Measurement of sub-dominant modes in a BBH population

Size: px
Start display at page:

Download "Measurement of sub-dominant modes in a BBH population"

Transcription

1 Measurement of sub-dominant modes in a BBH population Brendan O Brien, Filipe Da Silva, Sergey Klimenko University of Florida 1

2 Outline Introduction: motivation, previous work

3 Outline Introduction: motivation, previous work Synchronization Method: coherent summation of binary black hole (BBH) events

4 Outline Introduction: motivation, previous work Synchronization Method: coherent summation of binary black hole (BBH) events Results: method applied to simulated events, figures of merit

5 Outline Introduction: motivation, previous work Synchronization Method: coherent summation of binary black hole (BBH) events Results: method applied to simulated events, figures of merit Conclusion: upshot, future work

6 Outline Introduction: motivation, previous work Synchronization Method: coherent summation of binary black hole (BBH) events Results: method applied to simulated events, figures of merit Conclusion: upshot, future work

7 Introduction: Background and motivation GW emission from BBH systems is best understood in spherical harmonics: q=2 (SXS:BBH:0169) 2

8 Introduction: Background and motivation GW emission from BBH systems is best understood in spherical harmonics: (2,2) dominates for most systems q=2 (SXS:BBH:0169) 2

9 Introduction: Background and motivation GW emission from BBH systems is best understood in spherical harmonics: (2,2) dominates for most systems all other modes are known as subdominant modes (SDMs) q=2 (SXS:BBH:0169) 2

10 Introduction: Background and motivation GW emission from BBH systems is best understood in spherical harmonics: (2,2) dominates for most systems Ringdown: quasi- normal modes (QNMs) all other modes are known as subdominant modes (SDMs) q=2 (SXS:BBH:0169) 2

11 Introduction: Background and motivation GW emission from BBH systems is best understood in spherical harmonics: (2,2) dominates for most systems Ringdown: quasi- normal modes (QNMs) all other modes are known as subdominant modes (SDMs) study of QNMs is known as black hole spectroscopy q=2 (SXS:BBH:0169) 2

12 Introduction: Background and motivation GW emission from BBH systems is best understood in spherical harmonics: (2,2) dominates for most systems Ringdown: quasi- normal modes (QNMs) all other modes are known as subdominant modes (SDMs) study of QNMs is known as black hole spectroscopy SDMs and QNMs have yet to be observed q=2 (SXS:BBH:0169) 2

13 Introduction: Measuring SDMs/QNMs GW Requires a BBH event with high signal-to-noise ratio 3

14 Introduction: Measuring SDMs/QNMs GW Requires a BBH event with high signal-to-noise ratio During O3: possible we could detect sub-dominant modes, unlikely to measure QNMs 3

15 Introduction: Measuring SDMs/QNMs GW Requires a BBH event with high signal-to-noise ratio During O3: possible we could detect sub-dominant modes, unlikely to measure QNMs Solution: coherent summation of multiple signals = 3

16 Introduction: Previous work and main concept Previous work: 4

17 Introduction: Previous work and main concept Previous work: Synchronizing QNMs using a signal model (Yang et al. 2017, C. Da Silva et al. 2018) 4

18 Introduction: Previous work and main concept Previous work: Synchronizing QNMs using a signal model (Yang et al. 2017, C. Da Silva et al. 2018) This study is a simple approach to an ill-defined problem: 4

19 Introduction: Previous work and main concept Previous work: Synchronizing QNMs using a signal model (Yang et al. 2017, C. Da Silva et al. 2018) This study is a simple approach to an ill-defined problem: Synchronize without the use of a priori knowledge of the signal model 4

20 Introduction: Previous work and main concept Previous work: Synchronizing QNMs using a signal model (Yang et al. 2017, C. Da Silva et al. 2018) This study is a simple approach to an ill-defined problem: Synchronize without the use of a priori knowledge of the signal model Measure sub-dominant modes during merger and ringdown of combined BBH event 4

21 Introduction: Previous work and main concept Previous work: Synchronizing QNMs using a signal model (Yang et al. 2017, C. Da Silva et al. 2018) This study is a simple approach to an ill-defined problem: Synchronize without the use of a priori knowledge of the signal model Measure sub-dominant modes during merger and ringdown of combined BBH event Maximize the overlap between multiple BBH signals by applying a transformation set 4

22 Outline Introduction: motivation, previous work Synchronization Method: coherent summation of binary black hole (BBH) events Results: method applied to simulated events, figures of merit Conclusion: upshot, future work

23 Synchronization Method: Simulated waveforms Numerical relativity waveforms (SXS) including harmonic modes up to (ℓ=5,m=5) 5

24 Synchronization Method: Simulated waveforms Numerical relativity waveforms (SXS) including harmonic modes up to (ℓ=5,m=5) Parameter space chosen to emulate BBH events which have been detected: 5

25 Synchronization Method: Simulated waveforms Numerical relativity waveforms (SXS) including harmonic modes up to (ℓ=5,m=5) Parameter space chosen to emulate BBH events which have been detected: Mass ratio, total mass zero initial spin, zero eccentricity, chirp mass 5

26 Synchronization Method: Simulated waveforms Numerical relativity waveforms (SXS) including harmonic modes up to (ℓ=5,m=5) Parameter space chosen to emulate BBH events which have been detected: Mass ratio, total mass, chirp mass zero initial spin, zero eccentricity Randomly selected source distance, sky location, orientation confined so recovered SNR is less than SNRGW

27 Synchronization Method: Coherent WaveBurst (cwb) Use cwb for unmodeled signal detection and reconstruction GW

28 Synchronization Method: Coherent WaveBurst (cwb) Use cwb for unmodeled signal detection and reconstruction GW strain data 6

29 Synchronization Method: Coherent WaveBurst (cwb) Use cwb for unmodeled signal detection and reconstruction GW strain data wavelet transform/ pixel selection 6

30 Synchronization Method: Coherent WaveBurst (cwb) Use cwb for unmodeled signal detection and reconstruction GW reconstructed waveform strain data wavelet transform/ pixel selection 6

31 Synchronization Method: Transformations Exclusively use the waveforms reconstructed by cwb to synchronize BBH signals Time-frequency representation of waveform reconstructed by cwb 7

32 Synchronization Method: Transformations Exclusively use the waveforms reconstructed by cwb to synchronize BBH signals Apply a transformation set: time rescale, time shift, frequency shift, phase shift Time-frequency representation of waveform reconstructed by cwb 7

33 Synchronization Method: Transformations Exclusively use the waveforms reconstructed by cwb to synchronize BBH signals Apply a transformation set: time rescale, time shift, frequency shift, phase shift rescale Time-frequency representation of waveform reconstructed by cwb 7

34 Synchronization Method: Transformations Exclusively use the waveforms reconstructed by cwb to synchronize BBH signals Apply a transformation set: time rescale, time shift, frequency shift, phase shift time shift Time-frequency representation of waveform reconstructed by cwb 7

35 Synchronization Method: Transformations Exclusively use the waveforms reconstructed by cwb to synchronize BBH signals Apply a transformation set: time rescale, time shift, frequency shift, phase shift frequency shift Time-frequency representation of waveform reconstructed by cwb 7

36 Synchronization Method: Transformations Exclusively use the waveforms reconstructed by cwb to synchronize BBH signals Apply a transformation set: time rescale, time shift, frequency shift, phase shift Time-frequency representation of waveform reconstructed by cwb 7

37 Synchronization Method: Transformations Exclusively use the waveforms reconstructed by cwb to synchronize BBH signals Apply a transformation set: time rescale, time shift, frequency shift, phase shift Optimize a functional using MINUIT: Time-frequency representation of waveform reconstructed by cwb 7

38 Synchronization Method: Maximizing waveform overlap Synchronization method applied to two reconstructed BBH events (black: q = 1.0, Mtot = 75.7M, Mc= 37.0; red: q = 1.5, Mtot = 76.5M, Mc = 42.0) 8

39 Synchronization Method: Maximizing waveform overlap Synchronization method applied to two reconstructed BBH events (black: q = 1.0, Mtot = 75.7M, Mc= 37.0; red: q = 1.5, Mtot = 76.5M, Mc = 42.0) 8

40 Synchronization Method: Maximizing waveform overlap optimization time window Synchronization method applied to two reconstructed BBH events (black: q = 1.0, Mtot = 75.7M, Mc= 37.0; red: q = 1.5, Mtot = 76.5M, Mc = 42.0) 8

41 Outline Introduction: motivation, previous work Synchronization Method: coherent summation of binary black hole (BBH) events Results: method applied to simulated events, figures of merit Conclusion: upshot, future work

42 Results: Summation of simulated waveforms Coherent stacking method applied to 16 BBH simulated waveforms 9

43 Results: Summation of simulated waveforms one simulated BBH waveform Coherent stacking method applied to 16 BBH simulated waveforms 9

44 Results: Summation of simulated waveforms one simulated BBH waveform 16 waveforms stacked Coherent stacking method applied to 16 BBH simulated waveforms 9

45 Results: Summation of simulated waveforms one simulated BBH waveform 16 waveforms stacked Coherent stacking method applied to 16 BBH simulated waveforms 9

46 Results: Summation of simulated waveforms one simulated BBH waveform 16 waveforms stacked x16 Coherent stacking method applied to 16 BBH simulated waveforms 9

47 Results: Summation of simulated waveforms one simulated BBH waveform 16 waveforms stacked FFT of stacked waveform Coherent stacking method applied to 16 BBH simulated waveforms 9

48 Results: Summation of simulated waveforms one simulated BBH waveform 16 waveforms stacked FFT of stacked waveform Coherent stacking method applied to 16 BBH simulated waveforms 9

49 Results: Summation of simulated waveforms one simulated BBH waveform 16 waveforms stacked FFT of stacked waveform Coherent stacking method applied to 16 BBH simulated waveforms 9

50 Results: Extracting sub-dominant modes 10

51 Results: Extracting sub-dominant modes 10

52 Results: Extracting sub-dominant modes cwb 10

53 Results: Extracting sub-dominant modes cwb x16 x16 10

54 Results: Extracting sub-dominant modes cwb x16 x16 synchronization method 10

55 Results: Extracting sub-dominant modes cwb x16 x16 synchronization method cwb 10

56 Results: Extracting sub-dominant modes cwb x16 x16 synchronization method cwb an aggregate waveform is reconstructed without a signal model 10

57 Results: Extracting sub-dominant modes cwb x16 x16 synchronization method cwb an aggregate waveform is reconstructed without a signal model 10

58 Results: Extracting sub-dominant modes Coherent stacking method applied to strain data with injected numerical relativity waveforms, recovered and reconstructed with cwb 11

59 Results: Extracting sub-dominant modes single reconstructed BBH waveform Coherent stacking method applied to strain data with injected numerical relativity waveforms, recovered and reconstructed with cwb 11

60 Results: Extracting sub-dominant modes single reconstructed BBH waveform reconstructed aggregate BBH waveform Coherent stacking method applied to strain data with injected numerical relativity waveforms, recovered and reconstructed with cwb 11

61 Results: Extracting sub-dominant modes single reconstructed BBH waveform reconstructed aggregate BBH waveform x4 Coherent stacking method applied to strain data with injected numerical relativity waveforms, recovered and reconstructed with cwb 11

62 Results: Extracting sub-dominant modes single reconstructed BBH waveform reconstructed aggregate BBH waveform FFT of aggregate BBH waveform Coherent stacking method applied to strain data with injected numerical relativity waveforms, recovered and reconstructed with cwb 11

63 Results: Extracting sub-dominant modes single reconstructed BBH waveform reconstructed aggregate BBH waveform FFT of aggregate BBH waveform Coherent stacking method applied to strain data with injected numerical relativity waveforms, recovered and reconstructed with cwb 11

64 Conclusion: We introduce a method for coherently stacking multiple BBH events 12

65 Conclusion: We introduce a method for coherently stacking multiple BBH events We demonstrate the possibility to extract sub-dominant modes from noise without using signal model 12

66 Conclusion: We introduce a method for coherently stacking multiple BBH events We demonstrate the possibility to extract sub-dominant modes from noise without using signal model Future work: applying this method to BBH events detected by LIGO 12

67 Conclusion: We introduce a method for coherently stacking multiple BBH events We demonstrate the possibility to extract sub-dominant modes from noise without using signal model Future work: applying this method to BBH events detected by LIGO Thank you! 12

68 Extra slides Signals with similar astrophysical parameters are easier to synchronize We use chirp mass as a measure of signal morphology Binary tree for coherent stacking of 16 BBH events

69 Extra slides Need a way to estimate the performance of summation procedure Introduce root-sum-squared amplitude of a waveform: We define the efficiency of stacking as: Can be calculated for entire simulated signal or individual modes

70 Extra slides We stack 16 BBH events by maximizing overlap of cwb reconstructed waveforms We calculate the efficiency for several harmonic modes: Harmonic Mode H1 Efficiency (%) L1 Efficiency (2,2) (3,3) (4,4) Sub-dominant (%)

Status of the untriggered burst search in S3 LIGO data

Status of the untriggered burst search in S3 LIGO data Status of the untriggered burst search in S3 LIGO data Igor Yakushin (LIGO Livingston Observatory) For the LIGO Scientific Collaboration GWDAW-9, December 15-18, 2004, Annecy, France Overview Differences

More information

Model Waveform Accuracy Standards for Gravitational Wave Data Analysis

Model Waveform Accuracy Standards for Gravitational Wave Data Analysis Model Waveform Accuracy Standards for Gravitational Wave Data Analysis Lee Lindblom Theoretical Astrophysics, Caltech Numerical Relativity and Data Analysis Meeting Syracuse University 1 August 008 Collaborators:

More information

Data-analysis driven comparison of analytic and numerical coalescing binary waveforms: Nonspinning case

Data-analysis driven comparison of analytic and numerical coalescing binary waveforms: Nonspinning case PHYSICAL REVIEW D 77, 2414 (28) Data-analysis driven comparison of analytic and numerical coalescing binary waveforms: Nonspinning case Yi Pan, 1 Alessandra Buonanno, 1 John G. Baker, 2 Joan Centrella,

More information

Application of Non-Harmonic Analysis for Gravitational Wave Detection

Application of Non-Harmonic Analysis for Gravitational Wave Detection Application of Non-Harmonic Analysis for Gravitational Wave Detection Masaya Nakano University of Toyama Collaborate with S. Hirobayashi(Univ. Toyama), H. Tagoshi(Osaka Univ.), K. Ueno(Osaka Univ.), T.

More information

Galactic binary foregrounds Resolving, identifying and subtracting binary stars

Galactic binary foregrounds Resolving, identifying and subtracting binary stars Galactic binary foregrounds Resolving, identifying and subtracting binary stars Shane L. Larson Space Radiation Laboratory California Institute of Technology shane@srl.caltech.edu Pennsylvania State University

More information

The Simulation of Lisa and Data Analysis. E.Plagnol for the LISA_APC group

The Simulation of Lisa and Data Analysis. E.Plagnol for the LISA_APC group The Simulation of Lisa and Data Analysis E.Plagnol for the LISA_APC group Outline The simulation of LISA : LISACode Motivations LISACode The sensitivity curve in different situations The strategy The EMRIs

More information

Parameter Estimation Techniques for Ultrasound Phase Reconstruction. Fatemeh Vakhshiteh Sept. 16, 2010

Parameter Estimation Techniques for Ultrasound Phase Reconstruction. Fatemeh Vakhshiteh Sept. 16, 2010 Parameter Estimation Techniques for Ultrasound Phase Reconstruction Fatemeh Vakhshiteh Sept. 16, 2010 Presentation Outline Motivation Thesis Objectives Background Simulation Quadrature Phase Measurement

More information

The NINJA2 Waveform Model Data Set

The NINJA2 Waveform Model Data Set The NINJA2 Waveform Model Data Set Sascha Husa Universitat de les Illes Balears For the Ninja Collaboration ninja-project.org 0.003 LLama BAM T1 0.002 LLama BAM T4 M M 0.001 0.000 0.001 SpEC BAM T1 SpEC

More information

The International Pulsar Timing Array. Maura McLaughlin West Virginia University June

The International Pulsar Timing Array. Maura McLaughlin West Virginia University June The International Pulsar Timing Array Maura McLaughlin West Virginia University June 13 2011 Outline Pulsar timing for gravitational wave detection Pulsar timing arrays EPTA, NANOGrav, PPTA The International

More information

arxiv: v2 [gr-qc] 25 Aug 2007

arxiv: v2 [gr-qc] 25 Aug 2007 A data-analysis driven comparison of analytic and numerical coalescing binary waveforms: nonspinning case Yi Pan, 1 Alessandra Buonanno, 1 John G. Baker, 2 Joan Centrella, 2 Bernard J. Kelly, 2 Sean T.

More information

The short FFT database and the peak map for the hierarchical search of periodic sources

The short FFT database and the peak map for the hierarchical search of periodic sources INSTITUTE OF PHYSICS PUBLISHING Class. Quantum Grav. 22 (2005) S1197 S1210 CLASSICAL AND QUANTUM GRAVITY doi:10.1088/0264-9381/22/18/s34 The short FFT database and the peak map for the hierarchical search

More information

LabVIEW Basics Peter Avitabile,Jeffrey Hodgkins Mechanical Engineering Department University of Massachusetts Lowell

LabVIEW Basics Peter Avitabile,Jeffrey Hodgkins Mechanical Engineering Department University of Massachusetts Lowell LabVIEW Basics Peter Avitabile,Jeffrey Hodgkins Mechanical Engineering Department University of Massachusetts Lowell 1 Dr. Peter Avitabile LabVIEW LabVIEW is a data acquisition software package commonly

More information

CHAPTER 3 Noise in Amplitude Modulation Systems

CHAPTER 3 Noise in Amplitude Modulation Systems CHAPTER 3 Noise in Amplitude Modulation Systems NOISE Review: Types of Noise External (Atmospheric(sky),Solar(Cosmic),Hotspot) Internal(Shot, Thermal) Parameters of Noise o Signal to Noise ratio o Noise

More information

Advanced Digital Signal Processing Part 2: Digital Processing of Continuous-Time Signals

Advanced Digital Signal Processing Part 2: Digital Processing of Continuous-Time Signals Advanced Digital Signal Processing Part 2: Digital Processing of Continuous-Time Signals Gerhard Schmidt Christian-Albrechts-Universität zu Kiel Faculty of Engineering Institute of Electrical Engineering

More information

THE FUTURE OF VIRGO BEYOND ADVANCED DETECTORS. Gianluca Gemme INFN Genova for the Virgo Collaboration

THE FUTURE OF VIRGO BEYOND ADVANCED DETECTORS. Gianluca Gemme INFN Genova for the Virgo Collaboration THE FUTURE OF VIRGO BEYOND ADVANCED DETECTORS Gianluca Gemme INFN Genova for the Virgo Collaboration GW150914 2 Post Newtonian formalism DEVIATION OF PN COEFFICIENTS FROM GR Phase of the inspiral waveform

More information

Signal segmentation and waveform characterization. Biosignal processing, S Autumn 2012

Signal segmentation and waveform characterization. Biosignal processing, S Autumn 2012 Signal segmentation and waveform characterization Biosignal processing, 5173S Autumn 01 Short-time analysis of signals Signal statistics may vary in time: nonstationary how to compute signal characterizations?

More information

Digital Image Processing

Digital Image Processing In the Name of Allah Digital Image Processing Introduction to Wavelets Hamid R. Rabiee Fall 2015 Outline 2 Why transform? Why wavelets? Wavelets like basis components. Wavelets examples. Fast wavelet transform.

More information

UNIT-1. Basic signal processing operations in digital communication

UNIT-1. Basic signal processing operations in digital communication UNIT-1 Lecture-1 Basic signal processing operations in digital communication The three basic elements of every communication systems are Transmitter, Receiver and Channel. The Overall purpose of this system

More information

Cognitive Ultra Wideband Radio

Cognitive Ultra Wideband Radio Cognitive Ultra Wideband Radio Soodeh Amiri M.S student of the communication engineering The Electrical & Computer Department of Isfahan University of Technology, IUT E-Mail : s.amiridoomari@ec.iut.ac.ir

More information

Key Questions. What is an LED and how does it work? How does a laser work? How does a semiconductor laser work? ECE 340 Lecture 29 : LEDs and Lasers

Key Questions. What is an LED and how does it work? How does a laser work? How does a semiconductor laser work? ECE 340 Lecture 29 : LEDs and Lasers Things you should know when you leave Key Questions ECE 340 Lecture 29 : LEDs and Class Outline: What is an LED and how does it How does a laser How does a semiconductor laser How do light emitting diodes

More information

Design IV. E232 Spring 07

Design IV. E232 Spring 07 Design IV Spring 07 Class 8 Bruce McNair bmcnair@stevens.edu 8-1/38 Computerized Data Acquisition Measurement system architecture System under test sensor sensor sensor sensor signal conditioning signal

More information

ECE 340 Lecture 29 : LEDs and Lasers Class Outline:

ECE 340 Lecture 29 : LEDs and Lasers Class Outline: ECE 340 Lecture 29 : LEDs and Lasers Class Outline: Light Emitting Diodes Lasers Semiconductor Lasers Things you should know when you leave Key Questions What is an LED and how does it work? How does a

More information

Progress on Burst Upper Limits simulation development. AJW, 4/3/01. Here s my overview of the task at hand:

Progress on Burst Upper Limits simulation development. AJW, 4/3/01. Here s my overview of the task at hand: Progress on Burst Upper Limits simulation development. AJW, 4/3/1 Here s my overview of the task at hand: Milestones for the simulation subgroup: Exercise LDAS user application code / pipeline - Become

More information

Modeling Photonic Crystal Light Emitting Diode (PhCLED) Using APSYS. Copyright 2007 Crosslight Software Inc.

Modeling Photonic Crystal Light Emitting Diode (PhCLED) Using APSYS. Copyright 2007 Crosslight Software Inc. Modeling Photonic Crystal Light Emitting Diode (PhCLED) Using APSYS Copyright 2007 Crosslight Software Inc. www.crosslight.com 1 2 Model Contents A PhCLED with DBR An InGaN PhCLED with guided multimodes

More information

145M Final Exam Solutions page 1 May 11, 2010 S. Derenzo R/2. Vref. Address encoder logic. Exclusive OR. Digital output (8 bits) V 1 2 R/2

145M Final Exam Solutions page 1 May 11, 2010 S. Derenzo R/2. Vref. Address encoder logic. Exclusive OR. Digital output (8 bits) V 1 2 R/2 UNIVERSITY OF CALIFORNIA College of Engineering Electrical Engineering and Computer Sciences Department 145M Microcomputer Interfacing Lab Final Exam Solutions May 11, 2010 1.1 Handshaking steps: When

More information

Filters. Motivating Example. Tracking a fly, oh my! Moving Weighted Average Filter. General Picture

Filters. Motivating Example. Tracking a fly, oh my! Moving Weighted Average Filter. General Picture Motivating Example Filters Consider we are tracking a fly Sensor reports the fly s position several times a second Some noise in the sensor Goal: reconstruct the fly s actual path Problem: can t rely on

More information

Enhanced Blind Reception of WiGig ad Multicarrier PHY using MIMO Beam Analysis

Enhanced Blind Reception of WiGig ad Multicarrier PHY using MIMO Beam Analysis Institute for Critical Technology and Applied Science Enhanced Blind Reception of WiGig 802.11ad Multicarrier PHY using MIMO Beam Analysis Joseph F Ziegler Research Associate Electronic Systems November

More information

Extraction of Musical Pitches from Recorded Music. Mark Palenik

Extraction of Musical Pitches from Recorded Music. Mark Palenik Extraction of Musical Pitches from Recorded Music Mark Palenik ABSTRACT Methods of determining the musical pitches heard by the human ear hears when recorded music is played were investigated. The ultimate

More information

Lecture 3: Wireless Physical Layer: Modulation Techniques. Mythili Vutukuru CS 653 Spring 2014 Jan 13, Monday

Lecture 3: Wireless Physical Layer: Modulation Techniques. Mythili Vutukuru CS 653 Spring 2014 Jan 13, Monday Lecture 3: Wireless Physical Layer: Modulation Techniques Mythili Vutukuru CS 653 Spring 2014 Jan 13, Monday Modulation We saw a simple example of amplitude modulation in the last lecture Modulation how

More information

Noise simulation from data

Noise simulation from data 3x1x1 Analysis meeting 17/08/2018 Noise simulation from data (APC - Université Paris Diderot) scarpell@apc.in2p3.fr Introduction 2 Noise in the 311 is not yet well understood Different detector conditions

More information

Module 3 Greedy Strategy

Module 3 Greedy Strategy Module 3 Greedy Strategy Dr. Natarajan Meghanathan Professor of Computer Science Jackson State University Jackson, MS 39217 E-mail: natarajan.meghanathan@jsums.edu Introduction to Greedy Technique Main

More information

Chapter-1: Introduction

Chapter-1: Introduction Chapter-1: Introduction The purpose of a Communication System is to transport an information bearing signal from a source to a user destination via a communication channel. MODEL OF A COMMUNICATION SYSTEM

More information

Empirical Mode Decomposition (EMD) of Turner Valley Airborne Gravity Data in the Foothills of Alberta, Canada

Empirical Mode Decomposition (EMD) of Turner Valley Airborne Gravity Data in the Foothills of Alberta, Canada Empirical Mode Decomposition (EMD) of Turner Valley Airborne Gravity Data in the Foothills of Alberta, Canada Hassan Hassan* GEDCO, Calgary, Alberta, Canada hassan@gedco.com Abstract Summary Growing interest

More information

Orthogonal Frequency Division Multiplexing (OFDM)

Orthogonal Frequency Division Multiplexing (OFDM) Orthogonal Frequency Division Multiplexing (OFDM) Presenter: Engr. Dr. Noor M. Khan Professor Department of Electrical Engineering, Muhammad Ali Jinnah University, Islamabad Campus, Islamabad, PAKISTAN

More information

1. General Outline Project Proposal April 9, 2014 Kayla Esquivel and Jason Yang

1. General Outline Project Proposal April 9, 2014 Kayla Esquivel and Jason Yang 1. General Outline 6.101 Project Proposal April 9, 2014 Kayla Esquivel and Jason Yang The invention and mass application of radio broadcast was triggered in the first decade of the nineteenth century by

More information

Chapter 2 Direct-Sequence Systems

Chapter 2 Direct-Sequence Systems Chapter 2 Direct-Sequence Systems A spread-spectrum signal is one with an extra modulation that expands the signal bandwidth greatly beyond what is required by the underlying coded-data modulation. Spread-spectrum

More information

Presentation Outline. Advisors: Dr. In Soo Ahn Dr. Thomas L. Stewart. Team Members: Luke Vercimak Karl Weyeneth

Presentation Outline. Advisors: Dr. In Soo Ahn Dr. Thomas L. Stewart. Team Members: Luke Vercimak Karl Weyeneth Bradley University Department of Electrical and Computer Engineering Senior Capstone Project Proposal December 6 th, 2005 Team Members: Luke Vercimak Karl Weyeneth Advisors: Dr. In Soo Ahn Dr. Thomas L.

More information

Electromagnetic-based Side Channel Attacks

Electromagnetic-based Side Channel Attacks Electromagnetic-based Side Channel Attacks Yasmine Badr 10/28/2015 What is Side Channel Attack Any attack based on information gained from the physical implementation of a cryptosystem, rather than brute

More information

Detection of Targets in Noise and Pulse Compression Techniques

Detection of Targets in Noise and Pulse Compression Techniques Introduction to Radar Systems Detection of Targets in Noise and Pulse Compression Techniques Radar Course_1.ppt ODonnell 6-18-2 Disclaimer of Endorsement and Liability The video courseware and accompanying

More information

Presentation Outline. Advisors: Dr. In Soo Ahn Dr. Thomas L. Stewart. Team Members: Luke Vercimak Karl Weyeneth. Karl. Luke

Presentation Outline. Advisors: Dr. In Soo Ahn Dr. Thomas L. Stewart. Team Members: Luke Vercimak Karl Weyeneth. Karl. Luke Bradley University Department of Electrical and Computer Engineering Senior Capstone Project Presentation May 2nd, 2006 Team Members: Luke Vercimak Karl Weyeneth Advisors: Dr. In Soo Ahn Dr. Thomas L.

More information

GEARBOX FAULT DETECTION BY MOTOR CURRENT SIGNATURE ANALYSIS. A. R. Mohanty

GEARBOX FAULT DETECTION BY MOTOR CURRENT SIGNATURE ANALYSIS. A. R. Mohanty ICSV14 Cairns Australia 9-12 July, 2007 GEARBOX FAULT DETECTION BY MOTOR CURRENT SIGNATURE ANALYSIS A. R. Mohanty Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Kharagpur,

More information

THE STATISTICAL ANALYSIS OF AUDIO WATERMARKING USING THE DISCRETE WAVELETS TRANSFORM AND SINGULAR VALUE DECOMPOSITION

THE STATISTICAL ANALYSIS OF AUDIO WATERMARKING USING THE DISCRETE WAVELETS TRANSFORM AND SINGULAR VALUE DECOMPOSITION THE STATISTICAL ANALYSIS OF AUDIO WATERMARKING USING THE DISCRETE WAVELETS TRANSFORM AND SINGULAR VALUE DECOMPOSITION Mr. Jaykumar. S. Dhage Assistant Professor, Department of Computer Science & Engineering

More information

Carrier Phase Recovery. EE3723 : Digital Communications. Synchronization. Carrier Phase Recovery. Carrier Phase Synchronization Techniques.

Carrier Phase Recovery. EE3723 : Digital Communications. Synchronization. Carrier Phase Recovery. Carrier Phase Synchronization Techniques. EE3723 : Digital Communications Carrier Phase Recovery Week 10: Synchronization (Frequency, Phase, Symbol and Frame Synchronization) Carrier and Phase Recovery Phase-Locked Loop 20-May-15 Muhammad Ali

More information

Experiment begins this autumn. This Talk: Motivation for TAMA300 recycling Length sensing/control system Lock acquisition

Experiment begins this autumn. This Talk: Motivation for TAMA300 recycling Length sensing/control system Lock acquisition Experiment begins this autumn. This Talk: Motivation for TAMA300 recycling Length sensing/control system Lock acquisition Earlier operation as a gravitational wave detector ~ We could start the operation

More information

Sound pressure level calculation methodology investigation of corona noise in AC substations

Sound pressure level calculation methodology investigation of corona noise in AC substations International Conference on Advanced Electronic Science and Technology (AEST 06) Sound pressure level calculation methodology investigation of corona noise in AC substations,a Xiaowen Wu, Nianguang Zhou,

More information

Communications I (ELCN 306)

Communications I (ELCN 306) Communications I (ELCN 306) c Samy S. Soliman Electronics and Electrical Communications Engineering Department Cairo University, Egypt Email: samy.soliman@cu.edu.eg Website: http://scholar.cu.edu.eg/samysoliman

More information

Sampling and Reconstruction of Analog Signals

Sampling and Reconstruction of Analog Signals Sampling and Reconstruction of Analog Signals Chapter Intended Learning Outcomes: (i) Ability to convert an analog signal to a discrete-time sequence via sampling (ii) Ability to construct an analog signal

More information

Detectors. RIT Course Number Lecture Noise

Detectors. RIT Course Number Lecture Noise Detectors RIT Course Number 1051-465 Lecture Noise 1 Aims for this lecture learn to calculate signal-to-noise ratio describe processes that add noise to a detector signal give examples of how to combat

More information

Empirical Mode Decomposition (EMD) of Turner Valley Airborne Gravity Data in the Foothills of Alberta, Canada*

Empirical Mode Decomposition (EMD) of Turner Valley Airborne Gravity Data in the Foothills of Alberta, Canada* Empirical Mode Decomposition (EMD) of Turner Valley Airborne Gravity Data in the Foothills of Alberta, Canada* Hassan Hassan 1 Search and Discovery Article #41581 (2015)** Posted February 23, 2015 *Adapted

More information

ASD and Speckle Interferometry. Dave Rowe, CTO, PlaneWave Instruments

ASD and Speckle Interferometry. Dave Rowe, CTO, PlaneWave Instruments ASD and Speckle Interferometry Dave Rowe, CTO, PlaneWave Instruments Part 1: Modeling the Astronomical Image Static Dynamic Stochastic Start with Object, add Diffraction and Telescope Aberrations add Atmospheric

More information

Target Echo Information Extraction

Target Echo Information Extraction Lecture 13 Target Echo Information Extraction 1 The relationships developed earlier between SNR, P d and P fa apply to a single pulse only. As a search radar scans past a target, it will remain in the

More information

3D Distortion Measurement (DIS)

3D Distortion Measurement (DIS) 3D Distortion Measurement (DIS) Module of the R&D SYSTEM S4 FEATURES Voltage and frequency sweep Steady-state measurement Single-tone or two-tone excitation signal DC-component, magnitude and phase of

More information

CHAPTER 4 IMPLEMENTATION OF ADALINE IN MATLAB

CHAPTER 4 IMPLEMENTATION OF ADALINE IN MATLAB 52 CHAPTER 4 IMPLEMENTATION OF ADALINE IN MATLAB 4.1 INTRODUCTION The ADALINE is implemented in MATLAB environment running on a PC. One hundred data samples are acquired from a single cycle of load current

More information

Prof. P. Subbarao 1, Veeravalli Balaji 2

Prof. P. Subbarao 1, Veeravalli Balaji 2 Performance Analysis of Multicarrier DS-CDMA System Using BPSK Modulation Prof. P. Subbarao 1, Veeravalli Balaji 2 1 MSc (Engg), FIETE, MISTE, Department of ECE, S.R.K.R Engineering College, A.P, India

More information

Computational Complexity of Multiuser. Receivers in DS-CDMA Systems. Syed Rizvi. Department of Electrical & Computer Engineering

Computational Complexity of Multiuser. Receivers in DS-CDMA Systems. Syed Rizvi. Department of Electrical & Computer Engineering Computational Complexity of Multiuser Receivers in DS-CDMA Systems Digital Signal Processing (DSP)-I Fall 2004 By Syed Rizvi Department of Electrical & Computer Engineering Old Dominion University Outline

More information

JGW-G ikagra calibration offline h(t) of ikagra

JGW-G ikagra calibration offline h(t) of ikagra JGW-G1706731 ikagra calibration offline h(t) of ikagra Observation summary of ikagra ikagra observation 1st run: Mar. 25, 9:00(JST) - Mar. 31, 17:00(JST) GPS: 1142899217-1143446417 2nd run: Apr. 11, 9:00(JST)

More information

Ambipolar electronics

Ambipolar electronics Ambipolar electronics Xuebei Yang and Kartik Mohanram Department of Electrical and Computer Engineering, Rice University, Houston {xy3,mr11,kmram}@rice.edu Rice University Technical Report TREE12 March

More information

United States Patent [19] Adelson

United States Patent [19] Adelson United States Patent [19] Adelson [54] DIGITAL SIGNAL ENCODING AND DECODING APPARATUS [75] Inventor: Edward H. Adelson, Cambridge, Mass. [73] Assignee: General Electric Company, Princeton, N.J. [21] Appl.

More information

Objectives. Abstract. This PRO Lesson will examine the Fast Fourier Transformation (FFT) as follows:

Objectives. Abstract. This PRO Lesson will examine the Fast Fourier Transformation (FFT) as follows: : FFT Fast Fourier Transform This PRO Lesson details hardware and software setup of the BSL PRO software to examine the Fast Fourier Transform. All data collection and analysis is done via the BIOPAC MP35

More information

Cooperative Compressed Sensing for Decentralized Networks

Cooperative Compressed Sensing for Decentralized Networks Cooperative Compressed Sensing for Decentralized Networks Zhi (Gerry) Tian Dept. of ECE, Michigan Tech Univ. A presentation at ztian@mtu.edu February 18, 2011 Ground-Breaking Recent Advances (a1) s is

More information

ECE 630: Statistical Communication Theory

ECE 630: Statistical Communication Theory ECE 630: Statistical Communication Theory Dr. B.-P. Paris Dept. Electrical and Comp. Engineering George Mason University Last updated: January 23, 2018 2018, B.-P. Paris ECE 630: Statistical Communication

More information

Compact Torus Injection for Fuelling* C. Xiao, A. Hirose, STOR-M team Plasma Physics Laboratory University of Saskatchewan

Compact Torus Injection for Fuelling* C. Xiao, A. Hirose, STOR-M team Plasma Physics Laboratory University of Saskatchewan Compact Torus Injection for Fuelling* C. Xiao, A. Hirose, STOR-M team (chijin.xiao@usask.ca) Plasma Physics Laboratory University of Saskatchewan 1 \ STOR-M Experiments Improved confinement induced by

More information

YEDITEPE UNIVERSITY ENGINEERING FACULTY COMMUNICATION SYSTEMS LABORATORY EE 354 COMMUNICATION SYSTEMS

YEDITEPE UNIVERSITY ENGINEERING FACULTY COMMUNICATION SYSTEMS LABORATORY EE 354 COMMUNICATION SYSTEMS YEDITEPE UNIVERSITY ENGINEERING FACULTY COMMUNICATION SYSTEMS LABORATORY EE 354 COMMUNICATION SYSTEMS EXPERIMENT 3: SAMPLING & TIME DIVISION MULTIPLEX (TDM) Objective: Experimental verification of the

More information

Wavelet Speech Enhancement based on the Teager Energy Operator

Wavelet Speech Enhancement based on the Teager Energy Operator Wavelet Speech Enhancement based on the Teager Energy Operator Mohammed Bahoura and Jean Rouat ERMETIS, DSA, Université du Québec à Chicoutimi, Chicoutimi, Québec, G7H 2B1, Canada. Abstract We propose

More information

Digital Signal Processing

Digital Signal Processing Digital Signal Processing System Analysis and Design Paulo S. R. Diniz Eduardo A. B. da Silva and Sergio L. Netto Federal University of Rio de Janeiro CAMBRIDGE UNIVERSITY PRESS Preface page xv Introduction

More information

MODULATION AND MULTIPLE ACCESS TECHNIQUES

MODULATION AND MULTIPLE ACCESS TECHNIQUES 1 MODULATION AND MULTIPLE ACCESS TECHNIQUES Networks and Communication Department Dr. Marwah Ahmed Outlines 2 Introduction Digital Transmission Digital Modulation Digital Transmission of Analog Signal

More information

Deep Learning Overview

Deep Learning Overview Deep Learning Overview Eliu Huerta Gravity Group gravity.ncsa.illinois.edu National Center for Supercomputing Applications Department of Astronomy University of Illinois at Urbana-Champaign Data Visualization

More information

Using Image Processing to Enhance Vehicle Safety

Using Image Processing to Enhance Vehicle Safety Cedarville University DigitalCommons@Cedarville The Research and Scholarship Symposium The 2013 Symposium Apr 10th, 2:40 PM - 3:00 PM Using Image Processing to Enhance Vehicle Safety Malia Amling Cedarville

More information

Audio Similarity. Mark Zadel MUMT 611 March 8, Audio Similarity p.1/23

Audio Similarity. Mark Zadel MUMT 611 March 8, Audio Similarity p.1/23 Audio Similarity Mark Zadel MUMT 611 March 8, 2004 Audio Similarity p.1/23 Overview MFCCs Foote Content-Based Retrieval of Music and Audio (1997) Logan, Salomon A Music Similarity Function Based On Signal

More information

Universitas Sumatera Utara

Universitas Sumatera Utara Amplitude Shift Keying & Frequency Shift Keying Aim: To generate and demodulate an amplitude shift keyed (ASK) signal and a binary FSK signal. Intro to Generation of ASK Amplitude shift keying - ASK -

More information

Introduction to Wavelets. For sensor data processing

Introduction to Wavelets. For sensor data processing Introduction to Wavelets For sensor data processing List of topics Why transform? Why wavelets? Wavelets like basis components. Wavelets examples. Fast wavelet transform. Wavelets like filter. Wavelets

More information

Nonuniform multi level crossing for signal reconstruction

Nonuniform multi level crossing for signal reconstruction 6 Nonuniform multi level crossing for signal reconstruction 6.1 Introduction In recent years, there has been considerable interest in level crossing algorithms for sampling continuous time signals. Driven

More information

APPLICATION NOTE 3942 Optimize the Buffer Amplifier/ADC Connection

APPLICATION NOTE 3942 Optimize the Buffer Amplifier/ADC Connection Maxim > Design Support > Technical Documents > Application Notes > Communications Circuits > APP 3942 Maxim > Design Support > Technical Documents > Application Notes > High-Speed Interconnect > APP 3942

More information

The KNIME Image Processing Extension User Manual (DRAFT )

The KNIME Image Processing Extension User Manual (DRAFT ) The KNIME Image Processing Extension User Manual (DRAFT ) Christian Dietz and Martin Horn February 6, 2014 1 Contents 1 Introduction 3 1.1 Installation............................ 3 2 Basic Concepts 4

More information

EXPERIMENT 4 SIGNAL RECOVERY

EXPERIMENT 4 SIGNAL RECOVERY EXPERIMENT 4 SIGNAL RECOVERY References: A. de Sa, Principles of electronic instrumentation P. Horowitz and W. Hill, The art of electronics R. Bracewell, The Fourier transform and its applications E. Brigham,

More information

Imaging with Wireless Sensor Networks

Imaging with Wireless Sensor Networks Imaging with Wireless Sensor Networks Rob Nowak Waheed Bajwa, Jarvis Haupt, Akbar Sayeed Supported by the NSF What is a Wireless Sensor Network? Comm between army units was crucial Signal towers built

More information

14 fasttest. Multitone Audio Analyzer. Multitone and Synchronous FFT Concepts

14 fasttest. Multitone Audio Analyzer. Multitone and Synchronous FFT Concepts Multitone Audio Analyzer The Multitone Audio Analyzer (FASTTEST.AZ2) is an FFT-based analysis program furnished with System Two for use with both analog and digital audio signals. Multitone and Synchronous

More information

A gravitational wave is a differential strain in spacetime. Equivalently, it is a differential tidal force that can be sensed by multiple test masses.

A gravitational wave is a differential strain in spacetime. Equivalently, it is a differential tidal force that can be sensed by multiple test masses. A gravitational wave is a differential strain in spacetime. Equivalently, it is a differential tidal force that can be sensed by multiple test masses. Plus-polarization Cross-polarization 2 Any system

More information

Sub-daily signals in GPS. at semi-annual and annual periods

Sub-daily signals in GPS. at semi-annual and annual periods Sub-daily signals in GPS observations and their effect at semi-annual and annual periods Matt King1 Chris Watson2, Nigel Penna1 Newcastle University, UK 2 University of Tasmania, Australia 1 Propagation

More information

Prognostic Health Monitoring for Wind Turbines

Prognostic Health Monitoring for Wind Turbines Prognostic Health Monitoring for Wind Turbines Wei Qiao, Ph.D. Director, Power and Energy Systems Laboratory Associate Professor, Department of ECE University of Nebraska Lincoln Lincoln, NE 68588-511

More information

Introducing COVAREP: A collaborative voice analysis repository for speech technologies

Introducing COVAREP: A collaborative voice analysis repository for speech technologies Introducing COVAREP: A collaborative voice analysis repository for speech technologies John Kane Wednesday November 27th, 2013 SIGMEDIA-group TCD COVAREP - Open-source speech processing repository 1 Introduction

More information

EC209 - Improving Signal-To-Noise Ratio (SNR) for Optimizing Repeatable Auditory Brainstem Responses

EC209 - Improving Signal-To-Noise Ratio (SNR) for Optimizing Repeatable Auditory Brainstem Responses EC209 - Improving Signal-To-Noise Ratio (SNR) for Optimizing Repeatable Auditory Brainstem Responses Aaron Steinman, Ph.D. Director of Research, Vivosonic Inc. aaron.steinman@vivosonic.com 1 Outline Why

More information

On-off keying, which consists of keying a sinusoidal carrier on and off with a unipolar binary signal

On-off keying, which consists of keying a sinusoidal carrier on and off with a unipolar binary signal Bandpass signalling Thus far only baseband signalling has been considered: an information source is usually a baseband signal. Some communication channels have a bandpass characteristic, and will not propagate

More information

Lecture 9, ANIK. Data converters 1

Lecture 9, ANIK. Data converters 1 Lecture 9, ANIK Data converters 1 What did we do last time? Noise and distortion Understanding the simplest circuit noise Understanding some of the sources of distortion 502 of 530 What will we do today?

More information

Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi

Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 10 Single Sideband Modulation We will discuss, now we will continue

More information

Virgo and the quest for low frequency sensitivity in GW detectors. Adalberto Giazotto INFN Pisa

Virgo and the quest for low frequency sensitivity in GW detectors. Adalberto Giazotto INFN Pisa Virgo and the quest for low frequency sensitivity in GW detectors Adalberto Giazotto INFN Pisa What we found established when we entered in the GW business in 1982 and afterword? 1) Indirect Evidence of

More information

The quality of the transmission signal The characteristics of the transmission medium. Some type of transmission medium is required for transmission:

The quality of the transmission signal The characteristics of the transmission medium. Some type of transmission medium is required for transmission: Data Transmission The successful transmission of data depends upon two factors: The quality of the transmission signal The characteristics of the transmission medium Some type of transmission medium is

More information

Optimization Techniques for Alphabet-Constrained Signal Design

Optimization Techniques for Alphabet-Constrained Signal Design Optimization Techniques for Alphabet-Constrained Signal Design Mojtaba Soltanalian Department of Electrical Engineering California Institute of Technology Stanford EE- ISL Mar. 2015 Optimization Techniques

More information

Analysis Of Induction Motor With Broken Rotor Bars Using Discrete Wavelet Transform Princy P 1 and Gayathri Vijayachandran 2

Analysis Of Induction Motor With Broken Rotor Bars Using Discrete Wavelet Transform Princy P 1 and Gayathri Vijayachandran 2 Analysis Of Induction Motor With Broken Rotor Bars Using Discrete Wavelet Transform Princy P 1 and Gayathri Vijayachandran 2 1 Dept. Of Electrical and Electronics, Sree Buddha College of Engineering 2

More information

FPGA implementation of DWT for Audio Watermarking Application

FPGA implementation of DWT for Audio Watermarking Application FPGA implementation of DWT for Audio Watermarking Application Naveen.S.Hampannavar 1, Sajeevan Joseph 2, C.B.Bidhul 3, Arunachalam V 4 1, 2, 3 M.Tech VLSI Students, 4 Assistant Professor Selection Grade

More information

DESIGN AND IMPLEMENTATION OF AN ALGORITHM FOR MODULATION IDENTIFICATION OF ANALOG AND DIGITAL SIGNALS

DESIGN AND IMPLEMENTATION OF AN ALGORITHM FOR MODULATION IDENTIFICATION OF ANALOG AND DIGITAL SIGNALS DESIGN AND IMPLEMENTATION OF AN ALGORITHM FOR MODULATION IDENTIFICATION OF ANALOG AND DIGITAL SIGNALS John Yong Jia Chen (Department of Electrical Engineering, San José State University, San José, California,

More information

The Fundamental Triad System

The Fundamental Triad System The Fundamental Triad System A chord-first approach to jazz theory and practice Pete Pancrazi Copyright 2014 by Pete Pancrazi All Rights Reserved www.petepancrazi.com Table of Contents Introduction...

More information

Diversity. Presented by ENG.: Ahmed Hamza Supervisor: Dr. Mohab Mangoud

Diversity. Presented by ENG.: Ahmed Hamza Supervisor: Dr. Mohab Mangoud Diversity Presented by ENG.: Ahmed Hamza Supervisor: Dr. Mohab Mangoud Outline Introduction. What is diversity? Why? Types of diversity Space diversity. Polarization diversity. Frequency diversity. Time

More information

A 330 GHz active terahertz imaging system for hidden objects detection

A 330 GHz active terahertz imaging system for hidden objects detection Invited Paper A 330 GHz active terahertz imaging system for hidden objects detection C. C. Qi *, G. S. Wu, Q. Ding, and Y. D. Zhang China Communication Technology Co., Ltd., Baotian Road No. 1, Building

More information

Department of Electronics and Communication Engineering 1

Department of Electronics and Communication Engineering 1 UNIT I SAMPLING AND QUANTIZATION Pulse Modulation 1. Explain in detail the generation of PWM and PPM signals (16) (M/J 2011) 2. Explain in detail the concept of PWM and PAM (16) (N/D 2012) 3. What is the

More information

Diversity Techniques

Diversity Techniques Diversity Techniques Vasileios Papoutsis Wireless Telecommunication Laboratory Department of Electrical and Computer Engineering University of Patras Patras, Greece No.1 Outline Introduction Diversity

More information

Strong Noise Removal and Replacement on Seismic Data

Strong Noise Removal and Replacement on Seismic Data Strong Noise Removal and Replacement on Seismic Data Patrick Butler, GEDCO, Calgary, Alberta, Canada pbutler@gedco.com Summary A module for removing and replacing strong noise in seismic data is presented.

More information

An integrated approach of signature hole vibration monitoring and modeling for quarry vibration control

An integrated approach of signature hole vibration monitoring and modeling for quarry vibration control Rock Fragmentation by Blasting Sanchidrián (ed) Taylor & Francis Group, London, ISBN 978-5896-7 An integrated approach of signature hole vibration monitoring and modeling for quarry vibration control R.

More information

Forced Oscillation Detection Fundamentals Fundamentals of Forced Oscillation Detection

Forced Oscillation Detection Fundamentals Fundamentals of Forced Oscillation Detection Forced Oscillation Detection Fundamentals Fundamentals of Forced Oscillation Detection John Pierre University of Wyoming pierre@uwyo.edu IEEE PES General Meeting July 17-21, 2016 Boston Outline Fundamental

More information

Transfer Function (TRF)

Transfer Function (TRF) (TRF) Module of the KLIPPEL R&D SYSTEM S7 FEATURES Combines linear and nonlinear measurements Provides impulse response and energy-time curve (ETC) Measures linear transfer function and harmonic distortions

More information