ANALYSIS OF ZVS INTERLEAVED LLC RESONANT CONVERTER FOR CURRENT BALANCING IN DC DISTRIBUTION SYSTEM

Size: px
Start display at page:

Download "ANALYSIS OF ZVS INTERLEAVED LLC RESONANT CONVERTER FOR CURRENT BALANCING IN DC DISTRIBUTION SYSTEM"

Transcription

1 International Journal of Mechanical Engineering and Technology (IJMET) Volume 10, Issue 02, February 2019, pp , Article ID: IJMET_10_02_177 Available online at ISSN Print: and ISSN Online: IAEME Publication Scopus Indexed ANALYSIS OF ZVS INTERLEAVED LLC RESONANT CONVERTER FOR CURRENT BALANCING IN DC DISTRIBUTION SYSTEM Chandra Sekhar Garlapati Dept.of EEE, GMR Institute of Technology, Rajam, India Ravi Kishore D Dept.of EEE, Godavari Institute of Engineering and technology, Rajahmundry, India ABSTRACT The power conversion efficiency of an isolated ac dc converter is a dominant factor in the overall efficiency of dc distribution systems. To improve the power continuity and power conversion efficiency of the dc distribution system, a three-phase interleaved fullbridge LLC resonant converter employing a voltage source converter which is fed by Photo Voltaic System and Wind Energy System is proposed as the isolated ac dc highfrequency-link power-conversion system. The LLC resonant converter has the advantages of high efficiency, high power density, and low cost. They can be operated at no load condition and at resonance for nominal input voltage. The proposed voltage source converter has the capability of boosting the output voltage without increasing the transformer s turn ratio. Especially, the frequency of the rectifier s output ripple is six times higher than the switching frequency, thereby reducing the output capacitor and the secondary transformer s RMS current. However, the tolerance of the converter s resonant components in each primary stage causes the unbalance problem of output ripple current. It cannot be solved using conventional control techniques since the structure of the three-phase interleaving has the limitations of individual control capability for each converter. To solve the current unbalance problem, a current balancing method is proposed for the output rectifying current. Keywords LLC Resonant Converter, High Frequency, Current balancing, DC Distribution System Cite this Article: Chandra Sekhar Garlapati and Ravi Kishore D, Analysis of Zvs Interleaved Llc Resonant Converter for Current Balancing in Dc Distribution System, International Journal of Mechanical Engineering and Technology, 10(02), 2019, pp editor@iaeme.com

2 Analysis of Zvs Interleaved Llc Resonant Converter for Current Balancing in Dc Distribution System 1. INTRODUCTION The converter which eliminates much of the switching losses associated with fixed frequency by enabling switching at either near - zero voltage or near - zero current is known as resonant converter. The resonant converters can be classified into two types namely, series and parallel resonant converters. The drawback of series resonant converter is that it cannot regulate output at no load condition and output current is high. The disadvantage of parallel resonant converter is circulating current is high and has lower efficiency at reduced loads. The conventional several power delivery architectures which use ac or dc voltage have been presented in. A conventional ac power distribution system of the IDC consists of four power conversion stages with a traditional online uninterrupted power supply (UPS), which employs an ac dc ac double conversion. Compared with the ac distribution system, the dc distribution system does not need several power conversion stages such as the online UPS and the individual power factor correction (PFC) circuit in front of each power supply unit (PSU). Therefore, the dc distribution system for the data centers can reduce the power conversion loss caused by redundant power stages. Furthermore, in order to obtain high-power conversion efficiency of the dc distribution system, the high efficient isolated ac dc converter used in the dc distribution system should decrease its power loss. The galvanic isolation in the power conversion stage is not more popular than the isolation of the server level; however, it is one of interesting research topics of isolation applications for IDC since the safety from an electric shock can be required for the operators who are achieving the maintenance operations of the servers. An isolated conventional ac dc converter consists of two power conversion stages. The primary power conversion stage is generally designed to a non isolated ac dc rectifier for PFC operation. A boost PFC operating under the continuous conduction mode (CCM) is commonly used in ac dc high-power applications. When the boost PFC operates under the CCM, the reverse recovery time of the boost rectifier diode causes the reverse recovery current which increases the power loss. In order to reduce this power loss of the CCM PFC rectifier, the reverse recovery current of the rectifying diode should be reduced. To solve this reverse recovery problem, various soft switching techniques using additional passive or active snubber circuits have been proposed. However, those methods require relatively large number of passive or active components which increase the production cost of the system. Moreover, the complex structure of the rectification circuit with many switching components decreases the reliability of the overall power conversion system. An alternative method to minimize those drawbacks is the use of SiC diodes instead of conventional diodes in the rectification circuit. The SiC diode has very small reverse recovery current. Therefore, it can reduce the power loss caused by the reverse recovery current. Conventional full-bridge diodes used on the front side of the PFC circuit also increase conduction losses. Various bridgeless PFC topologies have been proposed for eliminating the full bridge diode rectifier. Those topologies can get rid of the line-current path and can decrease the conduction loss caused by the full-bridge diode. The power density of an isolated dc dc converter for the dc power distribution systems is one of the significant performance indicators, since the size of the desired system is limited. Therefore, multiple medium power converters connected in parallel, which share load current to increase the amount of power conversion is proper rather than a single large converter employing parallel switching devices with a big isolation transformer. A full-bridge phase shift converter is a frequently selected topology for high power dc dc applications. In order to increase the converter s rated power using parallel operations, the parallel connection methods for the output stages using multiple phase-shift converters have been proposed. However, these topologies cannot accomplish zero-voltage switching (ZVS) under light load conditions and additional filter inductors for the output rectifier are required. The LLC resonant converter is another popular topology because of its outstanding performance such as high-power conversion efficiency, high editor@iaeme.com

3 Chandra Sekhar Garlapati and Ravi Kishore D power density, and its ZVS capability over the entire load range. Multiphase LLC resonant converters have also been developed to reduce the output ripple current. Since an interleaved operation for the LLC resonant converter has been adopted, the output ripple current and the size of the filter capacitors could be reduced. However, those conventional studies have concentrated on the low output voltage and high-output current applications using a center-tapped transformer. The number of turns in the secondary winding used for the center-tap structure is twice the turn number required for the full-bridge structure. Since the output voltage needed for the dc distribution system is relatively high (e.g., 300 to 400 V), the center-tap structure is not suitable for high-output voltage applications. A three-phase interleaved LLC resonant converter employing a Voltage source converter is proposed in this project. The proposed converter consists of three full-bridge LLC resonant converters whose output stage is composed of voltage source converter for each secondary transformer winding. It has ZVS capability over the entire load range similar to the conventional LLC resonant converter. In addition, the proposed voltage source converter can boost the output voltage without increasing the transformer s turn ratio. Especially, the frequency of the rectifier s output ripple is six times higher than the switching frequency, thereby reducing the output capacitor and the RMS current of the transformer s secondary winding. Therefore, the proposed converter is suitable for high-power and high-output voltage applications. However, the imbalance of resonant networks in the LLC resonant converters can cause the unbalance phenomena of output rectifying current. It cannot be solved using conventional control techniques since the structure of the three-phase interleaving has the limitation of individual control capability for each converter. Circuit Diagram of the Proposed Isolated Ac Dc High-Frequency- Link Power-Conversion System is shown in fig 1. Figure.1. Circuit Diagram of the Proposed Isolated Ac Dc High-Frequency-Link Power-Conversion System. 2. LITERATURE SURVEY The system proposed in [1] a simple and accurate design methodology for LLC resonant converters, based on a semi empirical approach to model steady-state operation in the belowresonance region. This has led to simple yet accurate design-oriented model and to a simple step-by-step design procedure that ensures stable operation at no load, ZVS under all operating conditions. The methodologies based on first harmonic approximation (FHA) analysis are much editor@iaeme.com

4 Analysis of Zvs Interleaved Llc Resonant Converter for Current Balancing in Dc Distribution System simpler but due to lack of accuracy especially in below-resonance region it is not used. The system in [2] proposes an approximate analysis of LLC resonant converter with capacitive filter operating above and below resonance. An equivalent AC resistance model of the rectifier valid for discontinuous as well as continuous conduction modes is proposed. The DC voltage conversion ratio is then obtained using the fundamental harmonic approximation analysis method. Here Fundamental Harmonic Analysis method has been used. Here LLC can operate with wide load range and can achieve step-up as well as step-down voltage conversion. Since it is applicable to off-line converters it has relatively large DC holdup and output capacitor need to provide output voltage support in case of line fault of light load to full load transients. This reduces the power density and has drawback of alleviating fast voltage control. The project in [3] proposed Simulation and interleaved converters using switched capacitor are considered as a better solution for fuel cell systems due to high conversion efficiency. In the proposed interleaved converter, the front end inductors are magnetically cross-coupled to improve the electrical performance and reduce the weight and size. Also, switched capacitors are used to improve the voltage gain of the converter. 3. PROPOSED AC-DC HIGH FREQUENCY-LINK POWER- CONVERSION SYSTEM The proposed ac dc high-frequency-link power-conversion system is composed of three bridgeless PFC rectifiers and a three-phase interleaved LLC resonant converter. Fig. 1 shows the schematic of the proposed isolated ac dc converter. To improve power conversion efficiency, the CCM bridgeless boost PFC rectifier using the sic diodes has been designed. The input power source of the proposed ac dc converter is three-phase four-wired ac. Therefore, three 3.3 kw (380 V/8.7 A) PFC boost rectifiers have been designed for 220 Vac input voltage. Each of the rectifiers is controlled by a commercial analog controller. In addition, the three-phase interleaved full-bridge LLC resonant converter using the Y-connected rectifier is proposed for high efficiency dc dc power conversion and galvanic isolation. The proposed converter is controlled by a single digital signal processor (DSP). The proposed current balancing algorithm is also implemented by the same DSP. The detailed circuit operations of the proposed converter will be discussed in this Section. Figure. 2. Schematic of the Proposed Three-Phase Interleaved LLC Resonant Converter with DSP Control. Fig. 2 shows the schematic of the proposed dc dc power conversion stage. The proposed converter has three full-bridge LLC resonant converters whose output stage is composed of three editor@iaeme.com

5 Chandra Sekhar Garlapati and Ravi Kishore D arms of Voltage Source Converter for each secondary transformer winding. The Y-connected rectifier can boost the output voltage without increasing the transformer s turn ratio. In addition, the frequency of the rectifier output ripple is six times higher than the switching frequency, thereby reducing the output capacitor and the RMS current of the transformer s secondary winding. Due to these advantages, the proposed converter is suitable for high power and highoutput voltage applications. The proposed converter can be controlled in the same manner as the conventional singlephase full-bridge LLC converter. The converter s output voltage can be controlled using a conventional pulse frequency modulation (PFM) technique; however, the phase difference for each converter s switching signal is 2π/3. The steady-state equation of the output voltage, Vout, can be derived as follows: Figure. 3. Theoretical operating waveforms of the Proposed Converter Where n is the turn ratio of the transformer as n = N1/N2 and M is the resonant gain, respectively. From (1), the output Voltage of the proposed converter can be doubled due to the Voltage Source Converter, compared with the input output voltage Ratio of the single-phase LLC resonant converter. Fig. 3. Shows the theoretical operating waveforms of the proposed Converter in a steady state. The operation of the proposed Converter can be divided into 12 operating modes. In this project, Representative operation modes such as Mode 1 (t0 -t1) and Mode 2 (t1 -t2) will be explained. In Mode 1, the master converters Switches Q1 and Q4 turn ON under the ZVS condition and the magnetizing current Im1 increases in the positive direction. In addition, the slave converter s switches Q6, Q7, Q9, and Q12 continue in their ON state and their resonances are still in progress. During this period, the rectifying diodes Do1, Do4, and Do5 turn ON and all of the primary side s energy in the three converters is transferred to the secondary rectifying Stage. In mode 2, when the primary current, Ir3, meets the magnetizing Current Im3, the resonance in the primary stage ends And the energy is transferred from the primary to the secondary Stage. At this time, Do5 is editor@iaeme.com

6 Analysis of Zvs Interleaved Llc Resonant Converter for Current Balancing in Dc Distribution System turned OFF, while Do1 and Do4 Remain ON. During these periods, only two converters transfer their energy in the primary stage to the output. The other operations can be explained as the same manner as Mode 1 and 2. Mode (1, 2) repeats to Mode (3, 4), Mode (5, 6), Mode (7, 8), Mode (9, 10), and Mode (11, 12) with different switches and Rectifier diodes. 4. SIMULATION RESULTS Figure. 4: Simulink Design of ZVS Three-Phase Interleaved LLC Resonant Converter with Voltage Source Converter Figure. 5: Pulses of switches Q1-Q12 Figure. 6: DC Voltage output of ZVS Interleaved Boost Converters In order to verify the effect of the gain fluctuation according to the variation of the second converter s resonant inductor Lr2, show the simulation results of the rectifying current under unbalanced conditions of the resonant components according to light and heavy load conditions, respectively. Under the light load condition of 8-kW output power, the peak to peak ripple current editor@iaeme.com

7 Chandra Sekhar Garlapati and Ravi Kishore D of the rectifier under the balanced condition is 0.66 A as shown in Fig. 10. In the case of Fig. 9, Lr2 is 10% larger than the original resonant inductance of 120μH. The second converter s resonant gain is smaller than other converters resonant gain because of the large resonant inductance. As shown in Fig. 9, the peak to peak ripple current of the rectifier was measured to be 1.47 A. The secondary side rectifying current of the second converter IB has the smallest value among other converter s rectifying current due to the decreased resonant gain.in the case of Fig. 11, Lr2 is 10% smaller than the original resonant inductance. The second converter s resonant gain is higher than other converters resonant gain. As shown in Fig. 11, the peak-to-peak ripple current of the rectifier was measured to be 1.69 A and IB has the largest value among the other converter s rectifying current because of the increased resonant gain. Figure. 7: Current waveforms of Resonance inductors and Magnetizing currents of HFT Figure.8: Currents of secondary winding of the Transformer Figure. 9: Irec and Io in decreased 10% of Lr case editor@iaeme.com

8 Analysis of Zvs Interleaved Llc Resonant Converter for Current Balancing in Dc Distribution System Figure. 10: Irec and Io in balanced of Lr case Figure. 11: Irec and Io in increased 10% of Lr case 5. CONCLUSION In power sector the power demand is increasing day to day. It is better to depend on renewable energy sources, because, by using non renewable energy sources we cannot reach the total power demand. We can get unlimited power from renewable energy sources and also those renewable energy sources are ecofriendly. We can say that solar and wind are best renewable sources because they can available any place on the earth. With the given reference and modeling of the Three phase ZVS interleaved boost LLC resonant converter with Voltage Source Converter fed by photo voltaic system and wind energy system has been analyzed with all graphical representation. The variation of the output rectifier current is been observed with change in the resonance inductor value with 10% change. The output voltage at the load is observed to be 300V with very less ripple at 0.45% and the conduction losses are been eliminated with the use of high switching of the inverter. Consequently, the power conversion efficiency and power continuity is improved. REFERENCES [1] S. gong Jiang, G. Hua Liu, W. Wang, and D. guo Xu, "Research on bridgeless support PFC with delicate exchanging," in Proc. Veh. Power Propuls. Conf., 2009, pp [2] Vellanki Mehar Jyothi, T. Vijay Muni, S V N L Lalitha An Optimal Energy Management System for PV/Battery Standalone System, International Journal of Electrical and Computer Engineering, Volume 6, No 6, December [3] T. Vijay Muni, K. Venkata Kishore, Experimental Setup of Solar-Wind Hybrid Power System Interface to Grid System. International Journal for Modern Trends in Science and Technology, Vol 2, Issue 1, January editor@iaeme.com

9 Chandra Sekhar Garlapati and Ravi Kishore D [4] H. L., Y. Jang and J. M.M., "Execution assessment of bridgeless pfc support rectifiers," IEEE Trans. Power Electron., vol. 23, no. 3, pp , May [5] Y. Cho and J.- S. Lai, "Computerized module dull controller for single-stage bridgeless PFC converters," IEEE Trans. Power Electron., Jan vol. 28, no. 1, pp , [6] M. Edington,,F. Musavi, W. Eberle, and W. G. Dunford, "Assessment and efficiency examination of front end AC DC module half breed charger topologies," Mar. 2012,IEEE Trans. Keen Grid, vol. 3, no. 1, pp ,. [7] J.- W. Yang and H.- L. Do, "Bridgeless SEPIC converter with a swell free info current," Jul. 2013, IEEE Trans. Power Electron., vol. 28, no. 7, pp ,. [8] E. H. Ismail, A. A. Fardoun, A. J. Sabzali, and M. A. Al-Saffar, "New efficient bridgeless cuk rectifiers for PFC applications," IEEE Trans. Power Electron., Jul vol. 27, no. 7, pp [9] Q. Melody, B. Zhao, and W. Liu, "Efficiency portrayal and advancement of segregated bidirectional dc.dc converter in light of double stage movement control for dc appropriation application," IEEE Trans. Power Electron., Apr. 2013vol. 28, no. 4, pp ,. [10] J. Lokos, J. L. Duarte, and F. B. M. van Horck, "Stage movement controlled three-level converter with decreased voltage anxiety highlighting ZVS over the full operation range," May 2013, IEEE Trans. Power Electron., vol. 28, no. 5, pp ,. [11] T. Vijay Muni, S V N L Lalitha, B. Krishna Suma, B. Venkateswaramma, A new approach to achieve a fast acting MPPT technique for solar photovoltaic system under fast varying solar radiation International Journal of Engineering and Technology Vol. 7, Special Issue 2.20, January 2018, pp editor@iaeme.com

Study of Interleaved LLC Resonant Converter Operating at Constant Switching Frequency Using SCC

Study of Interleaved LLC Resonant Converter Operating at Constant Switching Frequency Using SCC Study of Interleaved LLC Resonant Converter Operating at Constant Switching Frequency Using SCC R. Padmavathi Sr. Assistant Professor- Department of EEE, Rajalakshmi Engineering College, Chennai, India.

More information

ISSN Vol.07,Issue.08, July-2015, Pages:

ISSN Vol.07,Issue.08, July-2015, Pages: ISSN 2348 2370 Vol.07,Issue.08, July-2015, Pages:1440-1445 www.ijatir.org A Star-Connected Rectifier Employed by the Three-Phase Interleaved LLC Resonant Converter used by the High-Efficiency Isolated

More information

Linear Transformer based Sepic Converter with Ripple Free Output for Wide Input Range Applications

Linear Transformer based Sepic Converter with Ripple Free Output for Wide Input Range Applications Linear Transformer based Sepic Converter with Ripple Free Output for Wide Input Range Applications Karthik Sitapati Professor, EEE department Dayananda Sagar college of Engineering Bangalore, India Kirthi.C.S

More information

Hybrid Transformer Based High Boost Ratio DC-DC Converter for Photovoltaic Applications

Hybrid Transformer Based High Boost Ratio DC-DC Converter for Photovoltaic Applications Hybrid Transformer Based High Boost Ratio DC-DC Converter for Photovoltaic Applications K. Jyotshna devi 1, N. Madhuri 2, P. Chaitanya Deepak 3 1 (EEE DEPARTMENT, S.V.P.C.E.T, PUTTUR) 2 (EEE DEPARTMENT,

More information

Sepic Topology Based High Step-Up Step down Soft Switching Bidirectional DC-DC Converter for Energy Storage Applications

Sepic Topology Based High Step-Up Step down Soft Switching Bidirectional DC-DC Converter for Energy Storage Applications IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 12, Issue 3 Ver. IV (May June 2017), PP 68-76 www.iosrjournals.org Sepic Topology Based High

More information

A Unique SEPIC converter based Power Factor Correction method with a DCM Detection Technique

A Unique SEPIC converter based Power Factor Correction method with a DCM Detection Technique IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 11, Issue 4 Ver. III (Jul. Aug. 2016), PP 01-06 www.iosrjournals.org A Unique SEPIC converter

More information

Photovoltaic Controller with CCW Voltage Multiplier Applied To Transformerless High Step-Up DC DC Converter

Photovoltaic Controller with CCW Voltage Multiplier Applied To Transformerless High Step-Up DC DC Converter Photovoltaic Controller with CCW Voltage Multiplier Applied To Transformerless High Step-Up DC DC Converter Elezabeth Skaria 1, Beena M. Varghese 2, Elizabeth Paul 3 PG Student, Mar Athanasius College

More information

ISSN Vol.07,Issue.06, July-2015, Pages:

ISSN Vol.07,Issue.06, July-2015, Pages: ISSN 2348 2370 Vol.07,Issue.06, July-2015, Pages:0828-0833 www.ijatir.org An improved Efficiency of Boost Converter with Voltage Multiplier Module for PV System N. NAVEENKUMAR 1, E. CHUDAMANI 2, N. RAMESH

More information

Interleaved Current-Fed Resonant Converter with High Current Side Filter for EV and HEV Applications

Interleaved Current-Fed Resonant Converter with High Current Side Filter for EV and HEV Applications IJSTE - International Journal of Science Technology & Engineering Volume 2 Issue 10 April 2016 ISSN (online): 2349-784X Interleaved Current-Fed Resonant Converter with High Current Side Filter for EV and

More information

Design And Analysis Of Dc-Dc Converter For Photovoltaic (PV) Applications.

Design And Analysis Of Dc-Dc Converter For Photovoltaic (PV) Applications. IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 PP 53-60 www.iosrjen.org Design And Analysis Of Dc-Dc Converter For Photovoltaic (PV) Applications. Sangeetha U G 1 (PG Scholar,

More information

MODELING AND SIMULATION OF LLC RESONANT CONVERTER FOR PHOTOVOLTAIC SYSTEMS

MODELING AND SIMULATION OF LLC RESONANT CONVERTER FOR PHOTOVOLTAIC SYSTEMS MODELING AND SIMULATION OF LLC RESONANT CONVERTER FOR PHOTOVOLTAIC SYSTEMS Shivaraja L M.Tech (Energy Systems Engineering) NMAM Institute of Technology Nitte, Udupi-574110 Shivaraj.mvjce@gmail.com ABSTRACT

More information

Student Department of EEE (M.E-PED), 2 Assitant Professor of EEE Selvam College of Technology Namakkal, India

Student Department of EEE (M.E-PED), 2 Assitant Professor of EEE Selvam College of Technology Namakkal, India Design and Development of Single Phase Bridgeless Three Stage Interleaved Boost Converter with Fuzzy Logic Control System M.Pradeep kumar 1, M.Ramesh kannan 2 1 Student Department of EEE (M.E-PED), 2 Assitant

More information

An Asymmetrical Dc-Dc Converter with a High Voltage Gain

An Asymmetrical Dc-Dc Converter with a High Voltage Gain International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) An Asymmetrical Dc-Dc Converter with a High Voltage Gain Sarah Ben Abraham 1, Ms. Riya Scaria, 1, Assistant Professor Abstract:

More information

A Dual Half-bridge Resonant DC-DC Converter for Bi-directional Power Conversion

A Dual Half-bridge Resonant DC-DC Converter for Bi-directional Power Conversion A Dual Half-bridge Resonant DC-DC Converter for Bi-directional Power Conversion Mrs.Nagajothi Jothinaga74@gmail.com Assistant Professor Electrical & Electronics Engineering Sri Vidya College of Engineering

More information

Comparison Of DC-DC Boost Converters Using SIMULINK

Comparison Of DC-DC Boost Converters Using SIMULINK IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, PP 34-42 www.iosrjournals.org Comparison Of DC-DC Boost Converters Using SIMULINK Anupa Ann Alex

More information

A High Efficient DC-DC Converter with Soft Switching for Stress Reduction

A High Efficient DC-DC Converter with Soft Switching for Stress Reduction A High Efficient DC-DC Converter with Soft Switching for Stress Reduction S.K.Anuja, R.Satheesh Kumar M.E. Student, M.E. Lecturer Sona College of Technology Salem, TamilNadu, India ABSTRACT Soft switching

More information

High Frequency Soft Switching Of PWM Boost Converter Using Auxiliary Resonant Circuit

High Frequency Soft Switching Of PWM Boost Converter Using Auxiliary Resonant Circuit RESEARCH ARTICLE OPEN ACCESS High Frequency Soft Switching Of PWM Boost Converter Using Auxiliary Resonant Circuit C. P. Sai Kiran*, M. Vishnu Vardhan** * M-Tech (PE&ED) Student, Department of EEE, SVCET,

More information

Figure.1. Block of PV power conversion system JCHPS Special Issue 8: June Page 89

Figure.1. Block of PV power conversion system JCHPS Special Issue 8: June Page 89 Soft Switching Converter with High Voltage Gain for Solar Energy Applications S. Hema*, A. Arulmathy,V. Saranya, S. Yugapriya Department of EEE, Veltech, Chennai *Corresponding author: E-Mail: hema@veltechengg.com

More information

TYPICALLY, a two-stage microinverter includes (a) the

TYPICALLY, a two-stage microinverter includes (a) the 3688 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 33, NO. 5, MAY 2018 Letters Reconfigurable LLC Topology With Squeezed Frequency Span for High-Voltage Bus-Based Photovoltaic Systems Ming Shang, Haoyu

More information

International Journal of Research Available at

International Journal of Research Available at Closed loop control of High Step-Up DC-DC Converter for Hybrid Switched-Inductor Converters V Jyothsna M-tech Student Scholar Department of Electrical & Electronics Engineering, Loyola Institute of Technology

More information

MODELING AND SIMULATON OF THREE STAGE INTERLEAVED BOOST CONVERTER BASED WIND ENERGY CONVERSION SYSTEM

MODELING AND SIMULATON OF THREE STAGE INTERLEAVED BOOST CONVERTER BASED WIND ENERGY CONVERSION SYSTEM RESEARCH ARTICLE OPEN ACCESS MODELING AND SIMULATON OF THREE STAGE INTERLEAVED BOOST CONVERTER BASED WIND ENERGY CONVERSION SYSTEM S.Lavanya 1 1(Department of EEE, SCSVMV University, and Enathur, Kanchipuram)

More information

Performance Improvement of Bridgeless Cuk Converter Using Hysteresis Controller

Performance Improvement of Bridgeless Cuk Converter Using Hysteresis Controller International Journal of Electrical Engineering. ISSN 0974-2158 Volume 6, Number 1 (2013), pp. 1-10 International Research Publication House http://www.irphouse.com Performance Improvement of Bridgeless

More information

An Advanced Power Conditioning Unit for Power Management in Grid Connected PV Systems

An Advanced Power Conditioning Unit for Power Management in Grid Connected PV Systems An Advanced Power Conditioning Unit for Power Management in Grid Connected PV Systems P. Sudheer, A. Immanuel and Ch. Chengaiah 1 Department of EEE, S. V. U. College of Engineering, S. V. University, Tirupati,

More information

Simulation and Performance Evaluation of Closed Loop Pi and Pid Controlled Sepic Converter Systems

Simulation and Performance Evaluation of Closed Loop Pi and Pid Controlled Sepic Converter Systems Simulation and Performance Evaluation of Closed Loop Pi and Pid Controlled Sepic Converter Systems Simulation and Performance Evaluation of Closed Loop Pi and Pid Controlled Sepic Converter Systems T.

More information

Voltage Fed DC-DC Converters with Voltage Doubler

Voltage Fed DC-DC Converters with Voltage Doubler Chapter 3 Voltage Fed DC-DC Converters with Voltage Doubler 3.1 INTRODUCTION The primary objective of the research pursuit is to propose and implement a suitable topology for fuel cell application. The

More information

Implementation of Voltage Multiplier Module in Interleaved High Step-up Converter with Higher Efficiency for PV System

Implementation of Voltage Multiplier Module in Interleaved High Step-up Converter with Higher Efficiency for PV System Implementation of Voltage Multiplier Module in Interleaved High Step-up Converter with Higher Efficiency for PV System 1 Sindhu P., 2 Surya G., 3 Karthick D 1 PG Scholar, EEE Department, United Institute

More information

A BRIDGELESS CUK CONVERTER BASED INDUCTION MOTOR DRIVE FOR PFC APPLICATIONS

A BRIDGELESS CUK CONVERTER BASED INDUCTION MOTOR DRIVE FOR PFC APPLICATIONS INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET) Proceedings of the International Conference on Emerging Trends in Engineering and Management (ICETEM14) ISSN 0976 6545(Print) ISSN 0976

More information

POWER ISIPO 29 ISIPO 27

POWER ISIPO 29 ISIPO 27 SI NO. TOPICS FIELD ISIPO 01 A Low-Cost Digital Control Scheme for Brushless DC Motor Drives in Domestic Applications ISIPO 02 A Three-Level Full-Bridge Zero-Voltage Zero-Current Switching With a Simplified

More information

A LLC RESONANT CONVERTER WITH ZERO CROSSING NOISE FILTER

A LLC RESONANT CONVERTER WITH ZERO CROSSING NOISE FILTER A LLC RESONANT CONVERTER WITH ZERO CROSSING NOISE FILTER M. Mohamed Razeeth # and K. Kasirajan * # PG Research Scholar, Power Electronics and Drives, Einstein College of Engineering, Tirunelveli, India

More information

Implementation of a Voltage Multiplier based on High Step-up Converter using FLC

Implementation of a Voltage Multiplier based on High Step-up Converter using FLC Implementation of a Voltage Multiplier based on High Step-up Converter using FLC Dhanraj Soni 1 Ritesh Diwan 2 1PG Scholar (Power Electronics), Department of ET&T, RITEE, Raipur, C.G., India. 2HOD, Department

More information

Modified SEPIC PFC Converter for Improved Power Factor and Low Harmonic Distortion

Modified SEPIC PFC Converter for Improved Power Factor and Low Harmonic Distortion Modified SEPIC PFC Converter for Improved Power Factor and Low Harmonic Distortion Amrutha M P 1, Priya G Das 2 1, 2 Department of EEE, Abdul Kalam Technological University, Palakkad, Kerala, India-678008

More information

HALF BRIDGE CONVERTER WITH WIDE RANGE ZVS

HALF BRIDGE CONVERTER WITH WIDE RANGE ZVS INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & Proceedings of the International Conference on Emerging Trends in Engineering and Management (ICETEM14) TECHNOLOGY (IJEET) ISSN 0976 6545(Print) ISSN 0976

More information

A Novel Single-Stage Push Pull Electronic Ballast With High Input Power Factor

A Novel Single-Stage Push Pull Electronic Ballast With High Input Power Factor 770 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 48, NO. 4, AUGUST 2001 A Novel Single-Stage Push Pull Electronic Ballast With High Input Power Factor Chang-Shiarn Lin, Member, IEEE, and Chern-Lin

More information

A NOVEL High Step-Up Converter with a Voltage Multiplier Module for a Photo Voltaic System

A NOVEL High Step-Up Converter with a Voltage Multiplier Module for a Photo Voltaic System A NOVEL High Step-Up Converter with a Voltage Multiplier Module for a Photo Voltaic System *S.SWARNALATHA **RAMAVATH CHANDER *M.TECH student,dept of EEE,Chaitanya Institute Technology & Science *Assistant

More information

Single Phase Bridgeless SEPIC Converter with High Power Factor

Single Phase Bridgeless SEPIC Converter with High Power Factor International Journal of Emerging Engineering Research and Technology Volume 2, Issue 6, September 2014, PP 117-126 ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online) Single Phase Bridgeless SEPIC Converter

More information

Fuel Cell Based Interleaved Boost Converter for High Voltage Applications

Fuel Cell Based Interleaved Boost Converter for High Voltage Applications International Journal for Modern Trends in Science and Technology Volume: 03, Issue No: 05, May 2017 ISSN: 2455-3778 http://www.ijmtst.com Fuel Cell Based Interleaved Boost Converter for High Voltage Applications

More information

DC DC CONVERTER FOR WIDE OUTPUT VOLTAGE RANGE BATTERY CHARGING APPLICATIONS USING LLC RESONANT

DC DC CONVERTER FOR WIDE OUTPUT VOLTAGE RANGE BATTERY CHARGING APPLICATIONS USING LLC RESONANT Volume 114 No. 7 2017, 517-530 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu DC DC CONVERTER FOR WIDE OUTPUT VOLTAGE RANGE BATTERY CHARGING APPLICATIONS

More information

A Predictive Control Strategy for Power Factor Correction

A Predictive Control Strategy for Power Factor Correction IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 8, Issue 6 (Nov. - Dec. 2013), PP 07-13 A Predictive Control Strategy for Power Factor Correction

More information

Analysis and Design of a Bidirectional Isolated buck-boost DC-DC Converter with duel coupled inductors

Analysis and Design of a Bidirectional Isolated buck-boost DC-DC Converter with duel coupled inductors Analysis and Design of a Bidirectional Isolated buck-boost DC-DC Converter with duel coupled inductors B. Ramu M.Tech (POWER ELECTRONICS) EEE Department Pathfinder engineering college Hanmakonda, Warangal,

More information

AN IMPROVED ZERO-VOLTAGE-TRANSITION INTERLEAVED BOOST CONVERTER WITH HIGH POWER FACTOR

AN IMPROVED ZERO-VOLTAGE-TRANSITION INTERLEAVED BOOST CONVERTER WITH HIGH POWER FACTOR AN IMPROVED ZERO-VOLTAGE-TRANSITION INTERLEAVED BOOST CONVERTER WITH HIGH POWER FACTOR Naci GENC 1, Ires ISKENDER 1 1 Gazi University, Faculty of Engineering and Architecture, Department of Electrical

More information

International Journal of Current Research and Modern Education (IJCRME) ISSN (Online): & Impact Factor: Special Issue, NCFTCCPS -

International Journal of Current Research and Modern Education (IJCRME) ISSN (Online): & Impact Factor: Special Issue, NCFTCCPS - HIGH VOLTAGE BOOST-HALF- BRIDGE (BHB) CELLS USING THREE PHASE DC-DC POWER CONVERTER FOR HIGH POWER APPLICATIONS WITH REDUCED SWITCH V. Saravanan* & R. Gobu** Excel College of Engineering and Technology,

More information

A DUAL SERIES DC TO DC RESONANT CONVERTER

A DUAL SERIES DC TO DC RESONANT CONVERTER A DUAL SERIES DC TO DC RESONANT CONVERTER V.ANANDHAN.,BE., ME, POWER SYSTEM SCSVMU UNIVERSITY anandhanvelu@gmail.com Dr.S.SENTAMIL SELVAN.,M.E.,Ph.D., ASSOCIATE PROFESSOR SCSVMU UNIVERSITY Abstract - A

More information

A Single Switch High Gain Coupled Inductor Boost Converter

A Single Switch High Gain Coupled Inductor Boost Converter International Research Journal of Engineering and Technology (IRJET) e-issn: 2395-0056 Volume: 04 Issue: 02 Feb -2017 www.irjet.net p-issn: 2395-0072 A Single Switch High Gain Coupled Inductor Boost Converter

More information

Soft-Switching DC-DC Converters Based on A Phase Shift Controlled Active Boost Rectifier Using Fuzzy Controller

Soft-Switching DC-DC Converters Based on A Phase Shift Controlled Active Boost Rectifier Using Fuzzy Controller Soft-Switching DC-DC Converters Based on A Phase Shift Controlled Active Boost Rectifier Using Fuzzy Controller 1 SapnaPatil, 2 T.B.Dayananda 1,2 Department of EEE, Dr. AIT, Bengaluru. Abstract High efficiency

More information

THREE PORT DC-DC CONVERTER FOR STANDALONE PHOTOVOLTAIC SYSTEM

THREE PORT DC-DC CONVERTER FOR STANDALONE PHOTOVOLTAIC SYSTEM Volume 117 No. 8 2017, 67-71 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: 10.12732/ijpam.v117i8.14 ijpam.eu THREE PORT DC-DC CONVERTER FOR STANDALONE

More information

NON-ISOLATED SOFT SWITCHING DC-DC CONVERTER AND LOAD AT FULL RANGE OF ZVS

NON-ISOLATED SOFT SWITCHING DC-DC CONVERTER AND LOAD AT FULL RANGE OF ZVS International Journal of Electrical Engineering & Technology (IJEET) Volume 7, Issue 5, September October, 2016, pp.62 69, Article ID: IJEET_07_05_006 Available online at http://www.iaeme.com/ijeet/issues.asp?jtypeijeet&vtype7&itype5

More information

A Novel High Step up And High efficiency DC-DC converter for Grid Connected or Standalone PV applications

A Novel High Step up And High efficiency DC-DC converter for Grid Connected or Standalone PV applications A Novel High Step up And High efficiency DC-DC converter for Grid Connected or Standalone PV applications M. Kiran M.Tech (POWER ELECTRONICS) EEE Department Pathfinder engineering college Hanmakonda, Warangal,

More information

Design and Implementation of the Bridgeless AC-DC Adapter for DC Power Applications

Design and Implementation of the Bridgeless AC-DC Adapter for DC Power Applications IJSTE - International Journal of Science Technology & Engineering Volume 2 Issue 10 April 2016 ISSN (online): 2349-784X Design and Implementation of the Bridgeless AC-DC Adapter for DC Power Applications

More information

A High Voltage Gain Interleaved Boost Converter with Dual Coupled Inductors

A High Voltage Gain Interleaved Boost Converter with Dual Coupled Inductors A High Voltage Gain Interleaved Boost Converter with Dual Coupled Inductors Reshma Ismail PG Scholar, EEE Department KMEA Engineering College Edathala, Kerala, India Neenu B Assistant Professor, EEE Department

More information

LLC Resonant Converter for Battery Charging Application

LLC Resonant Converter for Battery Charging Application International Journal of Electrical Engineering. ISSN 0974-2158 Volume 8, Number 4 (2015), pp. 379-388 International Research Publication House http://www.irphouse.com LLC Resonant Converter for Battery

More information

Implementation of Single Stage Three Level Power Factor Correction AC-DC Converter with Phase Shift Modulation

Implementation of Single Stage Three Level Power Factor Correction AC-DC Converter with Phase Shift Modulation Implementation of Single Stage Three Level Power Factor Correction AC-DC Converter with Phase Shift Modulation V. Ravi 1, M. Venkata Kishore 2 and C. Ashok kumar 3 Balaji Institute of Technology & Sciences,

More information

AN EFFICIENT CLOSED LOOP CONTROLLED BRIDGELESS CUK RECTIFIER FOR PFC APPLICATIONS

AN EFFICIENT CLOSED LOOP CONTROLLED BRIDGELESS CUK RECTIFIER FOR PFC APPLICATIONS AN EFFICIENT CLOSED LOOP CONTROLLED BRIDGELESS CUK RECTIFIER FOR PFC APPLICATIONS Shalini.K 1, Murthy.B 2 M.E. (Power Electronics and Drives) Department of Electrical and Electronics Engineering, C.S.I.

More information

Hardware Implementation of Interleaved Converter with Voltage Multiplier Cell for PV System

Hardware Implementation of Interleaved Converter with Voltage Multiplier Cell for PV System IJSTE - International Journal of Science Technology & Engineering Volume 1 Issue 12 June 2015 ISSN (online): 2349-784X Hardware Implementation of Interleaved Converter with Voltage Multiplier Cell for

More information

Asymmetrical Half Bridge Double Input DC/DC Converter Adopting More Than One Renewable Energy Sources

Asymmetrical Half Bridge Double Input DC/DC Converter Adopting More Than One Renewable Energy Sources Asymmetrical Half Bridge Double Input DC/DC Converter Adopting More Than One Renewable Energy Sources Nishi N S P G student, Dept. of Electrical and Electronics Engineering Vidya Academy of Science and

More information

Quasi Z-Source DC-DC Converter With Switched Capacitor

Quasi Z-Source DC-DC Converter With Switched Capacitor Quasi Z-Source DC-DC Converter With Switched Capacitor Anu Raveendran, Elizabeth Paul, Annie P. Ommen M.Tech Student, Mar Athanasius College of Engineering, Kothamangalam, Kerala anuraveendran2015@gmail.com

More information

Designing Of Bidirectional Dc-Dc Converter For High Power Application With Current Ripple Reduction Technique

Designing Of Bidirectional Dc-Dc Converter For High Power Application With Current Ripple Reduction Technique Designing Of Bidirectional Dc-Dc Converter For High Power Application With Current Ripple Reduction Technique Vemu.Gandhi, Sadik Ahamad Khan PG Scholar, Assitent Professor NCET,Vijayawada, Abstract-----

More information

Double Boost SEPIC AC-DC Converter

Double Boost SEPIC AC-DC Converter Double Boost SEPIC AC-DC Converter Sona P 1, Kavitha Issac 2, Beena M Varghese 3 1 Student, Electrical and Electronics Engineering, Mar Athanasius College of Engineering, Kerala, India 2 Asst. Professor,

More information

A New Single Switch Bridgeless SEPIC PFC Converter with Low Cost, Low THD and High PF

A New Single Switch Bridgeless SEPIC PFC Converter with Low Cost, Low THD and High PF A New Single Switch Bridgeless SEPIC PFC Converter with ow Cost, ow THD and High PF Yasemin Onal, Yilmaz Sozer The University of Bilecik Seyh Edebali, Department of Electrical and Electronic Engineering,

More information

Implementation of an Interleaved High-Step-Up Dc-Dc Converter with A Common Active Clamp

Implementation of an Interleaved High-Step-Up Dc-Dc Converter with A Common Active Clamp International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 Volume 2 Issue 5 ǁ May. 2013 ǁ PP.11-19 Implementation of an Interleaved High-Step-Up Dc-Dc Converter

More information

Key words: Bidirectional DC-DC converter, DC-DC power conversion,zero-voltage-switching.

Key words: Bidirectional DC-DC converter, DC-DC power conversion,zero-voltage-switching. Volume 4, Issue 9, September 2014 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Designing

More information

Simulation of AC-DC Converter for High Power Application

Simulation of AC-DC Converter for High Power Application International Journal of Power Electronics and Drive System (IJPEDS) Vol. 9, No. 1, March 2018, pp. 336~344 ISSN: 2088-8694, DOI: 10.11591/ijpeds.v9n1.pp336-344 336 Simulation of AC-DC Converter for High

More information

PSIM Simulation of a Buck Boost DC-DC Converter with Wide Conversion Range

PSIM Simulation of a Buck Boost DC-DC Converter with Wide Conversion Range PSIM Simulation of a Buck Boost DC-DC Converter with Wide Conversion Range Savitha S Department of EEE Adi Shankara Institute of Engineering and Technology Kalady, Kerala, India Vibin C Thomas Department

More information

Bidirectional DC-DC Converter Using Resonant PWM Technique

Bidirectional DC-DC Converter Using Resonant PWM Technique Bidirectional DC-DC Converter Using Resonant PWM Technique Neethu P Uday, Smitha Paulose, Sini Paul PG Scholar, EEE Department, Mar Athanasius College of Engineering, Kothamangalam, neethuudayanan@gmail.com,

More information

ADVANCES in NATURAL and APPLIED SCIENCES

ADVANCES in NATURAL and APPLIED SCIENCES ADVANCES in NATURAL and APPLIED SCIENCES ISSN: 1995-0772 Published BY AENSI Publication EISSN: 1998-1090 http://www.aensiweb.com/anas 2016 March 10(3): pages 190-197 Open Access Journal Power Factor Correction

More information

HARMONIC ANALYSIS OF GRID CONNECTED PHOTOVOLTAIC INVERTER

HARMONIC ANALYSIS OF GRID CONNECTED PHOTOVOLTAIC INVERTER HARMONIC ANALYSIS OF GRID CONNECTED PHOTOVOLTAIC INVERTER E. Anil Kumar 1, T. Shiva 2 1 Student, EEE Department, Jyothismathi Institute of technology & Science, Telangana, India 2 Asst.Prof, EEE Department,

More information

Existing system: The Master of IEEE Projects. LeMenizInfotech. 36, 100 Feet Road, Natesan Nagar, Near Indira Gandhi Statue, Pondicherry

Existing system: The Master of IEEE Projects. LeMenizInfotech. 36, 100 Feet Road, Natesan Nagar, Near Indira Gandhi Statue, Pondicherry Secondary-Side-Regulated Soft-Switching Full-Bridge Three-Port Converter Based on Bridgeless Boost Rectifier and Bidirectional Converter for Multiple Energy Interface Introduction: Storage battery capable

More information

A Single Phase Single Stage AC/DC Converter with High Input Power Factor and Tight Output Voltage Regulation

A Single Phase Single Stage AC/DC Converter with High Input Power Factor and Tight Output Voltage Regulation 638 Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29 A Single Phase Single Stage AC/DC Converter with High Input Power Factor and Tight Output Voltage Regulation A. K.

More information

Soft-Switching Active-Clamp Flyback Microinverter for PV Applications

Soft-Switching Active-Clamp Flyback Microinverter for PV Applications Soft-Switching Active-Clamp Flyback Microinverter for PV Applications Rasedul Hasan, Saad Mekhilef, Mutsuo Nakaoka Power Electronics and Renewable Energy Research Laboratory (PEARL), Faculty of Engineering,

More information

ADVANCED HYBRID TRANSFORMER HIGH BOOST DC DC CONVERTER FOR PHOTOVOLTAIC MODULE APPLICATIONS

ADVANCED HYBRID TRANSFORMER HIGH BOOST DC DC CONVERTER FOR PHOTOVOLTAIC MODULE APPLICATIONS ADVANCED HYBRID TRANSFORMER HIGH BOOST DC DC CONVERTER FOR PHOTOVOLTAIC MODULE APPLICATIONS SHAIK ALLIMBHASHA M.Tech(PS) NALANDA INSTITUTE OF ENGINEERING AND TECHNOLOGY G V V NAGA RAJU Assistant professor

More information

Step-Up Dc/Dc Converter for Distributed Power Generation Systems

Step-Up Dc/Dc Converter for Distributed Power Generation Systems Step-Up Dc/Dc Converter for Distributed Power Generation Systems T. Karthikeyan, B.Gowdhami and. Sathishkumar M.E. 1 PG Student, 2 PG Student and 3 Assitant professor EEE Mailam Engineering College, Villupuram,

More information

Design of a Dual Active Bridge DC-DC Converter for Photovoltaic System Application. M.T. Tsai, C.L. Chu, Y.Z. Yang and D. R Wu

Design of a Dual Active Bridge DC-DC Converter for Photovoltaic System Application. M.T. Tsai, C.L. Chu, Y.Z. Yang and D. R Wu ICIC Express etters ICIC International c16 ISSN 185-766 Volume 7, Number 8, August 16 pp. 185-181 Design of a Dual Active Bridge DC-DC Converter for Photovoltaic System Application M.T. Tsai, C.. Chu,

More information

AN EXPERIMENTAL INVESTIGATION OF PFC BLDC MOTOR DRIVE USING BRIDGELESS CUK DERIVED CONVERTER

AN EXPERIMENTAL INVESTIGATION OF PFC BLDC MOTOR DRIVE USING BRIDGELESS CUK DERIVED CONVERTER Volume 116 No. 11 2017, 141-149 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: 10.12732/ijpam.v116i11.15 ijpam.eu AN EXPERIMENTAL INVESTIGATION OF PFC

More information

FULL-BRIDGE THREE-PORT CONVERTERS WITH WIDE INPUT VOLTAGE RANGE FOR RENEWABLE POWER SYSTEMS

FULL-BRIDGE THREE-PORT CONVERTERS WITH WIDE INPUT VOLTAGE RANGE FOR RENEWABLE POWER SYSTEMS FULL-BRIDGE THREE-PORT CONVERTERS WITH WIDE INPUT VOLTAGE RANGE FOR RENEWABLE POWER SYSTEMS ABSTRACT Dr. A.N. Malleswara Rao Professor in EEE, SKEC, Khammam(India) A systematic method for deriving three-port

More information

Implementation of Single Stage Three Level Power Factor Correction AC-DC Converter with Phase Shift Modulation

Implementation of Single Stage Three Level Power Factor Correction AC-DC Converter with Phase Shift Modulation Implementation of Single Stage Three Level Power Factor Correction AC-DC Converter with Phase Shift Modulation Ms.K.Swarnalatha #1, Mrs.R.Dheivanai #2, Mr.S.Sundar #3 #1 EEE Department, PG Scholar, Vivekanandha

More information

PV MICROINVERTER TOPOLOGY USING SOFT SWITCHING HALF- WAVE CYCLOCONVERTER

PV MICROINVERTER TOPOLOGY USING SOFT SWITCHING HALF- WAVE CYCLOCONVERTER PV MICROINVERTER TOPOLOGY USING SOFT SWITCHING HALF- WAVE CYCLOCONVERTER S. Divya 1, K. Abarna 1 and M. Sasikumar 2 1 Power Electronics and Drives, Jeppiaar Engineering College, Chennai, India 2 Department

More information

Dual mode controller based boost converter employing soft switching techniques

Dual mode controller based boost converter employing soft switching techniques International Journal of Energy and Power Engineering 2013; 2(3): 90-96 Published online June 10, 2013 (http://www.sciencepublishinggroup.com/j/ijepe) doi: 10.11648/j.ijepe.20130203.11 Dual mode controller

More information

Review and Analysis of a Coupled Inductor Based Bidirectional DC-DC Converter

Review and Analysis of a Coupled Inductor Based Bidirectional DC-DC Converter Volume 6, Issue 6, June 207 ISSN 239-4847 Review and Analysis of a Coupled Inductor Based Bidirectional DC-DC Converter Honey Sharma Indus Institute of Technology and Engineering, Indus University, Ahmedabad.

More information

Modelling and Simulation of High Step up Dc-Dc Converter for Micro Grid Application

Modelling and Simulation of High Step up Dc-Dc Converter for Micro Grid Application Vol.3, Issue.1, Jan-Feb. 2013 pp-530-537 ISSN: 2249-6645 Modelling and Simulation of High Step up Dc-Dc Converter for Micro Grid Application B.D.S Prasad, 1 Dr. M Siva Kumar 2 1 EEE, Gudlavalleru Engineering

More information

Improvement of Power Quality by Using 28-Pulse AC-DC Converter

Improvement of Power Quality by Using 28-Pulse AC-DC Converter Improvement of Power Quality by Using 28-Pulse AC-DC Converter 1 T. Suvarthan Rao, 2 A. Tejasri 1,2 Dept. of EEE, Godavari Institute of Engineering & Technology, Rajahmundry, AP, India Abstract With the

More information

POWER QUALITY ENHANCEMENT USING BRIDGELESS CONVERTER BASED ON MULTIPLE OUTPUT SMPS

POWER QUALITY ENHANCEMENT USING BRIDGELESS CONVERTER BASED ON MULTIPLE OUTPUT SMPS POWER QUALITY ENHANCEMENT USING BRIDGELESS CONVERTER BASED ON MULTIPLE OUTPUT SMPS Mr. Gajkumar R. Kavathekar 1, Mr. Kiran Nathgosavi 2, Mr. Suhas Sutar 3 1 Electrical engineering, ADCET, Ashta,(India)

More information

K.Vijaya Bhaskar. Dept of EEE, SVPCET. AP , India. S.P.Narasimha Prasad. Dept of EEE, SVPCET. AP , India.

K.Vijaya Bhaskar. Dept of EEE, SVPCET. AP , India. S.P.Narasimha Prasad. Dept of EEE, SVPCET. AP , India. A Closed Loop for Soft Switched PWM ZVS Full Bridge DC - DC Converter S.P.Narasimha Prasad. Dept of EEE, SVPCET. AP-517583, India. Abstract: - This paper propose soft switched PWM ZVS full bridge DC to

More information

International Journal of Engineering Research-Online A Peer Reviewed International Journal

International Journal of Engineering Research-Online A Peer Reviewed International Journal RESEARCH ARTICLE ISSN: 2321-7758 DESIGN AND DEVELOPMENT OF A NEW SINGLE-PHASE SOFT SWITCHING POWER FACTOR CORRECTION CONVERTER THELMA NGANGOM 1, PRIYALAKSHMI KSHETRIMAYUM 2 1,2 electrical Engineering Department,

More information

Renewable Energy Integrated High Step-Up Interleaved Boost Converter for DC Microgrid Applications

Renewable Energy Integrated High Step-Up Interleaved Boost Converter for DC Microgrid Applications International Conference on Engineering and Technology - 2013 11 Renewable Energy Integrated High Step-Up Interleaved Boost Converter for DC Microgrid Applications P. Yogananthini, A. Kalaimurugan Abstract-This

More information

Design and Simulation of Synchronous Buck Converter for Microprocessor Applications

Design and Simulation of Synchronous Buck Converter for Microprocessor Applications Design and Simulation of Synchronous Buck Converter for Microprocessor Applications Lakshmi M Shankreppagol 1 1 Department of EEE, SDMCET,Dharwad, India Abstract: The power requirements for the microprocessor

More information

A New Phase Shifted Converter using Soft Switching Feature for Low Power Applications

A New Phase Shifted Converter using Soft Switching Feature for Low Power Applications International OPEN ACCESS Journal Of Modern Engineering Research (IJMER A New Phase Shifted Converter using Soft Switching Feature for Low Power Applications Aswathi M. Nair 1, K. Keerthana 2 1, 2 (P.G

More information

PI Controller Based New Soft-Switching Boost Converter With A Coupled Inductor

PI Controller Based New Soft-Switching Boost Converter With A Coupled Inductor PI Controller Based New Soft-Switching Boost Converter With A Coupled Inductor 1 Amala Asokan 1 PG Scholar (Electrical and Electronics Engineering) Nehru College of Engineering and Research Centre Thrissur,

More information

Novel Passive Snubber Suitable for Three-Phase Single-Stage PFC Based on an Isolated Full-Bridge Boost Topology

Novel Passive Snubber Suitable for Three-Phase Single-Stage PFC Based on an Isolated Full-Bridge Boost Topology 264 Journal of Power Electronics, Vol. 11, No. 3, May 2011 JPE 11-3-3 Novel Passive Snubber Suitable for Three-Phase Single-Stage PFC Based on an Isolated Full-Bridge Boost Topology Tao Meng, Hongqi Ben,

More information

A Double ZVS-PWM Active-Clamping Forward Converter: Analysis, Design, and Experimentation

A Double ZVS-PWM Active-Clamping Forward Converter: Analysis, Design, and Experimentation IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 16, NO. 6, NOVEMBER 2001 745 A Double ZVS-PWM Active-Clamping Forward Converter: Analysis, Design, and Experimentation René Torrico-Bascopé, Member, IEEE, and

More information

Performance Evaluation of Isolated Bi-directional DC/DC Converters with Buck, Boost operations

Performance Evaluation of Isolated Bi-directional DC/DC Converters with Buck, Boost operations Performance Evaluation of Isolated Bi-directional DC/DC Converters with Buck, Boost operations MD.Munawaruddin Quadri *1, Dr.A.Srujana *2 #1 PG student, Power Electronics Department, SVEC, Suryapet, Nalgonda,

More information

Comparison of Voltage and Efficiency of a Modified SEPIC Converter without Magnetic Coupling and with Magnetic Coupling

Comparison of Voltage and Efficiency of a Modified SEPIC Converter without Magnetic Coupling and with Magnetic Coupling Comparison of Voltage and Efficiency of a Modified SEPIC Converter without Magnetic Coupling and with Magnetic Coupling Rutuja Daphale 1, Vijaykumar Kamble 2 1 PG Student, 2 Assistant Professor Power electronics

More information

High Frequency Isolated Series Parallel Resonant Converter

High Frequency Isolated Series Parallel Resonant Converter Indian Journal of Science and Technology, Vol 8(15), DOI: 10.17485/ijst/2015/v8i15/52311, July 2015 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 High Frequency Isolated Series Parallel Resonant Converter

More information

Comparison between the Performance of Basic SEPIC Converter and modified SEPIC Converter with PI Controller

Comparison between the Performance of Basic SEPIC Converter and modified SEPIC Converter with PI Controller Research Paper American Journal of Engineering Research (AJER) 2014 American Journal of Engineering Research (AJER) e-issn : 2320-0847 p-issn : 2320-0936 Volume-03, Issue-08, pp-180-186 www.ajer.org Open

More information

ZVS IMPLEMENTATION IN INTERLEAVED BOOST RECTIFIER

ZVS IMPLEMENTATION IN INTERLEAVED BOOST RECTIFIER ZVS IMPLEMENTATION IN INTERLEAVED BOOST RECTIFIER Kanimozhi G. and Sreedevi V. T. School of Electrical Engineering, VIT University, Chennai, India E-Mail: kanimozhi.g@vit.ac.in ABSTRACT This paper presents

More information

A Novel Bridgeless Single-Stage Half-Bridge AC/DC Converter

A Novel Bridgeless Single-Stage Half-Bridge AC/DC Converter A Novel Bridgeless Single-Stage Half-Bridge AC/DC Converter Woo-Young Choi 1, Wen-Song Yu, and Jih-Sheng (Jason) Lai Virginia Polytechnic Institute and State University Future Energy Electronics Center

More information

One-Cycle Control of Interleaved Buck Converter with Improved Step- Down Conversion Ratio

One-Cycle Control of Interleaved Buck Converter with Improved Step- Down Conversion Ratio International Research Journal of Engineering and Technology (IRJET) e-issn: 39- Volume: Issue: 9 Dec-1 www.irjet.net p-issn: 39-7 One-Cycle Control of Interleaved Buck Converter with Improved Step- Down

More information

A NEW SOFT-SWITCHING ACTIVE CLAMP SCHEME FOR FULL-BRIDGE ISOLATED CURRENT FED DC-DC CONVERTER FED DRIVES

A NEW SOFT-SWITCHING ACTIVE CLAMP SCHEME FOR FULL-BRIDGE ISOLATED CURRENT FED DC-DC CONVERTER FED DRIVES Indian Streams Research Journal Vol.2,Issue.IV/May; 12pp.1-4 M.Geetha ISSN:-2230-7850 Research Papers A NEW SOFT-SWITCHING ACTIVE CLAMP SCHEME FOR FULL-BRIDGE ISOLATED CURRENT FED DC-DC CONVERTER FED DRIVES

More information

New Efficient Bridgeless Cuk Rectifiers for PFC Application on d.c machine

New Efficient Bridgeless Cuk Rectifiers for PFC Application on d.c machine International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 9, Issue 1 (November 2013), PP. 15-21 New Efficient Bridgeless Cuk Rectifiers for

More information

Soft-Switching Two-Switch Resonant Ac-Dc Converter

Soft-Switching Two-Switch Resonant Ac-Dc Converter Soft-Switching Two-Switch Resonant Ac-Dc Converter Aqulin Ouseph 1, Prof. Kiran Boby 2,, Prof. Dinto Mathew 3 1 PG Scholar,Department of Electrical and Electronics Engineering, Mar Athanasius College of

More information

DESIGN OF NEW POSITIVE OUTPUT SUPER-LIFT LUO CONVERTER FOR SOLAR INPUT IN COMPARISON WITH DIFFERENT DC-DC CONVERTERS

DESIGN OF NEW POSITIVE OUTPUT SUPER-LIFT LUO CONVERTER FOR SOLAR INPUT IN COMPARISON WITH DIFFERENT DC-DC CONVERTERS DESIGN OF NEW POSITIVE OUTPUT SUPER-LIFT LUO CONVERTER FOR SOLAR INPUT IN COMPARISON WITH DIFFERENT DC-DC CONVERTERS M.Pradeep Chand 1, G.Ramesh 2 1Student, Vignan s Lara Institute of Science and Technology,

More information

DC-DC CONVERTER WITH VOLTAGE MULTIPLIER CIRCUIT FOR PHOTOVOLTAIC APPLICATION

DC-DC CONVERTER WITH VOLTAGE MULTIPLIER CIRCUIT FOR PHOTOVOLTAIC APPLICATION DC-DC CONVERTER WITH VOLTAGE MULTIPLIER CIRCUIT FOR PHOTOVOLTAIC APPLICATION Vadaje Sachin 1, M.K. Chaudhari 2, M. Venkateshwara Reddy 3 1 PG Student, Dept. of Electrical Engg., GES R. H. Sapat College

More information