Energy-Efficient Data Management for Sensor Networks

Size: px
Start display at page:

Download "Energy-Efficient Data Management for Sensor Networks"

Transcription

1 Energy-Efficient Data Management for Sensor Networks Al Demers, Cornell University Johannes Gehrke, Cornell University Rajmohan Rajaraman, Northeastern University Niki Trigoni, Cornell University Yong Yao, Cornell University The Cougar Project

2 Outline 1. Our Model 1.1. Sensor Network 1.2. Data and Queries 1.3. In-network aggregation 2. Energy-efficient data management 2.1. View Selection 2.2. Wave Scheduling 2.3. Multi-Tree Scheduling

3 Sensor Network Small stationary sensor nodes connected through a multi-hop wireless network Communication: Limited bandwidth, variable latency, packet drops Computation: Limited processing power and memory sizes Power: Limited supply of energy B A D E C F

4 Sensor Network - Scaling Properties Near-neighbor wireless communication implies diameter at least sqrt(n) Better scaling requires hierarchy (with some more capable nodes?) Reliable self-organization in such a system? Partial solutions that keep per-node state small?

5 The DB View of Sensor Networks Traditional Procedural addressing of individual sensor nodes; user specifies how task executes; data is processed centrally. DB Approach Declarative querying and tasking; user isolated from how the network works ; in-network distributed processing. SensId Loc Time Type Value 1 (2,5) 3 temperature 60 1 (2,5) 6 pressure 62 SensId Loc Time Type Value 2 (4,2) 3 light 55 2 (4,2) 5 pressure 30 SensId Loc Time Type Value 3 (3,1) 3 humidity 70 User IF

6 Example Queries Ø Ø Snapshot queries: Ø What is the concentration of chemical X in the northeast quadrant? SELECT AVG(R.concentration) FROM Sensordata R WHERE R.loc in (50,50,100,100) Long-running queries Ø Notify me over the next hour whenever the concentration of chemical X in an area is higher than my security threshold. SELECT R.area, AVG(R.concentration) FROM Sensordata R WHERE R.loc in rectangle GROUP BY R.area HAVING AVG(R.concentration)>T DURATION (now,now+3600) EVERY 10

7 How to Execute Aggregate Queries? Two choices: Ø Centralized processing ü In-network processing 5 Why in-network processing? Ø Sensor network is power (and bandwidth) constrained Ø Local computation is much cheaper than communication

8 Outline 1. Our Model 1.1. Sensor Network 1.2. Data and Queries 1.3. In-network aggregation 2. Energy-efficient data management 2.1. View Selection 2.2. Wave Scheduling 2.3. Multi-Tree Scheduling

9 View Selection: Hybrid Pull-Push Model Push Model Pull Model Hybrid Model View Node

10 View Selection: Problem Definition Time is divided into periods. Given: Ø Aggregate Query Workload: QW={<Q1,p1>, } (p i is the probability of asking Q i at the end of the period) Ø Sensor Updates: DW={<s1,u1>, } (u j is the probability that s j has an update at the end of the period) Ø Tree that connects sensors to the query point Ø Cost of communicating b bits on a link is: α+β*b Compute locations for materialized views (sub-aggregates) to minimize total communication cost

11 View Selection: Example 1 Q a b p : probability of Q q : query message cost r : result message cost edge model push pull a-b r q+p r pull if q < (1-p) r a push q p r otherwise r a b b

12 View Selection: Example 2 Q1 a b c d e Q2 Q1: c+d Q2: d+e pr(q1) = pr(q2) = p q : query message cost r : result message cost (q<r) edge model push pull Pull if a-b b-c b-d b-e 2r r r r q+2 p r q+p r q+p (2-p) r q+p r q < 2 (1-p) r q < (1-p) r q < (1-p) 2 r q < (1-p) r

13 View Selection: Example 2 pr(q1) = p pr(q2) = p a b a b a b c d e c d e c d e a-b b-c b-d b-e Pull if q < 2 (1-p) r q < (1-p) r q < (1-p) 2 r q < (1-p) r q<(1-p) 2 r T T T T (1-p) 2 r <q<(1-p)r T T F T (1-p)r<q<2(1-p)r T F F F

14 View Selection: Example 3 a b The aggregate function matters (e.g. MIN vs SUM) c d e Q1: min(c,d) q1:sum(c,d) Q2: min(d,e) q2:sum(d,e) Q3: min(c,d,e) q3:sum(c,d,e) Result messages from b to a 2 messages 3 messages

15 View Selection: Complexity NP-complete problem (Set Basis Problem) Dynamic programming algorithms (exponential worst-case complexity) Approximation algorithms for four problem instances 1. Regular Queries and Sensor Updates 2. Irregular Queries, Regular Sensor Updates 3. Regular Queries, Irregular Sensor Updates 4. Irregular Queries and Sensor Updates

16 Outline 1. Our Model 1.1. Sensor Network 1.2. Data and Queries 1.3. In-network aggregation 2. Energy-efficient data management 2.1. View Selection 2.2. Wave Scheduling 2.3. Multi-Tree Scheduling

17 Scheduling: Assumptions Nodes are location-aware Neighboring nodes in the network are synchronized (GPS, distributed time synchronization algorithms) Recent studies about radio energy consumption idle : receive : transmit We have a few gateway nodes (destination nodes)

18 Scheduling: Goal Goal => Save energy Ideas: Minimize collisions at the MAC layer Manage the radio in a power-efficient manner Select energy-efficient routes for message delivery

19 Scheduling: TAG approach (1 tree) a b d c e Sending Receiving Idle f g TAG trees do not avoid interference.

20 Scheduling: Multiple trees If scheduled consecutively delay grows linearly with number of destinations If scheduled concurrently power grows more than linearly in the number of destinations (contention) TAG scheduling is good for only a small number of trees

21 Scheduling: GAF Topology Control Periodically re-elect leader in each cell

22 Scheduling: Trees embedded on a grid

23 Our approach: Wave Scheduling

24 Our approach: Wave Scheduling EAST WAVE Sending Receiving Idle

25 Our approach: Wave Scheduling EAST WAVE Sending Receiving Idle

26 Our approach: Wave Scheduling EAST WAVE Sending Receiving Idle

27 Our approach: Wave Scheduling EAST WAVE Sending Receiving Idle

28 Our approach: Wave Scheduling EAST WAVE Sending Receiving Idle

29 Wave Scheduling: Properties Repeats in all 4 directions (North, East, South, West) Non-interfering edges are scheduled concurrently Simple or Interleaved General-purpose schedule. Every edge of the network is activated exactly once per period Can think of it as a real wave

30 Wave Scheduling: Intuition Sending Receiving Idle

31 Wave Scheduling: Intuition Sending Receiving Idle

32 Wave Scheduling: Intuition Sending Receiving Idle

33 Wave Scheduling: Intuition Sending Receiving Idle

34 Wave Scheduling: Routing Schedules have handed-ness e.g. The (N,E,S,W) schedule favors paths that take right-hand turns Given a schedule, we can select Min-delay Routes or Min-Energy Routes N E W S What about holes in the grid?

35 Wave Scheduling: Routing DESTINATION Long right turn path has smaller latency than short left turn path SOURCE =>

36 Wave Scheduling: Routing Anomalies d c Solution: Proactive distancevector routing scheme SOURCE a b DESTINATION Get min-feasible-hops with min delay or min-feasible-delay with min hops Small routing tables 1 bit per edge per destination node =>

37 Wave Scheduling: Routing Anomalies A B Problem: Infinite Loop (because of heavy traffic) SOURCE DESTINATION C Solution: Decide the next hop for a message at the time it is received by a node

38 Outline 1. Our Model 1.1. Sensor Network 1.2. Data and Queries 1.3. In-network aggregation 2. Energy-efficient data management 2.1. View Selection 2.2. Wave Scheduling 2.3. Multi-Tree Scheduling

39 Multi-Tree Scheduling If scheduled consecutively delay grows linearly with number of destinations If scheduled concurrently energy grows more than linearly in the number of destinations (contention) So look for a combined schedule activating each edge once!

40 Combined Schedule? The combined dissemination graph may not be a tree... It may not even be acyclic!

41 Combined Schedule? A difficult problem... Optimal schedule for combined graph is NP-complete (reduction from FVS) If we consider edge-edge interference (collisions) the problem gets even harder Related to maximum common supersequence problem, but lower bounds do not carry over Closest: the Loading Time Problem (LTP) -- heuristics can be adapted

42 Heuristics... Naive Algorithm = schedule trees in sequence Easy examples make the LTP heuristics as bad as the naive one We have clever heuristics! But we have very clever counterexamples None of our heuristics beats naive in worst case Are the clever heuristics better on average?

43 Evaluating on Real Queries... What is the query workload? Spatial locality? Connectivity? Given some representative queries, how can we compare our heuristics against the optimal? Yong has a few nice theorems that may make this just tractable for realistically large queries

44 Scheduling: Experimental Setup NS-2 Network Simulator Mac layer: IEEE communication range = 250m interference range = 550m transmit:receive:idle = 1.6:1.2:1.0 grid cell has size (100m * 100m) grid: 100 (10 by 10) cells We assume GAF, so we have one node per grid cell Experiments lasted 5000 seconds simulation time The source and destination of a message are randomly selected.

45 Scheduling: Experiments Wave ENERGY: Varying the number of destination nodes Average Energy Consumption Energy (Joules) Messages

46 Scheduling: Experiments Tree ENERGY: Varying the number of destination nodes Average Energy Consumption Energy (Joules) Messages

47 Scheduling: Experiments ENERGY: Energy-based vs Delay-based Routing Average Energy Consumption Energy (Joules) Messages

48 Conclusions Saving energy is a significant consideration in sensor networks Two approaches : 1. We can save energy by reducing the number of messages. Proactively push data to carefully selected storage points. 2. We can save energy by turning off radios whenever possible Coordinate sensor node radios with (global) wave schedules or (global) multi-tree schedules.

49 Future Work Interaction between view selection and dissemination graph selection Efficient schedules given specific message generation patterns Improved fault-tolerance

50 Thank you!

51 Scheduling: Experiments DELAY: Energy-based vs Delay-based Routing Average Message Delay Delay (secs) Messages

TIME- OPTIMAL CONVERGECAST IN SENSOR NETWORKS WITH MULTIPLE CHANNELS

TIME- OPTIMAL CONVERGECAST IN SENSOR NETWORKS WITH MULTIPLE CHANNELS TIME- OPTIMAL CONVERGECAST IN SENSOR NETWORKS WITH MULTIPLE CHANNELS A Thesis by Masaaki Takahashi Bachelor of Science, Wichita State University, 28 Submitted to the Department of Electrical Engineering

More information

Mathematical Problems in Networked Embedded Systems

Mathematical Problems in Networked Embedded Systems Mathematical Problems in Networked Embedded Systems Miklós Maróti Institute for Software Integrated Systems Vanderbilt University Outline Acoustic ranging TDMA in globally asynchronous locally synchronous

More information

Scheduling Data Collection with Dynamic Traffic Patterns in Wireless Sensor Networks

Scheduling Data Collection with Dynamic Traffic Patterns in Wireless Sensor Networks Scheduling Data Collection with Dynamic Traffic Patterns in Wireless Sensor Networks Wenbo Zhao and Xueyan Tang School of Computer Engineering, Nanyang Technological University, Singapore 639798 Email:

More information

Energy-Efficient MANET Routing: Ideal vs. Realistic Performance

Energy-Efficient MANET Routing: Ideal vs. Realistic Performance Energy-Efficient MANET Routing: Ideal vs. Realistic Performance Paper by: Thomas Knuz IEEE IWCMC Conference Aug. 2008 Presented by: Farzana Yasmeen For : CSE 6590 2013.11.12 Contents Introduction Review:

More information

DiCa: Distributed Tag Access with Collision-Avoidance among Mobile RFID Readers

DiCa: Distributed Tag Access with Collision-Avoidance among Mobile RFID Readers DiCa: Distributed Tag Access with Collision-Avoidance among Mobile RFID Readers Kwang-il Hwang, Kyung-tae Kim, and Doo-seop Eom Department of Electronics and Computer Engineering, Korea University 5-1ga,

More information

Papers. Ad Hoc Routing. Outline. Motivation

Papers. Ad Hoc Routing. Outline. Motivation CS 15-849E: Wireless Networks (Spring 2006) Ad Hoc Routing Discussion Leads: Abhijit Deshmukh Sai Vinayak Srinivasan Seshan Dave Andersen Papers Outdoor Experimental Comparison of Four Ad Hoc Routing Algorithms

More information

A Performance Comparison of Multi-Hop Wireless Ad Hoc Network Routing Protocols

A Performance Comparison of Multi-Hop Wireless Ad Hoc Network Routing Protocols A Performance Comparison of Multi-Hop Wireless Ad Hoc Network Routing Protocols Josh Broch, David Maltz, David Johnson, Yih-Chun Hu and Jorjeta Jetcheva Computer Science Department Carnegie Mellon University

More information

BBS: Lian et An al. Energy Efficient Localized Routing Scheme. Scheme for Query Processing in Wireless Sensor Networks

BBS: Lian et An al. Energy Efficient Localized Routing Scheme. Scheme for Query Processing in Wireless Sensor Networks International Journal of Distributed Sensor Networks, : 3 54, 006 Copyright Taylor & Francis Group, LLC ISSN: 1550-139 print/1550-1477 online DOI: 10.1080/1550130500330711 BBS: An Energy Efficient Localized

More information

Data Gathering. Chapter 4. Ad Hoc and Sensor Networks Roger Wattenhofer 4/1

Data Gathering. Chapter 4. Ad Hoc and Sensor Networks Roger Wattenhofer 4/1 Data Gathering Chapter 4 Ad Hoc and Sensor Networks Roger Wattenhofer 4/1 Environmental Monitoring (PermaSense) Understand global warming in alpine environment Harsh environmental conditions Swiss made

More information

ENERGY EFFICIENT SENSOR NODE DESIGN IN WIRELESS SENSOR NETWORKS

ENERGY EFFICIENT SENSOR NODE DESIGN IN WIRELESS SENSOR NETWORKS Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 4, April 2014,

More information

Chapter 10. User Cooperative Communications

Chapter 10. User Cooperative Communications Chapter 10 User Cooperative Communications 1 Outline Introduction Relay Channels User-Cooperation in Wireless Networks Multi-Hop Relay Channel Summary 2 Introduction User cooperative communication is a

More information

Low-Latency Multi-Source Broadcast in Radio Networks

Low-Latency Multi-Source Broadcast in Radio Networks Low-Latency Multi-Source Broadcast in Radio Networks Scott C.-H. Huang City University of Hong Kong Hsiao-Chun Wu Louisiana State University and S. S. Iyengar Louisiana State University In recent years

More information

Distributed Collaborative Path Planning in Sensor Networks with Multiple Mobile Sensor Nodes

Distributed Collaborative Path Planning in Sensor Networks with Multiple Mobile Sensor Nodes 7th Mediterranean Conference on Control & Automation Makedonia Palace, Thessaloniki, Greece June 4-6, 009 Distributed Collaborative Path Planning in Sensor Networks with Multiple Mobile Sensor Nodes Theofanis

More information

Transmission Scheduling in Capture-Based Wireless Networks

Transmission Scheduling in Capture-Based Wireless Networks ransmission Scheduling in Capture-Based Wireless Networks Gam D. Nguyen and Sastry Kompella Information echnology Division, Naval Research Laboratory, Washington DC 375 Jeffrey E. Wieselthier Wieselthier

More information

Energy-Efficient Communication Protocol for Wireless Microsensor Networks

Energy-Efficient Communication Protocol for Wireless Microsensor Networks Energy-Efficient Communication Protocol for Wireless Microsensor Networks Wendi Rabiner Heinzelman Anatha Chandrasakan Hari Balakrishnan Massachusetts Institute of Technology Presented by Rick Skowyra

More information

Design of an energy efficient Medium Access Control protocol for wireless sensor networks. Thesis Committee

Design of an energy efficient Medium Access Control protocol for wireless sensor networks. Thesis Committee Design of an energy efficient Medium Access Control protocol for wireless sensor networks Thesis Committee Masters Thesis Defense Kiran Tatapudi Dr. Chansu Yu, Dr. Wenbing Zhao, Dr. Yongjian Fu Organization

More information

Utilization Based Duty Cycle Tuning MAC Protocol for Wireless Sensor Networks

Utilization Based Duty Cycle Tuning MAC Protocol for Wireless Sensor Networks Utilization Based Duty Cycle Tuning MAC Protocol for Wireless Sensor Networks Shih-Hsien Yang, Hung-Wei Tseng, Eric Hsiao-Kuang Wu, and Gen-Huey Chen Dept. of Computer Science and Information Engineering,

More information

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February ISSN

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February ISSN International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016 181 A NOVEL RANGE FREE LOCALIZATION METHOD FOR MOBILE SENSOR NETWORKS Anju Thomas 1, Remya Ramachandran 2 1

More information

p-percent Coverage in Wireless Sensor Networks

p-percent Coverage in Wireless Sensor Networks p-percent Coverage in Wireless Sensor Networks Yiwei Wu, Chunyu Ai, Shan Gao and Yingshu Li Department of Computer Science Georgia State University October 28, 2008 1 Introduction 2 p-percent Coverage

More information

Wireless in the Real World. Principles

Wireless in the Real World. Principles Wireless in the Real World Principles Make every transmission count E.g., reduce the # of collisions E.g., drop packets early, not late Control errors Fundamental problem in wless Maximize spatial reuse

More information

Gateways Placement in Backbone Wireless Mesh Networks

Gateways Placement in Backbone Wireless Mesh Networks I. J. Communications, Network and System Sciences, 2009, 1, 1-89 Published Online February 2009 in SciRes (http://www.scirp.org/journal/ijcns/). Gateways Placement in Backbone Wireless Mesh Networks Abstract

More information

T. Yoo, E. Setton, X. Zhu, Pr. Goldsmith and Pr. Girod Department of Electrical Engineering Stanford University

T. Yoo, E. Setton, X. Zhu, Pr. Goldsmith and Pr. Girod Department of Electrical Engineering Stanford University Cross-layer design for video streaming over wireless ad hoc networks T. Yoo, E. Setton, X. Zhu, Pr. Goldsmith and Pr. Girod Department of Electrical Engineering Stanford University Outline Cross-layer

More information

Localization in Wireless Sensor Networks

Localization in Wireless Sensor Networks Localization in Wireless Sensor Networks Part 2: Localization techniques Department of Informatics University of Oslo Cyber Physical Systems, 11.10.2011 Localization problem in WSN In a localization problem

More information

Achieving Network Consistency. Octav Chipara

Achieving Network Consistency. Octav Chipara Achieving Network Consistency Octav Chipara Reminders Homework is postponed until next class if you already turned in your homework, you may resubmit Please send me your peer evaluations 2 Next few lectures

More information

A Review of Current Routing Protocols for Ad Hoc Mobile Wireless Networks

A Review of Current Routing Protocols for Ad Hoc Mobile Wireless Networks A Review of Current Routing Protocols for Ad Hoc Mobile Wireless Networks Elisabeth M. Royer, Chai-Keong Toh IEEE Personal Communications, April 1999 Presented by Hannu Vilpponen 1(15) Hannu_Vilpponen.PPT

More information

The Case for Optimum Detection Algorithms in MIMO Wireless Systems. Helmut Bölcskei

The Case for Optimum Detection Algorithms in MIMO Wireless Systems. Helmut Bölcskei The Case for Optimum Detection Algorithms in MIMO Wireless Systems Helmut Bölcskei joint work with A. Burg, C. Studer, and M. Borgmann ETH Zurich Data rates in wireless double every 18 months throughput

More information

Chapter 12. Cross-Layer Optimization for Multi- Hop Cognitive Radio Networks

Chapter 12. Cross-Layer Optimization for Multi- Hop Cognitive Radio Networks Chapter 12 Cross-Layer Optimization for Multi- Hop Cognitive Radio Networks 1 Outline CR network (CRN) properties Mathematical models at multiple layers Case study 2 Traditional Radio vs CR Traditional

More information

Optimal Clock Synchronization in Networks. Christoph Lenzen Philipp Sommer Roger Wattenhofer

Optimal Clock Synchronization in Networks. Christoph Lenzen Philipp Sommer Roger Wattenhofer Optimal Clock Synchronization in Networks Christoph Lenzen Philipp Sommer Roger Wattenhofer Time in Sensor Networks Synchronized clocks are essential for many applications: Sensing TDMA Localization Duty-

More information

Distributed Broadcast Scheduling in Mobile Ad Hoc Networks with Unknown Topologies

Distributed Broadcast Scheduling in Mobile Ad Hoc Networks with Unknown Topologies Distributed Broadcast Scheduling in Mobile Ad Hoc Networks with Unknown Topologies Guang Tan, Stephen A. Jarvis, James W. J. Xue, and Simon D. Hammond Department of Computer Science, University of Warwick,

More information

Data Dissemination in Wireless Sensor Networks

Data Dissemination in Wireless Sensor Networks Data Dissemination in Wireless Sensor Networks Philip Levis UC Berkeley Intel Research Berkeley Neil Patel UC Berkeley David Culler UC Berkeley Scott Shenker UC Berkeley ICSI Sensor Networks Sensor networks

More information

Datasheet. Tag Piccolino for RTLS-TDoA. A tiny Tag powered by coin battery V1.1

Datasheet. Tag Piccolino for RTLS-TDoA. A tiny Tag powered by coin battery V1.1 Tag Piccolino for RTLS-TDoA A tiny Tag powered by coin battery Features Real-Time Location with UWB and TDoA Technique Movement Detection / Sensor Data Identification, unique MAC address Decawave UWB Radio,

More information

Evaluation of the 6TiSCH Network Formation

Evaluation of the 6TiSCH Network Formation Evaluation of the 6TiSCH Network Formation Dario Fanucchi 1 Barbara Staehle 2 Rudi Knorr 1,3 1 Department of Computer Science University of Augsburg, Germany 2 Department of Computer Science University

More information

Fast and efficient randomized flooding on lattice sensor networks

Fast and efficient randomized flooding on lattice sensor networks Fast and efficient randomized flooding on lattice sensor networks Ananth Kini, Vilas Veeraraghavan, Steven Weber Department of Electrical and Computer Engineering Drexel University November 19, 2004 presentation

More information

Bit Reversal Broadcast Scheduling for Ad Hoc Systems

Bit Reversal Broadcast Scheduling for Ad Hoc Systems Bit Reversal Broadcast Scheduling for Ad Hoc Systems Marcin Kik, Maciej Gebala, Mirosław Wrocław University of Technology, Poland IDCS 2013, Hangzhou How to broadcast efficiently? Broadcasting ad hoc systems

More information

Scalable Routing Protocols for Mobile Ad Hoc Networks

Scalable Routing Protocols for Mobile Ad Hoc Networks Helsinki University of Technology T-79.300 Postgraduate Course in Theoretical Computer Science Scalable Routing Protocols for Mobile Ad Hoc Networks Hafeth Hourani hafeth.hourani@nokia.com Contents Overview

More information

Wireless Networked Systems

Wireless Networked Systems Wireless Networked Systems CS 795/895 - Spring 2013 Lec #4: Medium Access Control Power/CarrierSense Control, Multi-Channel, Directional Antenna Tamer Nadeem Dept. of Computer Science Power & Carrier Sense

More information

THE field of personal wireless communications is expanding

THE field of personal wireless communications is expanding IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 5, NO. 6, DECEMBER 1997 907 Distributed Channel Allocation for PCN with Variable Rate Traffic Partha P. Bhattacharya, Leonidas Georgiadis, Senior Member, IEEE,

More information

FTSP Power Characterization

FTSP Power Characterization 1. Introduction FTSP Power Characterization Chris Trezzo Tyler Netherland Over the last few decades, advancements in technology have allowed for small lowpowered devices that can accomplish a multitude

More information

Wireless Internet Routing. IEEE s

Wireless Internet Routing. IEEE s Wireless Internet Routing IEEE 802.11s 1 Acknowledgments Cigdem Sengul, Deutsche Telekom Laboratories 2 Outline Introduction Interworking Topology discovery Routing 3 IEEE 802.11a/b/g /n /s IEEE 802.11s:

More information

A Computational Approach to the Joint Design of Distributed Data Compression and Data Dissemination in a Field-Gathering Wireless Sensor Network

A Computational Approach to the Joint Design of Distributed Data Compression and Data Dissemination in a Field-Gathering Wireless Sensor Network A Computational Approach to the Joint Design of Distributed Data Compression and Data Dissemination in a Field-Gathering Wireless Sensor Network Enrique J. Duarte-Melo, Mingyan Liu Electrical Engineering

More information

CONVERGECAST, namely the collection of data from

CONVERGECAST, namely the collection of data from 1 Fast Data Collection in Tree-Based Wireless Sensor Networks Özlem Durmaz Incel, Amitabha Ghosh, Bhaskar Krishnamachari, and Krishnakant Chintalapudi (USC CENG Technical Report No.: ) Abstract We investigate

More information

Performance Limits of Fair-Access in Sensor Networks with Linear and Selected Grid Topologies John Gibson * Geoffrey G.

Performance Limits of Fair-Access in Sensor Networks with Linear and Selected Grid Topologies John Gibson * Geoffrey G. In proceedings of GLOBECOM Ad Hoc and Sensor Networking Symposium, Washington DC, November 7 Performance Limits of Fair-Access in Sensor Networks with Linear and Selected Grid Topologies John Gibson *

More information

Sense in Order: Channel Selection for Sensing in Cognitive Radio Networks

Sense in Order: Channel Selection for Sensing in Cognitive Radio Networks Sense in Order: Channel Selection for Sensing in Cognitive Radio Networks Ying Dai and Jie Wu Department of Computer and Information Sciences Temple University, Philadelphia, PA 19122 Email: {ying.dai,

More information

Efficient Recovery Algorithms for Wireless Mesh Networks with Cognitive Radios

Efficient Recovery Algorithms for Wireless Mesh Networks with Cognitive Radios Efficient Recovery Algorithms for Wireless Mesh Networks with Cognitive Radios Roberto Hincapie, Li Zhang, Jian Tang, Guoliang Xue, Richard S. Wolff and Roberto Bustamante Abstract Cognitive radios allow

More information

Ultra-Low Duty Cycle MAC with Scheduled Channel Polling

Ultra-Low Duty Cycle MAC with Scheduled Channel Polling Ultra-Low Duty Cycle MAC with Scheduled Channel Polling Wei Ye and John Heidemann CS577 Brett Levasseur 12/3/2013 Outline Introduction Scheduled Channel Polling (SCP-MAC) Energy Performance Analysis Implementation

More information

Partial overlapping channels are not damaging

Partial overlapping channels are not damaging Journal of Networking and Telecomunications (2018) Original Research Article Partial overlapping channels are not damaging Jing Fu,Dongsheng Chen,Jiafeng Gong Electronic Information Engineering College,

More information

Global State and Gossip

Global State and Gossip Global State and Gossip CS 240: Computing Systems and Concurrency Lecture 6 Marco Canini Credits: Indranil Gupta developed much of the original material. Today 1. Global snapshot of a distributed system

More information

MAC SCHEDULING IN INDUSTRIAL WIRELESS CELL-BASED MESH SENSOR NETWORKS

MAC SCHEDULING IN INDUSTRIAL WIRELESS CELL-BASED MESH SENSOR NETWORKS MAC SCHEDULING IN INDUSTRIAL WIRELESS CELL-BASED MESH SENSOR NETWORKS Imran Yousaf Master s Degree Thesis 2011 EMBEDDED SYSTEMS MAC SCHEDULING IN INDUSTRIAL WIRELESS CELL-BASED MESH SENSOR NETWORKS Postadress:

More information

Adaptive Fault Tolerant QoS Control Algorithms for Maximizing System Lifetime of Query-Based Wireless Sensor Networks

Adaptive Fault Tolerant QoS Control Algorithms for Maximizing System Lifetime of Query-Based Wireless Sensor Networks Adaptive Fault Tolerant QoS Control Algorithms for Maximizing System Lifetime of Query-Based Wireless Sensor Networks Ing-Ray Chen*, Anh Phan Speer* and Mohamed Eltoweissy+ *Department of Computer Science

More information

Network-Wide Broadcast

Network-Wide Broadcast Massachusetts Institute of Technology Lecture 10 6.895: Advanced Distributed Algorithms March 15, 2006 Professor Nancy Lynch Network-Wide Broadcast These notes cover the first of two lectures given on

More information

Randomized Channel Access Reduces Network Local Delay

Randomized Channel Access Reduces Network Local Delay Randomized Channel Access Reduces Network Local Delay Wenyi Zhang USTC Joint work with Yi Zhong (Ph.D. student) and Martin Haenggi (Notre Dame) 2013 Joint HK/TW Workshop on ITC CUHK, January 19, 2013 Acknowledgement

More information

Transport Capacity and Spectral Efficiency of Large Wireless CDMA Ad Hoc Networks

Transport Capacity and Spectral Efficiency of Large Wireless CDMA Ad Hoc Networks Transport Capacity and Spectral Efficiency of Large Wireless CDMA Ad Hoc Networks Yi Sun Department of Electrical Engineering The City College of City University of New York Acknowledgement: supported

More information

DISTRIBUTED DYNAMIC CHANNEL ALLOCATION ALGORITHM FOR CELLULAR MOBILE NETWORK

DISTRIBUTED DYNAMIC CHANNEL ALLOCATION ALGORITHM FOR CELLULAR MOBILE NETWORK DISTRIBUTED DYNAMIC CHANNEL ALLOCATION ALGORITHM FOR CELLULAR MOBILE NETWORK 1 Megha Gupta, 2 A.K. Sachan 1 Research scholar, Deptt. of computer Sc. & Engg. S.A.T.I. VIDISHA (M.P) INDIA. 2 Asst. professor,

More information

Empirical Probability Based QoS Routing

Empirical Probability Based QoS Routing Empirical Probability Based QoS Routing Xin Yuan Guang Yang Department of Computer Science, Florida State University, Tallahassee, FL 3230 {xyuan,guanyang}@cs.fsu.edu Abstract We study Quality-of-Service

More information

Starvation Mitigation Through Multi-Channel Coordination in CSMA Multi-hop Wireless Networks

Starvation Mitigation Through Multi-Channel Coordination in CSMA Multi-hop Wireless Networks Starvation Mitigation Through Multi-Channel Coordination in CSMA Multi-hop Wireless Networks Jingpu Shi Theodoros Salonidis Edward Knightly Networks Group ECE, University Simulation in single-channel multi-hop

More information

Multicast Energy Aware Routing in Wireless Networks

Multicast Energy Aware Routing in Wireless Networks Ahmad Karimi Department of Mathematics, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran karimi@bkatu.ac.ir ABSTRACT Multicasting is a service for disseminating data to a group of hosts

More information

Energy Consumption and Latency Analysis for Wireless Multimedia Sensor Networks

Energy Consumption and Latency Analysis for Wireless Multimedia Sensor Networks Energy Consumption and Latency Analysis for Wireless Multimedia Sensor Networks Alvaro Pinto, Zhe Zhang, Xin Dong, Senem Velipasalar, M. Can Vuran, M. Cenk Gursoy Electrical Engineering Department, University

More information

A survey on broadcast protocols in multihop cognitive radio ad hoc network

A survey on broadcast protocols in multihop cognitive radio ad hoc network A survey on broadcast protocols in multihop cognitive radio ad hoc network Sureshkumar A, Rajeswari M Abstract In the traditional ad hoc network, common channel is present to broadcast control channels

More information

WirelessHART Modeling and Performance Evaluation

WirelessHART Modeling and Performance Evaluation WirelessHART Modeling and Performance Evaluation Anne Remke and Xian Wu October 24, 2013 A. Remke and X. Wu (University of Twente) WirelessHART October 24, 2013 1 / 21 WirelessHART [www.hartcomm.org] A.

More information

Syed Obaid Amin. Date: February 11 th, Networking Lab Kyung Hee University

Syed Obaid Amin. Date: February 11 th, Networking Lab Kyung Hee University Detecting Jamming Attacks in Ubiquitous Sensor Networks Networking Lab Kyung Hee University Date: February 11 th, 2008 Syed Obaid Amin obaid@networking.khu.ac.kr Contents Background Introduction USN (Ubiquitous

More information

Feasibility and Benefits of Passive RFID Wake-up Radios for Wireless Sensor Networks

Feasibility and Benefits of Passive RFID Wake-up Radios for Wireless Sensor Networks Feasibility and Benefits of Passive RFID Wake-up Radios for Wireless Sensor Networks He Ba, Ilker Demirkol, and Wendi Heinzelman Department of Electrical and Computer Engineering University of Rochester

More information

RF Considerations for Wireless Systems Design. Frank Jimenez Manager, Technical Support & Service

RF Considerations for Wireless Systems Design. Frank Jimenez Manager, Technical Support & Service RF Considerations for Wireless Systems Design Frank Jimenez Manager, Technical Support & Service 1 The Presentation Objective We will cover.. The available wireless spectrum 802.11 technology and the wireless

More information

Trade-offs Between Mobility and Density for Coverage in Wireless Sensor Networks. Wei Wang, Vikram Srinivasan, Kee-Chaing Chua

Trade-offs Between Mobility and Density for Coverage in Wireless Sensor Networks. Wei Wang, Vikram Srinivasan, Kee-Chaing Chua Trade-offs Between Mobility and Density for Coverage in Wireless Sensor Networks Wei Wang, Vikram Srinivasan, Kee-Chaing Chua Coverage in sensor networks Sensors are often randomly scattered in the field

More information

Cooperative Routing in Wireless Networks

Cooperative Routing in Wireless Networks Cooperative Routing in Wireless Networks Amir Ehsan Khandani Jinane Abounadi Eytan Modiano Lizhong Zheng Laboratory for Information and Decision Systems Massachusetts Institute of Technology 77 Massachusetts

More information

Jamming Wireless Networks: Attack and Defense Strategies

Jamming Wireless Networks: Attack and Defense Strategies Jamming Wireless Networks: Attack and Defense Strategies Wenyuan Xu, Ke Ma, Wade Trappe, Yanyong Zhang, WINLAB, Rutgers University IAB, Dec. 6 th, 2005 Roadmap Introduction and Motivation Jammer Models

More information

Superimposed Code Based Channel Assignment in Multi-Radio Multi-Channel Wireless Mesh Networks

Superimposed Code Based Channel Assignment in Multi-Radio Multi-Channel Wireless Mesh Networks Superimposed Code Based Channel Assignment in Multi-Radio Multi-Channel Wireless Mesh Networks ABSTRACT Kai Xing & Xiuzhen Cheng & Liran Ma Department of Computer Science The George Washington University

More information

Performance Evaluation of Energy Consumption of Reactive Protocols under Self- Similar Traffic

Performance Evaluation of Energy Consumption of Reactive Protocols under Self- Similar Traffic International Journal of Computer Science & Communication Vol. 1, No. 1, January-June 2010, pp. 67-71 Performance Evaluation of Energy Consumption of Reactive Protocols under Self- Similar Traffic Dhiraj

More information

CS 457 Lecture 16 Routing Continued. Spring 2010

CS 457 Lecture 16 Routing Continued. Spring 2010 CS 457 Lecture 16 Routing Continued Spring 2010 Scaling Link-State Routing Overhead of link-state routing Flooding link-state packets throughout the network Running Dijkstra s shortest-path algorithm Introducing

More information

Hierarchical Agglomerative Aggregation Scheduling in Directional Wireless Sensor Networks

Hierarchical Agglomerative Aggregation Scheduling in Directional Wireless Sensor Networks Hierarchical Agglomerative Aggregation Scheduling in Directional Wireless Sensor Networks Min Kyung An Department of Computer Science Sam Houston State University Huntsville, Texas 77341, USA Email: an@shsu.edu

More information

Joint work with Dragana Bajović and Dušan Jakovetić. DLR/TUM Workshop, Munich,

Joint work with Dragana Bajović and Dušan Jakovetić. DLR/TUM Workshop, Munich, Slotted ALOHA in Small Cell Networks: How to Design Codes on Random Geometric Graphs? Dejan Vukobratović Associate Professor, DEET-UNS University of Novi Sad, Serbia Joint work with Dragana Bajović and

More information

Mobile Ad Hoc Networks Theory of Interferences, Trade-Offs between Energy, Congestion and Delay

Mobile Ad Hoc Networks Theory of Interferences, Trade-Offs between Energy, Congestion and Delay Mobile Ad Hoc Networks Theory of Interferences, Trade-Offs between Energy, Congestion and Delay 5th Week 14.05.-18.05.2007 Christian Schindelhauer schindel@informatik.uni-freiburg.de 1 Unit Disk Graphs

More information

A Practical Approach to Bitrate Control in Wireless Mesh Networks using Wireless Network Utility Maximization

A Practical Approach to Bitrate Control in Wireless Mesh Networks using Wireless Network Utility Maximization A Practical Approach to Bitrate Control in Wireless Mesh Networks using Wireless Network Utility Maximization EE359 Course Project Mayank Jain Department of Electrical Engineering Stanford University Introduction

More information

GeoMAC: Geo-backoff based Co-operative MAC for V2V networks.

GeoMAC: Geo-backoff based Co-operative MAC for V2V networks. GeoMAC: Geo-backoff based Co-operative MAC for V2V networks. Sanjit Kaul and Marco Gruteser WINLAB, Rutgers University. Ryokichi Onishi and Rama Vuyyuru Toyota InfoTechnology Center. ICVES 08 Sep 24 th

More information

Lightweight Decentralized Algorithm for Localizing Reactive Jammers in Wireless Sensor Network

Lightweight Decentralized Algorithm for Localizing Reactive Jammers in Wireless Sensor Network International Journal Of Computational Engineering Research (ijceronline.com) Vol. 3 Issue. 3 Lightweight Decentralized Algorithm for Localizing Reactive Jammers in Wireless Sensor Network 1, Vinothkumar.G,

More information

Link Activation with Parallel Interference Cancellation in Multi-hop VANET

Link Activation with Parallel Interference Cancellation in Multi-hop VANET Link Activation with Parallel Interference Cancellation in Multi-hop VANET Meysam Azizian, Soumaya Cherkaoui and Abdelhakim Senhaji Hafid Department of Electrical and Computer Engineering, Université de

More information

Average Delay in Asynchronous Visual Light ALOHA Network

Average Delay in Asynchronous Visual Light ALOHA Network Average Delay in Asynchronous Visual Light ALOHA Network Xin Wang, Jean-Paul M.G. Linnartz, Signal Processing Systems, Dept. of Electrical Engineering Eindhoven University of Technology The Netherlands

More information

Opportunistic Communications under Energy & Delay Constraints

Opportunistic Communications under Energy & Delay Constraints Opportunistic Communications under Energy & Delay Constraints Narayan Mandayam (joint work with Henry Wang) Opportunistic Communications Wireless Data on the Move Intermittent Connectivity Opportunities

More information

Reti di Telecomunicazione. Channels and Multiplexing

Reti di Telecomunicazione. Channels and Multiplexing Reti di Telecomunicazione Channels and Multiplexing Point-to-point Channels They are permanent connections between a sender and a receiver The receiver can be designed and optimized based on the (only)

More information

Multicasting over Multiple-Access Networks

Multicasting over Multiple-Access Networks ing oding apacity onclusions ing Department of Electrical Engineering and omputer Sciences University of alifornia, Berkeley May 9, 2006 EE 228A Outline ing oding apacity onclusions 1 2 3 4 oding 5 apacity

More information

Internet of Things Prof. M. Cesana. Exam June 26, Family Name Given Name Student ID 3030 Course of studies 3030 Total Available time: 2 hours

Internet of Things Prof. M. Cesana. Exam June 26, Family Name Given Name Student ID 3030 Course of studies 3030 Total Available time: 2 hours Internet of Things Prof. M. Cesana Exam June 26, 2011 Family Name Given Name John Doe Student ID 3030 Course of studies 3030 Total Available time: 2 hours E1 E2 E3 Questions Questions OS 1 Exercise (8

More information

INTRODUCTION TO WIRELESS SENSOR NETWORKS. CHAPTER 3: RADIO COMMUNICATIONS Anna Förster

INTRODUCTION TO WIRELESS SENSOR NETWORKS. CHAPTER 3: RADIO COMMUNICATIONS Anna Förster INTRODUCTION TO WIRELESS SENSOR NETWORKS CHAPTER 3: RADIO COMMUNICATIONS Anna Förster OVERVIEW 1. Radio Waves and Modulation/Demodulation 2. Properties of Wireless Communications 1. Interference and noise

More information

BASIC CONCEPTS OF HSPA

BASIC CONCEPTS OF HSPA 284 23-3087 Uen Rev A BASIC CONCEPTS OF HSPA February 2007 White Paper HSPA is a vital part of WCDMA evolution and provides improved end-user experience as well as cost-efficient mobile/wireless broadband.

More information

Politecnico di Milano Advanced Network Technologies Laboratory. Beyond Standard MAC Sublayer

Politecnico di Milano Advanced Network Technologies Laboratory. Beyond Standard MAC Sublayer Politecnico di Milano Advanced Network Technologies Laboratory Beyond Standard 802.15.4 MAC Sublayer MAC Design Approaches o Conten&on based n Allow collisions n O2en CSMA based (SMAC, STEM, Z- MAC, GeRaF,

More information

INTELLIGENT SPECTRUM MOBILITY AND RESOURCE MANAGEMENT IN COGNITIVE RADIO AD HOC NETWORKS. A Dissertation by. Dan Wang

INTELLIGENT SPECTRUM MOBILITY AND RESOURCE MANAGEMENT IN COGNITIVE RADIO AD HOC NETWORKS. A Dissertation by. Dan Wang INTELLIGENT SPECTRUM MOBILITY AND RESOURCE MANAGEMENT IN COGNITIVE RADIO AD HOC NETWORKS A Dissertation by Dan Wang Master of Science, Harbin Institute of Technology, 2011 Bachelor of Engineering, China

More information

A Backlog-Based CSMA Mechanism to Achieve Fairness and Throughput-Optimality in Multihop Wireless Networks

A Backlog-Based CSMA Mechanism to Achieve Fairness and Throughput-Optimality in Multihop Wireless Networks A Backlog-Based CSMA Mechanism to Achieve Fairness and Throughput-Optimality in Multihop Wireless Networks Peter Marbach, and Atilla Eryilmaz Dept. of Computer Science, University of Toronto Email: marbach@cs.toronto.edu

More information

for Vehicular Ad Hoc Networks

for Vehicular Ad Hoc Networks Distributed Fair Transmit Power Adjustment for Vehicular Ad Hoc Networks Third Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON 06) Reston, VA,

More information

3644 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 6, JUNE 2011

3644 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 6, JUNE 2011 3644 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 6, JUNE 2011 Asynchronous CSMA Policies in Multihop Wireless Networks With Primary Interference Constraints Peter Marbach, Member, IEEE, Atilla

More information

From Shared Memory to Message Passing

From Shared Memory to Message Passing From Shared Memory to Message Passing Stefan Schmid T-Labs / TU Berlin Some parts of the lecture, parts of the Skript and exercises will be based on the lectures of Prof. Roger Wattenhofer at ETH Zurich

More information

A Location-Aware Routing Metric (ALARM) for Multi-Hop, Multi-Channel Wireless Mesh Networks

A Location-Aware Routing Metric (ALARM) for Multi-Hop, Multi-Channel Wireless Mesh Networks A Location-Aware Routing Metric (ALARM) for Multi-Hop, Multi-Channel Wireless Mesh Networks Eiman Alotaibi, Sumit Roy Dept. of Electrical Engineering U. Washington Box 352500 Seattle, WA 98195 eman76,roy@ee.washington.edu

More information

A Distributed Protocol For Adaptive Link Scheduling in Ad-hoc Networks 1

A Distributed Protocol For Adaptive Link Scheduling in Ad-hoc Networks 1 Distributed Protocol For daptive Link Scheduling in d-hoc Networks 1 Rui Liu, Errol L. Lloyd Department of Computer and Information Sciences University of Delaware Newark, DE 19716 bstract -- fully distributed

More information

INFORMATION AND COMPUTATION HIERARCHY

INFORMATION AND COMPUTATION HIERARCHY INFORMATION AND COMPUTATION HIERARCHY Lang Tong School of Electrical and Computer Engineering Cornell University, Ithaca, NY Acknowledgement: K. Birman, P. Varaiya, T. Mount, R. Thomas, S. Avestimehr,

More information

Chapter 1 Basic concepts of wireless data networks (cont d.)

Chapter 1 Basic concepts of wireless data networks (cont d.) Chapter 1 Basic concepts of wireless data networks (cont d.) Part 4: Wireless network operations Oct 6 2004 1 Mobility management Consists of location management and handoff management Location management

More information

Cognitive Wireless Network : Computer Networking. Overview. Cognitive Wireless Networks

Cognitive Wireless Network : Computer Networking. Overview. Cognitive Wireless Networks Cognitive Wireless Network 15-744: Computer Networking L-19 Cognitive Wireless Networks Optimize wireless networks based context information Assigned reading White spaces Online Estimation of Interference

More information

Topology Control. Chapter 3. Ad Hoc and Sensor Networks. Roger Wattenhofer 3/1

Topology Control. Chapter 3. Ad Hoc and Sensor Networks. Roger Wattenhofer 3/1 Topology Control Chapter 3 Ad Hoc and Sensor Networks Roger Wattenhofer 3/1 Inventory Tracking (Cargo Tracking) Current tracking systems require lineof-sight to satellite. Count and locate containers Search

More information

Closing the loop around Sensor Networks

Closing the loop around Sensor Networks Closing the loop around Sensor Networks Bruno Sinopoli Shankar Sastry Dept of Electrical Engineering, UC Berkeley Chess Review May 11, 2005 Berkeley, CA Conceptual Issues Given a certain wireless sensor

More information

Advanced Modeling and Simulation of Mobile Ad-Hoc Networks

Advanced Modeling and Simulation of Mobile Ad-Hoc Networks Advanced Modeling and Simulation of Mobile Ad-Hoc Networks Prepared For: UMIACS/LTS Seminar March 3, 2004 Telcordia Contact: Stephanie Demers Robert A. Ziegler ziegler@research.telcordia.com 732.758.5494

More information

OSPF Fundamentals. Agenda. OSPF Principles. L41 - OSPF Fundamentals. Open Shortest Path First Routing Protocol Internet s Second IGP

OSPF Fundamentals. Agenda. OSPF Principles. L41 - OSPF Fundamentals. Open Shortest Path First Routing Protocol Internet s Second IGP OSPF Fundamentals Open Shortest Path First Routing Protocol Internet s Second IGP Agenda OSPF Principles Introduction The Dijkstra Algorithm Communication Procedures LSA Broadcast Handling Splitted Area

More information

OSPF - Open Shortest Path First. OSPF Fundamentals. Agenda. OSPF Topology Database

OSPF - Open Shortest Path First. OSPF Fundamentals. Agenda. OSPF Topology Database OSPF - Open Shortest Path First OSPF Fundamentals Open Shortest Path First Routing Protocol Internet s Second IGP distance vector protocols like RIP have several dramatic disadvantages: slow adaptation

More information

Multiple Receiver Strategies for Minimizing Packet Loss in Dense Sensor Networks

Multiple Receiver Strategies for Minimizing Packet Loss in Dense Sensor Networks Multiple Receiver Strategies for Minimizing Packet Loss in Dense Sensor Networks Bernhard Firner Chenren Xu Yanyong Zhang Richard Howard Rutgers University, Winlab May 10, 2011 Bernhard Firner (Winlab)

More information

On the Performance of Cooperative Routing in Wireless Networks

On the Performance of Cooperative Routing in Wireless Networks 1 On the Performance of Cooperative Routing in Wireless Networks Mostafa Dehghan, Majid Ghaderi, and Dennis L. Goeckel Department of Computer Science, University of Calgary, Emails: {mdehghan, mghaderi}@ucalgary.ca

More information