Precision Low Power Single-Supply JFET Amplifier AD8627/AD8626/AD8625

Size: px
Start display at page:

Download "Precision Low Power Single-Supply JFET Amplifier AD8627/AD8626/AD8625"

Transcription

1 Precision Low Power Single-Supply JFET Amplifier FEATURES SC7 package Very low IB: pa max Single-supply operation: 5 V to 26 V Dual-supply operation: ±2.5 V to ±3 V Rail-to-rail output Low supply current: 63 µa/amp typ Low offset voltage: 5 µv max Unity gain stable No phase reversal APPLICATIONS Photodiode amplifiers ATE Line-powered/battery-powered instrumentation Industrial controls Automotive sensors Precision filters Audio NC 8-Lead SOIC (R-8 Suffix) IN 2 7 V+ AD8627 +IN 3 6 OUT OUT A V 4 5 NC IN A +IN A NC = NO CONNECT Lead SOIC (R-8 Suffix) AD8626 PIN CONFIGURATIONS 8 NC V+ OUT B IN B V 4 5 +IN B 4-Lead SOIC (R-Suffix) OUT A V +IN OUT A IN A +IN A V Lead SC7 (KS Suffix) AD Lead MSOP (RM-Suffix) 4 AD Lead TSSOP (RU-Suffix) 5 4 V+ IN V+ OUT B IN B +IN B GENERAL DESCRIPTION The AD862x is a precision JFET input amplifier. It features true single-supply operation, low power consumption, and rail-to-rail output. The outputs remain stable with capacitive loads of over 5 pf; the supply current is less than 63 µa/amp. Applications for the AD862x include photodiode transimpedance amplification, ATE reference level drivers, battery management, both line powered and portable instrumentation, and remote sensor signal conditioning including automotive sensors. OUT A 4 OUT D OUT A IN A 2 3 IN D IN A +IN A +IN A 3 2 +IN D V+ AD8625 +IN B V+ 4 V IN B +IN B 5 +IN C OUT B IN B 6 9 IN C OUT B 7 8 OUT C Figure. 4 AD OUT D IN D +IN D V +IN C IN C OUT C 323-B- The AD862x s ability to swing nearly rail-to-rail at the input and rail-to-rail at the output enables it to be used to buffer CMOS DACs, ASICs, and other wide output swing devices in single-supply systems. The 5 MHz bandwidth and low offset are ideal for precision filters. The AD862x is fully specified over the industrial temperature range. ( 4 to +85 ) The AD8627 is available in both 5-lead SC7 and 8-lead SOIC surface-mount packages. The SC7 packaged parts are available in tape and reel only. The AD8626 is available in an MSOP package. Rev. B Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 96, Norwood, MA 62-96, U.S.A. Tel: Fax: Analog Devices, Inc. All rights reserved.

2 TABLE OF CONTENTS Specifications... 3 Electrical Characteristics... 3 Electrical Characteristics... 4 Absolute Maximum Ratings... 5 Typical Performance Characteristics... 6 Applications... 3 Minimizing Input Current... 5 Photodiode Preamplifier Application... 5 Output Amplifier for Digital-to-Analog Converters... 5 Eight-Pole Sallen Key Low-Pass Filter... 6 Outline Dimensions... 8 Ordering Guide... 9 REVISION HISTORY /4 Data sheet changed from Rev. A to Rev. B Change to General Description... Change to Figure... 7 Change to Figure Change to Figure Changes to Figure Change to Output Amplifier for DACs section...5 Updated Outline Dimensions...9 /3 Data sheet changed from Rev. to Rev. A Addition of two new parts. Universal Change to General Description.... Changes to Pin Configurations... Change to Specifications table..3 Changes to Figure 3... Changes to Figure Changes to Figure Changes to Figure Changes to Figure Changes to Figure Updated Outline Dimensions..8 Changes to Ordering Guide Rev. B Page 2 of

3 SPECIFICATIONS ELECTRICAL CHARACTERISTICS = 5 V, VCM =.5 V, TA = 25 C, unless otherwise noted. Parameter Symbol Conditions Min Typ Max Unit INPUT CHARACTERISTICS Offset Voltage VOS.5.5 mv 4 C < TA < +85 C.2 mv Input Bias Current IB.25 pa 4 C < TA < +85 C 6 pa Input Offset Current IOS.5 pa 4 C < TA < +85 C 25 pa Input Voltage Range 3 V Common-Mode Rejection Ratio CMRR VCM = V to 2.5 V db Large Signal Voltage Gain AVO RL = kω, VO =.5 V to 4.5 V 23 V/mV Offset Voltage Drift VOS/ T 4 C < TA < +85 C 2.5 µv/ C OUTPUT CHARACTERISTICS Output Voltage High VOH 4.92 V IL = 2 ma, 4 C < TA < +85 C 4.9 V Output Voltage Low VOL.75 V IL = 2 ma, 4 C < TA < +85 C.8 V Output Current IOUT ± ma POWER SUPPLY Power Supply Rejection Ratio PSRR VS = 5 V to 26 V 8 4 db Supply Current/Amplifier ISY µa 4 C < TA < +85 C 8 µa DYNAMIC PERFORMANCE Slew Rate SR 5 V/µs Gain Bandwidth Product GBP 5 MHz Phase Margin ØM 6 Degrees NOISE PERFORMANCE Voltage Noise en p-p. Hz to Hz.9 µv p-p Voltage Noise Density en f = khz 7.5 nv/ Hz Current Noise Density in f = khz.4 fa/ Hz Channel Separation Cs f = khz 4 db Rev. B Page 3 of

4 ELECTRICAL CHARACTERISTICS Table = ±3 V; VCM = V; TA = 25 C, unless otherwise noted. Parameter Symbol Conditions Min Typ Max Unit INPUT CHARACTERISTICS Offset Voltage VOS mv 4 C < TA < +85 C.35 mv Input Bias Current IB.25 pa 4 C < TA < +85 C 6 pa Input Offset Current IOS.5 pa 4 C < TA < +85 C 25 pa Input Voltage Range 3 + V Common-Mode Rejection Ratio CMRR VCM = 3 V to + V 76 5 db Large Signal Voltage Gain AVO RL = kω, VO = V to + V 5 3 V/mV Offset Voltage Drift VOS/ T 4 C < TA < +85 C 2.5 µv/ C OUTPUT CHARACTERISTICS Output Voltage High VOH V VOH IL = 2 ma, 4 C < TA < +85 C +2.9 V Output Voltage Low VOL 2.92 V VOL IL = 2 ma, 4 C < TA < +85 C 2.9 V Output Current IOUT ±5 ma POWER SUPPLY Power Supply Rejection Ratio PSRR VS = ± 2.5 V to ± 3 V 8 4 db Supply Current/Amplifier ISY 7 85 µa 4 C < TA < +85 C 9 µa DYNAMIC PERFORMANCE Slew Rate SR 5 V/µs Gain Bandwidth Product GBP 5 MHz Phase Margin ØM 6 Degrees NOISE PERFORMANCE Voltage Noise en p-p. Hz to Hz 2.5 µv p-p Voltage Noise Density en f = khz 6 nv/ Hz Current Noise Density in f = khz.5 fa/ Hz Channel Separation Cs f = khz 5 db Rev. B Page 4 of

5 ABSOLUTE MAXIMUM RATINGS Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Absolute maximum ratings apply at 25 C, unless otherwise noted. Table 3. Stress Ratings Parameter Rating Supply Voltage 27 V Input Voltage VS to VS+ Differential Input Voltage ± Supply Voltage Output Short Circuit Duration Indefinite Storage Temperature Range, R Package 65 C to + 25 C Operating Temperature Range 4 C to + 85 C Junction Temperature Range, R Package 65 C to 5 C Lead Temperature Range (Soldering, 6 sec) 3 C Table 4. Package Type θja θjc Unit 5-Lead SC7 (KS) C/W 8-Lead MSOP (RM) 45 C/W 8-Lead SOIC (R) C/W 4-Lead SOIC (R) 36 C/W 4-Lead TSSOP (RU) 8 35 C/W θja is specified for worst case conditions when devices are soldered in circuit boards for surface-mount packages. ESD CAUTION ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality. Rev. B Page 5 of

6 TYPICAL PERFORMANCE CHARACTERISTICS NUMBER OF AMPLIFIERS V SY = ±2V T A = 25 C VOLTAGE (µv) 323-B-2 NUMBER OF AMPLIFIERS OFFSET VOLTAGE (µv/ C) V SY = +3.5V/.5V B-5 Figure 2. Input Offset Voltage Figure 5. Offset Voltage Drift 2 V SY = ±3V 5 4 V SY = ±3V T A = 25 C 3 NUMBER OF AMPLIFIERS OFFSET VOLTAGE (µv/ C) 323-B-3 INPUT BIAS CURRENT (pa) V CM (V) 323-B-6 Figure 3. Offset Voltage Drift Figure 6. Input Bias Current vs. VCM 8 6 V SY = +3.5V/.5V. V SY = ±3V T A = 25 C NUMBER OF AMPLIFIERS INPUT BIAS CURRENT (pa) VOLTAGE (µv) 323-B V CM (V) 323-B-7 Figure 4. Input Offset Voltage Figure 7. Input Bias Current vs. VCM Rev. B Page 6 of

7 V SY = ±3V V CM = V 5 4 V SY = 5V INPUT BIAS CURRENT (pa) TEMPERATURE ( C) 323-B-8 INPUT OFFSET VOLTAGE (µv) V CM (V) 323-B- Figure 8. Input Bias Current vs. Temperature Figure. Input Offset Voltage vs. VCM 2..5 V SY = +5V OR ±5V M INPUT BIAS CURRENT (pa) OPEN-LOOP GAIN (V/V) M k V SY = ±3V V SY = +5V V CM (V) Figure 9. Input Bias Current vs. VCM 323-B-9 k. LOAD RESISTANCE (kω) Figure 2. Open-Loop Gain vs. Load Resistance 323-B-2 9 V SY = ±3V a INPUT OFFSET VOLTAGE (µv) V CM (V) 323-B- OPEN-LOOP GAIN (V/mV) d b c e a. V SY = ±3V, V O = ±V, R L = kω b. V SY = ±3V, V O = ±V, R L = 2kΩ c. V SY = +5V, V O = +.5V/+4.5V, R L = 2kΩ d. V SY = +5V, V O = +.5V/+4.5V, R L = kω e. V SY = +5V, V O = +.5V/+4.5V, R L = 6Ω TEMPERATURE ( C) 323-B-3 Figure. Input Offset Voltage vs. VCM Figure 3. Open-Loop Gain vs. Temperature Rev. B Page 7 of

8 6 5 V SY = ±3V k V SY = ±3V OFFSET VOLTAGE (µv) 4 3 R L = kω R L = 6Ω R L = kω V SY OUTPUT VOLTAGE (mv) k V OL V OH OUTPUT VOLTAGE (V) Figure 4. Input Error Voltage vs. Output Voltage for Resistive Loads 323-B-4... LOAD CURRENT (ma) Figure 7. Output Saturation Voltage vs. Load Current 323-B-7 INPUT VOLTAGE (µv) R L = kω POS RAIL R L = kω R L = kω R L = kω R L = kω NEG RAIL V SY = ±5V V SY OUTPUT VOLTAGE (mv) k k V SY = 5V V OL V OH OUTPUT VOLTAGE FROM SUPPLY RAILS (mv) Figure 5. Input Error Voltage vs. Output Voltage within 3 mv of Supply Rails 323-B-5... LOAD CURRENT (ma) Figure 8. Output Saturation Voltage vs. Load Current 323-B-8 QUIESCENT CURRENT (µa) C 6 55 C +25 C TOTAL SUPPLY VOLTAGE (V) 323-B-6 GAIN (db) GAIN V SY = ±3V R L = 2kΩ C L = 4pF PHASE 3 35 k k M M 5M PHASE (Degrees) 323-B-9 Figure 6. Quiescent Current vs. Supply Voltage at Different Temperatures Figure 9. Open-Loop Gain and Phase Margin vs. Frequency Rev. B Page 8 of

9 7 6 5 V SY = 5V R L = 2kΩ C L = 4pF V SY = ±3V GAIN (db) 4 3 GAIN PHASE PHASE (Degrees) CMRR (db) k k M M 5M Figure. Open Loop Gain and Phase Margin vs. Frequency 323-B- 4 6 k k k M M Figure 23. CMRR vs. Frequency 323-B V SY = ±3V R L = 2kΩ C L = 4pF 4 V SY =5V GAIN (db) 4 3 G = G = CMRR (db) G = 3 k k k M M 5M Figure 2. Closed-Loop Gain vs. Frequency 323-B k k k M M Figure 24. CMRR vs. Frequency 323-B V SY = 5V R L = 2kΩ C L = 4pF 4 V SY = ±3V GAIN (db) 4 3 G = G = PSRR (db) PSRR +PSRR G = 3 k k k M M 5M Figure 22. Closed-Loop Gain vs. Frequency 323-B k k k M M Figure 25. PSRR vs. Frequency 323-B-25 Rev. B Page 9 of

10 4 V SY =5V INPUT V SY = ±3V PSRR (db) PSRR +PSRR VOLTAGE (V/DIV) OUTPUT 4 6 k k k M M 323-B-26 TIME (4µs/DIV) 323-B-29 Figure 26. PSRR vs. Frequency Figure 29. No Phase Reversal Z OUT (Ω) 3 V SY = ±3V G = G = 6 G = 3 k k k M M M Figure 27. Output Impedance vs. Frequency 323-B-27 OUTPUT SWING (V) TS + (%) TS (%) TS + (.%) TS (.%) SETTLING TIME (µs) Figure 3. Output Swing and Error vs. Settling Time 323-B-3 Z OUT (Ω) 3 V SY =5V G = G = 6 G = 3 k k k M M M Figure 28. Output Impedance vs. Frequency 323-B-28 OVERSHOOT (%) V S = ±3V R L = kω V IN = mv p-p A V = + OS OS+ k CAPACITANCE (pf) Figure 3. Small Signal Overshoot vs. Load Capacitance 323-B-3 Rev. B Page of

11 OVERSHOOT (%) V S = ±2.5V R L = kω V IN = mv p-p A V = + OS+ OS k CAPACITANCE (pf) Figure 32. Small Signal Overshoot vs. Load Capacitance 323-B-32 VOLTAGE (nv) V SY = ±3V 9.7nV/ Hz FREQUENCY (khz) Figure 35. Voltage Noise Density 323-B-35 V SY = ±3V A VO =,V/V V SY = 5V VOLTAGE (5mV/DIV) VOLTAGE (nv) nV/ Hz 4 TIME (s/div) Figure 33.. Hz to Hz Noise 323-B FREQUENCY (khz) Figure 36. Voltage Noise Density 323-B-36 V SY = ±2.5V A VO =,V/V 4 5 VOLTAGE (5mV/DIV) NOISE (db) V SY = ±5V, V IN = 9V p-p V SY = ±3V, V IN = 8V p-p TIME (s/div) Figure 34.. Hz to Hz Noise 323-B-34 V SY = ±2.5V, V IN = 4.5V p-p k k k Figure 37. Total Harmonic Distortion + Noise vs. Frequency 323-B-37 Rev. B Page of

12 kω 2kΩ V IN 2kΩ 2kΩ 8 9 GAIN (db) 3 V IN = 9V p-p V IN = 4.5V p-p V IN = 8V p-p k k k 323-B-49 Figure 38. Channel Separation Rev. B Page 2 of

13 APPLICATIONS The AD862x is one of the smallest and most economical JFETs offered. It has true single-supply capability and has an input voltage range that extends below the negative rail, allowing the part to accommodate input signals below ground. The rail-to-rail output of the AD862x provides the maximum dynamic range in many applications. To provide a low offset, low noise, high impedance input stage, the AD862x uses n-channel JFETs The input common-mode voltage extends from.2 V below VS to 2 V below +VS. Driving the input of the amplifier, configured in unity gain buffer, closer than 2 V to the positive rail causes an increase in common-mode voltage error, as illustrated in Figure 5, and a loss of amplifier bandwidth. This loss of bandwidth causes the rounding of the output waveforms shown in Figure 39 and Figure 4, which have inputs that are V and V from +VS, respectively. VOLTAGE (2V/DIV) V SY =5V INPUT OUTPUT TIME (2µs/DIV) Figure 39. Unity Gain Follower Response to V to 4 V Step 323-B-38 The AD862x will not experience phase reversal with input signals close to the positive rail, as shown in Figure 29. For input voltages greater than +VSY, a resistor in series with the AD862x s noninverting input prevents phase reversal at the expense of greater input voltage noise. This current limiting resistor should also be used if there is a possibility of the input voltage exceeding the positive supply by more than 3 mv, or if an input voltage is applied to the AD862x when ±VSY =. Either of these conditions will damage the amplifier if the condition exists for more than seconds. A kω resistor allows the amplifier to withstand up to V of continuous overvoltage, while increasing the input voltage noise by a negligible amount. VOLTAGE (2V/DIV) V SY =5V INPUT OUTPUT 323-B-39 TIME (2µs/DIV) Figure 4. Unity Gain Follower Response to V to 5 V Step Rev. B Page 3 of

14 The AD862x can safely withstand input voltages 5 V below VSY if the total voltage between the positive supply and the input terminal is less than 26 V. Figure 4 through Figure 43 show the AD862x in different configurations accommodating signals close to the negative rail. The amplifier input stage typically maintains picoamp-level input currents across that input voltage range. kω V mv 3mV kω +5V kω V SY = 5V kω +5V V SY = 5V, V V 2.5V VOLTAGE (mv/div) VOLTAGE (V/DIV) TIME (2µs/DIV) Figure 43. Gain of Two Inverter Response to mv Step, Centered mv below Ground 323-B-42 TIME (2µs/DIV) Figure 4. Gain of Two Inverter Response to 2.5 V Step, Centered.25 V below Ground 323-B-4 The AD862x is designed for 6 nv/ Hz wideband input voltage noise and maintains low noise performance to low frequencies, as shown in Figure 35. This noise performance, along with the AD862x s low input current and current noise, means that the AD862x contributes negligible noise for applications with large source resistances. 6mV mv V 5V 6Ω The AD862x has a unique bipolar rail-to-rail output stage that swings within 5 mv of the rail when up to 2 ma of current is drawn. At larger loads, the drop-out voltage increases as shown in Figure 7 and Figure 8. The AD862x s wide bandwidth and fast slew rate allows it to be used with faster signals than previous single-supply JFETs. Figure 44 shows the response of AD862x, configured in unity gain, to a VIN of V p-p at 5 khz. The FPBW of the part is close to khz. V SY = ±3V R L = 6Ω VOLTAGE (mv/div) V SY = 5V R L = 6Ω TIME (2µs/DIV) Figure 42. Unity Gain Follower Response to 4 mv Step, Centered 4 mv above Ground 323-B-4 VOLTAGE (5V/DIV) 323-B-43 TIME (5µs/DIV) Figure 44. Unity Gain Follower Response to V, 5 khz Input Signal Rev. B Page 4 of

15 MINIMIZING INPUT CURRENT The AD862x is guaranteed to pa max input current with a ±3 V supply voltage at room temperature. Careful attention to how the amplifier is used will maintain or possibly better this performance. The amplifier s operating temperature should be kept as low as possible. Like other JFET input amplifiers, the AD862x s input current doubles for every C rise in junction temperature, as illustrated in Figure 8. On-chip power dissipation raises the device operating temperature, causing an increase in input current. Reducing supply voltage to cut power dissipation reduces the AD862x s input current. Heavy output loads can also increase chip temperature; maintaining a minimum load resistance of kω is recommended. The AD862x is designed for mounting on PC boards. Maintaining picoampere resolution in those environments requires a lot of care. Both the board and the amplifier s package have finite resistance. Voltage differences between the input pins and other pins as well as PC board metal traces may cause parasitic currents larger than the AD862x s input current, unless special precautions are taken. For proper board layout to ensure the best result, refer to the ADI website for proper layout seminar material. Two common methods of minimizing parasitic leakages that should be used are guarding of the input lines and maintaining adequate insulation resistance. Contaminants such as solder flux on the board s surface and the amplifier s package can greatly reduce the insulation resistance between the input pin and traces with supply or signal voltages. Both the package and the board must be kept clean and dry. PHOTODIODE PREAMPLIFIER APPLICATION The low input current and offset voltage levels of the AD862x, together with its low voltage noise, make this amplifier an excellent choice for preamplifiers used in sensitive photodiode applications. In a typical photovoltaic preamp circuit, shown in Figure 45, the output of the amplifier is equal to where: V OUT = ID(Rf) = R (P)Rf ID = photodiode signal current (A) Rp = photodiode sensitivity (A/W) Rf = value of the feedback resistor, in Ω P = light power incident to photodiode surface, in W The amplifier s input current, IB, contributes an output voltage error proportional to the value of the feedback resistor. The offset voltage error, VOS, causes a small current error due to the photodiode s finite shunt resistance, RD. p The resulting output voltage error, VE, is equal to R f VE = + VOS + Rf(I R D A shunt resistance on the order of MΩ is typical for a small photodiode. Resistance RD is a junction resistance that typically drops by a factor of two for every C rise in temperature. In the AD862x, both the offset voltage and drift are low, which helps minimize these errors. With IB values of pa and VOS of 5 mv, VE for Figure 45 is very negligible. Also, the circuit in Figure 45 results in an SNR value of 95 db for a signal bandwidth of 3 khz. PHOTODIODE R D MΩ I B C4 5pF I B V OS C F 5pF B R F.5MΩ ) AD8627 Figure 45. A Photodiode Model Showing DC Error OUTPUT OUTPUT AMPLIFIER FOR DIGITAL-TO-ANALOG CONVERTERS Many system designers use amplifiers as buffers on the output of amplifiers to increase the DAC s output driving capability. The high resolution current output DACs need high precision amplifiers on their output as current to voltage converters (I/V). Additionally, many DACs operate with a single supply of 5 V. In a single-supply application, selection of a suitable op amp may be more difficult because the output swing of the amplifier does not usually include the negative rail, in this case AGND. This can result in some degradation of the DAC s specified performance unless the application does not use codes near zero. The selected op amp needs to have very low offset voltage for a 4-bit DAC, the DAC LSB is 3 µv with a 5 V reference to eliminate the need for output offset trims. Input bias current should also be very low because the bias current multiplied by the DAC output impedance (about kω in some cases) adds to the zero code error. Rail-to-rail input and output performance is desired. For fast settling, the slew rate of the op amp should not impede the settling time of the DAC. Output impedance of the DAC is constant and code independent, but in order to minimize gain errors, the input impedance of the output amplifier should be as high as possible. The AD862x, with very high input impedance, IB of pa, and fast slew rate, is an ideal amplifier for these types of applications. A typical configuration with a popular DAC is shown in Figure 46. In these situations, the amplifier adds another time constant to the system, increasing the settling time of the output. The AD862x, with 5 MHz of BW, helps in achieving a faster effective settling time of the combined DAC and amplifier. 323-B-44 Rev. B Page 5 of

16 SERIAL INTERFACE.µF *AD5552 ONLY V DD V REFF * V REFS * CS DIN 5V 2.5V SCLK LDAC* DGND.µF µf AD555/AD5552 AGND OUT Figure 46. Unipolar Output AD8627 UNIPOLAR OUTPUT In applications with full 4-quadrant multiplying capability or a bipolar output swing, the circuit in Figure 47 can be used. In this circuit, the first and second amplifiers provide a total gain of 2, which increases the output voltage span to V. Biasing the external amplifier with a V offset from the reference voltage results in a full 4-quadrant multiplying circuit. V VREF ADR kω 5kΩ kω +3V /2 AD8626 5V 323-B-45 V OUT V < V OUT < +V EIGHT-POLE SALLEN KEY LOW-PASS FILTER The AD862x s high input impedance and dc precision make it a great selection for active filters. Due to the very low bias current of the AD862x, high value resistors can be used to construct low frequency filters. The AD862x s picoamp-level input currents contribute minimal dc errors. Figure 49 shows an example, a Hz, 8-pole Sallen Key filter constructed using the AD862x. Different numbers of the AD862x can be used depending on the desired response, which is shown in Figure 48. The high value used for R minimizes interaction with signal source resistance. Pole placement in this version of the filter minimizes the Q associated with the lower pole section of the filter. This eliminates any peaking of the noise contribution of resistors in the preceding sections, minimizing the inherent output voltage noise of the filter. VOLTAGE (V) V4 V2 V V3 3V V DD V REF X R FB X ONE CHANNEL AD5544 V SS A GND F A GND X DIGITAL INTERFACE CONNECTIONS OMITTED FOR CLARITY /2 AD B-46. k Figure 48. Frequency Response Output at Different Stages of the Low-Pass Filter 323-B-47 Figure Quadrant Multiplying Application Circuit Rev. B Page 6 of

17 R 62.3kΩ C µf V IN V3 D C2 96.9µF R2 62.3kΩ 3 D 2 V DD 4 U V EE R3 25kΩ V /4 AD8625 R 9.4kΩ C4 69.4µF R5 9.4kΩ D C3 µf U2 /4 AD8625 R4 25kΩ V2 R 286.5kΩ C6 3.86µF R kΩ C5 µf U3 /4 AD8625 V3 R2 85.8kΩ R9 85.8kΩ C7 µf U4 V4 D R6 25kΩ C8 3.85µF D /4 AD8625 R8 25kΩ 323-B-48 Figure 49. Hz, 8-Pole Sallen Key Low-Pass Filter Rev. B Page 7 of

18 OUTLINE DIMENSIONS 2. BSC 8.75 (.3445) 8.55 (.3366).25 BSC BSC 4. (.575) 3.8 (.496) (.244) 5.8 (.2283) MAX PIN.3.5. COPLANARITY.65 BSC. MAX SEATING PLANE COMPLIANT TO JEDEC STANDARDS MO-3AA Figure 5. 5-Lead Plastic Surface-Mount Package [SC7] (KS-5) Dimensions shown in millimeters (.98). (.39) COPLANARITY..27 (.5) BSC.5 (.).3 (.22).75 (.689).35 (.53) SEATING PLANE.25 (.98).7 (.67) COMPLIANT TO JEDEC STANDARDS MS-2AB CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN 8.5 (.97) (.98).27 (.5).4 (.57) Figure Lead Standard Small Outline Package [SOIC] Narrow Body (R-4) Dimensions shown in millimeters and (inches) 4. (.574) 3.8 (.497) 5. (.968) 4.8 (.89) (.244) 5.8 (.2284) (.98). (.4) COPLANARITY..27 (.5) BSC SEATING PLANE.75 (.688).35 (.532).5 (.).3 (.22).25 (.98).7 (.67) 8.5 (.96).25 (.99) (.5).4 (.57) COMPLIANT TO JEDEC STANDARDS MS-2AA CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN Figure 5. 8-Lead Standard Small Outline Package [SOIC] Narrow Body (R-8) 3. BSC PIN BSC BSC. MAX SEATING PLANE..9 COPLANARITY. 8 COMPLIANT TO JEDEC STANDARDS MO-53AB- Figure Lead Thin Shrink Small Outline Package [TSSOP] (RU-4) Dimensions shown in millimeters BSC BSC PIN.65 BSC COPLANARITY.. MAX SEATING PLANE COMPLIANT TO JEDEC STANDARDS MO-87AA Figure Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters Rev. B Page 8 of

19 ORDERING GUIDE Model Temperature Range Package Description Package Option Branding AD8627AKS-REEL 4 C to +85 C 5-Lead SC7 KS-5 B9A AD8627AKS-REEL7 4 C to +85 C 5-Lead SC7 KS-5 B9A AD8627AKS-R2 4 C to +85 C 5-Lead SC7 KS-5 B9A AD8627AR 4 C to +85 C 8-Lead SOIC R-8 AD8627AR-REEL 4 C to +85 C 8-Lead SOIC R-8 AD8627AR-REEL7 4 C to +85 C 8-Lead SOIC R-8 AD8626ARM-REEL 4 C to +85 C 8-Lead MSOP RM-8 BJA AD8626ARM-R2 4 C to +85 C 8-Lead MSOP RM-8 BJA AD8626AR 4 C to +85 C 8-Lead SOIC R-8 AD8626AR-REEL 4 C to +85 C 8-Lead SOIC R-8 AD8626AR-REEL7 4 C to +85 C 8-Lead SOIC R-8 AD8625ARU 4 C to +85 C 4-Lead TSSOP RU-4 AD8625ARU-REEL 4 C to +85 C 4-Lead TSSOP RU-4 AD8625AR 4 C to +85 C 4-Lead SOIC R-4 AD8625AR-REEL 4 C to +85 C 4-Lead SOIC R-4 AD8625AR-REEL7 4 C to +85 C 4-Lead SOIC R-4 Rev. B Page 9 of

20 NOTES 4 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. C323--/4(B) Rev. B Page of

TABLE OF CONTENTS AD8625/AD8626/AD8627 Specifications... 3 Electrical Characteristics... 3 Electrical Characteristics... 4 Absolute Maximum Ratings...

TABLE OF CONTENTS AD8625/AD8626/AD8627 Specifications... 3 Electrical Characteristics... 3 Electrical Characteristics... 4 Absolute Maximum Ratings... Precision Low Power Single-Supply JFET Amplifiers AD8625/AD8626/AD8627 FEATURES SC7 package Very low IB: pa max Single-supply operation: 5 V to 26 V Dual-supply operation: ±2.5 V to ±3 V Rail-to-rail output

More information

Precision Low Power Single-Supply JFET Amplifiers AD8625/AD8626/AD8627

Precision Low Power Single-Supply JFET Amplifiers AD8625/AD8626/AD8627 Precision Low Power Single-Supply JFET Amplifiers AD8625/AD8626/AD8627 FEATURES SC7 package Very low IB: pa max Single-supply operation: 5 V to 26 V Dual-supply operation: ±2.5 V to ±3 V Rail-to-rail output

More information

Precision Low Power Single-Supply JFET Amplifiers AD8625/AD8626/AD8627

Precision Low Power Single-Supply JFET Amplifiers AD8625/AD8626/AD8627 Precision Low Power Single-Supply JFET Amplifiers AD8625/AD8626/AD8627 FEATURES SC7 package Very low IB: pa max Single-supply operation: 5 V to 26 V Dual-supply operation: ±2.5 V to ±3 V Rail-to-rail output

More information

AD864/AD8642/AD8643 TABLE OF CONTENTS Specifications... 3 Electrical Characteristics... 3 Absolute Maximum Ratings... 5 ESD Caution... 5 Typical Perfo

AD864/AD8642/AD8643 TABLE OF CONTENTS Specifications... 3 Electrical Characteristics... 3 Absolute Maximum Ratings... 5 ESD Caution... 5 Typical Perfo FEATURES Low supply current: 25 µa max Very low input bias current: pa max Low offset voltage: 75 µv max Single-supply operation: 5 V to 26 V Dual-supply operation: ±2.5 V to ±3 V Rail-to-rail output Unity-gain

More information

Low Power, Rail-to-Rail Output, Precision JFET Amplifiers AD8641/AD8642/AD8643

Low Power, Rail-to-Rail Output, Precision JFET Amplifiers AD8641/AD8642/AD8643 Data Sheet Low Power, Rail-to-Rail Output, Precision JFET Amplifiers AD864/AD8642/AD8643 FEATURES Low supply current: 25 μa max Very low input bias current: pa max Low offset voltage: 75 μv max Single-supply

More information

Low Power, Precision, Auto-Zero Op Amps AD8538/AD8539 FEATURES Low offset voltage: 13 μv maximum Input offset drift: 0.03 μv/ C Single-supply operatio

Low Power, Precision, Auto-Zero Op Amps AD8538/AD8539 FEATURES Low offset voltage: 13 μv maximum Input offset drift: 0.03 μv/ C Single-supply operatio Low Power, Precision, Auto-Zero Op Amps FEATURES Low offset voltage: 3 μv maximum Input offset drift:.3 μv/ C Single-supply operation: 2.7 V to 5.5 V High gain, CMRR, and PSRR Low input bias current: 25

More information

AD8613/AD8617/AD8619. Low Cost Micropower, Low Noise CMOS Rail-to-Rail, Input/Output Operational Amplifiers PIN CONFIGURATIONS FEATURES APPLICATIONS

AD8613/AD8617/AD8619. Low Cost Micropower, Low Noise CMOS Rail-to-Rail, Input/Output Operational Amplifiers PIN CONFIGURATIONS FEATURES APPLICATIONS Low Cost Micropower, Low Noise CMOS Rail-to-Rail, Input/Output Operational Amplifiers FEATURES Offset voltage: 2.2 mv maximum Low input bias current: pa maximum Single-supply operation:.8 V to 5 V Low

More information

TABLE OF CONTENTS Features... Applications... Pin Configurations... General Description... Revision History... 2 Specifications... 3 Absolute Maximum

TABLE OF CONTENTS Features... Applications... Pin Configurations... General Description... Revision History... 2 Specifications... 3 Absolute Maximum FEATURES Offset voltage: 2.5 mv maximum Single-supply operation: 2.7 V to 5.5 V Low noise: 8 nv/ Hz Wide bandwidth: 24 MHz Slew rate: V/μs Short-circuit output current: 2 ma No phase reversal Low input

More information

16 V, 4 MHz RR0 Amplifiers AD8665/AD8666/AD8668

16 V, 4 MHz RR0 Amplifiers AD8665/AD8666/AD8668 6 V, MHz RR Amplifiers AD8665/AD8666/AD8668 FEATURES Offset voltage:.5 mv max Low input bias current: pa max Single-supply operation: 5 V to 6 V Dual-supply operation: ±.5 V to ±8 V Low noise: 8 nv/ Hz

More information

Micropower Precision CMOS Operational Amplifier AD8500

Micropower Precision CMOS Operational Amplifier AD8500 Micropower Precision CMOS Operational Amplifier AD85 FEATURES Supply current: μa maximum Offset voltage: mv maximum Single-supply or dual-supply operation Rail-to-rail input and output No phase reversal

More information

Dual, Ultralow Distortion, Ultralow Noise Op Amp AD8599

Dual, Ultralow Distortion, Ultralow Noise Op Amp AD8599 Dual, Ultralow Distortion, Ultralow Noise Op Amp FEATURES Low noise: 1 nv/ Hz at 1 khz Low distortion: 5 db THD @ khz

More information

AD8603/AD8607/AD8609. Precision Micropower, Low Noise CMOS Rail-to-Rail Input/Output Operational Amplifiers

AD8603/AD8607/AD8609. Precision Micropower, Low Noise CMOS Rail-to-Rail Input/Output Operational Amplifiers Precision Micropower, Low Noise CMOS Rail-to-Rail Input/Output Operational Amplifiers FEATURES Low offset voltage: μv max Low input bias current: 1 pa max Single-supply operation: 1.8 V to 5 V Low noise:

More information

General-Purpose CMOS Rail-to-Rail Amplifiers AD8541/AD8542/AD8544

General-Purpose CMOS Rail-to-Rail Amplifiers AD8541/AD8542/AD8544 General-Purpose CMOS Rail-to-Rail Amplifiers AD854/AD8542/AD8544 FEATURES Single-supply operation: 2.7 V to 5.5 V Low supply current: 45 μa/amplifier Wide bandwidth: MHz No phase reversal Low input currents:

More information

Low Cost, Precision JFET Input Operational Amplifiers ADA4000-1/ADA4000-2/ADA4000-4

Low Cost, Precision JFET Input Operational Amplifiers ADA4000-1/ADA4000-2/ADA4000-4 Low Cost, Precision JFET Input Operational Amplifiers ADA-/ADA-/ADA- FEATURES High slew rate: V/μs Fast settling time Low offset voltage:.7 mv maximum Bias current: pa maximum ± V to ±8 V operation Low

More information

24 MHz Rail-to-Rail Amplifiers with Shutdown Option AD8646/AD8647/AD8648

24 MHz Rail-to-Rail Amplifiers with Shutdown Option AD8646/AD8647/AD8648 24 MHz Rail-to-Rail Amplifiers with Shutdown Option AD8646/AD8647/AD8648 FEATURES Offset voltage: 2.5 mv maximum Single-supply operation: 2.7 V to 5.5 V Low noise: 8 nv/ Hz Wide bandwidth: 24 MHz Slew

More information

Precision, Low Noise, CMOS, Rail-to-Rail, Input/Output Operational Amplifiers AD8605/AD8606/AD8608

Precision, Low Noise, CMOS, Rail-to-Rail, Input/Output Operational Amplifiers AD8605/AD8606/AD8608 Precision, Low Noise, CMOS, Rail-to-Rail, Input/Output Operational Amplifiers AD8605/AD8606/AD8608 FEATURES Low offset voltage: 65 μv maximum Low input bias currents: pa maximum Low noise: 8 nv/ Hz Wide

More information

General-Purpose CMOS Rail-to-Rail Amplifiers AD8541/AD8542/AD8544

General-Purpose CMOS Rail-to-Rail Amplifiers AD8541/AD8542/AD8544 General-Purpose CMOS Rail-to-Rail Amplifiers FEATURES Single-supply operation: 2.7 V to 5.5 V Low supply current: 45 μa/amplifier Wide bandwidth: MHz No phase reversal Low input currents: 4 pa Unity gain

More information

15 MHz, Rail-to-Rail, Dual Operational Amplifier OP262-EP

15 MHz, Rail-to-Rail, Dual Operational Amplifier OP262-EP 5 MHz, Rail-to-Rail, Dual Operational Amplifier OP262-EP FEATURES Supports defense and aerospace applications (AQEC standard) Military temperature range ( 55 C to +25 C) Controlled manufacturing baseline

More information

Dual/Quad Low Power, High Speed JFET Operational Amplifiers OP282/OP482

Dual/Quad Low Power, High Speed JFET Operational Amplifiers OP282/OP482 Dual/Quad Low Power, High Speed JFET Operational Amplifiers OP22/OP42 FEATURES High slew rate: 9 V/µs Wide bandwidth: 4 MHz Low supply current: 2 µa/amplifier max Low offset voltage: 3 mv max Low bias

More information

Ultraprecision, 36 V, 2.8 nv/ Hz Dual Rail-to-Rail Output Op Amp AD8676

Ultraprecision, 36 V, 2.8 nv/ Hz Dual Rail-to-Rail Output Op Amp AD8676 FEATURES Very low voltage noise 2.8 nv/ Hz @ khz Rail-to-rail output swing Low input bias current: 2 na maximum Very low offset voltage: 2 μv typical Low input offset drift:.6 μv/ C maximum Very high gain:

More information

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820 a FEATURES True Single Supply Operation Output Swings Rail-to-Rail Input Voltage Range Extends Below Ground Single Supply Capability from V to V Dual Supply Capability from. V to 8 V Excellent Load Drive

More information

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820 a FEATURES True Single Supply Operation Output Swings Rail-to-Rail Input Voltage Range Extends Below Ground Single Supply Capability from + V to + V Dual Supply Capability from. V to 8 V Excellent Load

More information

1.8 V Low Power CMOS Rail-to-Rail Input/Output Operational Amplifier AD8515

1.8 V Low Power CMOS Rail-to-Rail Input/Output Operational Amplifier AD8515 Data Sheet FEATURES Single-supply operation: 1.8 V to 5 V Offset voltage: 6 mv maximum Space-saving SOT-23 and SC7 packages Slew rate: 2.7 V/μs Bandwidth: 5 MHz Rail-to-rail input and output swing Low

More information

Low Cost JFET Input Operational Amplifiers ADTL082/ADTL084

Low Cost JFET Input Operational Amplifiers ADTL082/ADTL084 Low Cost JFET Input Operational Amplifiers ADTL/ADTL FEATURES TL/TL compatible Low input bias current: pa maximum Offset voltage 5.5 mv maximum (ADTLA/ADTLA) 9 mv maximum (ADTLJ/ADTLJ) ±5 V operation Low

More information

Precision Micropower Single Supply Operational Amplifier OP777

Precision Micropower Single Supply Operational Amplifier OP777 a FEATURES Low Offset Voltage: 1 V Max Low Input Bias Current: 1 na Max Single-Supply Operation: 2.7 V to 3 V Dual-Supply Operation: 1.35 V to 15 V Low Supply Current: 27 A/Amp Unity Gain Stable No Phase

More information

Low Cost JFET Input Operational Amplifiers ADTL082/ADTL084

Low Cost JFET Input Operational Amplifiers ADTL082/ADTL084 Preliminary Technical Data FEATURES TL082 / TL08 compatible Low input bias current: 0 pa max Offset voltage: 5mV max (ADTL082A/ADTL08A) 9 mv max (ADTL082/ADTL08) ±5 V to ±5 V operation Low noise: 5 nv/

More information

16 V, 1 MHz, CMOS Rail-to-Rail Input/Output Operational Amplifier ADA4665-2

16 V, 1 MHz, CMOS Rail-to-Rail Input/Output Operational Amplifier ADA4665-2 6 V, MHz, CMOS Rail-to-Rail Input/Output Operational Amplifier ADA4665-2 FEATURES Lower power at high voltage: 29 μa per amplifier typical Low input bias current: pa maximum Wide bandwidth:.2 MHz typical

More information

Single and Dual, Ultralow Distortion, Ultralow Noise Op Amps AD8597/AD8599 PIN CONFIGURATIONS FEATURES APPLICATIONS

Single and Dual, Ultralow Distortion, Ultralow Noise Op Amps AD8597/AD8599 PIN CONFIGURATIONS FEATURES APPLICATIONS Single and Dual, Ultralow Distortion, Ultralow Noise Op Amps FEATURES Low noise:. nv/ Hz at khz Low distortion: db THD @ khz Input noise,. Hz to Hz:

More information

Dual/Quad Low Power, High Speed JFET Operational Amplifiers OP282/OP482

Dual/Quad Low Power, High Speed JFET Operational Amplifiers OP282/OP482 Dual/Quad Low Power, High Speed JFET Operational Amplifiers OP282/OP482 FEATURES High slew rate: 9 V/μs Wide bandwidth: 4 MHz Low supply current: 2 μa/amplifier maximum Low offset voltage: 3 mv maximum

More information

150 μv Maximum Offset Voltage Op Amp OP07D

150 μv Maximum Offset Voltage Op Amp OP07D 5 μv Maximum Offset Voltage Op Amp OP7D FEATURES Low offset voltage: 5 µv max Input offset drift:.5 µv/ C max Low noise:.25 μv p-p High gain CMRR and PSRR: 5 db min Low supply current:. ma Wide supply

More information

Precision, Very Low Noise, Low Input Bias Current Operational Amplifiers

Precision, Very Low Noise, Low Input Bias Current Operational Amplifiers Data Sheet Precision, Very Low Noise, Low Input Bias Current Operational Amplifiers AD8671/AD8672/AD8674 FEATURES Very low noise: 2.8 nv/ Hz, 77 nv p-p Wide bandwidth: 1 MHz Low input bias current: 12

More information

Single-Supply, Rail-to-Rail, Low Power, FET Input Op Amp AD820

Single-Supply, Rail-to-Rail, Low Power, FET Input Op Amp AD820 Single-Supply, Rail-to-Rail, Low Power, FET Input Op Amp AD820 FEATURES True single-supply operation Output swings rail-to-rail Input voltage range extends below ground Single-supply capability from 5

More information

1.8 V, Micropower, Zero-Drift, Rail-to-Rail Input/Output Op Amp ADA4051-2

1.8 V, Micropower, Zero-Drift, Rail-to-Rail Input/Output Op Amp ADA4051-2 .8 V, Micropower, Zero-Drift, Rail-to-Rail Input/Output Op Amp ADA45-2 FEATURES Very low supply current: 3 μa Low offset voltage: 5 μv maximum Offset voltage drift: 2 nv/ C Single-supply operation:.8 V

More information

4 MHz, 7 nv/ Hz, Low Offset and Drift, High Precision Amplifier ADA EP

4 MHz, 7 nv/ Hz, Low Offset and Drift, High Precision Amplifier ADA EP Enhanced Product FEATURES Low offset voltage and low offset voltage drift Maximum offset voltage: 9 µv at TA = 2 C Maximum offset voltage drift:.2 µv/ C Moisture sensitivity level (MSL) rated Low input

More information

Very Low Distortion, Precision Difference Amplifier AD8274

Very Low Distortion, Precision Difference Amplifier AD8274 Very Low Distortion, Precision Difference Amplifier AD8274 FEATURES Very low distortion.2% THD + N (2 khz).% THD + N ( khz) Drives Ω loads Excellent gain accuracy.3% maximum gain error 2 ppm/ C maximum

More information

Ultraprecision, 36 V, 2.8 nv/ Hz Dual Rail-to-Rail Output Op Amp AD8676

Ultraprecision, 36 V, 2.8 nv/ Hz Dual Rail-to-Rail Output Op Amp AD8676 Ultraprecision, 36 V, 2. nv/ Hz Dual Rail-to-Rail Output Op Amp AD676 FEATURES Very low voltage noise: 2. nv/ Hz @ khz Rail-to-rail output swing Low input bias current: 2 na maximum Very low offset voltage:

More information

Single-Supply, Rail-to-Rail, Low Power FET-Input Op Amp AD820

Single-Supply, Rail-to-Rail, Low Power FET-Input Op Amp AD820 Single-Supply, Rail-to-Rail, Low Power FET-Input Op Amp AD82 FEATURES True single-supply operation Output swings rail-to-rail Input voltage range extends below ground Single-supply capability from 5 V

More information

10-Channel Gamma Buffer with VCOM Driver ADD8710

10-Channel Gamma Buffer with VCOM Driver ADD8710 1-Channel Gamma Buffer with VCOM Driver ADD871 FEATURES Single-supply operation: 4.5 V to 18 V Upper/lower buffers swing to VS/GND Gamma continuous output current: >1 ma VCOM peak output current: 25 ma

More information

Single-Supply, Rail-to-Rail, Low Power, FET Input Op Amp AD820

Single-Supply, Rail-to-Rail, Low Power, FET Input Op Amp AD820 Single-Supply, Rail-to-Rail, Low Power, FET Input Op Amp AD82 FEATURES True single-supply operation Output swings rail-to-rail Input voltage range extends below ground Single-supply capability from 5 V

More information

Ultraprecision Operational Amplifier OP177

Ultraprecision Operational Amplifier OP177 Ultraprecision Operational Amplifier FEATURES Ultralow offset voltage TA = 25 C, 25 μv maximum Outstanding offset voltage drift 0. μv/ C maximum Excellent open-loop gain and gain linearity 2 V/μV typical

More information

Low Power, Wide Supply Range, Low Cost Unity-Gain Difference Amplifier AD8276

Low Power, Wide Supply Range, Low Cost Unity-Gain Difference Amplifier AD8276 Low Power, Wide Supply Range, Low Cost Unity-Gain Difference Amplifier AD87 FEATURES Wide input range Rugged input overvoltage protection Low supply current: μa maximum Low power dissipation:. mw at VS

More information

Precision, Very Low Noise, Low Input Bias Current, Wide Bandwidth JFET Operational Amplifiers AD8510/AD8512

Precision, Very Low Noise, Low Input Bias Current, Wide Bandwidth JFET Operational Amplifiers AD8510/AD8512 a FEATURES Fast Settling Time: 5 ns to.1% Low Offset Voltage: V Max Low TcV OS : 1 V/ C Typ Low Input Bias Current: 25 pa Typ Dual-Supply Operation: 5 V to 15 V Low Noise: 8 nv/ Hz Low Distortion:.5% No

More information

Dual Precision, Low Cost, High Speed BiFET Op Amp AD712-EP

Dual Precision, Low Cost, High Speed BiFET Op Amp AD712-EP Dual Precision, Low Cost, High Speed BiFET Op Amp FEATURES Supports defense and aerospace applications (AQEC standard) Military temperature range ( 55 C to +125 C) Controlled manufacturing baseline One

More information

Zero Drift, Unidirectional Current Shunt Monitor AD8219

Zero Drift, Unidirectional Current Shunt Monitor AD8219 Zero Drift, Unidirectional Current Shunt Monitor FEATURES High common-mode voltage range 4 V to 8 V operating.3 V to +85 V survival Buffered output voltage Gain = 6 V/V Wide operating temperature range:

More information

Precision CMOS Single-Supply Rail-to-Rail Input/Output Wideband Operational Amplifiers AD8601/AD8602/AD8604

Precision CMOS Single-Supply Rail-to-Rail Input/Output Wideband Operational Amplifiers AD8601/AD8602/AD8604 Precision CMOS Single-Supply Rail-to-Rail Input/Output Wideband Operational Amplifiers AD86/AD862/AD864 FEATURES Low Offset Voltage: V Max Single-Supply Operation: 2.7 V to. V Low Supply Current: 7 A/Amplifier

More information

Ultralow Offset Voltage Operational Amplifier OP07

Ultralow Offset Voltage Operational Amplifier OP07 Ultralow Offset Voltage Operational Amplifier OP07 FEATURES Low VOS: 75 μv maximum Low VOS drift:.3 μv/ C maximum Ultrastable vs. time:.5 μv per month maximum Low noise: 0.6 μv p-p maximum Wide input voltage

More information

Single-Supply, Rail-to-Rail Low Power FET-Input Op Amp AD822

Single-Supply, Rail-to-Rail Low Power FET-Input Op Amp AD822 Single-Supply, Rail-to-Rail Low Power FET-Input Op Amp AD822 FEATURES True single-supply operation Output swings rail-to-rail Input voltage range extends below ground Single-supply capability from 3 V

More information

Precision, Very Low Noise, Low Input Bias Current, Wide Bandwidth JFET Operational Amplifiers AD8512

Precision, Very Low Noise, Low Input Bias Current, Wide Bandwidth JFET Operational Amplifiers AD8512 a FEATURES Fast Settling Time: 5 ns to.% Low Offset Voltage: V Max Low TcVos: V/ C Typ Low Input Bias Current: 25 pa Typ Dual-Supply Operation: 5 V to 5 V Low Noise: 8 nv/ Hz Low Distortion:.5% No Phase

More information

Dual Picoampere Input Current Bipolar Op Amp AD706

Dual Picoampere Input Current Bipolar Op Amp AD706 Dual Picoampere Input Current Bipolar Op Amp FEATURES High DC Precision V Max Offset Voltage.5 V/ C Max Offset Drift 2 pa Max Input Bias Current.5 V p-p Voltage Noise,. Hz to Hz 75 A Supply Current Available

More information

Single-Supply, Rail-to-Rail Low Power FET-Input Op Amp AD822

Single-Supply, Rail-to-Rail Low Power FET-Input Op Amp AD822 Single-Supply, Rail-to-Rail Low Power FET-Input Op Amp FEATURES True Single-Supply Operation Output Swings Rail-to-Rail Input Voltage Range Extends Below Ground Single-Supply Capability from 3 V to 36

More information

Dual Low Offset, Low Power Operational Amplifier OP200

Dual Low Offset, Low Power Operational Amplifier OP200 Dual Low Offset, Low Power Operational Amplifier OP200 FEATURES Low input offset voltage: 75 μv maximum Low offset voltage drift, over 55 C < TA < +25 C 0.5 μv/ C maximum Low supply current (per amplifier):

More information

Dual Low Power Operational Amplifier, Single or Dual Supply OP221

Dual Low Power Operational Amplifier, Single or Dual Supply OP221 a FEATURES Excellent TCV OS Match, 2 V/ C Max Low Input Offset Voltage, 15 V Max Low Supply Current, 55 A Max Single Supply Operation, 5 V to 3 V Low Input Offset Voltage Drift,.75 V/ C High Open-Loop

More information

Very Low Distortion, Dual-Channel, High Precision Difference Amplifier AD8274 FUNCTIONAL BLOCK DIAGRAM +V S FEATURES APPLICATIONS GENERAL DESCRIPTION

Very Low Distortion, Dual-Channel, High Precision Difference Amplifier AD8274 FUNCTIONAL BLOCK DIAGRAM +V S FEATURES APPLICATIONS GENERAL DESCRIPTION Very Low Distortion, Dual-Channel, High Precision Difference Amplifier AD8273 FEATURES ±4 V HBM ESD Very low distortion.25% THD + N (2 khz).15% THD + N (1 khz) Drives 6 Ω loads Two gain settings Gain of

More information

Improved Second Source to the EL2020 ADEL2020

Improved Second Source to the EL2020 ADEL2020 Improved Second Source to the EL ADEL FEATURES Ideal for Video Applications.% Differential Gain. Differential Phase. db Bandwidth to 5 MHz (G = +) High Speed 9 MHz Bandwidth ( db) 5 V/ s Slew Rate ns Settling

More information

250 MHz, General Purpose Voltage Feedback Op Amps AD8047/AD8048

250 MHz, General Purpose Voltage Feedback Op Amps AD8047/AD8048 5 MHz, General Purpose Voltage Feedback Op Amps AD8/AD88 FEATURES Wide Bandwidth AD8, G = + AD88, G = + Small Signal 5 MHz 6 MHz Large Signal ( V p-p) MHz 6 MHz 5.8 ma Typical Supply Current Low Distortion,

More information

High Voltage, Current Shunt Monitor AD8215

High Voltage, Current Shunt Monitor AD8215 High Voltage, Current Shunt Monitor AD825 FEATURES ±4 V HBM ESD High common-mode voltage range 2 V to +65 V operating 3 V to +68 V survival Buffered output voltage Wide operating temperature range 8-Lead

More information

AD8628/AD8629/AD863 TABLE OF CONTENTS Features... Applications... General Description... Pin Configurations... Revision History... 2 Specifications...

AD8628/AD8629/AD863 TABLE OF CONTENTS Features... Applications... General Description... Pin Configurations... Revision History... 2 Specifications... FEATURES Lowest auto-zero amplifier noise Low offset voltage: μv Input offset drift:.2 μv/ C Rail-to-rail input and output swing 5 V single-supply operation High gain, CMRR, and PSRR: 3 db Very low input

More information

Dual Picoampere Input Current Bipolar Op Amp AD706

Dual Picoampere Input Current Bipolar Op Amp AD706 Dual Picoampere Input Current Bipolar Op Amp FEATURES High DC Precision V Max Offset Voltage.5 V/ C Max Offset Drift 2 pa Max Input Bias Current.5 V p-p Voltage Noise,. Hz to Hz 75 A Supply Current Available

More information

Quad Low Offset, Low Power Operational Amplifier OP400

Quad Low Offset, Low Power Operational Amplifier OP400 Quad Low Offset, Low Power Operational Amplifier OP4 FEATURES Low input offset voltage 5 μv max Low offset voltage drift over 55 C to 25 C,.2 pv/ C max Low supply current (per amplifier) 725 μa max High

More information

TABLE OF CONTENTS Features... Applications... General Description... Pin Configurations... Revision History... 2 Specifications... 3 Electrical Charac

TABLE OF CONTENTS Features... Applications... General Description... Pin Configurations... Revision History... 2 Specifications... 3 Electrical Charac 6 V Rail-to-Rail Operational Amplifiers AD86/AD866/AD867 FEATURES Single-supply operation: 4. V to 6 V Input capability beyond the rails Rail-to-rail output swing Continuous output current: 3 ma Peak output

More information

High Common-Mode Voltage Programmable Gain Difference Amplifier AD628

High Common-Mode Voltage Programmable Gain Difference Amplifier AD628 High Common-Mode Voltage Programmable Gain Difference Amplifier FEATURES High common-mode input voltage range ±12 V at VS = ±15 V Gain range.1 to 1 Operating temperature range: 4 C to ±85 C Supply voltage

More information

High Common-Mode Voltage, Programmable Gain Difference Amplifier AD628

High Common-Mode Voltage, Programmable Gain Difference Amplifier AD628 High Common-Mode Voltage, Programmable Gain Difference Amplifier AD628 FEATURES FUNCTIONAL BLOCK DIAGRAM High common-mode input voltage range ±20 V at VS = ±5 V Gain range 0. to 00 Operating temperature

More information

AD8601/AD8602/AD8604. Precision CMOS, Single-Supply, Rail-to-Rail, Input/Output Wideband Operational Amplifiers FEATURES PIN CONFIGURATIONS

AD8601/AD8602/AD8604. Precision CMOS, Single-Supply, Rail-to-Rail, Input/Output Wideband Operational Amplifiers FEATURES PIN CONFIGURATIONS Precision CMOS, Single-Supply, Rail-to-Rail, Input/Output Wideband Operational Amplifiers FEATURES Low offset voltage: 5 μv maximum Single-supply operation: 2.7 V to 5.5 V Low supply current: 75 μa/amplifier

More information

High Voltage, Current Shunt Monitor AD8215

High Voltage, Current Shunt Monitor AD8215 FEATURES ±4 V human body model (HBM) ESD High common-mode voltage range V to +6 V operating 3 V to +68 V survival Buffered output voltage Wide operating temperature range 8-Lead SOIC: 4 C to + C Excellent

More information

Single-Supply, Rail-to-Rail Low Power FET-Input Op Amp AD822

Single-Supply, Rail-to-Rail Low Power FET-Input Op Amp AD822 Single-Supply, Rail-to-Rail Low Power FET-Input Op Amp AD8 FEATURES True single-supply operation Output swings rail-to-rail Input voltage range extends below ground Single-supply capability from 5 V to

More information

Quad 7 ns Single Supply Comparator AD8564

Quad 7 ns Single Supply Comparator AD8564 Quad 7 ns Single Supply Comparator AD8564 FEATURES 5 V single-supply operation 7 ns propagation delay Low power Separate input and output sections TTL/CMOS logic-compatible outputs Wide output swing TSSOP,

More information

Ultralow Offset Voltage Operational Amplifier OP07

Ultralow Offset Voltage Operational Amplifier OP07 FEATURES Low VOS: 5 μv maximum Low VOS drift:. μv/ C maximum Ultrastable vs. time:.5 μv per month maximum Low noise:. μv p-p maximum Wide input voltage range: ± V typical Wide supply voltage range: ± V

More information

Self-Contained Audio Preamplifier SSM2019

Self-Contained Audio Preamplifier SSM2019 a FEATURES Excellent Noise Performance:. nv/ Hz or.5 db Noise Figure Ultra-low THD:

More information

1.8 V, Micropower, Zero-Drift, Rail-to-Rail Input/Output Op Amp ADA4051-1/ADA4051-2

1.8 V, Micropower, Zero-Drift, Rail-to-Rail Input/Output Op Amp ADA4051-1/ADA4051-2 .8 V, Micropower, Zero-Drift, Rail-to-Rail Input/Output Op Amp ADA-/ADA-2 FEATURES Very low supply current: 3 μa typical Low offset voltage: μv maximum Offset voltage drift: 2 nv/ C Single-supply operation:.8

More information

Single-Supply, Rail-to-Rail Low Power FET-Input Op Amp AD822

Single-Supply, Rail-to-Rail Low Power FET-Input Op Amp AD822 Single-Supply, Rail-to-Rail Low Power FET-Input Op Amp AD822 FEATURES True single-supply operation Output swings rail-to-rail Input voltage range extends below ground Single-supply capability from 3 V

More information

AD8218 REVISION HISTORY

AD8218 REVISION HISTORY Zero Drift, Bidirectional Current Shunt Monitor FEATURES High common-mode voltage range 4 V to 8 V operating.3 V to 85 V survival Buffered output voltage Gain = 2 V/V Wide operating temperature range:

More information

High Resolution, Zero-Drift Current Shunt Monitor AD8217

High Resolution, Zero-Drift Current Shunt Monitor AD8217 High Resolution, Zero-Drift Current Shunt Monitor AD8217 FEATURES High common-mode voltage range 4.5 V to 8 V operating V to 85 V survival Buffered output voltage Wide operating temperature range: 4 C

More information

REV. D Ultralow Distortion High Speed Amplifiers AD8007/AD8008 FEATURES CONNECTION DIAGRAMS Extremely Low Distortion Second Harmonic 88 5 MHz SO

REV. D Ultralow Distortion High Speed Amplifiers AD8007/AD8008 FEATURES CONNECTION DIAGRAMS Extremely Low Distortion Second Harmonic 88 5 MHz SO Ultralow Distortion High Speed Amplifiers FEATURES CONNECTION DIAGRAMS Extremely Low Distortion Second Harmonic 88 dbc @ 5 MHz SOIC (R) SC7 (KS-5) 8 dbc @ MHz (AD87) AD87 AD87 NC V (Top View) 8 NC OUT

More information

Single-Supply 42 V System Difference Amplifier AD8205

Single-Supply 42 V System Difference Amplifier AD8205 Single-Supply 42 V System Difference Amplifier FEATURES Ideal for current shunt applications High common-mode voltage range 2 V to +65 V operating 5 V to +68 V survival Gain = 50 Wide operating temperature

More information

Dual Picoampere Input Current Bipolar Op Amp AD706. Data Sheet. Figure 1. Input Bias Current vs. Temperature

Dual Picoampere Input Current Bipolar Op Amp AD706. Data Sheet. Figure 1. Input Bias Current vs. Temperature Data Sheet Dual Picoampere Input Current Bipolar Op Amp Rev. F Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by

More information

Dual, High Voltage Current Shunt Monitor AD8213

Dual, High Voltage Current Shunt Monitor AD8213 Dual, High Voltage Current Shunt Monitor AD823 FEATURES ±4 V HBM ESD High common-mode voltage range 2 V to +6 V operating 3 V to +68 V survival Buffered output voltage Wide operating temperature range

More information

16 V Auto-Zero, Rail-to-Rail Output Operational Amplifiers AD8638/AD8639

16 V Auto-Zero, Rail-to-Rail Output Operational Amplifiers AD8638/AD8639 6 V Auto-Zero, Rail-to-Rail Output Operational Amplifiers AD8638/AD8639 FEATURES Low offset voltage: 9 µv maximum Offset drift:.4 µv/ C maximum Rail-to-rail output swing 5 V to 6 V single-supply or ±2.5

More information

Zero Drift, Digitally Programmable Instrumentation Amplifier AD8231-EP OP FUNCTIONAL BLOCK DIAGRAM FEATURES ENHANCED PRODUCT FEATURES

Zero Drift, Digitally Programmable Instrumentation Amplifier AD8231-EP OP FUNCTIONAL BLOCK DIAGRAM FEATURES ENHANCED PRODUCT FEATURES Zero Drift, Digitally Programmable Instrumentation Amplifier AD8231-EP FEATURES Digitally/pin-programmable gain G = 1, 2, 4, 8, 16, 32, 64, or 128 Specified from 55 C to +125 C 5 nv/ C maximum input offset

More information

High Common-Mode Voltage Difference Amplifier AD629

High Common-Mode Voltage Difference Amplifier AD629 a FEATURES Improved Replacement for: INAP and INAKU V Common-Mode Voltage Range Input Protection to: V Common Mode V Differential Wide Power Supply Range (. V to V) V Output Swing on V Supply ma Max Power

More information

Ultralow Offset Voltage Dual Op Amp AD708

Ultralow Offset Voltage Dual Op Amp AD708 Ultralow Offset Voltage Dual Op Amp FEATURES Very high dc precision 30 μv maximum offset voltage 0.3 μv/ C maximum offset voltage drift 0.35 μv p-p maximum voltage noise (0. Hz to 0 Hz) 5 million V/V minimum

More information

Precision, Low Power, Micropower Dual Operational Amplifier OP290

Precision, Low Power, Micropower Dual Operational Amplifier OP290 Precision, Low Power, Micropower Dual Operational Amplifier OP9 FEATURES Single-/dual-supply operation:. V to 3 V, ±.8 V to ±8 V True single-supply operation; input and output voltage Input/output ranges

More information

Low Power, Wide Supply Range, Low Cost Difference Amplifiers, G = ½, 2 AD8278/AD8279

Low Power, Wide Supply Range, Low Cost Difference Amplifiers, G = ½, 2 AD8278/AD8279 Low Power, Wide Supply Range, Low Cost Difference Amplifiers, G = ½, 2 /AD8279 FEATURES Wide input range beyond supplies Rugged input overvoltage protection Low supply current: 2 μa maximum (per amplifier)

More information

Single-Supply, Rail-to-Rail Low Power FET-Input Op Amp AD822

Single-Supply, Rail-to-Rail Low Power FET-Input Op Amp AD822 Single-Supply, Rail-to-Rail Low Power FET-Input Op Amp AD FEATURES True single-supply operation Output swings rail-to-rail Input voltage range extends below ground Single-supply capability from 3 V to

More information

Precision, Low Power, Micropower Dual Operational Amplifier OP290

Precision, Low Power, Micropower Dual Operational Amplifier OP290 a FEATURES Single-/Dual-Supply Operation, 1. V to 3 V,. V to 1 V True Single-Supply Operation; Input and Output Voltage Ranges Include Ground Low Supply Current (Per Amplifier), A Max High Output Drive,

More information

Rail-to-Rail, High Output Current Amplifier AD8397

Rail-to-Rail, High Output Current Amplifier AD8397 Rail-to-Rail, High Output Current Amplifier FEATURES Dual operational amplifier Voltage feedback Wide supply range from 3 V to 24 V Rail-to-rail output Output swing to within.5 V of supply rails High linear

More information

Low Cost, General Purpose High Speed JFET Amplifier AD825

Low Cost, General Purpose High Speed JFET Amplifier AD825 a FEATURES High Speed 41 MHz, 3 db Bandwidth 125 V/ s Slew Rate 8 ns Settling Time Input Bias Current of 2 pa and Noise Current of 1 fa/ Hz Input Voltage Noise of 12 nv/ Hz Fully Specified Power Supplies:

More information

Quad Low Offset, Low Power Operational Amplifier OP400

Quad Low Offset, Low Power Operational Amplifier OP400 FEATURES Low input offset voltage: 5 µv maximum Low offset voltage drift over 55 C to 25 C:.2 μv/ C maximum Low supply current (per amplifier): 725 µa maximum High open-loop gain: 5 V/mV minimum Input

More information

AD8510/AD8512/AD8513. Precision, Very Low Noise, Low Input Bias Current, Wide Bandwidth JFET Operational Amplifiers FEATURES PIN CONFIGURATIONS

AD8510/AD8512/AD8513. Precision, Very Low Noise, Low Input Bias Current, Wide Bandwidth JFET Operational Amplifiers FEATURES PIN CONFIGURATIONS Precision, Very Low Noise, Low Input Bias Current, Wide Bandwidth JFET Operational Amplifiers AD5/AD5/AD5 FEATURES Fast settling time: 5 ns to.% Low offset voltage: μv maximum Low TCVOS: μv/ C typical

More information

ADA485-/ADA485- TABLE OF CONTENTS Features... Applications... Pin Configurations... General Description... Revision History... Specifications... 3 Spe

ADA485-/ADA485- TABLE OF CONTENTS Features... Applications... Pin Configurations... General Description... Revision History... Specifications... 3 Spe NC NC NC NC 5 6 7 8 6 NC 4 PD 3 PD FEATURES Ultralow power-down current: 5 na/amplifier maximum Low quiescent current:.4 ma/amplifier High speed 75 MHz, 3 db bandwidth V/μs slew rate 85 ns settling time

More information

Ultralow Power, Rail-to-Rail Output Operational Amplifiers OP281/OP481

Ultralow Power, Rail-to-Rail Output Operational Amplifiers OP281/OP481 Ultralow Power, Rail-to-Rail Output Operational Amplifiers OP28/OP48 FEATURES Low supply current: 4 μa/amplifier maximum Single-supply operation: 2.7 V to 2 V Wide input voltage range Rail-to-rail output

More information

High Voltage Current Shunt Monitor AD8211

High Voltage Current Shunt Monitor AD8211 High Voltage Current Shunt Monitor AD8211 FEATURES Qualified for automotive applications ±4 V HBM ESD High common-mode voltage range 2 V to +65 V operating 3 V to +68 V survival Buffered output voltage

More information

Low Power, 350 MHz Voltage Feedback Amplifiers AD8038/AD8039

Low Power, 350 MHz Voltage Feedback Amplifiers AD8038/AD8039 Low Power, MHz Voltage Feedback Amplifiers AD88/AD89 FEATURES Low power: ma supply current/amp High speed MHz, db bandwidth (G = +) V/μs slew rate Low cost Low noise 8 nv/ Hz @ khz fa/ Hz @ khz Low input

More information

Precision, 16 MHz CBFET Op Amp AD845

Precision, 16 MHz CBFET Op Amp AD845 a FEATURES Replaces Hybrid Amplifiers in Many Applications AC PERFORMANCE: Settles to 0.01% in 350 ns 100 V/ s Slew Rate 12.8 MHz Min Unity Gain Bandwidth 1.75 MHz Full Power Bandwidth at 20 V p-p DC PERFORMANCE:

More information

16 V Rail-to-Rail, Zero-Drift, Precision Instrumentation Amplifier AD8230

16 V Rail-to-Rail, Zero-Drift, Precision Instrumentation Amplifier AD8230 V Rail-to-Rail, Zero-Drift, Precision Instrumentation Amplifier AD FEATURES Resistor programmable gain range: to Supply voltage range: ± V to ± V, + V to + V Rail-to-rail input and output Maintains performance

More information

Low Voltage Micropower Quad Operational Amplifier OP490

Low Voltage Micropower Quad Operational Amplifier OP490 Low Voltage Micropower Quad Operational Amplifier FEATURES Single/dual-supply operation.6 V to 36 V ±0.8 V to ±8 V Single-supply operation; input and output voltage ranges include ground Low supply current:

More information

4 AD548. Precision, Low Power BiFET Op Amp REV. D. CONNECTION DIAGRAMS Plastic Mini-DIP (N) Package and SOIC (R)Package

4 AD548. Precision, Low Power BiFET Op Amp REV. D. CONNECTION DIAGRAMS Plastic Mini-DIP (N) Package and SOIC (R)Package a FEATURES Enhanced Replacement for LF441 and TL61 DC Performance: 2 A max Quiescent Current 1 pa max Bias Current, Warmed Up (AD48C) 2 V max Offset Voltage (AD48C) 2 V/ C max Drift (AD48C) 2 V p-p Noise,.1

More information

Low Cost, High Speed Rail-to-Rail Amplifiers AD8091/AD8092

Low Cost, High Speed Rail-to-Rail Amplifiers AD8091/AD8092 Low Cost, High Speed Rail-to-Rail Amplifiers AD891/AD892 FEATURES Low cost single (AD891) and dual (AD892) amplifiers Fully specified at +3 V, +5 V, and ±5 V supplies Single-supply operation Output swings

More information

SGM8621/2/3/4 3MHz, Rail-to-Rail I/O CMOS Operational Amplifiers

SGM8621/2/3/4 3MHz, Rail-to-Rail I/O CMOS Operational Amplifiers SGM8621/2/3/4 3MHz, Rail-to-Rail I/O PRODUCT DESCRIPTION The SGM8621 (single), SGM8622 (dual), SGM8623 (single with shutdown) and SGM8624 (quad) are low noise, low voltage, and low power operational amplifiers,

More information

SGM MHz, 48μA, Rail-to-Rail I/O CMOS Operational Amplifier

SGM MHz, 48μA, Rail-to-Rail I/O CMOS Operational Amplifier PRODUCT DESCRIPTION The is a low cost, single rail-to-rail input and output voltage feedback amplifier. It has a wide input common mode voltage range and output voltage swing, and takes the minimum operating

More information

High Common-Mode Voltage, Programmable Gain Difference Amplifier AD628

High Common-Mode Voltage, Programmable Gain Difference Amplifier AD628 High Common-Mode Voltage, Programmable Gain Difference Amplifier FEATURES High common-mode input voltage range ±2 V at VS = ± V Gain range. to Operating temperature range: 4 C to ±8 C Supply voltage range

More information