully use our antenna array for capacity and throughput enhancement purposes. This was also verified by measurements showing that the different configurations actually give different channel gains. The same concept can be extended to 900 MHz, 1800 MHz, 2.4 GHz and 5 GHz frequency bands for different GSM and WLAN devices. We are currently analyzing channel matrices, under different Line-of- Sight and Non-Line-of-Sight conditions, to observe the effect on MIMO channel capacity but the fact that we are able to change the radiation pattern and channel gains indicates the possibility of improving the overall MIMO channel. References [1] J.T. Aberle, et al, Reconfigurable Antennas for Portable Wireless Devices, IEEE Antennas and Propagation Magazine, Vol. 45, No. 6, December 2003, pp [2] C. A. Balanis, Antenna Theory Analysis and Design, 2nd ed. New York: Wiley, [3] G. Ruvio and Max J. Ammann, A Novel Small Wideband Monopole Antenna, LAPC 2006, April. [4] J. G. Proakis, Digital Communications, 4th ed. McGraw-Hill, [5] J. Cheng, et al, Electronically Steerable Parasitic Array Radiator Antenna for Omni- and Sector Pattern Forming Applications to Wireless Adhoc Networks, IEE Proc.-Microw. Antennas Propag., Vol. 150, No. 4, August 2003, pp [6] S. Kumar and L. Shafai, Beam Focusing Properties of Circular Monopole Array Antenna on a Finite Ground Plane, IEEE Transactions on Antennas and Propag. Vol. 53, No. 10, October 2005, pp [7] H. K. Pan, G. Huff, et al, Increasing Channel Capacity on a MIMO System Employing Adaptive Pattern/Polarization Reconfigurable Antenna, IEEE [8] A. Kalis, et al, A Switched Dual Antenna Array for Mobile Computing Networks, University of Patras, Rio Patras, Greece.

8 [9] S. L. Preston, et al, Base-Station Tracking in Mobile Communications Using a Switched Parasitic Antenna Array, IEEE Transactions on Antennas and Propag., Vol. 46, No. 6, June 1998, pp [10] N. L. Scott, et al, Diversity Gain from a Single-Port Adaptive Antenna Using Switched Parasitic Elements Illustrated with a Wire and Monopole Prototype,'' IEEE Transactions on Antennas and Propag., Vol. 47, No. 6, June 1999, pp [11] R. Vaughan, Switched Parasitic Elements for Antenna Diversity, IEEE Transactions on Antennas and Propag., Vol. 47, No. 2, February 1999, pp [12] M. D. Migliore, et al, Improving Channel Capacity Using Adaptive MIMO Antennas, IEEE Trans. on Antennas and Prop., Vol. 54, No. 11, November 2006, pp [13] S. Braun, J. Oberhammer and G. Stemme, MEMS single-chip microswitch array for re-configuration of telecommunication networks, Proceedings of the European Microwave Conference, Sep 2006, pp [14] TeraVicta Technologies MEMS Switches, [15] P. Zetterberg, WIreless DEvelopment LABoratory (WIDELAB) Equipment Base, Royal Institute of Technology, Tech. Rep., Aug [16] A. C. K. Mak, et al, Reconfigurable Multiband Antenna Designs for Wireless Communication Devices, IEEE Transactions on Antennas and Propag., Vol. 55, No. 7, July 2007, pp [17] CST Microwave Studio 2006, [18] R. G. Vaughan and J. B. Andersen, Antenna Diversity in Mobile Communications, in IEEE Trans. Veh. Technology, vol. 36, 1987, pp [19] R. E. Collin, Antenna Theory. New York: McGraw- Hill, 1969, ch. 4: The Receiving Antenna. [20] D. Tse and P. Viswanath, Fundamentals of Wireless Communication, 1 st ed., Cambridge University Press, 2005, pp

TRIPLE-BAND OMNI-DIRECTIONAL ANTENNA FOR WLAN APPLICATION

TRIPLE-BAND OMNI-DIRECTIONAL ANTENNA FOR WLAN APPLICATION Progress In Electromagnetics Research, PIER 76, 477 484, 2007 TRIPLE-BAND OMNI-DIRECTIONAL ANTENNA FOR WLAN APPLICATION Y.-J. Wu, B.-H. Sun, J.-F. Li, and Q.-Z. Liu National Key Laboratory of Antennas

More information

A New Fractal Based PIFA Antenna Design for MIMO Dual Band WLAN Applications

A New Fractal Based PIFA Antenna Design for MIMO Dual Band WLAN Applications University of Technology, Iraq From the SelectedWorks of Professor Jawad K. Ali March 27, 2012 A New Fractal Based PIFA Antenna Design for MIMO Dual Band WLAN Applications Ali J Salim, Department of Electrical

More information

STACKED PATCH MIMO ANTENNA ARRAY FOR C-BAND APPLICATIONS

STACKED PATCH MIMO ANTENNA ARRAY FOR C-BAND APPLICATIONS STACKED PATCH MIMO ANTENNA ARRAY FOR C-BAND APPLICATIONS Ayushi Agarwal Sheifali Gupta Amanpreet Kaur ECE Department ECE Department ECE Department Thapar University Patiala Thapar University Patiala Thapar

More information

Miniature Multiband Antenna for WLAN and X-Band Satellite Communication Applications

Miniature Multiband Antenna for WLAN and X-Band Satellite Communication Applications Progress In Electromagnetics Research Letters, Vol. 75, 13 18, 2018 Miniature Multiband Antenna for WLAN and X-Band Satellite Communication Applications Ruixing Zhi, Mengqi Han, Jing Bai, Wenying Wu, and

More information

A Pattern Reconfigurable Antenna for WLAN and WiMAX Systems

A Pattern Reconfigurable Antenna for WLAN and WiMAX Systems Progress In Electromagnetics Research C, Vol. 66, 183 190, 2016 A Pattern Reconfigurable Antenna for WLAN and WiMAX Systems Santasri Koley, Lakhindar Murmu, and Biswajit Pal Abstract A novel tri-band pattern

More information

Design and Analysis of Dual Band Star Shape Slotted Patch Antenna

Design and Analysis of Dual Band Star Shape Slotted Patch Antenna Design and Analysis of Dual Band Star Shape Slotted Patch Antenna Souheyla S. Ferouani 1, Zhor Z. Bendahmane 1, Abdelmalik A. Taleb Ahmed 2 Abstract This article proposes a new dual-band patch antenna

More information

Minimization of Mutual Coupling Using Neutralization Line Technique for 2.4 GHz Wireless Applications

Minimization of Mutual Coupling Using Neutralization Line Technique for 2.4 GHz Wireless Applications Minimization of Mutual Coupling Using Neutralization Line Technique for 2.4 GHz Wireless Applications W.N.N.W. Marzudi 1, Z.Z. Abidin 1, S.Z. Muji 1, Ma Yue 2 and Raed A. Abd-Alhameed 3 1 Research Center

More information

Key-Words: - 3G phone, Antenna design, Array antennas, Microstrip antenna, Mobile phone antennas, Switched-beam antennas

Key-Words: - 3G phone, Antenna design, Array antennas, Microstrip antenna, Mobile phone antennas, Switched-beam antennas Antenna Design for Switched-Beam Systems on Mobile Terminal MONTHIPPA UTHANSAKUL AND PEERAPONG UTHANSAKUL School of Telecommunication Engineering Suranaree University of Technology 111 University Avenue,

More information

A Printed Wideband MIMO Antenna System for GSM1800/1900, UMTS, WLAN2450, LTE2300/2500, and GPS Applications

A Printed Wideband MIMO Antenna System for GSM1800/1900, UMTS, WLAN2450, LTE2300/2500, and GPS Applications Progress In Electromagnetics Research C, Vol. 70, 33 41, 2016 A Printed Wideband MIMO Antenna System for GSM1800/1900, UMTS, WLAN2450, LTE2300/2500, and GPS Applications Mohamed M. Morsy* Abstract A low-profile

More information

A COMPACT MULTIBAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS

A COMPACT MULTIBAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS Progress In Electromagnetics Research Letters, Vol. 23, 147 155, 2011 A COMPACT MULTIBAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS Z.-N. Song, Y. Ding, and K. Huang National Key Laboratory of Antennas

More information

TRI-BAND COMPACT ANTENNA ARRAY FOR MIMO USER MOBILE TERMINALS AT GSM 1800 AND WLAN BANDS

TRI-BAND COMPACT ANTENNA ARRAY FOR MIMO USER MOBILE TERMINALS AT GSM 1800 AND WLAN BANDS Microwave Opt Technol Lett 50: 1914-1918, 2008; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop. 23472 Key words: planar inverted F-antenna; MIMO; WLAN; capacity 1.

More information

MODERN AND future wireless systems are placing

MODERN AND future wireless systems are placing IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES 1 Wideband Planar Monopole Antennas With Dual Band-Notched Characteristics Wang-Sang Lee, Dong-Zo Kim, Ki-Jin Kim, and Jong-Won Yu, Member, IEEE Abstract

More information

A compact dual-band dual-port diversity antenna for LTE

A compact dual-band dual-port diversity antenna for LTE Author manuscript, published in "Advanced Electromagnetics Journal (AEM) (2012) http://dx.doi.org/10.7716/aem.v1i1.42" DOI : 10.7716/aem.v1i1.42 ADVANCED ELECTROMAGNETICS, Vol. 1, No. 1, May 2012 A compact

More information

L-slotted Microstrip Patch Antenna for WiMAX and WLAN Applications

L-slotted Microstrip Patch Antenna for WiMAX and WLAN Applications L-slotted Microstrip Patch Antenna for WiMAX and WLAN Applications Danish Hayat Bhagwant University, Ajmer, India Abstract: This paper is based on design and simulation of rectangular Microstrip Patch

More information

Proximity fed gap-coupled half E-shaped microstrip antenna array

Proximity fed gap-coupled half E-shaped microstrip antenna array Sādhanā Vol. 40, Part 1, February 2015, pp. 75 87. c Indian Academy of Sciences Proximity fed gap-coupled half E-shaped microstrip antenna array AMIT A DESHMUKH 1, and K P RAY 2 1 Department of Electronics

More information

Chapter 7 Design of the UWB Fractal Antenna

Chapter 7 Design of the UWB Fractal Antenna Chapter 7 Design of the UWB Fractal Antenna 7.1 Introduction F ractal antennas are recognized as a good option to obtain miniaturization and multiband characteristics. These characteristics are achieved

More information

DESIGN OF A NOVEL MICROSTRIP-FED DUAL-BAND SLOT ANTENNA FOR WLAN APPLICATIONS

DESIGN OF A NOVEL MICROSTRIP-FED DUAL-BAND SLOT ANTENNA FOR WLAN APPLICATIONS Progress In Electromagnetics Research Letters, Vol. 13, 75 81, 2010 DESIGN OF A NOVEL MICROSTRIP-FED DUAL-BAND SLOT ANTENNA FOR WLAN APPLICATIONS S. Gai, Y.-C. Jiao, Y.-B. Yang, C.-Y. Li, and J.-G. Gong

More information

Electrically Reconfigurable Radial Waveguides and Their Potential Applications in Communications and Radars Systems

Electrically Reconfigurable Radial Waveguides and Their Potential Applications in Communications and Radars Systems Progress In Electromagnetics Research C, Vol. 75, 147 153, 2017 Electrically Reconfigurable Radial Waveguides and Their Potential Applications in Communications and Radars Systems Halim Boutayeb * Abstract

More information

Microwave and Optical Technology Letters. Pattern Reconfigurable Patch Array for 2.4GHz WLAN systems

Microwave and Optical Technology Letters. Pattern Reconfigurable Patch Array for 2.4GHz WLAN systems Pattern Reconfigurable Patch Array for.ghz WLAN systems Journal: Microwave and Optical Technology Letters Manuscript ID: Draft Wiley - Manuscript type: Research Article Date Submitted by the Author: n/a

More information

Research Article Multiband Planar Monopole Antenna for LTE MIMO Systems

Research Article Multiband Planar Monopole Antenna for LTE MIMO Systems Antennas and Propagation Volume 1, Article ID 8975, 6 pages doi:1.1155/1/8975 Research Article Multiband Planar Monopole Antenna for LTE MIMO Systems Yuan Yao, Xing Wang, and Junsheng Yu School of Electronic

More information

Compact and Low Profile MIMO Antenna for Dual-WLAN-Band Access Points

Compact and Low Profile MIMO Antenna for Dual-WLAN-Band Access Points Progress In Electromagnetics Research Letters, Vol. 67, 97 102, 2017 Compact and Low Profile MIMO Antenna for Dual-WLAN-Band Access Points Xinyao Luo *, Jiade Yuan, and Kan Chen Abstract A compact directional

More information

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK DESIGN OF MICROSTRIP FED UWB-MIMO DIVERSITY ANTENNA USING ORTHOGONALITY IN POLARIZATION

More information

Broadband Dual Polarized Space-Fed Antenna Arrays with High Isolation

Broadband Dual Polarized Space-Fed Antenna Arrays with High Isolation Progress In Electromagnetics Research C, Vol. 55, 105 113, 2014 Broadband Dual Polarized Space-Fed Antenna Arrays with High Isolation Prashant K. Mishra 1, *, Dhananjay R. Jahagirdar 1,andGirishKumar 2

More information

Design of Compact Logarithmically Periodic Antenna Structures for Polarization-Invariant UWB Communication

Design of Compact Logarithmically Periodic Antenna Structures for Polarization-Invariant UWB Communication Design of Compact Logarithmically Periodic Antenna Structures for Polarization-Invariant UWB Communication Oliver Klemp a, Hermann Eul a Department of High Frequency Technology and Radio Systems, Hannover,

More information

TRANSMITTING ANTENNA WITH DUAL CIRCULAR POLARISATION FOR INDOOR ANTENNA MEASUREMENT RANGE

TRANSMITTING ANTENNA WITH DUAL CIRCULAR POLARISATION FOR INDOOR ANTENNA MEASUREMENT RANGE TRANSMITTING ANTENNA WITH DUAL CIRCULAR POLARISATION FOR INDOOR ANTENNA MEASUREMENT RANGE Michal Mrnka, Jan Vélim Doctoral Degree Programme (2), FEEC BUT E-mail: xmrnka01@stud.feec.vutbr.cz, velim@phd.feec.vutbr.cz

More information

Small Planar Antenna for WLAN Applications

Small Planar Antenna for WLAN Applications Small Planar Antenna for WLAN Applications # M. M. Yunus 1,2, N. Misran 2,3 and M. T. Islam 3 1 Faculty of Electronics and Computer Engineering, Universiti Teknikal Malaysia Melaka 2 Faculty of Engineering,

More information

Penta-Band Dielectric Loaded Folded Loop Antenna for Mobile Handset

Penta-Band Dielectric Loaded Folded Loop Antenna for Mobile Handset IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 04, Issue 05 (May. 2014), V6 PP 10-16 www.iosrjen.org Penta-Band Dielectric Loaded Folded Loop Antenna for Mobile Handset

More information

QUAD-BAND MICROSTRIP ANTENNA FOR MOBILE HANDSETS

QUAD-BAND MICROSTRIP ANTENNA FOR MOBILE HANDSETS 1 th February 214. Vol. 6 No.1 25-214 JATIT & LLS. All rights reserved. QUAD-BAND MICROSTRIP ANTENNA FOR MOBILE HANDSETS 1 ASEM S. AL-ZOUBI, 2 MOHAMED A. MOHARRAM 1 Asstt Prof., Department of Telecommunications

More information

EXPERIMENTAL EVALUATION OF MIMO ANTENA SELECTION SYSTEM USING RF-MEMS SWITCHES ON A MOBILE TERMINAL

EXPERIMENTAL EVALUATION OF MIMO ANTENA SELECTION SYSTEM USING RF-MEMS SWITCHES ON A MOBILE TERMINAL EXPERIMENTAL EVALUATION OF MIMO ANTENA SELECTION SYSTEM USING RF-MEMS SWITCHES ON A MOBILE TERMINAL Atsushi Honda, Ichirou Ida, Yasuyuki Oishi, Quoc Tuan Tran Shinsuke Hara Jun-ichi Takada Fujitsu Limited

More information

A CIRCULARLY POLARIZED QUASI-LOOP ANTENNA

A CIRCULARLY POLARIZED QUASI-LOOP ANTENNA Progress In Electromagnetics Research, PIER 84, 333 348, 28 A CIRCULARLY POLARIZED QUASI-LOOP ANTENNA C.-J. Wang and C.-H. Lin Department of Electronics Engineering National University of Tainan Tainan

More information

X. Li, L. Yang, S.-X. Gong, and Y.-J. Yang National Key Laboratory of Antennas and Microwave Technology Xidian University Xi an, Shaanxi, China

X. Li, L. Yang, S.-X. Gong, and Y.-J. Yang National Key Laboratory of Antennas and Microwave Technology Xidian University Xi an, Shaanxi, China Progress In Electromagnetics Research Letters, Vol. 6, 99 16, 29 BIDIRECTIONAL HIGH GAIN ANTENNA FOR WLAN APPLICATIONS X. Li, L. Yang, S.-X. Gong, and Y.-J. Yang National Key Laboratory of Antennas and

More information

Conclusion and Future Scope

Conclusion and Future Scope Chapter 8 8.1 Conclusions The study of planar Monopole, Slot, Defected Ground, and Fractal antennas has been carried out to achieve the research objectives. These UWB antenna designs are characterised

More information

Performance Analysis of Different Ultra Wideband Planar Monopole Antennas as EMI sensors

Performance Analysis of Different Ultra Wideband Planar Monopole Antennas as EMI sensors International Journal of Electronics and Communication Engineering. ISSN 09742166 Volume 5, Number 4 (2012), pp. 435445 International Research Publication House http://www.irphouse.com Performance Analysis

More information

Multi-Band Microstrip Antenna Design for Wireless Energy Harvesting

Multi-Band Microstrip Antenna Design for Wireless Energy Harvesting Shuvo MAK et al. American Journal of Energy and Environment 2018, 3:1-5 Page 1 of 5 Research Article American Journal of Energy and Environment http://www.ivyunion.org/index.php/energy Multi-Band Microstrip

More information

DRAFT. Design and Measurements of a Five Independent Band Patch Antenna for Different Wireless Applications

DRAFT. Design and Measurements of a Five Independent Band Patch Antenna for Different Wireless Applications 1 Design and Measurements of a Five Independent Band Patch Antenna for Different Wireless Applications Hattan F. AbuTarboush *(1), Karim M. Nasr (2), R. Nilavalan (1), H. S. Al-Raweshidy (1) and Martin

More information

Performance analysis of Meandered loop and Top loaded monopole antenna for Wireless Applications

Performance analysis of Meandered loop and Top loaded monopole antenna for Wireless Applications Performance analysis of Meandered loop and Top loaded monopole antenna for Wireless Applications M. Ilakkia¹, T. Anita Jones Mary², Dr. C. S. Ravichandran³, Abstract This paper presents the design of multiple

More information

A Dual-Band MIMO Monopole Antenna System for Set Top Box and WLAN Chipsets

A Dual-Band MIMO Monopole Antenna System for Set Top Box and WLAN Chipsets Proceedings of the 2 nd World Congress on Electrical Engineering and Computer Systems and Science (EECSS'16) Budapest, Hungary August 16 17, 2016 Paper No. EEE 140 DOI: 10.11159/eee16.140 A Dual-Band MIMO

More information

Comparison of Return Loss for the Microstrip U-Slot Antennas for Frequency Band 5-6 Ghz

Comparison of Return Loss for the Microstrip U-Slot Antennas for Frequency Band 5-6 Ghz Comparison of Return Loss for the Microstrip U-Slot Antennas for Frequency Band 5-6 Ghz Sukhbir Kumar 1, Dinesh Arora 2, Hitender Gutpa 3 1 Department of ECE, Swami Devi Dyal Institute of Engineering and

More information

Recon UWB Antenna for Cognitive Radio

Recon UWB Antenna for Cognitive Radio Progress In Electromagnetics Research C, Vol. 79, 79 88, 2017 Recon UWB Antenna for Cognitive Radio DeeplaxmiV.Niture *, Santosh S. Jadhav, and S. P. Mahajan Abstract This paper talks about a simple printed

More information

Microstrip Antennas Integrated with Horn Antennas

Microstrip Antennas Integrated with Horn Antennas 53 Microstrip Antennas Integrated with Horn Antennas Girish Kumar *1, K. P. Ray 2 and Amit A. Deshmukh 1 1. Department of Electrical Engineering, I.I.T. Bombay, Powai, Mumbai 400 076, India Phone: 91 22

More information

A Novel Reconfigurable Spiral-Shaped Monopole Antenna for Biomedical Applications

A Novel Reconfigurable Spiral-Shaped Monopole Antenna for Biomedical Applications Progress In Electromagnetics Research Letters, Vol. 57, 79 84, 215 A Novel Reconfigurable Spiral-Shaped Monopole Antenna for Biomedical Applications Maryam Salim * and Ali Pourziad Abstract In this paper,

More information

Design & Simulation of Circular Patch Antennafor Multiband application of X Band UsingVaractor Diodes

Design & Simulation of Circular Patch Antennafor Multiband application of X Band UsingVaractor Diodes Conference on Advances in Communication and Control Systems 2013 (CAC2S 2013) 1 Design & Simulation of Circular Patch Antennafor Multiband application of X Band UsingVaractor Diodes Pawan Pujari Student,

More information

A RECONFIGURABLE HYBRID COUPLER CIRCUIT FOR AGILE POLARISATION ANTENNA

A RECONFIGURABLE HYBRID COUPLER CIRCUIT FOR AGILE POLARISATION ANTENNA A RECONFIGURABLE HYBRID COUPLER CIRCUIT FOR AGILE POLARISATION ANTENNA F. Ferrero (1), C. Luxey (1), G. Jacquemod (1), R. Staraj (1), V. Fusco (2) (1) Laboratoire d'electronique, Antennes et Télécommunications

More information

ISSN: [Sherke* et al., 5(12): December, 2016] Impact Factor: 4.116

ISSN: [Sherke* et al., 5(12): December, 2016] Impact Factor: 4.116 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY COMPACT ULTRA WIDE BAND ANTENNA WITH BAND NOTCHED CHARACTERISTICS. Raksha Sherke *, Ms. Prachi C. Kamble, Dr. Lakshmappa K Ragha

More information

COMPACT TRIPLE-BAND MONOPOLE ANTENNA WITH C-SHAPED AND S-SHAPED MEANDER STRIPS FOR WLAN/WIMAX APPLICATIONS

COMPACT TRIPLE-BAND MONOPOLE ANTENNA WITH C-SHAPED AND S-SHAPED MEANDER STRIPS FOR WLAN/WIMAX APPLICATIONS Progress In Electromagnetics Research Letters, Vol. 15, 107 116, 2010 COMPACT TRIPLE-BAND MONOPOLE ANTENNA WITH C-SHAPED AND S-SHAPED MEANDER STRIPS FOR WLAN/WIMAX APPLICATIONS F. Li, L.-S. Ren, G. Zhao,

More information

Performance of Closely Spaced Multiple Antennas for Terminal Applications

Performance of Closely Spaced Multiple Antennas for Terminal Applications Performance of Closely Spaced Multiple Antennas for Terminal Applications Anders Derneryd, Jonas Fridén, Patrik Persson, Anders Stjernman Ericsson AB, Ericsson Research SE-417 56 Göteborg, Sweden {anders.derneryd,

More information

Fractal Reconfigurable Multiband Communicating Antenna for Cognitive Radio

Fractal Reconfigurable Multiband Communicating Antenna for Cognitive Radio IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 10, Issue 1, Ver. III (Jan - Feb. 2015), PP 49-56 www.iosrjournals.org Fractal Reconfigurable

More information

A Broadband Omnidirectional Antenna Array for Base Station

A Broadband Omnidirectional Antenna Array for Base Station Progress In Electromagnetics Research C, Vol. 54, 95 101, 2014 A Broadband Omnidirectional Antenna Array for Base Station Bo Wang 1, *, Fushun Zhang 1,LiJiang 1, Qichang Li 2, and Jian Ren 1 Abstract A

More information

FourPortsWidebandPatternDiversityMIMOAntenna

FourPortsWidebandPatternDiversityMIMOAntenna Global Journal of Researches in Engineering: F Electrical and Electronics Engineering Volume 15 Issue 3 Version 1. Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals

More information

Compact 1 2 and 2 2 MIMO Antennas with Enhanced Isolation for Ultrawideband Application

Compact 1 2 and 2 2 MIMO Antennas with Enhanced Isolation for Ultrawideband Application Progress In Electromagnetics Research C, Vol. 71, 41 49, 2017 Compact 1 2 and 2 2 MIMO Antennas with Enhanced Isolation for Ultrawideband Application Hui Li*, Jinhai Liu, Ziyang Wang, and Ying-Zeng Yin

More information

Research Article Compact Multiantenna

Research Article Compact Multiantenna Antennas and Propagation Volume 212, Article ID 7487, 6 pages doi:1.1155/212/7487 Research Article Compact Multiantenna L. Rudant, C. Delaveaud, and P. Ciais CEA-Leti, Minatec Campus, 17 Rue des Martyrs,

More information

COMPACT WIDE-SLOT TRI-BAND ANTENNA FOR WLAN/WIMAX APPLICATIONS

COMPACT WIDE-SLOT TRI-BAND ANTENNA FOR WLAN/WIMAX APPLICATIONS Progress In Electromagnetics Research Letters, Vol. 18, 9 18, 2010 COMPACT WIDE-SLOT TRI-BAND ANTENNA FOR WLAN/WIMAX APPLICATIONS Q. Zhao, S. X. Gong, W. Jiang, B. Yang, and J. Xie National Laboratory

More information

Wide Slot Antenna with Y Shape Tuning Element for Wireless Applications

Wide Slot Antenna with Y Shape Tuning Element for Wireless Applications Progress In Electromagnetics Research M, Vol. 59, 45 54, 2017 Wide Slot Antenna with Y Shape Tuning Element for Wireless Applications Bhupendra K. Shukla *, Nitesh Kashyap, and Rajendra K. Baghel Abstract

More information

A Stopband Control Technique for Conversion of CPW-Fed Wideband Antenna to UWB

A Stopband Control Technique for Conversion of CPW-Fed Wideband Antenna to UWB Progress In Electromagnetics Research Letters, Vol. 67, 131 137, 2017 A Stopband Control Technique for Conversion of CPW-Fed Wideband Antenna to UWB Philip Cherian * and Palayyan Mythili Abstract A technique

More information

Design of CPW Fed Ultra wideband Fractal Antenna and Backscattering Reduction

Design of CPW Fed Ultra wideband Fractal Antenna and Backscattering Reduction Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 9, No. 1, June 2010 10 Design of CPW Fed Ultra wideband Fractal Antenna and Backscattering Reduction Raj Kumar and P. Malathi

More information

CHAPTER 10 CONCLUSIONS AND FUTURE WORK 10.1 Conclusions

CHAPTER 10 CONCLUSIONS AND FUTURE WORK 10.1 Conclusions CHAPTER 10 CONCLUSIONS AND FUTURE WORK 10.1 Conclusions This dissertation reported results of an investigation into the performance of antenna arrays that can be mounted on handheld radios. Handheld arrays

More information

Wideband Gap Coupled Microstrip Antenna using RIS Structure

Wideband Gap Coupled Microstrip Antenna using RIS Structure Wideband Gap Coupled Microstrip Antenna using RIS Structure Pallavi Bhalekar 1 and L.K. Ragha 2 1 Electronics and Telecommunication, Mumbai University, Mumbai, Maharashtra, India 2 Electronics and Telecommunication,

More information

2013 IEEE Symposium on Wireless Technology and Applications (ISWTA), September 22-25, 2013, Kuching, Malaysia. Harvesting System

2013 IEEE Symposium on Wireless Technology and Applications (ISWTA), September 22-25, 2013, Kuching, Malaysia. Harvesting System 2013 IEEE Symposium on Wireless Technology and Applications (ISWTA), September 22-25, 2013, Kuching, Malaysia Dual-Band Monopole For Harvesting System Energy Z. Zakaria, N. A. Zainuddin, M. Z. A. Abd Aziz,

More information

Dual-Band Dual-Polarized Antenna Array for Beam Selection MIMO WLAN

Dual-Band Dual-Polarized Antenna Array for Beam Selection MIMO WLAN Globecom 2012 - Wireless Communications Symposium Dual-Band Dual-Polarized Antenna Array for Beam Selection MIMO WLAN Wen-Chao Zheng, Long Zhang, Qing-Xia Li Dept. of Electronics and Information Engineering

More information

Multiband Printed Monopole Slot Antenna For Mobile Phone

Multiband Printed Monopole Slot Antenna For Mobile Phone ISSN: 2278 0211 (Online) Multiband Printed Monopole Slot Antenna For Mobile Phone Kumari Pammi Electronics Engineering Department, UCE,Rajasthan Technical University,Kota(Raj.), India R.S.Meena Electronics

More information

Design of Frequency and Polarization Tunable Microstrip Antenna

Design of Frequency and Polarization Tunable Microstrip Antenna Design of Frequency and Polarization Tunable Microstrip Antenna M. S. Nishamol, V. P. Sarin, D. Tony, C. K. Aanandan, P. Mohanan, K. Vasudevan Abstract A novel compact dual frequency microstrip antenna

More information

A Novel Quad-band Printed Antenna Design using a Multi-Slotted Patch for Cellular Communication

A Novel Quad-band Printed Antenna Design using a Multi-Slotted Patch for Cellular Communication A Novel Quad-band Printed Antenna Design using a Multi-Slotted Patch for Cellular Communication P. Misra Eastern Academy of Sc & Tech BBSR INDIA A. Tripathy Eastern Academy of Sc & Tech BBSR INDIA ABSTRACT

More information

A Dual-Band Two Order Filtering Antenna

A Dual-Band Two Order Filtering Antenna Progress In Electromagnetics Research Letters, Vol. 63, 99 105, 2016 A Dual-Band Two Order Filtering Antenna Jingli Guo, Haisheng Liu *, Bin Chen, and Baohua Sun Abstract A dual-band two order filtering

More information

High Gain and Wideband Stacked Patch Antenna for S-Band Applications

High Gain and Wideband Stacked Patch Antenna for S-Band Applications Progress In Electromagnetics Research Letters, Vol. 76, 97 104, 2018 High Gain and Wideband Stacked Patch Antenna for S-Band Applications Ali Khaleghi 1, 2, 3, *, Seyed S. Ahranjan 3, and Ilangko Balasingham

More information

Proximity fed Gap Coupled Array Antenna with DGS Backed with Periodic Metallic Strips

Proximity fed Gap Coupled Array Antenna with DGS Backed with Periodic Metallic Strips Proximity fed Gap Coupled Array Antenna with DGS Backed with Periodic Metallic Strips Jacob Abraham 1 and Thomaskutty Mathew Department of Electronics, School of Technology and Applied Sciences, Mahatma

More information

Research Article Mutual Coupling Effects on Pattern Diversity Antennas for MIMO Femtocells

Research Article Mutual Coupling Effects on Pattern Diversity Antennas for MIMO Femtocells Hindawi Publishing Corporation International Journal of Antennas and Propagation Volume 21, Article ID 756848, 8 pages doi:1.1155/21/756848 Research Article Mutual Coupling Effects on Pattern Diversity

More information

R. Zhang, G. Fu, Z.-Y. Zhang, and Q.-X. Wang Key Laboratory of Antennas and Microwave Technology Xidian University, Xi an, Shaanxi , China

R. Zhang, G. Fu, Z.-Y. Zhang, and Q.-X. Wang Key Laboratory of Antennas and Microwave Technology Xidian University, Xi an, Shaanxi , China Progress In Electromagnetics Research Letters, Vol. 2, 137 145, 211 A WIDEBAND PLANAR DIPOLE ANTENNA WITH PARASITIC PATCHES R. Zhang, G. Fu, Z.-Y. Zhang, and Q.-X. Wang Key Laboratory of Antennas and Microwave

More information

On the Design of CPW Fed Appollian Gasket Multiband Antenna

On the Design of CPW Fed Appollian Gasket Multiband Antenna On the Design of CPW Fed Appollian Gasket Multiband Antenna Raj Kumar and Anupam Tiwari Microwave and MM Wave Antenna Lab., Department of Electronics Engg. DIAT (Deemed University), Girinagar, Pune-411025,

More information

A Compact Broadband Printed Circular Slot Antenna with Stair Shaped Ground Plane

A Compact Broadband Printed Circular Slot Antenna with Stair Shaped Ground Plane Progress In Electromagnetics Research Letters, Vol. 74, 9 16, 2018 A Compact Broadband Printed Circular Slot Antenna with Stair Shaped Ground Plane Baudha Sudeep 1, * and Kumar V. Dinesh 2 Abstract This

More information

Investigation of Dual Meander Slot to Microstrip Patch Antenna

Investigation of Dual Meander Slot to Microstrip Patch Antenna IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) ISSN: 2278-2834, ISBN: 2278-8735. Volume 3, Issue 6(Nov. - Dec. 2012), PP 01-06 Investigation of Dual Meander Slot to Microstrip Patch

More information

Switched parasitic antennas and cxontrolled reactance parasitic antennas: a systems comparison

Switched parasitic antennas and cxontrolled reactance parasitic antennas: a systems comparison Switched parasitic antennas and cxontrolled reactance parasitic antennas: a systems comparison Author Thiel, David Published 2004 Conference Title IEEE Antennas and Propagation Symposium DOI https://doi.org/10.1109/aps.2004.1332062

More information

A MIMO antenna for mobile applications. Wu, D; Cheung, SW; Yuk, TI; Sun, XL

A MIMO antenna for mobile applications. Wu, D; Cheung, SW; Yuk, TI; Sun, XL Title A MIMO antenna for mobile applications Author(s) Wu, D; Cheung, SW; Yuk, TI; Sun, XL Citation The 2013 International Workshop on Antenna Technology (iwat 2013), Karlsruhe, Germany, 4-6 March 2013.

More information

Multiband Compact Low SAR Mobile Hand Held Antenna

Multiband Compact Low SAR Mobile Hand Held Antenna Progress In Electromagnetics Research Letters, Vol. 49, 65 71, 2014 Multiband Compact Low SAR Mobile Hand Held Antenna Haythem H. Abdullah * and Kamel S. Sultan Abstract With the vast emergence of new

More information

Design of Wideband Antenna for RF Energy Harvesting System

Design of Wideband Antenna for RF Energy Harvesting System Design of Wideband Antenna for RF Energy Harvesting System N. A. Zainuddin, Z. Zakaria, M. N. Husain, B. Mohd Derus, M. Z. A. Abidin Aziz, M. A. Mutalib, M. A. Othman Centre of Telecommunication Research

More information

A NOVEL DUAL-BAND PATCH ANTENNA FOR WLAN COMMUNICATION. E. Wang Information Engineering College of NCUT China

A NOVEL DUAL-BAND PATCH ANTENNA FOR WLAN COMMUNICATION. E. Wang Information Engineering College of NCUT China Progress In Electromagnetics Research C, Vol. 6, 93 102, 2009 A NOVEL DUAL-BAND PATCH ANTENNA FOR WLAN COMMUNICATION E. Wang Information Engineering College of NCUT China J. Zheng Beijing Electro-mechanical

More information

Comparison of Different MIMO Antenna Arrays and User's Effect on. their Performances

Comparison of Different MIMO Antenna Arrays and User's Effect on. their Performances Comparison of Different MIMO Antenna Arrays and User's Effect on their Performances Carlos Gómez-Calero, Nima Jamaly, Ramón Martínez, Leandro de Haro Keyterms Multiple-Input Multiple-Output, diversity

More information

MINIATURIZED MODIFIED DIPOLES ANTENNA FOR WLAN APPLICATIONS

MINIATURIZED MODIFIED DIPOLES ANTENNA FOR WLAN APPLICATIONS Progress In Electromagnetics Research Letters, Vol. 24, 139 147, 211 MINIATURIZED MODIFIED DIPOLES ANTENNA FOR WLAN APPLICATIONS Y. Y. Guo 1, *, X. M. Zhang 1, G. L. Ning 1, D. Zhao 1, X. W. Dai 2, and

More information

A Frequency Reconfigurable Antenna loaded with H-shaped Radiators for WLAN/WiMAX Applications

A Frequency Reconfigurable Antenna loaded with H-shaped Radiators for WLAN/WiMAX Applications A Frequency Reconfigurable Antenna loaded with H-shaped Radiators for WLAN/WiMAX Applications 1 Imran Khan, 1 Geetha D, 2 Sudhindra K.R, 1,* Tanweer Ali and 1 R.C. Biradar 1 School of ECE, REVA University,

More information

A Frequency Reconfigurable Dual Pole Dual Band Bandpass Filter for X-Band Applications

A Frequency Reconfigurable Dual Pole Dual Band Bandpass Filter for X-Band Applications Progress In Electromagnetics Research Letters, Vol. 66, 53 58, 2017 A Frequency Reconfigurable Dual Pole Dual Band Bandpass Filter for X-Band Applications Amit Bage * and Sushrut Das Abstract This paper

More information

Design of Reconfigurable Rectangular Patch Antenna using PIN Diode

Design of Reconfigurable Rectangular Patch Antenna using PIN Diode International Journal of Electrical Sciences & Engineering (IJESE) Online ISSN: 2455 6068; Volume 1, Issue 1; January 2016 pp. 68-73 Dayananda Sagar College of Engineering, Bengaluru-78 Design of Reconfigurable

More information

ANALYSIS OF ELECTRICALLY SMALL SIZE CONICAL ANTENNAS. Y. K. Yu and J. Li Temasek Laboratories National University of Singapore Singapore

ANALYSIS OF ELECTRICALLY SMALL SIZE CONICAL ANTENNAS. Y. K. Yu and J. Li Temasek Laboratories National University of Singapore Singapore Progress In Electromagnetics Research Letters, Vol. 1, 85 92, 2008 ANALYSIS OF ELECTRICALLY SMALL SIZE CONICAL ANTENNAS Y. K. Yu and J. Li Temasek Laboratories National University of Singapore Singapore

More information

A miniature reconfigurable printed monopole antenna for WLAN/WiMAX and LTE communication bands

A miniature reconfigurable printed monopole antenna for WLAN/WiMAX and LTE communication bands Loughborough University Institutional Repository A miniature reconfigurable printed monopole antenna for WLAN/WiMAX and LTE communication bands This item was submitted to Loughborough University's Institutional

More information

Printed UWB MIMO Antenna with Different Polarizations and Band-Notch Characteristics

Printed UWB MIMO Antenna with Different Polarizations and Band-Notch Characteristics Progress In Electromagnetics Research Letters, Vol. 46, 113 118, 214 Printed UWB MIMO Antenna with Different Polarizations and Band-Notch Characteristics Jia-Yue Zhao *, Zhi-Ya Zhang, Qiong-Qiong Liu,

More information

Broadband Circular Polarized Antenna Loaded with AMC Structure

Broadband Circular Polarized Antenna Loaded with AMC Structure Progress In Electromagnetics Research Letters, Vol. 76, 113 119, 2018 Broadband Circular Polarized Antenna Loaded with AMC Structure Yi Ren, Xiaofei Guo *,andchaoyili Abstract In this paper, a novel broadband

More information

Dual band planar hybrid coupler with enhanced bandwidth using particle swarm optimization technique

Dual band planar hybrid coupler with enhanced bandwidth using particle swarm optimization technique Dual band planar hybrid coupler with enhanced bandwidth using particle swarm optimization technique Mahdi Yousefi a), Mohammad Mosalanejad b), Gholamreza Moradi c), and Abdolali Abdipour d) Wave Propagation

More information

Circularly Polarized Square Patch Microstrip Antenna with Y- Shaped Slot for Wi-Max Application

Circularly Polarized Square Patch Microstrip Antenna with Y- Shaped Slot for Wi-Max Application Available online www.ejaet.com European Journal of Advances in Engineering and Technology, 2014, 1(1): 61-68 Research Article Circularly Polarized Square Patch Microstrip Antenna with Y- Shaped Slot for

More information

HIGH GAIN AND LOW COST ELECTROMAGNETICALLY COUPLED RECTAGULAR PATCH ANTENNA

HIGH GAIN AND LOW COST ELECTROMAGNETICALLY COUPLED RECTAGULAR PATCH ANTENNA HIGH GAIN AND LOW COST ELECTROMAGNETICALLY COUPLED RECTAGULAR PATCH ANTENNA Raja Namdeo, Sunil Kumar Singh Abstract: This paper present high gain and wideband electromagnetically coupled patch antenna.

More information

HIGH GAIN AND LOW CROSS-POLAR COMPACT PRINTED ELLIPTICAL MONOPOLE UWB ANTENNA LOADED WITH PARTIAL GROUND AND PARASITIC PATCHES

HIGH GAIN AND LOW CROSS-POLAR COMPACT PRINTED ELLIPTICAL MONOPOLE UWB ANTENNA LOADED WITH PARTIAL GROUND AND PARASITIC PATCHES Progress In Electromagnetics Research B, Vol. 43, 151 167, 2012 HIGH GAIN AND LOW CROSS-POLAR COMPACT PRINTED ELLIPTICAL MONOPOLE UWB ANTENNA LOADED WITH PARTIAL GROUND AND PARASITIC PATCHES G. Shrikanth

More information

A Beam Switching Planar Yagi-patch Array for Automotive Applications

A Beam Switching Planar Yagi-patch Array for Automotive Applications PIERS ONLINE, VOL. 6, NO. 4, 21 35 A Beam Switching Planar Yagi-patch Array for Automotive Applications Shao-En Hsu, Wen-Jiao Liao, Wei-Han Lee, and Shih-Hsiung Chang Department of Electrical Engineering,

More information

Available online at ScienceDirect. The 4th International Conference on Electrical Engineering and Informatics (ICEEI 2013)

Available online at   ScienceDirect. The 4th International Conference on Electrical Engineering and Informatics (ICEEI 2013) Available online at www.sciencedirect.com ScienceDirect Procedia Technology 11 ( 2013 ) 348 353 The 4th International Conference on Electrical Engineering and Informatics (ICEEI 2013) Wideband Antenna

More information

A Miniaturized Wide-Band LTCC Based Fractal Antenna

A Miniaturized Wide-Band LTCC Based Fractal Antenna A Miniaturized Wide-Band LTCC Based Fractal Antenna Farhan A. Ghaffar, Atif Shamim and Khaled N. Salama Electrical Engineering Program King Abdullah University of Science and Technology Thuwal 23955-6500,

More information

Integration of inverted F-antennas in small mobile devices with respect to diversity and MIMO systems

Integration of inverted F-antennas in small mobile devices with respect to diversity and MIMO systems Integration of inverted F-antennas in small mobile devices with respect to diversity and MIMO systems S. Schulteis 1, C. Kuhnert 1, J. Pontes 1, and W. Wiesbeck 1 1 Institut für Höchstfrequenztechnik und

More information

A Compact Dual Band-Notched Ultrawideband Antenna with λ/4 Stub and Open Slots

A Compact Dual Band-Notched Ultrawideband Antenna with λ/4 Stub and Open Slots Progress In Electromagnetics Research C, Vol. 49, 133 139, 2014 A Compact Dual Band-Notched Ultrawideband Antenna with λ/4 Stub and Open Slots Jian Ren * and Yingzeng Yin Abstract A novel compact UWB antenna

More information

MULTI-STATE UWB CIRCULAR PATCH ANTENNA BASED ON WIMAX AND WLAN NOTCH FILTERS OPERATION

MULTI-STATE UWB CIRCULAR PATCH ANTENNA BASED ON WIMAX AND WLAN NOTCH FILTERS OPERATION VOL., NO 9, OCTOBER, ISSN 9- - Asian Research Publishing Network (ARPN). All rights reserved. MULTI-STATE UWB CIRCULAR PATCH ANTENNA BASED ON WIMAX AND WLAN NOTCH FILTERS OPERATION Raed A. Abdulhasan,

More information

Small-Size Monopole Antenna with Dual Band-Stop Function for Ultra-Wideband Wireless Communications

Small-Size Monopole Antenna with Dual Band-Stop Function for Ultra-Wideband Wireless Communications Engineering Science 2016; 1(1): 15-21 http://www.sciencepublishinggroup.com/j/es doi: 10.11648/j.es.20160101.13 Small-Size Monopole Antenna with Dual Band-Stop Naser Ojaroudi Parchin *, Mehdi Salimitorkamani

More information

Quasi Self Complementary (QSC) Ultra-Wide Band (UWB) Antenna Integrated with Bluetooth

Quasi Self Complementary (QSC) Ultra-Wide Band (UWB) Antenna Integrated with Bluetooth Quasi Self Complementary (QSC) Ultra-Wide Band (UWB) Antenna Integrated with Bluetooth Sk.Jani Basha 1, U.Rama Krishna 2 1 Communication & signal processing M. Tech, 2 Assistant Professor in ECE Department,

More information

Sree Vidyanikethan Engineering College, Tirupati, India 3.

Sree Vidyanikethan Engineering College, Tirupati, India 3. Volume 114 No. 10 2017, 301-308 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Design and Simulation Of Circular Patch Log Periodic Microstrip Antenna

More information

A Modified Elliptical Slot Ultra Wide Band Antenna

A Modified Elliptical Slot Ultra Wide Band Antenna A Modified Elliptical Slot Ultra Wide Band Antenna Soubhi ABOU CHAHINE, Maria ADDAM, Hadi ABDEL RAHIM, Areej ITANI, Hiba JOMAA Department of Electrical Engineering, Beirut Arab University, P.O. Box: 11

More information

BROADBAND SERIES-FED DIPOLE PAIR ANTENNA WITH PARASITIC STRIP PAIR DIRECTOR

BROADBAND SERIES-FED DIPOLE PAIR ANTENNA WITH PARASITIC STRIP PAIR DIRECTOR Progress In Electromagnetics Research C, Vol. 45, 1 13, 2013 BROADBAND SERIES-FED DIPOLE PAIR ANTENNA WITH PARASITIC STRIP PAIR DIRECTOR Junho Yeo 1, Jong-Ig Lee 2, *, and Jin-Taek Park 3 1 School of Computer

More information

ELECTRONICALLY SWITCHED BEAM DISK-LOADED MONOPOLE ARRAY ANTENNA

ELECTRONICALLY SWITCHED BEAM DISK-LOADED MONOPOLE ARRAY ANTENNA Progress In Electromagnetics Research, PIER 101, 339 347, 2010 ELECTRONICALLY SWITCHED BEAM DISK-LOADED MONOPOLE ARRAY ANTENNA M. R. Kamarudin Wireless Communication Centre (WCC) Faculty of Electrical

More information