MRI AT HIGH MAGNETIC FIELDS. Kâmil Uğurbil. University of Minnesota

Size: px
Start display at page:

Download "MRI AT HIGH MAGNETIC FIELDS. Kâmil Uğurbil. University of Minnesota"

Transcription

1 MRI AT HIGH MAGNETIC FIELDS Kâmil Uğurbil University of Minnesota

2 CENTER for MAGNETIC RESONANCE RESEARCH (CMRR)

3 Blood Vessel Distribution in Rat Brain brain slice (ink injection) Venous structure: T 2 *-weighted GE EPI (150 x 150 x 1000 µm 3 ) Ogawa S, Lee T-M, Kay AR, Tank DW.. Proc Natl Acad Sci USA 1990;87:

4 MAGNETIC FIELD AROUND BLOOD VESSELS 0% deoxy-hb 10% deoxy-hb 30% (Arteries)

5 BLOOD OXYGEN LEVEL DEPENDENT CONTRAST (BOL One VOXEL in the IMAGE DEOXY-Hemoglobin (Paramagnetic)

6 INCREASED NEURONAL ACTIVITY INCREASE in REGIONAL BLOOD FLOW (& Volume) LOWER DEOXYHEMOGLOBIN CONTENT per unit volume in the BRAIN if Cerebral Oxygen Consumption (CMRO 2 ) does not increase commensurately

7 MAGNETIC FIELD AROUND BLOOD VESSELS Increased Neuronal Activity: deoxy-hb 30% deoxy-hb 10%

8 From Ogawa et al 1992 PNAS paper From Ogawa et al 1992 PNAS Paper. From Kwong et al 1992 PNAS paper Title Ogawa et al PNAS 1992: Figure 2 images superimposed

9 Opaque anatomical Image In Grey scale SILENT WORD GENERATION

10 STATE-of-the-ART in 1990 PET Difference Images Raichle, M. Trends in Neurosciences, (2): p

11 Scales of the Brain

12 Ocular Dominance Columns OPTICAL IMAGING, MONKEY V2 V1 Ts o et al., Science 1990

13 Ogawa S, Menon RS, Tank DW, Kim SG, Merkle H, Ellermann JM, Ugurbil K. Biophys J 1993;64(3): B 0 B 0 B

14 EXTRAVASCULAR BOLD R 2 * (1/s) Gradient Echo T RATIO of Capillary vs. Venule/Vein 60 & 100 µ 12 7T contribution 10 to FUNCTIONAL 5 µ SIGNAL 8 CHANGES in GE BOLD 1.5T R* 2 (1/s) Vessel diameter ν vw = κ B 0 f dhb κ = constant f dhb = fraction of dhb in blood Deoxyhemoglobin Change ΔS S O e TE R 2 * ( R 2 * / ν vw ) (κ B 0 TE) Δf dhb Frequency Frequency ν Difference, on the vessel Hz wall, (Hz) vw B o Functional Signal Change Slope CONSTANT Green lines mark expected values for 30% deoxyhb in all vessels K. Uludağ, B. Müller-Bierl, K. Uğurbil Neuroimage (2009) 48(1): p

15 EXTRAVASCULAR BOLD (GRADIENT ECHO) RATIO of Functional Signal contribution from the two different vessel types RATIO RATIO ΔS Capillary/Venule of SLOPES T 7T 10.5T 5 µ vs. 60 or 100 µ Vessel diameter B o f dexyhb Frequency ν on the vessel wall, (Hz) vw B o ΔS S O e TE R 2 * ( R 2 * / ν vw ) (κ B 0 TE) Δf dhb Functional Signal Change Slope Deoxyhemoglobin Change CONSTANT Green lines mark expected values for 30% deoxyhb in all vessels K. Uludağ, B. Müller-Bierl, K. Uğurbil Neuroimage (2009) 48(1): p

16 EXTRAVASCULAR BOLD (GRADIENT ECHO) RATIO of Functional Signal contribution from the two different vessel types RATIO RATIO ΔS Capillary/Venule of SLOPES T 7T 10.5T 5 µ vs. 60 or 100 µ Vessel diameter B o f dexyhb Frequency ν on the vessel wall, (Hz) vw B o Green lines mark expected values for 30% deoxyhb in all vessels K. Uludağ, B. Müller-Bierl, K. Uğurbil Neuroimage (2009) 48(1): p

17 EXTRAVASCULAR BOLD GRADIENT Echo (GE) SPIN Echo (SE) R 2 * (1/s) T 7T 9.4T 16.4T Vessel diameter 60&100 µ 5 µ R 2 2 (1/s) T 7T 9.4T 16.4T Vessel diameter 60 µ Frequency Difference, on the vessel Hz wall, (Hz) Frequency Frequency on the Difference, vessel wall, Hz (Hz) ν vw ν vw 5 µ 100 µ 2% blood volume Green lines mark expected values for 30% deoxyhb K.Uludağ, B. Müller-Bier, K. Uğurbil Neuroimage (2009) 48(1): p

18 MR detected Mapping Signals and Physiologic Changes induced by Neuronal activity ΔS/S 4 SE fmri, TE set to tissue T 2 total fmri signal (micro-vasculature) total fmri signal (macro-vasculature) ΔCBV=0 total fmri signal [%] d) ΔCBV 16% field strength (T) K. Uludağ, B. Müller-Bierl, K. Uğurbil Neuroimage (2009) 48(1): p

19 Ocular Dominance Columns OPTICAL IMAGING, MONKEY HIGH Field SPIN ECHO fmri (when the resolution is High enough) V2 V1 Ts o et al., Science 1990

20 Ocular Dominance Columns OPTICAL IMAGING, MONKEY S B 0 TE X S B 0 TE LOW FIELD HIGH FIELD GE fmri x >1 for B 0 < ~ 10T x 1 as B 0 >> 10T Ts o et al., Science 1990

21 High Res. GE fmri 1.5 T courtesy of Mark Haacke JMRI 9: (1999). 0.4x0.4x2 mm 3 High Res. GE fmri 7T 0.5x0.5x2 mm 3

22 Ocular Dominance (ODC) and Orientation maps in Human V1 (7 Tesla) ODC REPRODUCIBILITY 2 days 3 days Left Right Yacoub, Shmuel, et al. Neuroimage (2007) 37(4):

23 Ocular Dominance (ODC) and Orientation maps in Human V1 (7 Tesla) ODC Orientation Left Phase Right 1 mm 1 mm Yacoub, Shmuel, et al. Neuroimage (2007) 37(4): Yacoub, Harel, Uğurbil PNAS (2008) 105(30):

24 Orientation Domains in the Primary Visual Cortex Monkey Optical Imaging Human fmri (SE, 7 Tesla) ~4 mm ~4 mm Yacoub, Harel, Uğurbil PNAS 2008

25 Challenge: To Acquire High Field Human Data 4 TESLA Barfuss et.al. NMR Biomed:3(1)1990 From SIEMENS CORPORATE RESEARCH

26 INITIAL RESULTS from SIEMENS at 4 TESLA Object dimension L ~ λ for RF Barfuss et.al. NMR Biomed:3(1)1990 (DATA from SIEMENS)

27 4T vs. 7T : B1 NON-UNIFORMITY & SNR T. Vaughan et al MRM 46, (2001) 4T 7T Mean SNR (boxes) from 6 identical comparison studies in approximately fully relaxed Gradient recalled echo images

28 Transmit B 1 Maps with a Volume Coil at 7T 0.06 B 1 (µt/v)

29 Simulation of B 1 + (300 MHz; 7 Tesla) Deionized Water L ~ λ Yang et al. MRM 47 (5), (2002) CMRR / PennState collaboration

30 Simulation of B mm NaCl Yang et al. MRM 47 (5), (2002) CMRR / PennState collaboration

31 Simulation of B mm NaCl Yang et al. MRM 47 (5), (2002) CMRR / PennState collaboration

32 EXCERPT from the ABSTRACT: and in the human head. Temporal progression of the RF field indicates that the standing wave and associated dielectric res- onance occurring in a pure water phantom near 300 MHz is greatly dampened in the human head due to the strong decay of the electromagnetic wave. The characteristic image intensity distribution in the human head is the result of spatial phase distribution and amplitude modulation by the interference of the RF traveling waves determined by a given sample- coil config- uration. The numerical calculation method is validated with

33 7T Body: Head: λ = 12 cm L ~ cm L/λ~1.7 ~ 3.3

34 7 T B 1 Field Contours in a TEM BODY COIL UNLOADED L/λ > ~ 1 Body ~ 3λ x 6λ LOADED Traveling wave regime Vaughan, J.T., et al. MRM, (1): p

35 7 T B 1 + Field Contours in a TEM BODY COIL Body coil Transmit Only Local array Receive only d, cm 60 LOADED d Magnet isocenter Body Coil Tx Local Coil Rx Vaughan, J.T., et al. MRM, (1): 244-8

36 E field B 1 field Simulations by Jinfeng Tian,CMRR, U Minnesota Vaughan, J.T., et al. MRM, (1): p

37 Relative B 1 Phase (experimental) Current carrying element ground plane Van de Moortele et al MRM 2005; 54:

38 Relative B 1 Phase M k + B 1,k Van de Moortele et al MRM 2005; 54(6):

39 Relative Transmit B 1 AMPLITUDE 300 MHz [a.u] M M B + + 1,k B 1,k k k Van de Moortele et al Magn Reson Med 2005; 54(6):

40 Relative Transmit B 1 AMPLITUDE 300 MHz [a.u] M k + B 1,k Van de Moortele et al Magn Reson Med 2005; 54(6):

41 Relative RECEIVE B 1 AMPLITUDE 300 MHz N j B 1, j N j B 1, j 64 MHz Van de Moortele et al Magn Reson Med 2005; 54(6):

42 Transmit B 1 Maps with a Volume Coil at 7T 0.06 B 1 (µt/v)

43 3 Tesla: Actual Flip Angle Map

44 Multichannel TRANSMIT & RECEIVE Adriany Vaughan, et al, J.T., MRM et al. 2005;53(2): MRM, (1): p Van Snyder, Moortele C.J., et et al. al MRM, 2005; (6): 61(3): p Metzger, G.J., et al. MRM, (2): p x T/R Switches up to 32 Low Noise Preamps. Receive Digital Receiver 16 Independent RF Channels 16 x 1 kw amp 16 Channel RF Safety Monitoring

45 Multiband RF Pulse Performance: ptx vs. Circularly Polarized L Curves for RF Energy vs. B1 Homogeneity (RMSE) MB=2, 1 spoke 0.6 RF Energy Same fidelity Same energy ~70% Decrease Root Mean Square Error (RMSE) in Transmit B1 X. Wu, S. Schmitter, E. J. Auerbach, S.Moeller, K. Uğurbil, and P-F Van de Moortele ISMRM 2013, #74; MRM 2013; Magn Reson Med 70: (2013)

46 Parallel Transmit (ptx) with Multiband Pulses, 7 T: Improving B 1 + Homogeneity for MB2 Wu et al. Magn Reson Med 70: (2013) Experimental Flip angle map 16 channel GRE sag view Circularly Pol. ptx, 1 spoke

47 1x16 L curves of peak 10 g SAR vs. excitation error (RMSE) Xu et al 2014 ISMRM 1x8 1x8 1x16 2x8 2x8 2x8, axial 2x8, coronal

48 Parallel Imaging Performance as a Function of Field Strength Geometry Factor in the Center; FOV 25 cm Geometry Factor B o, Tesla 2 R B o, Tesla SNR 4.5 PI = SNR 2 full g R 3 4 R 5 Wiesinger F, Van de Moortele PF, Adriany G, De Zanche N, Ugurbil K, Pruessmann KP. Magn Reson Med 2004;52(5):

49 Higher Fields Favors Parallel Imaging Performance SNR PI = SNR full g R B o, Tesla R (Reduction Factor) Wiesinger et al, NMR Biomed /10/15 JT Vaughan-CMRR-UMN 49

50 7T Cardiac Cine: Parallel Imaging with a local 32-Channel Receive Array R=2 R=5 Snyder, DelaBarre &Vaughan

51 Proc Natl Acad Sci U S A, 74, (1977) PCr P i ATPγ + ADP P i ATPγ

52 HUMAN VISUAL CORTEX 7 Tesla P i PCr ATP Syn. Creatine Kinase P i γ-atp (A-B) SNR Chemical Shift Resolution * * (B) Measurement of Pi + ADP ATP γ-atp H. Lei, et al, PNAS 100, (2003) (A)

53

54 Functional MRI Mapping of Hemifield Visual Stimulation [4-13 C] Glu [4-13 C] Glu Slice 1 64 min Slice 2 48 min 32 min 16 min W. Chen, et al. MRM 2001; 45; min

55 J. Budde S. Gunamony R. Pohmann MPI, Tübingen 9.4 T vs. 3T 9.4T, 21 slices, projection thickness 14.3mm 3T, 14 slices, projection thickness 14mm

56 9.4T, 21 slices, projection thickness 14.3mm 3T, 14 slices, projection thickness 14mm 9.4 T vs. 3T MPI, Tübingen

57 TOF angiography at 7 Tesla at 0.4 mm isotropic resolution S. Schmitter, CMRR

58 7 Tesla T2 Weighted ANATOMIC IMAGING in The Brain Three-dimensional Segmentation of the Internal Structures of the Human HIPPOCAMPUS Henry, T.R., M. Chupin, S. Lehericy, J. Strupp, M.A. Sikora, Z.- Y. Sha, K. Ugurbi, and P.- F. Van de Moortele: Radiology, 2011; 261(1): p Image acquisition: University of Minnesota, CMRR; Image Segmentation: CNRS UPR LENA, University Pierre and Marie Curie, Paris, France;Center for NeuroImaging Research, University Pierre and Marie Curie - Paris, France; Neuroradiology, Pitie-Salpetriere Hospital, Paris, France

59 4 Tesla 7 Tesla

60 7 Tesla 60

61 CENTER for MAGNETIC RESONANCE RESEARCH (CMRR)

BOLD fmri: signal source, data acquisition, and interpretation

BOLD fmri: signal source, data acquisition, and interpretation BOLD fmri: signal source, data acquisition, and interpretation Cheryl Olman 4 th year student, Department of Neuroscience and Center for Magnetic Resonance Research Discussion series Week 1: Biological

More information

functional MRI: A primer

functional MRI: A primer Activation Leads to: functional MRI: A primer CBF Increased +ΔR CBV Increased +ΔR (C+) O Utilization Increased slightly? Venous [O ] Increased -ΔR* Glucose Utilization Increased? Lactate BOLD R=/T R=/T

More information

Hardware. MRI System. MRI system Multicoil Microstrip. Part1

Hardware. MRI System. MRI system Multicoil Microstrip. Part1 Hardware MRI system Multicoil Microstrip MRI System Part1 1 The MRI system is made up of a variety of subsystems. the Operator Workspace Gradient Driver subsystem The Physiological Acquisition Controller

More information

High-Resolution, Spin-Echo BOLD, and CBF fmri at 4and7T

High-Resolution, Spin-Echo BOLD, and CBF fmri at 4and7T Magnetic Resonance in Medicine 48:589 593 (2002) High-Resolution, Spin-Echo BOLD, and CBF fmri at 4and7T Timothy Q. Duong,* Essa Yacoub, Gregory Adriany, Xiaoping Hu, Kamil Ugurbil, J. Thomas Vaughan,

More information

Multi-Slice Perfusion-Based Functional MRI using the FAIR Technique: Comparison of CBF and BOLD effects

Multi-Slice Perfusion-Based Functional MRI using the FAIR Technique: Comparison of CBF and BOLD effects NMR IN BIOMEDICINE, VOL. 10, 191 196 (1997) Multi-Slice Perfusion-Based Functional MRI using the FAIR Technique: Comparison of CBF and BOLD effects Seong-Gi Kim, 1 Nikolaos V. Tsekos 1 and James Ashe 2

More information

1 Introduction. 2 The basic principles of NMR

1 Introduction. 2 The basic principles of NMR 1 Introduction Since 1977 when the first clinical MRI scanner was patented nuclear magnetic resonance imaging is increasingly being used for medical diagnosis and in scientific research and application

More information

Field Simulation Software to Improve Magnetic Resonance Imaging

Field Simulation Software to Improve Magnetic Resonance Imaging Field Simulation Software to Improve Magnetic Resonance Imaging a joint project with the NRI in South Korea CST Usergroup Meeting 2010 Darmstadt Institute for Biometry and Medicine Informatics J. Mallow,

More information

Transmit and Receive Transmission Line Arrays for 7 Tesla Parallel Imaging

Transmit and Receive Transmission Line Arrays for 7 Tesla Parallel Imaging Magnetic Resonance in Medicine 53:434 445 (2005) Transmit and Receive Transmission Line Arrays for 7 Tesla Parallel Imaging Gregor Adriany, 1 * Pierre-Francois Van de Moortele, 1 Florian Wiesinger, 2 Steen

More information

MRI physics for SPM users

MRI physics for SPM users MRI physics for SPM users SPM course 11/2013 Antoine Lutti antoine.lutti@chuv.ch General principals Origin of the signal RF excitation Relaxation (T1, T2, ) Anatomical imaging Image contrast Outline Standard

More information

TITLE: Prostate Cancer Detection Using High-Spatial Resolution MRI at 7.0 Tesla: Correlation with Histopathologic Findings at Radical Prostatectomy

TITLE: Prostate Cancer Detection Using High-Spatial Resolution MRI at 7.0 Tesla: Correlation with Histopathologic Findings at Radical Prostatectomy Award Number: W81XWH-11-1-0253 TITLE: Prostate Cancer Detection Using High-Spatial Resolution MRI at 7.0 Tesla: Correlation with Histopathologic Findings at Radical Prostatectomy PRINCIPAL INVESTIGATOR:

More information

Image Quality/Artifacts Frequency (MHz)

Image Quality/Artifacts Frequency (MHz) The Larmor Relation 84 Image Quality/Artifacts (MHz) 42 ω = γ X B = 2πf 84 0.0 1.0 2.0 Magnetic Field (Tesla) 1 A 1D Image Magnetic Field Gradients Magnet Field Strength Field Strength / Gradient Coil

More information

Diffusion and Functional MRI of the Spinal Cord Methods and Clinical Applications

Diffusion and Functional MRI of the Spinal Cord Methods and Clinical Applications Diffusion and Functional MRI of the Spinal Cord Methods and Clinical Applications Susceptibility artifacts in DTI of the spinal cord J. Cohen-Adad Q-space imaging and axon diameter measurements Functional

More information

HETERONUCLEAR IMAGING. Topics to be Discussed:

HETERONUCLEAR IMAGING. Topics to be Discussed: HETERONUCLEAR IMAGING BioE-594 Advanced MRI By:- Rajitha Mullapudi 04/06/2006 Topics to be Discussed: What is heteronuclear imaging. Comparing the hardware of MRI and heteronuclear imaging. Clinical applications

More information

Pulse Sequences: Rapid Gradient Echo

Pulse Sequences: Rapid Gradient Echo Pulse Sequences: Rapid Gradient Echo M229 Advanced Topics in MRI Holden H. Wu, Ph.D. 2018.04.17 Department of Radiological Sciences David Geffen School of Medicine at UCLA Class Business Office hours -

More information

Works-in-Progress package Version 1.0. For the SIEMENS Magnetom. Installation and User s Guide NUMARIS/4VA21B. January 22, 2003

Works-in-Progress package Version 1.0. For the SIEMENS Magnetom. Installation and User s Guide NUMARIS/4VA21B. January 22, 2003 Works-in-Progress package Version 1.0 For the Installation and User s Guide NUMARIS/4VA21B January 22, 2003 Section of Medical Physics, University Hospital Freiburg, Germany Contact: Klaus Scheffler PhD,

More information

7T vs. 4T: RF Power, Homogeneity, and Signal-to-Noise Comparison in Head Images

7T vs. 4T: RF Power, Homogeneity, and Signal-to-Noise Comparison in Head Images Magnetic Resonance in Medicine 46:24 30 (2001) 7T vs. 4T: RF Power, Homogeneity, and Signal-to-Noise Comparison in Head Images J.T. Vaughan, 1 * M. Garwood, 1 C.M. Collins, 2 W. Liu, 2 L. DelaBarre, 1

More information

Functional MRI with variable echo time acquisition

Functional MRI with variable echo time acquisition NeuroImage 20 (2003) 2062 2070 www.elsevier.com/locate/ynimg Functional MRI with variable echo time acquisition Nan-kuei Chen, Svetlana Egorova, Charles R.G. Guttmann, and Lawrence P. Panych* Center for

More information

Background (~EE369B)

Background (~EE369B) Background (~EE369B) Magnetic Resonance Imaging D. Nishimura Overview of NMR Hardware Image formation and k-space Excitation k-space Signals and contrast Signal-to-Noise Ratio (SNR) Pulse Sequences 13

More information

MRI Summer Course Lab 2: Gradient Echo T1 & T2* Curves

MRI Summer Course Lab 2: Gradient Echo T1 & T2* Curves MRI Summer Course Lab 2: Gradient Echo T1 & T2* Curves Experiment 1 Goal: Examine the effect caused by changing flip angle on image contrast in a simple gradient echo sequence and derive T1-curves. Image

More information

2014 M.S. Cohen all rights reserved

2014 M.S. Cohen all rights reserved 2014 M.S. Cohen all rights reserved mscohen@g.ucla.edu IMAGE QUALITY / ARTIFACTS SYRINGOMYELIA Source http://gait.aidi.udel.edu/res695/homepage/pd_ortho/educate/clincase/syrsco.htm Surgery is usually recommended

More information

High Field MRI: Technology, Applications, Safety, and Limitations

High Field MRI: Technology, Applications, Safety, and Limitations High Field MRI: Technology, Applications, Safety, and Limitations R. Jason Stafford, Ph.D. The University of Texas M. D. Anderson Cancer Center, Houston, TX Introduction The amount of available signal

More information

M R I Physics Course. Jerry Allison Ph.D., Chris Wright B.S., Tom Lavin B.S., Nathan Yanasak Ph.D. Department of Radiology Medical College of Georgia

M R I Physics Course. Jerry Allison Ph.D., Chris Wright B.S., Tom Lavin B.S., Nathan Yanasak Ph.D. Department of Radiology Medical College of Georgia M R I Physics Course Jerry Allison Ph.D., Chris Wright B.S., Tom Lavin B.S., Nathan Yanasak Ph.D. Department of Radiology Medical College of Georgia M R I Physics Course Magnetic Resonance Imaging Spatial

More information

2015 Spin echoes and projection imaging

2015 Spin echoes and projection imaging 1. Spin Echoes 1.1 Find f0, transmit amplitudes, and shim settings In order to acquire spin echoes, we first need to find the appropriate scanner settings using the FID GUI. This was all done last week,

More information

Full-Brain Coverage and High-Resolution Imaging Capabilities of Passband b-ssfp fmri at 3T

Full-Brain Coverage and High-Resolution Imaging Capabilities of Passband b-ssfp fmri at 3T Magnetic Resonance in Medicine 59:1099 1110 (2008) Full-Brain Coverage and High-Resolution Imaging Capabilities of Passband b-ssfp fmri at 3T Jin Hyung Lee, 1 * Serge O. Dumoulin, 2 Emine U. Saritas, 1

More information

Gradient Spoiling. Average balanced SSFP magnetization Reduce sensitivity to off-resonance. FFE, FISP, GRASS, GRE, FAST, Field Echo

Gradient Spoiling. Average balanced SSFP magnetization Reduce sensitivity to off-resonance. FFE, FISP, GRASS, GRE, FAST, Field Echo Gradient Spoiling Average balanced SSFP magnetization Reduce sensitivity to off-resonance FFE, FISP, GRASS, GRE, FAST, Field Echo 1 Gradient-Spoiled Sequence (GRE, FFE, FISP, GRASS) RF TR G z G y G x Signal

More information

Precompensation for mutual coupling between array elements in parallel excitation

Precompensation for mutual coupling between array elements in parallel excitation Original Article Precompensation for mutual coupling between array elements in parallel excitation Yong Pang, Xiaoliang Zhang,2 Department of Radiology and Biomedical Imaging, University of California

More information

Cardiac MR. Dr John Ridgway. Leeds Teaching Hospitals NHS Trust, UK

Cardiac MR. Dr John Ridgway. Leeds Teaching Hospitals NHS Trust, UK Cardiac MR Dr John Ridgway Leeds Teaching Hospitals NHS Trust, UK Cardiac MR Physics for clinicians: Part I Journal of Cardiovascular Magnetic Resonance 2010, 12:71 http://jcmr-online.com/content/12/1/71

More information

TimTX TrueShape. The parallel transmit architecture of the future. Answers for life.

TimTX TrueShape.  The parallel transmit architecture of the future. Answers for life. www.siemens.com/trueshape TimTX TrueShape The parallel transmit architecture of the future. The product/feature (mentioned herein) is not commercially available. Due to regulatory reasons its future availability

More information

SNR and functional sensitivity of BOLD and perfusion-based fmri using arterial spin labeling with spiral SENSE at 3 T

SNR and functional sensitivity of BOLD and perfusion-based fmri using arterial spin labeling with spiral SENSE at 3 T Available online at www.sciencedirect.com Magnetic Resonance Imaging 26 (2008) 513 522 SNR and functional sensitivity of BOLD and perfusion-based fmri using arterial spin labeling with spiral SENSE at

More information

Advanced MSK MRI Protocols at 3.0T. Garry E. Gold, M.D. Associate Professor Department of Radiology Stanford University

Advanced MSK MRI Protocols at 3.0T. Garry E. Gold, M.D. Associate Professor Department of Radiology Stanford University Advanced MSK MRI Protocols at 3.0T Garry E. Gold, M.D. Associate Professor Department of Radiology Stanford University Outline Why High Field for MSK? SNR and Relaxation Times Technical Issues Example

More information

Numerical Evaluation of an 8-element Phased Array Torso Coil for Magnetic Resonance Imaging

Numerical Evaluation of an 8-element Phased Array Torso Coil for Magnetic Resonance Imaging Numerical Evaluation of an 8-element Phased Array Torso Coil for Magnetic Resonance Imaging Feng Liu, Joe Li, Ian Gregg, Nick Shuley and Stuart Crozier School of Information Technology and Electrical Engineering,

More information

(N)MR Imaging. Lab Course Script. FMP PhD Autumn School. Location: C81, MRI Lab B0.03 (basement) Instructor: Leif Schröder. Date: November 3rd, 2010

(N)MR Imaging. Lab Course Script. FMP PhD Autumn School. Location: C81, MRI Lab B0.03 (basement) Instructor: Leif Schröder. Date: November 3rd, 2010 (N)MR Imaging Lab Course Script FMP PhD Autumn School Location: C81, MRI Lab B0.03 (basement) Instructor: Leif Schröder Date: November 3rd, 2010 1 Purpose: Understanding the basic principles of MR imaging

More information

Multi-channel SQUID-based Ultra-Low Field Magnetic Resonance Imaging in Unshielded Environment

Multi-channel SQUID-based Ultra-Low Field Magnetic Resonance Imaging in Unshielded Environment Multi-channel SQUID-based Ultra-Low Field Magnetic Resonance Imaging in Unshielded Environment Andrei Matlashov, Per Magnelind, Shaun Newman, Henrik Sandin, Algis Urbaitis, Petr Volegov, Michelle Espy

More information

3T Unlimited. ipat on MAGNETOM Allegra The Importance of ipat at 3T. medical

3T Unlimited. ipat on MAGNETOM Allegra The Importance of ipat at 3T. medical 3T Unlimited ipat on MAGNETOM Allegra The Importance of ipat at 3T s medical ipat on MAGNETOM Allegra The Importance of ipat at 3T The rise of 3T MR imaging Ultra High Field MR (3T) has flourished during

More information

MRI Metal Artifact Reduction

MRI Metal Artifact Reduction MRI Metal Artifact Reduction PD Dr. med. Reto Sutter University Hospital Balgrist Zurich University of Zurich OUTLINE Is this Patient suitable for MR Imaging? Metal artifact reduction Is this Patient suitable

More information

Experience in implementing continuous arterial spin labeling on a commercial MR scanner

Experience in implementing continuous arterial spin labeling on a commercial MR scanner JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 6, NUMBER 1, WINTER 2005 Experience in implementing continuous arterial spin labeling on a commercial MR scanner Theodore R. Steger and Edward F. Jackson

More information

EPISTAR MRI: Multislice Mapping of Cerebral Blood Flow

EPISTAR MRI: Multislice Mapping of Cerebral Blood Flow EPISTAR MRI: Multislice Mapping of Cerebral Blood Flow Robert R. Edelman, Qun Chen A method is described for multislice EPISTAR that perfectly compensates magnetization transfer effects. lnflowing arterial

More information

Coil Overlook Coil in MRI system TEM Coil Coil Overlook

Coil Overlook Coil in MRI system TEM Coil Coil Overlook Hardware Coil Overlook Coil in MRI system TEM Coil Coil Overlook Part1 1 Transmit and Receive Head coil Body coil Surface coil and multi-coil T/R T/R R New uses of coils Surface coil and multi-coil T/R

More information

Effect of RF Pulse Sequence on Temperature Elevation for a Given Time-Average SAR

Effect of RF Pulse Sequence on Temperature Elevation for a Given Time-Average SAR Effect of RF Pulse Sequence on Temperature Elevation for a Given Time-Average SAR ZHANGWEI WANG, 1 CHRISTOPHER M. COLLINS 2 1 GE Healthcare, Aurora, OH 44202 2 Department of Radiology and ioengineering,

More information

MR Advance Techniques. Flow Phenomena. Class II

MR Advance Techniques. Flow Phenomena. Class II MR Advance Techniques Flow Phenomena Class II Flow Phenomena In this class we will explore different phenomenona produced from nuclei that move during the acquisition of data. Flowing nuclei exhibit different

More information

SIEMENS MAGNETOM Skyra syngo MR D13

SIEMENS MAGNETOM Skyra syngo MR D13 Page 1 of 12 SIEMENS MAGNETOM Skyra syngo MR D13 \\USER\CIND\StudyProtocols\PTSA\*ep2d_M0Map_p2_TE15 TA:7.9 s PAT:2 Voxel size:2.5 2.5 3.0 mm Rel. SNR:1.00 :epfid Properties Routine Contrast Prio Recon

More information

HIGH-FIELD magnetic resonance imaging (MRI) systems,

HIGH-FIELD magnetic resonance imaging (MRI) systems, IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL 59, NO 12, DECEMBER 2012 3365 A Method to Localize RF B 1 Field in High-Field Magnetic Resonance Imaging Systems Hyoungsuk Yoo, Anand Gopinath, Life Fellow,

More information

Application Guide & Release Notes

Application Guide & Release Notes Application Guide & Release Notes Inner-volume-imaging (IVI) EPI C2P Release 002a 1 September 2015 TMII Translational and Molecular Imaging Institute Conditions of Use This package is provided to support

More information

The promise of high-field MRI. High Field MRI Technology, Applications, Safety, and Limitations. High-field Scanners

The promise of high-field MRI. High Field MRI Technology, Applications, Safety, and Limitations. High-field Scanners High Field MRI Technology, Applications, Safety, and Limitations R. Jason Stafford, Ph.D. Department of Imaging Physics The University of Texas M. D. Anderson Cancer Center Houston, TX The promise of high-field

More information

Parallel imaging performance investigation of an 8-channel common-mode differential-mode (CMDM) planar array for 7T MRI

Parallel imaging performance investigation of an 8-channel common-mode differential-mode (CMDM) planar array for 7T MRI Original Article Parallel imaging performance investigation of an 8-channel common-mode differential-mode (CMDM) planar array for 7T MRI Xiaoqing u,, Xiao Chen,, Xin Liu,, airong Zheng,, Ye Li,, Xiaoliang

More information

H 2 O and fat imaging

H 2 O and fat imaging H 2 O and fat imaging Xu Feng Outline Introduction benefit from the separation of water and fat imaging Chemical Shift definition of chemical shift origin of chemical shift equations of chemical shift

More information

Encoding of inductively measured k-space trajectories in MR raw data

Encoding of inductively measured k-space trajectories in MR raw data Downloaded from orbit.dtu.dk on: Apr 10, 2018 Encoding of inductively measured k-space trajectories in MR raw data Pedersen, Jan Ole; Hanson, Christian G.; Xue, Rong; Hanson, Lars G. Publication date:

More information

Signal-to-Noise Ratio and Absorbed Power as Functions of Main Magnetic Field Strength, and Definition of 90 RF Pulse for the Head in the Birdcage Coil

Signal-to-Noise Ratio and Absorbed Power as Functions of Main Magnetic Field Strength, and Definition of 90 RF Pulse for the Head in the Birdcage Coil Signal-to-Noise Ratio and Absorbed Power as Functions of Main Magnetic Field Strength, and Definition of 90 RF Pulse for the Head in the Birdcage Coil Christopher M. Collins 1,3 and Michael B. Smith 1,2

More information

Inherent Insensitivity to RF Inhomogeneity in FLASH Imaging

Inherent Insensitivity to RF Inhomogeneity in FLASH Imaging Inherent Insensitivity to RF Inhomogeneity in FLASH Imaging Danli Wang, Keith Heberlein, Stephen LaConte, and Xiaoping Hu* Magnetic Resonance in Medicine 52:927 931 (2004) Radiofrequency (RF) field inhomogeneity

More information

MR in RTP. MR Data for Treatment Planning: Spatial Accuracy Issues, Protocol Optimization, and Applications (Preview of TG117 Report) Acknowledgements

MR in RTP. MR Data for Treatment Planning: Spatial Accuracy Issues, Protocol Optimization, and Applications (Preview of TG117 Report) Acknowledgements MR Data for Treatment Planning: Issues, Protocol Optimization, and s (Preview of TG117 Report) Debra H. Brinkmann Mayo Clinic, Rochester MN Acknowledgements TG-117 Use of MRI Data in Treatment Planning

More information

The Usefulness of Simultaneously Excited Magnetic Resonance Signals from Diffusion Tensor Image

The Usefulness of Simultaneously Excited Magnetic Resonance Signals from Diffusion Tensor Image Journal of Magnetics 23(3), 370-374 (2018) ISSN (Print) 1226-1750 ISSN (Online) 2233-6656 https://doi.org/10.4283/jmag.2018.23.3.370 The Usefulness of Simultaneously Excited Magnetic Resonance Signals

More information

Downloaded from by on 02/07/18 from IP address Copyright ARRS. For personal use only; all rights reserved

Downloaded from  by on 02/07/18 from IP address Copyright ARRS. For personal use only; all rights reserved Downloaded from www.ajronline.org by 46.3.192.5 on 02/07/18 from IP address 46.3.192.5. Copyright RRS. For personal use only; all rights reserved C oil sensitivity encoding (SENSE) is a new technique that

More information

MARP. MR Accreditation Program Quality Control Beyond Just the Scans and Measurements July 2005

MARP. MR Accreditation Program Quality Control Beyond Just the Scans and Measurements July 2005 ACR MRI accreditation program MR Accreditation Program Quality Control Beyond Just the Scans and Measurements July 2005 Carl R. Keener, Ph.D., DABMP, DABR keener@marpinc.com MARP Medical & Radiation Physics,

More information

Transmit Arrays and Circuitry

Transmit Arrays and Circuitry Transmit Arrays and Circuitry Gregor Adriany gregor@cmrr.umn.edu University of Minnesota, Center for Magnetic Resonance Research 2021 6 th Street SE, Minneapolis, MN 55455, USA Target Audience: Engineers

More information

Standards for Imaging Endpoints in Clinical Trials: Standardization and Optimization of Image Acquisitions: Magnetic Resonance

Standards for Imaging Endpoints in Clinical Trials: Standardization and Optimization of Image Acquisitions: Magnetic Resonance FDA Workshop April 13, 2010 Standards for Imaging Endpoints in Clinical Trials: Standardization and Optimization of Image Acquisitions: Magnetic Resonance Edward F. Jackson, PhD Professor and Chief, Section

More information

MR in Tx Planning. Acknowledgements. Outline. Overview MR in RTP

MR in Tx Planning. Acknowledgements. Outline. Overview MR in RTP MR Data for Treatment Planning and Stereotactic Procedures: Sources of Distortion, Protocol Optimization, and Assessment (Preview of TG117 Report) Debra H. Brinkmann Mayo Clinic, Rochester MN Acknowledgements

More information

Multiplexed Echo Planar Imaging for Sub-Second Whole Brain FMRI and Fast Diffusion Imaging

Multiplexed Echo Planar Imaging for Sub-Second Whole Brain FMRI and Fast Diffusion Imaging Multiplexed Echo Planar Imaging for Sub-Second Whole Brain FMRI and Fast Diffusion Imaging David A. Feinberg 1,2,3 *, Steen Moeller 4, Stephen M. Smith 5, Edward Auerbach 4, Sudhir Ramanna 1,MattF. Glasser

More information

Noninvasive Blood Flow Mapping with Arterial Spin Labeling (ASL) Paul Kyu Han and Sung-Hong Park

Noninvasive Blood Flow Mapping with Arterial Spin Labeling (ASL) Paul Kyu Han and Sung-Hong Park Noninvasive Blood Flow Mapping with Arterial Spin Labeling (ASL) Paul Kyu Han and Sung-Hong Park Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon,

More information

Clear delineation of optic radiation and very small vessels using phase difference enhanced imaging (PADRE)

Clear delineation of optic radiation and very small vessels using phase difference enhanced imaging (PADRE) Clear delineation of optic radiation and very small vessels using phase difference enhanced imaging (PADRE) Poster No.: C-2459 Congress: ECR 2010 Type: Scientific Exhibit Topic: Neuro Authors: T. Yoneda,

More information

The SENSE Ghost: Field-of-View Restrictions for SENSE Imaging

The SENSE Ghost: Field-of-View Restrictions for SENSE Imaging JOURNAL OF MAGNETIC RESONANCE IMAGING 20:1046 1051 (2004) Technical Note The SENSE Ghost: Field-of-View Restrictions for SENSE Imaging James W. Goldfarb, PhD* Purpose: To describe a known (but undocumented)

More information

Complex-Valued Analysis of Arterial Spin Labeling Based Functional Magnetic Resonance Imaging Signals

Complex-Valued Analysis of Arterial Spin Labeling Based Functional Magnetic Resonance Imaging Signals Complex-Valued Analysis of Arterial Spin Labeling Based Functional Magnetic Resonance Imaging Signals Luis Hernandez-Garcia, 1 * Alberto L. Vazquez, 2 and Daniel B. Rowe 3 Magnetic Resonance in Medicine

More information

RF PULSE DESIGN FOR PARALLEL TRANSMISSION IN ULTRA HIGH FIELD MAGNETIC RESONANCE IMAGING. Hai Zheng. B.S., Xi an JiaoTong University, 2005

RF PULSE DESIGN FOR PARALLEL TRANSMISSION IN ULTRA HIGH FIELD MAGNETIC RESONANCE IMAGING. Hai Zheng. B.S., Xi an JiaoTong University, 2005 RF PULSE DESIGN FOR PARALLEL TRANSMISSION IN ULTRA HIGH FIELD MAGNETIC RESONANCE IMAGING by Hai Zheng B.S., Xi an JiaoTong University, 2005 Submitted to the Graduate Faculty of the Swanson School of Engineering

More information

On Consideration of Radiated Power in RF Field Simulations for MRI

On Consideration of Radiated Power in RF Field Simulations for MRI COMPUTER PROCESSING AND MODELING - Note Magnetic Resonance in Medicine 69:290 294 (2013) On Consideration of Radiated Power in RF Field Simulations for MRI Wanzhan Liu, 1 Chien-ping Kao, 2 Christopher

More information

RAD 229: MRI Signals and Sequences

RAD 229: MRI Signals and Sequences RAD 229: MRI Signals and Sequences Brian Hargreaves All notes are on the course website web.stanford.edu/class/rad229 Course Goals Develop Intuition Understand MRI signals Exposure to numerous MRI sequences

More information

Frequency Stabilization Using Infinite Impulse Response Filtering for SSFP fmri at 3T

Frequency Stabilization Using Infinite Impulse Response Filtering for SSFP fmri at 3T Magnetic Resonance in Medicine 57:369 379 (2007) Frequency Stabilization Using Infinite Impulse Response Filtering for SSFP fmri at 3T Ming-Long Wu, 1 3 Pei-Hsin Wu, 2 Teng-Yi Huang, 1 * Yi-Yu Shih, 2

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION a b STS IOS IOS STS c "#$"% "%' STS posterior IOS dorsal anterior ventral d "( "& )* e f "( "#$"% "%' "& )* Supplementary Figure 1. Retinotopic mapping of the non-lesioned hemisphere. a. Inflated 3D representation

More information

MR Basics: Module 8 Image Quality

MR Basics: Module 8 Image Quality Module 8 Transcript For educational and institutional use. This transcript is licensed for noncommercial, educational inhouse or online educational course use only in educational and corporate institutions.

More information

Receive Arrays and Circuitry

Receive Arrays and Circuitry Receive Arrays and Circuitry Cecilia Possanzini, Ph.D. Philips Healthcare, The Netherlands Email: cecilia.possanzini@philips.com Introduction This session provides an overview of the design principles

More information

Simultaneous Multi-Slice (Slice Accelerated) Diffusion EPI

Simultaneous Multi-Slice (Slice Accelerated) Diffusion EPI Simultaneous Multi-Slice (Slice Accelerated) Diffusion EPI Val M. Runge, MD Institute for Diagnostic and Interventional Radiology Clinics for Neuroradiology and Nuclear Medicine University Hospital Zurich

More information

Imaging the brain at ultra-high resolution using 3D FatNavs

Imaging the brain at ultra-high resolution using 3D FatNavs Imaging the brain at ultra-high resolution using 3D FatNavs Daniel Gallichan Centre d Imagerie BioMédicale EPFL, Lausanne, Switzerland Overview Introduction How motion affects MRI scans Ways we can track

More information

RF and Electronic Design Perspective on Ultra-High Field MRI systems

RF and Electronic Design Perspective on Ultra-High Field MRI systems RF and Electronic Design Perspective on Ultra-High Field MRI systems A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY SUNG-MIN SOHN IN PARTIAL FULFILLMENT

More information

Focused RF Hyperthermia Using Ultra-High Field MRI Joshua de Bever, PhD

Focused RF Hyperthermia Using Ultra-High Field MRI Joshua de Bever, PhD Focused RF Hyperthermia Using Ultra-High Field MRI Joshua de Bever, PhD Department of Radiology Stanford University STANFORD CANCER IMAGING TRAINEESHIP UHF Focused RF (FRF) Hyperthermia GOAL: Generate

More information

Echo-Planar Imaging for a 9.4 Tesla Vertical-Bore Superconducting Magnet Using an Unshielded Gradient Coil

Echo-Planar Imaging for a 9.4 Tesla Vertical-Bore Superconducting Magnet Using an Unshielded Gradient Coil Magn Reson Med Sci, Vol. XX, No. X, pp. XXX XXX, 2015 2016 Japanese Society for Magnetic Resonance in Medicine TECHNICAL NOTE by J-STAGE doi:10.2463/mrms.tn.2015-0123 Echo-Planar Imaging for a 9.4 Tesla

More information

ACRIN 6686 / RTOG 0825

ACRIN 6686 / RTOG 0825 ACRIN 6686 (RTOG 0825) Advanced MRI Imaging Manual ACRIN 6686 / RTOG 0825 A phase III double blind placebo controlled trial of conventional chemoradiation and adjuvant temozolomide plus bevacizumab vs

More information

Polarization of the RF Field in a Human Head at High Field: A Study With a Quadrature Surface Coil at 7.0 T

Polarization of the RF Field in a Human Head at High Field: A Study With a Quadrature Surface Coil at 7.0 T Magnetic Resonance in Medicine 48:362 369 (2002) Polarization of the RF Field in a Human Head at High Field: A Study With a Quadrature Surface Coil at 7.0 T Jinghua Wang, 1 Qing X. Yang, 1 * Xiaoliang

More information

MRI RF-Coils. Innovation with Integrity. Highest sensitivity for your preclinical MRI and MRS applications. Preclinical Imaging

MRI RF-Coils. Innovation with Integrity. Highest sensitivity for your preclinical MRI and MRS applications. Preclinical Imaging MRI RF-Coils Highest sensitivity for your preclinical MRI and MRS applications Innovation with Integrity Preclinical Imaging Molecular and Preclinical Imaging Preclinical magnetic resonance imaging of

More information

Spiral MRI on a 9.4T Vertical-bore Superconducting Magnet Using Unshielded and Self-shielded Gradient Coils

Spiral MRI on a 9.4T Vertical-bore Superconducting Magnet Using Unshielded and Self-shielded Gradient Coils Magn Reson Med Sci doi:10.2463/mrms.tn.2016-0049 Published Online: March 27, 2017 TECHNICAL NOTE Spiral MRI on a 9.4T Vertical-bore Superconducting Magnet Using Unshielded and Self-shielded Gradient Coils

More information

Lab 8 6.S02 Spring 2013 MRI Projection Imaging

Lab 8 6.S02 Spring 2013 MRI Projection Imaging 1. Spin Echos 1.1 Find f0, TX amplitudes, and shim settings In order to acquire spin echos, we first need to find the appropriate scanner settings using the FID GUI. This was all done last week, but these

More information

2 Hardware for Magnetic Resonance Imaging

2 Hardware for Magnetic Resonance Imaging Hardware for Magnetic Resonance Imaging 13 2 Hardware for Magnetic Resonance Imaging Kenneth W. Fishbein, Joseph C. McGowan, and Richard G. Spencer CONTENTS 2.1 Introduction 13 2.2 Magnets 13 2.2.1 Permanent

More information

Challenges of Field Inhomogeneities and a Method for Compensation. Angela Lynn Styczynski Snyder. Michael Garwood, Ph.D., Adviser

Challenges of Field Inhomogeneities and a Method for Compensation. Angela Lynn Styczynski Snyder. Michael Garwood, Ph.D., Adviser Challenges of Field Inhomogeneities and a Method for Compensation A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Angela Lynn Styczynski Snyder IN PARTIAL

More information

Steady-state sequences: Spoiled and balanced methods

Steady-state sequences: Spoiled and balanced methods Steady-state sequences: Spoiled and balanced methods Karla L Miller, FMRIB Centre, University of Oxford What is steady-state imaging? In the context of MRI pulse sequences, the term steady state typically

More information

NIH Public Access Author Manuscript Magn Reson Med. Author manuscript; available in PMC 2010 July 21.

NIH Public Access Author Manuscript Magn Reson Med. Author manuscript; available in PMC 2010 July 21. NIH Public Access Author Manuscript Published in final edited form as: Magn Reson Med. 2010 April ; 63(4): 1092 1097. doi:10.1002/mrm.22223. Spatially Varying Fat-Water Excitation Using Short 2DRF Pulses

More information

IR/SR TrueFISP. Works-in-Progress package Version 1.2. For the SIEMENS Magnetom. Installation and User s Guide NUMARIS/4VA21B.

IR/SR TrueFISP. Works-in-Progress package Version 1.2. For the SIEMENS Magnetom. Installation and User s Guide NUMARIS/4VA21B. Works-in-Progress package Version 1.2 For the Installation and User s Guide NUMARIS/4VA21B January 22, 2003 Section of Medical Physics, University Hospital Freiburg, Germany Contact: Klaus Scheffler PhD

More information

Principles of MRI EE225E / BIO265. Lecture 21. Instructor: Miki Lustig UC Berkeley, EECS. M. Lustig, EECS UC Berkeley

Principles of MRI EE225E / BIO265. Lecture 21. Instructor: Miki Lustig UC Berkeley, EECS. M. Lustig, EECS UC Berkeley Principles of MRI Lecture 21 EE225E / BIO265 Instructor: Miki Lustig UC Berkeley, EECS Question What is the difference between the images? Answer Both T1-weighted spin-echo gradient-echo Lower SNR Meniscus

More information

Module 2. Artefacts and Imaging Optimisation for single shot methods. Content: Introduction. Phase error. Phase bandwidth. Chemical shift review

Module 2. Artefacts and Imaging Optimisation for single shot methods. Content: Introduction. Phase error. Phase bandwidth. Chemical shift review MRES 7005 - Fast Imaging Techniques Module 2 Artefacts and Imaging Optimisation for single shot methods Content: Introduction Phase error Phase bandwidth Chemical shift review Chemical shift in pixels

More information

12/21/2016. Siemens Medical Systems Research Agreement Philips Healthcare Research Agreement AAN and ASN Committees

12/21/2016. Siemens Medical Systems Research Agreement Philips Healthcare Research Agreement AAN and ASN Committees Joseph V. Fritz, PhD Nandor Pintor, MD Dent Neurologic Institute ASN 2017 Friday, January 20, 2017 Siemens Medical Systems Research Agreement Philips Healthcare Research Agreement AAN and ASN Committees

More information

Enhancing Gray-to-White Matter Contrast in 3T T1 Spin-Echo Brain Scans by Optimizing Flip Angle

Enhancing Gray-to-White Matter Contrast in 3T T1 Spin-Echo Brain Scans by Optimizing Flip Angle AJNR Am J Neuroradiol 26:2000 2004, September 2005 Enhancing Gray-to-White Matter Contrast in 3T T1 Spin-Echo Brain Scans by Optimizing Flip Angle Bernd L. Schmitz, Georg Grön, Florian Brausewetter, Martin

More information

SAR reduction in 7T C-spine imaging using a dark modes transmit array strategy

SAR reduction in 7T C-spine imaging using a dark modes transmit array strategy SAR reduction in 7T C-spine imaging using a dark modes transmit array strategy The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation

More information

Decoupling of Two Closely Located Dipoles by a Single Passive Scatterer for Ultra-High Field MRI

Decoupling of Two Closely Located Dipoles by a Single Passive Scatterer for Ultra-High Field MRI Decoupling of Two Closely Located Dipoles by a Single Passive Scatterer for Ultra-High Field MRI M.S.M. Mollaei *,1, S.A. Kurdjumov 2, A.A. Hurshkainen 2 and C.R. Simovski 1 Abstract We report decoupling

More information

Magnetic Resonance Imaging at Ultra High Field: Hardware, Methods and Applications. Marcello Alecci

Magnetic Resonance Imaging at Ultra High Field: Hardware, Methods and Applications. Marcello Alecci Magnetic Resonance Imaging at Ultra High Field: Hardware, Methods and Applications Marcello Alecci Università dell Aquila Dipartimento di Scienze della Salute, 67100 L Aquila, Italy marcello.alecci@univaq.it

More information

A Z-Gradient Array for Simultaneous Multi-Slice Excitation With a Single-Band RF Pulse

A Z-Gradient Array for Simultaneous Multi-Slice Excitation With a Single-Band RF Pulse FULL PAPER Magnetic Resonance in Medicine 00:00 00 (2017) A Z-Gradient Array for Simultaneous Multi-Slice Excitation With a Single-Band RF Pulse Koray Ertan, 1,2 Soheil Taraghinia, 1,2 Alireza Sadeghi,

More information

25 CP Generalize Concepts in Abstract Multi-dimensional Image Model Component Semantics Page 1

25 CP Generalize Concepts in Abstract Multi-dimensional Image Model Component Semantics Page 1 25 CP-1390 - Generalize Concepts in Abstract Multi-dimensional Image Model Component Semantics Page 1 1 STATUS Letter Ballot 2 Date of Last Update 2014/09/08 3 Person Assigned David Clunie 4 mailto:dclunie@dclunie.com

More information

Insight Into RF Power Requirements and B 1 Field Homogeneity for Human MRI Via Rigorous FDTD Approach

Insight Into RF Power Requirements and B 1 Field Homogeneity for Human MRI Via Rigorous FDTD Approach JOURNAL OF MAGNETIC RESONANCE IMAGING 25:1235 1247 (2007) Original Research Insight Into RF Power Requirements and B 1 Field Homogeneity for Human MRI Via Rigorous FDTD Approach Tamer S. Ibrahim, PhD 1

More information

Improving high-field MRI using parallel excitation

Improving high-field MRI using parallel excitation review Improving high-field MRI using parallel excitation MRI at high magnetic field strengths promises to deliver clearer images of the body s structure and function. However, high-field MRI currently

More information

Cover Page. The handle holds various files of this Leiden University dissertation

Cover Page. The handle   holds various files of this Leiden University dissertation Cover Page The handle http://hdl.handle.net/1887/49562 holds various files of this Leiden University dissertation Author: Schmid, Sophie Title: Arterial spin labeling in space and time : new MRI sequences

More information

Supplementary Material

Supplementary Material Supplementary Material Orthogonal representation of sound dimensions in the primate midbrain Simon Baumann, Timothy D. Griffiths, Li Sun, Christopher I. Petkov, Alex Thiele & Adrian Rees Methods: Animals

More information

Pulse Sequence Design Made Easier

Pulse Sequence Design Made Easier Pulse Sequence Design Made Easier Gregory L. Wheeler, BSRT(R)(MR) MRI Consultant gurumri@gmail.com 1 2 Pulse Sequences generally have the following characteristics: An RF line characterizing RF Pulse applications

More information

Pulse Sequence Design and Image Procedures

Pulse Sequence Design and Image Procedures Pulse Sequence Design and Image Procedures 1 Gregory L. Wheeler, BSRT(R)(MR) MRI Consultant 2 A pulse sequence is a timing diagram designed with a series of RF pulses, gradients switching, and signal readout

More information

Compensation in 3T Cardiac Imaging Using Short 2DRF Pulses

Compensation in 3T Cardiac Imaging Using Short 2DRF Pulses Magnetic Resonance in Medicine 59:441 446 (2008) B + 1 Compensation in 3T Cardiac Imaging Using Short 2DRF Pulses Kyunghyun Sung and Krishna S. Nayak The purpose of this study was to determine if tailored

More information

Passive Tracking Exploiting Local Signal Conservation: The White Marker Phenomenon

Passive Tracking Exploiting Local Signal Conservation: The White Marker Phenomenon Passive Tracking Exploiting Local Signal Conservation: The White Marker Phenomenon Jan-Henry Seppenwoolde,* Max A. Viergever, and Chris J.G. Bakker Magnetic Resonance in Medicine 50:784 790 (2003) This

More information