Detection and Estimation in Wireless Sensor Networks

Size: px
Start display at page:

Download "Detection and Estimation in Wireless Sensor Networks"

Transcription

1 Detection and Estimation in Wireless Sensor Networks İsrafil Bahçeci Department of Electrical Engineering TOBB ETÜ June 28, of 38

2 Outline Introduction Problem Setup Estimation Detection Conclusions References 2 of 38

3 Outline Introduction Problem Setup Estimation Detection Conclusions References 3 of 38

4 Wireless Sensor Networks Many nodes, preferably cheap Power/energy/bandwidth limited Wireless medium 4 of 38

5 Functionality and Utility Detection False alarm and detection probability Estimation Estimation error 5 of 38

6 Typical Problems Deployment optimization Node density Node location Wireless networking and communications Achievable rate/distortion regions Source/channel coding problems Quantization/coding/analog transmission Power control and interference management, energy efficiency Centralized vs. distributed Multiple access vs. Orthogonal access Single vs. multiple fusion center Path selection and shortest path algorithms Self-organization Node failure & self-healing Information security Access to information Node intrusion, e.g. Byzantine attack 6 of 38

7 Typical Network Configurations Parallel network Hierarchical network Serial network 7 of 38

8 Outline Introduction Problem Setup Estimation Detection Conclusions References 8 of 38

9 System Model Let n 0, n 1,..., n N 1 denote the sensor nodes Let u i is the observed samples at node n i Let h i,j is the channel gain from n j to n i h i,j include the effect of antenna gains and long term channel losses For transmission from n m to n k, received signal: r k [t] = h k,m s m [t] + N 1 i=0,i m Transmitted signal at n m : s m [t] = g(u m, r m ) Bandwidth and energy constraints I i [t]h k,i s i [t] + w k [t] 9 of 38

10 Metrics Detection Detection probability (correct decision) False alarm/miss probability (erroneous decision) Estimation Mean-square error, E( ˆθ θ 2 ) 10 of 38

11 Observation Statistics Independent observations Correlated observations Dense deployment 11 of 38

12 Outline Introduction Problem Setup Estimation Detection Conclusions References 12 of 38

13 Estimation Under Bandwidth Constraints I Universal estimation [1] Each sensor has 1 sample from a noisy observation and can send 1 bit (0 or 1 per local estimate u i = θ + n i, θ [ V, V] and n i f U (u), V = U if fu (u) µ is known, N 1 4ɛ 2 µ 2 if f U (u) is unknown, N U2 4ɛ, e.g., binary messaging requires only at 2 most 4 times more sensor nodes Sample mean estimation [2, 3] u i = θ + n i, n i N(0, σ 2 ) Maximum likelihood estimator available for both identical thresholds, non-identical thresholds Fixed step size difference, τk+1 τ k > σ equal to noise variance is close to optimality Parameter with a small dynamic range: 1 bit quantization is sufficient Relaxing 1 bit constraint, a step size equal to noise variance is good for practical cases 13 of 38

14 Estimation Under Bandwidth Constraints II Inhomogeneous environment [4] Local information compressed to a number of bits proportional to logarithm of its local observation SNR Fusion center only needs the received quantized messages and use the length of the message in final estimation No need for noise pdf at the FC, each sensor needs its local SNR The MSE of this estimator achieves 25/8 times the MSE of BLUE 14 of 38

15 Compression and Estimation The above bandwidth constrained schemes compress the signals to a few bits An overview of several cases of distributed estimation [5] Same order of MSE performance achieved by a centralized estimation is doable under various bandwidth constrained schemes under different knowledge levels for the observation noise statistics 15 of 38

16 Power Control for Distributed Estimation Estimation with digital modulation [6] Joint design of universal estimator and uncoded QAM modulation Optimal quantization and transmit power levels to minimize MSE Bah channel or bad observation lower quantization level, or inactive Estimation with analog modulation [7] Correlated data observation, e.g., a random field Non-linear measurement issues also considered Linear MMSE + numerical power control optimization 16 of 38

17 Source-Channel Coding for Distributed Estimation Wyner-Ziv source coding based strategies for a general tree network [8] Achievable region for a generic one-step communication with side-information Application of one-step solution to a tree network: A sensor uses its own observations, all messages it received + statistical information for the observation made by decoder and messages received by the decoder Rate-distortion bounds for the Quadratic Gaussian case is determined 17 of 38

18 CEO problem and distributed estimation CEO problem: Estimation with a parallel configuration Admissible sum-rate distortion regions [9] Local observations separately encoded and transmitted to a CEO Closed form solution to rate allocation for the Quadratic Gaussian CEO problem Rate-constrained estimation for CEO problem [10] 18 of 38

19 Distributed Quantization and Estimation Adaptive quantization [11] Bandwidth constraint, so only one bit quantization Dynamic adjustment of quantization threshold based on feedback from other sensor nodes Distributed Delta modulation Quantizer precision for large networks [12] xi = θ + n i for all nodes Identical, noncooperative uniform scalar quantization at each node achieves same asymptotics as optimal scheme If observation SNR is high, few nodes with fine quantization is better There exists an optimal number of sensors for this quantization, not all sensors needed 19 of 38

20 Cooperative Communications Cooperative diversity for distributed estimation [13] Several cooperative relaying schemes exists that achieve spatial diversity Multiple access channel, r[n] = N i=1 x i[n] + w[n] Amplify-forward or decode-forward based distributed estimation achieve same asymptotic performance Collection of correlated data: spatial sampling (one sensor out of a group of correlated sensor nodes) Selective transmission is good for loose distortion, but needs improved cooperation for strict distortion constraint 20 of 38

21 Linear Distributed Estimation Parallel configuration with all linear processing for a coherent Gaussian network with MAC [14] Linear observation model Linear encoding at the transmitter: MAC allows for a closed-form expression for encoding Linear MMSE at the fusion center Optimal power allocation allows distributed implementation 21 of 38

22 Estimation Diversity and Energy Efficiency Analog transmission of x i = θ i + n i, to a fusion center [15, 16] Fixed data vs. correlated data BLUE vs. MMSE Estimation outage and estimation diversity (slope of outage probability) Full diversity can be achieved on the number of sensor nodes Power control for fixed data vs. correlated data 22 of 38

23 Distributed Kalman Filtering Distributed estimation of a dynamically varying signal with a linear observation model [17] Need to exchange messages between neighbor nodes 2-step estimation Step 1: Kalman-like estimation based only on local observations Step 2: Information fusion via a consensus matrix after receiving messages from neighbors Design problems: Optimal Kalman gain, and consensus matrix, based on the amount of message exchange 23 of 38

24 Distributed Data Gathering with a Dense Sensor Network Estimation of a observable random field at a collector node [18] Transport capacity of many-to-one channel O(logN) can be achieved by an amplify-forward scheme, even under subject to total power constraint Unbounded transport capacity for many-to-one channel with only finite total average power Gaussian spatially bandlimited processes are observable (e.g., it can be estimated at a collector node with a finite MSE for a certain bandwidth and total average power level) This is true even for lossy source encoder composed of a single-dimensional quantization followed by a Slepian-Wolf encoder 24 of 38

25 Outline Introduction Problem Setup Estimation Detection Conclusions References 25 of 38

26 Distributed Detection with Multiple Sensors An overview on various distributed detection strategies [19] Error-free transmission of local decisions to a fusion center Independent local observations Likelihood ratio tests, for both Neyman-Pearson and Bayes formulation, are optimal at both local sensor nodes and fusion centers 26 of 38

27 Bandwidth/Power Constrained Distributed Detection I Binary detection over a parallel network with MAC [20] Specifying the power, bandwidth, error tolerance fixed the information rates of sensors for this MAC Minimization of Chernoff exponent for the decision at the FC Asymptotically, for Gaussian and exponential observation, having R identical binary sensors, e.g., 1 bit/sensor for a rate-r MAC channel, is optimal Not true for some other statistical distributions Having more sensors is better than having detailed information from each node Asymptotic detection for power constrained network [21] Joint power constraint + AWGN at sensor-to-fusion center channel Having identical sensor nodes, e.g., each node using the same scheme, is asymptotically optimal Optimal transmission power levels for binary nodes observing Gaussian source 27 of 38

28 Energy Efficient Distributed Detection Energy and bandwidth constraints taken into account [22] Detection performance subject to system cost due to transmission power and measurement errors Randomization over the choice of measurements and when to send/no send Joint optimization over sensor nodes allows the optimization per node 28 of 38

29 Parallel and Serial Detection over Fading Channel The communications are all Rayleigh fading [23, 24] Binary detection and binary antipodal modulation for decision transmission Channel state information need to be obtained at the receiver node Suitable likelihood ratios at all nodes are optimal with known CSI 29 of 38

30 Optimal Distributed Detection over Noisy Channel Non-ideal channels to fusion center [25, 26] Detection at fusion center needs to consider the CSI in case of fading LRTs are shown to be optimal in the sense that they minimize error probability at the fusion center 30 of 38

31 Type-Based Distributed Detection Each local sensor generates a histogram, or type of its observation over time and forwards the type to fusion center [27, 28] MAC where fusion center receives a superposition of transmitted local signals attain a better detection performance relative to orthogonal MAC Histogram fusion at the fusion center is asymptotically optimal and observation statistics need to be known only at the fusion cener 31 of 38

32 Outline Introduction Problem Setup Estimation Detection Conclusions References 32 of 38

33 Remarks Diverse applications and many research topics Many open problems Joint design of local/global processing and network operation, routing Cooperative sensing/routing Network life time maximization via data aggregation, joint source/channel coding, and power control New paradigms for detection estimation under constraints of WSNs Detection/estimation at multiple fusion center, distributed congestion control 33 of 38

34 Outline Introduction Problem Setup Estimation Detection Conclusions References 34 of 38

35 References I [1] Zhi-Quan Luo, Universal decentralized estimation in a bandwidth constrained sensor network, Information Theory, IEEE Transactions on, vol. 51, no. 6, pp , june [2] A. Ribeiro and G.B. Giannakis, Bandwidth-constrained distributed estimation for wireless sensor networks-part i: Gaussian case, Signal Processing, IEEE Transactions on, vol. 54, no. 3, pp , march [3] A. Ribeiro and G.B. Giannakis, Bandwidth-constrained distributed estimation for wireless sensor networks-part ii: unknown probability density function, Signal Processing, IEEE Transactions on, vol. 54, no. 7, pp , july [4] J.-J. Xiao and Z.-Q. Luo, Decentralized estimation in an inhomogeneous sensing environment, Information Theory, IEEE Transactions on, vol. 51, no. 10, pp , oct [5] Jin-Jun Xiao, A. Ribeiro, Zhi-Quan Luo, and G.B. Giannakis, Distributed compression-estimation using wireless sensor networks, Signal Processing Magazine, IEEE, vol. 23, no. 4, pp , july [6] Jin-Jun Xiao, Shuguang Cui, Zhi-Quan Luo, and A.J. Goldsmith, Power scheduling of universal decentralized estimation in sensor networks, Signal Processing, IEEE Transactions on, vol. 54, no. 2, pp , feb [7] Jun Fang and Hongbin Li, Power constrained distributed estimation with correlated sensor data, Signal Processing, IEEE Transactions on, vol. 57, no. 8, pp , aug [8] S.C. Draper and G.W. Wornell, Side information aware coding strategies for sensor networks, Selected Areas in Communications, IEEE Journal on, vol. 22, no. 6, pp , aug of 38

36 References II [9] Jun Chen, Xin Zhang, T. Berger, and S.B. Wicker, An upper bound on the sum-rate distortion function and its corresponding rate allocation schemes for the ceo problem, Selected Areas in Communications, IEEE Journal on, vol. 22, no. 6, pp , aug [10] P. Ishwar, R. Puri, K. Ramchandran, and S.S. Pradhan, On rate-constrained distributed estimation in unreliable sensor networks, Selected Areas in Communications, IEEE Journal on, vol. 23, no. 4, pp , april [11] Hongbin Li and Jun Fang, Distributed adaptive quantization and estimation for wireless sensor networks, Signal Processing Letters, IEEE, vol. 14, no. 10, pp , oct [12] S. Marano, V. Matta, and P. Willett, Quantizer precision for distributed estimation in a large sensor network, Signal Processing, IEEE Transactions on, vol. 54, no. 10, pp , oct [13] Y-W. Hong, W.-J. Huang, F-H. Chiu, and C.-C.J. Kuo, Cooperative communications in resource-constrained wireless networks, Signal Processing Magazine, IEEE, vol. 24, no. 3, pp , may [14] Jin-Jun Xiao, Shuguang Cui, Zhi-Quan Luo, and A.J. Goldsmith, Linear coherent decentralized estimation, Signal Processing, IEEE Transactions on, vol. 56, no. 2, pp , feb [15] Shuguang Cui, Jin-Jun Xiao, A.J. Goldsmith, Zhi-Quan Luo, and H.V. Poor, Estimation diversity and energy efficiency in distributed sensing, Signal Processing, IEEE Transactions on, vol. 55, no. 9, pp , sept [16] I. Bahceci and A. Khandani, Linear estimation of correlated data in wireless sensor networks with optimum power allocation and analog modulation, Communications, IEEE Transactions on, vol. 56, no. 7, pp , july of 38

37 References III [17] R. Carli, A. Chiuso, L. Schenato, and S. Zampieri, Distributed kalman filtering based on consensus strategies, Selected Areas in Communications, IEEE Journal on, vol. 26, no. 4, pp , may [18] H. El Gamal, On the scaling laws of dense wireless sensor networks: the data gathering channel, Information Theory, IEEE Transactions on, vol. 51, no. 3, pp , march [19] R. Viswanathan and P.K. Varshney, Distributed detection with multiple sensors i. fundamentals, Proceedings of the IEEE, vol. 85, no. 1, pp , jan [20] J.-F. Chamberland and V.V. Veeravalli, Decentralized detection in sensor networks, Signal Processing, IEEE Transactions on, vol. 51, no. 2, pp , feb [21] J.-F. Chamberland and V.V. Veeravalli, Asymptotic results for decentralized detection in power constrained wireless sensor networks, Selected Areas in Communications, IEEE Journal on, vol. 22, no. 6, pp , aug [22] S. Appadwedula, V.V. Veeravalli, and D.L. Jones, Energy-efficient detection in sensor networks, Selected Areas in Communications, IEEE Journal on, vol. 23, no. 4, pp , april [23] I. Bahceci, G. Al-Regib, and Y. Altunbasak, Parallel distributed detection for wireless sensor networks: performance analysis and design, in Global Telecommunications Conference, GLOBECOM 05. IEEE, dec. 2005, vol. 4, pp. 5 pp [24] I. Bahceci, G. Al-Regib, and Y. Altunbasak, Serial distributed detection for wireless sensor networks, in Information Theory, ISIT Proceedings. International Symposium on, sept. 2005, pp of 38

38 References IV [25] B. Chen and P.K. Willett, On the optimality of the likelihood-ratio test for local sensor decision rules in the presence of nonideal channels, Information Theory, IEEE Transactions on, vol. 51, no. 2, pp , feb [26] Biao Chen, Lang Tong, and P.K. Varshney, Channel-aware distributed detection in wireless sensor networks, Signal Processing Magazine, IEEE, vol. 23, no. 4, pp , july [27] Ke Liu and A.M. Sayeed, Type-based decentralized detection in wireless sensor networks, Signal Processing, IEEE Transactions on, vol. 55, no. 5, pp , may [28] Gokhan Mergen, Vidyut Naware, and Lang Tong, Asymptotic detection performance of type-based multiple access over multiaccess fading channels, Signal Processing, IEEE Transactions on, vol. 55, no. 3, pp , march of 38

4740 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 7, JULY 2011

4740 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 7, JULY 2011 4740 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 7, JULY 2011 On Scaling Laws of Diversity Schemes in Decentralized Estimation Alex S. Leong, Member, IEEE, and Subhrakanti Dey, Senior Member,

More information

Optimal Power Allocation over Fading Channels with Stringent Delay Constraints

Optimal Power Allocation over Fading Channels with Stringent Delay Constraints 1 Optimal Power Allocation over Fading Channels with Stringent Delay Constraints Xiangheng Liu Andrea Goldsmith Dept. of Electrical Engineering, Stanford University Email: liuxh,andrea@wsl.stanford.edu

More information

PERFORMANCE OF POWER DECENTRALIZED DETECTION IN WIRELESS SENSOR SYSTEM WITH DS-CDMA

PERFORMANCE OF POWER DECENTRALIZED DETECTION IN WIRELESS SENSOR SYSTEM WITH DS-CDMA PERFORMANCE OF POWER DECENTRALIZED DETECTION IN WIRELESS SENSOR SYSTEM WITH DS-CDMA Ali M. Fadhil 1, Haider M. AlSabbagh 2, and Turki Y. Abdallah 1 1 Department of Computer Engineering, College of Engineering,

More information

modulations, Rayleigh-fading and nonfading channels, and fusion-combiners. IEEE Transactions on

modulations, Rayleigh-fading and nonfading channels, and fusion-combiners. IEEE Transactions on Southern Illinois University Carbondale OpenSIUC Articles Department of Electrical and Computer Engineering 5-2008 Impact of Channel Errors on Decentralized Detection Performance of Wireless Sensor Networks:

More information

Optimum Power Allocation in Cooperative Networks

Optimum Power Allocation in Cooperative Networks Optimum Power Allocation in Cooperative Networks Jaime Adeane, Miguel R.D. Rodrigues, and Ian J. Wassell Laboratory for Communication Engineering Department of Engineering University of Cambridge 5 JJ

More information

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 9, SEPTEMBER

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 9, SEPTEMBER IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 9, SEPTEMBER 2011 4367 Decision Fusion Over Noncoherent Fading Multiaccess Channels Feng Li, Member, IEEE, Jamie S. Evans, Member, IEEE, and Subhrakanti

More information

Capacity and Cooperation in Wireless Networks

Capacity and Cooperation in Wireless Networks Capacity and Cooperation in Wireless Networks Chris T. K. Ng and Andrea J. Goldsmith Stanford University Abstract We consider fundamental capacity limits in wireless networks where nodes can cooperate

More information

Chapter Number. Parameter Estimation Over Noisy Communication Channels in Distributed Sensor Networks

Chapter Number. Parameter Estimation Over Noisy Communication Channels in Distributed Sensor Networks Chapter Number Parameter Estimation Over Noisy Communication Channels in Distributed Sensor Networks Thakshila Wimalajeewa 1, Sudharman K. Jayaweera 1 and Carlos Mosquera 2 1 Dept. of Electrical and Computer

More information

ENERGY EFFICIENT RELAY SELECTION SCHEMES FOR COOPERATIVE UNIFORMLY DISTRIBUTED WIRELESS SENSOR NETWORKS

ENERGY EFFICIENT RELAY SELECTION SCHEMES FOR COOPERATIVE UNIFORMLY DISTRIBUTED WIRELESS SENSOR NETWORKS ENERGY EFFICIENT RELAY SELECTION SCHEMES FOR COOPERATIVE UNIFORMLY DISTRIBUTED WIRELESS SENSOR NETWORKS WAFIC W. ALAMEDDINE A THESIS IN THE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING PRESENTED IN

More information

3272 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 6, JUNE Binary, M-level and no quantization of the received signal energy.

3272 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 6, JUNE Binary, M-level and no quantization of the received signal energy. 3272 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 6, JUNE 2010 Cooperative Spectrum Sensing in Cognitive Radios With Incomplete Likelihood Functions Sepideh Zarrin and Teng Joon Lim Abstract This

More information

Power-Efficient Estimation in IEEE ah Wireless Sensor Networks with a Cooperative Relay

Power-Efficient Estimation in IEEE ah Wireless Sensor Networks with a Cooperative Relay Power-Efficient Estimation in IEEE 802.ah Wireless Sensor Networks with a Cooperative Relay Antonios Argyriou Department of Electrical and Computer Engineering, University of Thessaly, Volos, 3822, Greece.

More information

Optimal Transmission Power of Target Tracking with Quantized Measurement in WSN

Optimal Transmission Power of Target Tracking with Quantized Measurement in WSN www.ijcsi.org 316 Optimal Transmission Power of Target Tracking with Quantized Measurement in WSN Osama M. El-Ghandour 1 and Amr Lotfy Elewa M. 2 1 Helwan University, Cairo, Egypt 2 Helwan University,

More information

On the Achievable Diversity-vs-Multiplexing Tradeoff in Cooperative Channels

On the Achievable Diversity-vs-Multiplexing Tradeoff in Cooperative Channels On the Achievable Diversity-vs-Multiplexing Tradeoff in Cooperative Channels Kambiz Azarian, Hesham El Gamal, and Philip Schniter Dept of Electrical Engineering, The Ohio State University Columbus, OH

More information

Distributed Source Coding: A New Paradigm for Wireless Video?

Distributed Source Coding: A New Paradigm for Wireless Video? Distributed Source Coding: A New Paradigm for Wireless Video? Christine Guillemot, IRISA/INRIA, Campus universitaire de Beaulieu, 35042 Rennes Cédex, FRANCE Christine.Guillemot@irisa.fr The distributed

More information

WIRELESS sensor networks (WSN) [1], [2] typically consist

WIRELESS sensor networks (WSN) [1], [2] typically consist IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 7, JULY 2008 2967 Channel-Aware Rom Access Control for Distributed Estimation in Sensor Networks Y.-W. Peter Hong, Member, IEEE, Keng-U. Lei, Chong-Yung

More information

Antennas and Propagation. Chapter 6b: Path Models Rayleigh, Rician Fading, MIMO

Antennas and Propagation. Chapter 6b: Path Models Rayleigh, Rician Fading, MIMO Antennas and Propagation b: Path Models Rayleigh, Rician Fading, MIMO Introduction From last lecture How do we model H p? Discrete path model (physical, plane waves) Random matrix models (forget H p and

More information

STRATEGIES to improve the lifetime of battery-powered

STRATEGIES to improve the lifetime of battery-powered IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL 58, NO 7, JULY 2010 3751 Power Control Strategy for Distributed Multiple-Hypothesis Detection Hyoung-soo Kim, Student Member, IEEE, and Nathan A Goodman, Senior

More information

Unquantized and Uncoded Channel State Information Feedback on Wireless Channels

Unquantized and Uncoded Channel State Information Feedback on Wireless Channels Unquantized and Uncoded Channel State Information Feedback on Wireless Channels Dragan Samardzija Wireless Research Laboratory Bell Labs, Lucent Technologies 79 Holmdel-Keyport Road Holmdel, NJ 07733,

More information

Computing functions over wireless networks

Computing functions over wireless networks This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Unported License. Based on a work at decision.csl.illinois.edu See last page and http://creativecommons.org/licenses/by-nc-nd/3.0/

More information

MATLAB Simulation for Fixed Gain Amplify and Forward MIMO Relaying System using OSTBC under Flat Fading Rayleigh Channel

MATLAB Simulation for Fixed Gain Amplify and Forward MIMO Relaying System using OSTBC under Flat Fading Rayleigh Channel MATLAB Simulation for Fixed Gain Amplify and Forward MIMO Relaying System using OSTBC under Flat Fading Rayleigh Channel Anas A. Abu Tabaneh 1, Abdulmonem H.Shaheen, Luai Z.Qasrawe 3, Mohammad H.Zghair

More information

Resource Allocation Challenges in Future Wireless Networks

Resource Allocation Challenges in Future Wireless Networks Resource Allocation Challenges in Future Wireless Networks Mohamad Assaad Dept of Telecommunications, Supelec - France Mar. 2014 Outline 1 General Introduction 2 Fully Decentralized Allocation 3 Future

More information

EE 8510: Multi-user Information Theory

EE 8510: Multi-user Information Theory EE 8510: Multi-user Information Theory Distributed Source Coding for Sensor Networks: A Coding Perspective Final Project Paper By Vikrham Gowreesunker Acknowledgment: Dr. Nihar Jindal Distributed Source

More information

WIRELESS sensor networks (WSNs) have received considerable

WIRELESS sensor networks (WSNs) have received considerable 4124 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 9, SEPTEMBER 2008 Optimal Power Allocation for Distributed Detection Over MIMO Channels in Wireless Sensor Networks Xin Zhang, Member, IEEE, H.

More information

Performance Analysis of Cooperative Communication System with a SISO system in Flat Fading Rayleigh channel

Performance Analysis of Cooperative Communication System with a SISO system in Flat Fading Rayleigh channel Performance Analysis of Cooperative Communication System with a SISO system in Flat Fading Rayleigh channel Sara Viqar 1, Shoab Ahmed 2, Zaka ul Mustafa 3 and Waleed Ejaz 4 1, 2, 3 National University

More information

On Event Signal Reconstruction in Wireless Sensor Networks

On Event Signal Reconstruction in Wireless Sensor Networks On Event Signal Reconstruction in Wireless Sensor Networks Barış Atakan and Özgür B. Akan Next Generation Wireless Communications Laboratory Department of Electrical and Electronics Engineering Middle

More information

Noncoherent Demodulation for Cooperative Diversity in Wireless Systems

Noncoherent Demodulation for Cooperative Diversity in Wireless Systems Noncoherent Demodulation for Cooperative Diversity in Wireless Systems Deqiang Chen and J. Nicholas Laneman Department of Electrical Engineering University of Notre Dame Notre Dame IN 46556 Email: {dchen

More information

CHAPTER 5 DIVERSITY. Xijun Wang

CHAPTER 5 DIVERSITY. Xijun Wang CHAPTER 5 DIVERSITY Xijun Wang WEEKLY READING 1. Goldsmith, Wireless Communications, Chapters 7 2. Tse, Fundamentals of Wireless Communication, Chapter 3 2 FADING HURTS THE RELIABILITY n The detection

More information

Achievable Unified Performance Analysis of Orthogonal Space-Time Block Codes with Antenna Selection over Correlated Rayleigh Fading Channels

Achievable Unified Performance Analysis of Orthogonal Space-Time Block Codes with Antenna Selection over Correlated Rayleigh Fading Channels Achievable Unified Performance Analysis of Orthogonal Space-Time Block Codes with Antenna Selection over Correlated Rayleigh Fading Channels SUDAKAR SINGH CHAUHAN Electronics and Communication Department

More information

Multiple Antennas. Mats Bengtsson, Björn Ottersten. Basic Transmission Schemes 1 September 8, Presentation Outline

Multiple Antennas. Mats Bengtsson, Björn Ottersten. Basic Transmission Schemes 1 September 8, Presentation Outline Multiple Antennas Capacity and Basic Transmission Schemes Mats Bengtsson, Björn Ottersten Basic Transmission Schemes 1 September 8, 2005 Presentation Outline Channel capacity Some fine details and misconceptions

More information

Outage Probability of a Multi-User Cooperation Protocol in an Asynchronous CDMA Cellular Uplink

Outage Probability of a Multi-User Cooperation Protocol in an Asynchronous CDMA Cellular Uplink Outage Probability of a Multi-User Cooperation Protocol in an Asynchronous CDMA Cellular Uplink Kanchan G. Vardhe, Daryl Reynolds, and Matthew C. Valenti Lane Dept. of Comp. Sci and Elec. Eng. West Virginia

More information

On Multiple Users Scheduling Using Superposition Coding over Rayleigh Fading Channels

On Multiple Users Scheduling Using Superposition Coding over Rayleigh Fading Channels On Multiple Users Scheduling Using Superposition Coding over Rayleigh Fading Channels Item Type Article Authors Zafar, Ammar; Alnuweiri, Hussein; Shaqfeh, Mohammad; Alouini, Mohamed-Slim Eprint version

More information

Time Delay Estimation: Applications and Algorithms

Time Delay Estimation: Applications and Algorithms Time Delay Estimation: Applications and Algorithms Hing Cheung So http://www.ee.cityu.edu.hk/~hcso Department of Electronic Engineering City University of Hong Kong H. C. So Page 1 Outline Introduction

More information

Error Correcting Codes for Cooperative Broadcasting

Error Correcting Codes for Cooperative Broadcasting San Jose State University SJSU ScholarWorks Faculty Publications Electrical Engineering 11-30-2010 Error Correcting Codes for Cooperative Broadcasting Robert H. Morelos-Zaragoza San Jose State University,

More information

Cooperative Spectrum Sensing and Decision Making Rules for Cognitive Radio

Cooperative Spectrum Sensing and Decision Making Rules for Cognitive Radio ISSN (Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology Volume 3, Special Issue 3, March 2014 2014 International Conference

More information

Performance of wireless Communication Systems with imperfect CSI

Performance of wireless Communication Systems with imperfect CSI Pedagogy lecture Performance of wireless Communication Systems with imperfect CSI Yogesh Trivedi Associate Prof. Department of Electronics and Communication Engineering Institute of Technology Nirma University

More information

Chapter 2 Distributed Consensus Estimation of Wireless Sensor Networks

Chapter 2 Distributed Consensus Estimation of Wireless Sensor Networks Chapter 2 Distributed Consensus Estimation of Wireless Sensor Networks Recently, consensus based distributed estimation has attracted considerable attention from various fields to estimate deterministic

More information

OUTAGE MINIMIZATION BY OPPORTUNISTIC COOPERATION. Deniz Gunduz, Elza Erkip

OUTAGE MINIMIZATION BY OPPORTUNISTIC COOPERATION. Deniz Gunduz, Elza Erkip OUTAGE MINIMIZATION BY OPPORTUNISTIC COOPERATION Deniz Gunduz, Elza Erkip Department of Electrical and Computer Engineering Polytechnic University Brooklyn, NY 11201, USA ABSTRACT We consider a wireless

More information

On the Performance of Cooperative Routing in Wireless Networks

On the Performance of Cooperative Routing in Wireless Networks 1 On the Performance of Cooperative Routing in Wireless Networks Mostafa Dehghan, Majid Ghaderi, and Dennis L. Goeckel Department of Computer Science, University of Calgary, Emails: {mdehghan, mghaderi}@ucalgary.ca

More information

On Optimum Communication Cost for Joint Compression and Dispersive Information Routing

On Optimum Communication Cost for Joint Compression and Dispersive Information Routing 2010 IEEE Information Theory Workshop - ITW 2010 Dublin On Optimum Communication Cost for Joint Compression and Dispersive Information Routing Kumar Viswanatha, Emrah Akyol and Kenneth Rose Department

More information

Reduced Overhead Distributed Consensus-Based Estimation Algorithm

Reduced Overhead Distributed Consensus-Based Estimation Algorithm Reduced Overhead Distributed Consensus-Based Estimation Algorithm Ban-Sok Shin, Henning Paul, Dirk Wübben and Armin Dekorsy Department of Communications Engineering University of Bremen Bremen, Germany

More information

Optimum Threshold for SNR-based Selective Digital Relaying Schemes in Cooperative Wireless Networks

Optimum Threshold for SNR-based Selective Digital Relaying Schemes in Cooperative Wireless Networks Optimum Threshold for SNR-based Selective Digital Relaying Schemes in Cooperative Wireless Networks Furuzan Atay Onat, Abdulkareem Adinoyi, Yijia Fan, Halim Yanikomeroglu, and John S. Thompson Broadband

More information

ENERGY-AWARE DATA-CENTRIC MAC FOR APPLICATION-SPECIFIC SENSOR NETWORKS

ENERGY-AWARE DATA-CENTRIC MAC FOR APPLICATION-SPECIFIC SENSOR NETWORKS ENERGY-AWARE DATA-CENTRIC MAC FOR APPLICATION-SPECIFIC SENSOR NETWORKS Qing Zhao University of California Davis, CA 95616 qzhao@ece.ucdavis.edu Lang Tong Yunxia Chen Cornell University University of California

More information

Performance Analysis of Maximum Likelihood Detection in a MIMO Antenna System

Performance Analysis of Maximum Likelihood Detection in a MIMO Antenna System IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 50, NO. 2, FEBRUARY 2002 187 Performance Analysis of Maximum Likelihood Detection in a MIMO Antenna System Xu Zhu Ross D. Murch, Senior Member, IEEE Abstract In

More information

Chapter 10. User Cooperative Communications

Chapter 10. User Cooperative Communications Chapter 10 User Cooperative Communications 1 Outline Introduction Relay Channels User-Cooperation in Wireless Networks Multi-Hop Relay Channel Summary 2 Introduction User cooperative communication is a

More information

Analysis and Improvements of Linear Multi-user user MIMO Precoding Techniques

Analysis and Improvements of Linear Multi-user user MIMO Precoding Techniques 1 Analysis and Improvements of Linear Multi-user user MIMO Precoding Techniques Bin Song and Martin Haardt Outline 2 Multi-user user MIMO System (main topic in phase I and phase II) critical problem Downlink

More information

ADAPTIVE STATE ESTIMATION OVER LOSSY SENSOR NETWORKS FULLY ACCOUNTING FOR END-TO-END DISTORTION. Bohan Li, Tejaswi Nanjundaswamy, Kenneth Rose

ADAPTIVE STATE ESTIMATION OVER LOSSY SENSOR NETWORKS FULLY ACCOUNTING FOR END-TO-END DISTORTION. Bohan Li, Tejaswi Nanjundaswamy, Kenneth Rose ADAPTIVE STATE ESTIMATION OVER LOSSY SENSOR NETWORKS FULLY ACCOUNTING FOR END-TO-END DISTORTION Bohan Li, Tejaswi Nanjundaswamy, Kenneth Rose University of California, Santa Barbara Department of Electrical

More information

SENSOR networking is an emerging technology that

SENSOR networking is an emerging technology that IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 10, OCTOBER 2007 3629 Joint Source Channel Communication for Distributed Estimation in Sensor Networks Waheed U. Bajwa, Student Member, IEEE, Jarvis

More information

Cooperation and Optimal Cross-Layer Resource Allocation in Wireless Networks

Cooperation and Optimal Cross-Layer Resource Allocation in Wireless Networks Cooperation and Optimal Cross-Layer Resource Allocation in Wireless Networks Chris T. K. Ng Wireless Systems Lab PhD Orals Defense Electrical Engineering, Stanford University July 19, 2007 Future Wireless

More information

Distributed Interleave-Division Multiplexing Space-Time Codes for Coded Relay Networks

Distributed Interleave-Division Multiplexing Space-Time Codes for Coded Relay Networks Distributed Interleave-Division Multiplexing Space-Time Codes for Coded Relay Networks Petra Weitkemper, Dirk Wübben, Karl-Dirk Kammeyer Department of Communications Engineering, University of Bremen Otto-Hahn-Allee

More information

IN A WIRELESS sensor network (WSN) tasked with a

IN A WIRELESS sensor network (WSN) tasked with a 2668 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 4, NO. 6, NOVEMBER 25 Fusion of Censored Decisions in Wireless Sensor Networs Ruixiang Jiang and Biao Chen, Member, IEEE Abstract Sensor censoring

More information

SPECTRUM SHARING IN CRN USING ARP PROTOCOL- ANALYSIS OF HIGH DATA RATE

SPECTRUM SHARING IN CRN USING ARP PROTOCOL- ANALYSIS OF HIGH DATA RATE Int. J. Chem. Sci.: 14(S3), 2016, 794-800 ISSN 0972-768X www.sadgurupublications.com SPECTRUM SHARING IN CRN USING ARP PROTOCOL- ANALYSIS OF HIGH DATA RATE ADITYA SAI *, ARSHEYA AFRAN and PRIYANKA Information

More information

Performance Analysis of Cognitive Radio based on Cooperative Spectrum Sensing

Performance Analysis of Cognitive Radio based on Cooperative Spectrum Sensing Performance Analysis of Cognitive Radio based on Cooperative Spectrum Sensing Sai kiran pudi 1, T. Syama Sundara 2, Dr. Nimmagadda Padmaja 3 Department of Electronics and Communication Engineering, Sree

More information

AWIRELESS sensor network (WSN) employs low-cost

AWIRELESS sensor network (WSN) employs low-cost IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 5, MAY 2009 1987 Tracking in Wireless Sensor Networks Using Particle Filtering: Physical Layer Considerations Onur Ozdemir, Student Member, IEEE, Ruixin

More information

Application of QAP in Modulation Diversity (MoDiv) Design

Application of QAP in Modulation Diversity (MoDiv) Design Application of QAP in Modulation Diversity (MoDiv) Design Hans D Mittelmann School of Mathematical and Statistical Sciences Arizona State University INFORMS Annual Meeting Philadelphia, PA 4 November 2015

More information

Notes 15: Concatenated Codes, Turbo Codes and Iterative Processing

Notes 15: Concatenated Codes, Turbo Codes and Iterative Processing 16.548 Notes 15: Concatenated Codes, Turbo Codes and Iterative Processing Outline! Introduction " Pushing the Bounds on Channel Capacity " Theory of Iterative Decoding " Recursive Convolutional Coding

More information

WIRELESS Sensor Networks (WSNs) consist of. Performance Analysis of Likelihood-Based Multiple Access for Detection Over Fading Channels

WIRELESS Sensor Networks (WSNs) consist of. Performance Analysis of Likelihood-Based Multiple Access for Detection Over Fading Channels IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 4, APRIL 2013 2471 Performance Analysis of Likelihood-Based Multiple Access for Detection Over Fading Channels Kobi Cohen and Amir Leshem, Senior Member,

More information

Exploiting Interference through Cooperation and Cognition

Exploiting Interference through Cooperation and Cognition Exploiting Interference through Cooperation and Cognition Stanford June 14, 2009 Joint work with A. Goldsmith, R. Dabora, G. Kramer and S. Shamai (Shitz) The Role of Wireless in the Future The Role of

More information

Combining Orthogonal Space Time Block Codes with Adaptive Sub-group Antenna Encoding

Combining Orthogonal Space Time Block Codes with Adaptive Sub-group Antenna Encoding Combining Orthogonal Space Time Block Codes with Adaptive Sub-group Antenna Encoding Jingxian Wu, Henry Horng, Jinyun Zhang, Jan C. Olivier, and Chengshan Xiao Department of ECE, University of Missouri,

More information

SPLIT MLSE ADAPTIVE EQUALIZATION IN SEVERELY FADED RAYLEIGH MIMO CHANNELS

SPLIT MLSE ADAPTIVE EQUALIZATION IN SEVERELY FADED RAYLEIGH MIMO CHANNELS SPLIT MLSE ADAPTIVE EQUALIZATION IN SEVERELY FADED RAYLEIGH MIMO CHANNELS RASHMI SABNUAM GUPTA 1 & KANDARPA KUMAR SARMA 2 1 Department of Electronics and Communication Engineering, Tezpur University-784028,

More information

Diversity Techniques

Diversity Techniques Diversity Techniques Vasileios Papoutsis Wireless Telecommunication Laboratory Department of Electrical and Computer Engineering University of Patras Patras, Greece No.1 Outline Introduction Diversity

More information

Channel Capacity Estimation in MIMO Systems Based on Water-Filling Algorithm

Channel Capacity Estimation in MIMO Systems Based on Water-Filling Algorithm Channel Capacity Estimation in MIMO Systems Based on Water-Filling Algorithm 1 Ch.Srikanth, 2 B.Rajanna 1 PG SCHOLAR, 2 Assistant Professor Vaagdevi college of engineering. (warangal) ABSTRACT power than

More information

College of Engineering

College of Engineering WiFi and WCDMA Network Design Robert Akl, D.Sc. College of Engineering Department of Computer Science and Engineering Outline WiFi Access point selection Traffic balancing Multi-Cell WCDMA with Multiple

More information

EELE 6333: Wireless Commuications

EELE 6333: Wireless Commuications EELE 6333: Wireless Commuications Chapter # 4 : Capacity of Wireless Channels Spring, 2012/2013 EELE 6333: Wireless Commuications - Ch.4 Dr. Musbah Shaat 1 / 18 Outline 1 Capacity in AWGN 2 Capacity of

More information

Cooperative Compressed Sensing for Decentralized Networks

Cooperative Compressed Sensing for Decentralized Networks Cooperative Compressed Sensing for Decentralized Networks Zhi (Gerry) Tian Dept. of ECE, Michigan Tech Univ. A presentation at ztian@mtu.edu February 18, 2011 Ground-Breaking Recent Advances (a1) s is

More information

Information Theory at the Extremes

Information Theory at the Extremes Information Theory at the Extremes David Tse Department of EECS, U.C. Berkeley September 5, 2002 Wireless Networks Workshop at Cornell Information Theory in Wireless Wireless communication is an old subject.

More information

Dynamic Resource Allocation for Multi Source-Destination Relay Networks

Dynamic Resource Allocation for Multi Source-Destination Relay Networks Dynamic Resource Allocation for Multi Source-Destination Relay Networks Onur Sahin, Elza Erkip Electrical and Computer Engineering, Polytechnic University, Brooklyn, New York, USA Email: osahin0@utopia.poly.edu,

More information

DISTRIBUTED DETECTION AND DATA FUSION IN RESOURCE CONSTRAINED WIRELESS SENSOR NETWORKS. A Thesis by. Bhavani Garimella

DISTRIBUTED DETECTION AND DATA FUSION IN RESOURCE CONSTRAINED WIRELESS SENSOR NETWORKS. A Thesis by. Bhavani Garimella DISTRIBUTED DETECTION AND DATA FUSION IN RESOURCE CONSTRAINED WIRELESS SENSOR NETWORKS A Thesis by Bhavani Garimella Bachelor of Technology, JNT University, Kakinada, 2001 Submitted to the College of Engineering

More information

Rate Adaptive Distributed Source-Channel Coding Using IRA Codes for Wireless Sensor Networks

Rate Adaptive Distributed Source-Channel Coding Using IRA Codes for Wireless Sensor Networks Rate Adaptive Distributed Source-Channel Coding Using IRA Codes for Wireless Sensor Networks Saikat Majumder and Shrish Verma Department of Electronics and Telecommunication, National Institute of Technology,

More information

Capacity Gain from Two-Transmitter and Two-Receiver Cooperation

Capacity Gain from Two-Transmitter and Two-Receiver Cooperation Capacity Gain from Two-Transmitter and Two-Receiver Cooperation Chris T. K. Ng, Student Member, IEEE, Nihar Jindal, Member, IEEE, Andrea J. Goldsmith, Fellow, IEEE and Urbashi Mitra, Fellow, IEEE arxiv:0704.3644v1

More information

Optimization of Coded MIMO-Transmission with Antenna Selection

Optimization of Coded MIMO-Transmission with Antenna Selection Optimization of Coded MIMO-Transmission with Antenna Selection Biljana Badic, Paul Fuxjäger, Hans Weinrichter Institute of Communications and Radio Frequency Engineering Vienna University of Technology

More information

Opportunistic network communications

Opportunistic network communications Opportunistic network communications Suhas Diggavi School of Computer and Communication Sciences Laboratory for Information and Communication Systems (LICOS) Ecole Polytechnique Fédérale de Lausanne (EPFL)

More information

MIMO Nullforming with RVQ Limited Feedback and Channel Estimation Errors

MIMO Nullforming with RVQ Limited Feedback and Channel Estimation Errors MIMO Nullforming with RVQ Limited Feedback and Channel Estimation Errors D. Richard Brown III Dept. of Electrical and Computer Eng. Worcester Polytechnic Institute 100 Institute Rd, Worcester, MA 01609

More information

Joint Relaying and Network Coding in Wireless Networks

Joint Relaying and Network Coding in Wireless Networks Joint Relaying and Network Coding in Wireless Networks Sachin Katti Ivana Marić Andrea Goldsmith Dina Katabi Muriel Médard MIT Stanford Stanford MIT MIT Abstract Relaying is a fundamental building block

More information

Resource Allocation in Energy-constrained Cooperative Wireless Networks

Resource Allocation in Energy-constrained Cooperative Wireless Networks Resource Allocation in Energy-constrained Cooperative Wireless Networks Lin Dai City University of Hong ong Jun. 4, 2011 1 Outline Resource Allocation in Wireless Networks Tradeoff between Fairness and

More information

Cooperative Orthogonal Space-Time-Frequency Block Codes over a MIMO-OFDM Frequency Selective Channel

Cooperative Orthogonal Space-Time-Frequency Block Codes over a MIMO-OFDM Frequency Selective Channel Cooperative Orthogonal Space-Time-Frequency Block Codes over a MIMO-OFDM Frequency Selective Channel M. Rezaei* and A. Falahati* (C.A.) Abstract: In this paper, a cooperative algorithm to improve the orthogonal

More information

Adaptive Digital Video Transmission with STBC over Rayleigh Fading Channels

Adaptive Digital Video Transmission with STBC over Rayleigh Fading Channels 2012 7th International ICST Conference on Communications and Networking in China (CHINACOM) Adaptive Digital Video Transmission with STBC over Rayleigh Fading Channels Jia-Chyi Wu Dept. of Communications,

More information

Collaborative transmission in wireless sensor networks

Collaborative transmission in wireless sensor networks Collaborative transmission in wireless sensor networks Cooperative transmission schemes Stephan Sigg Distributed and Ubiquitous Systems Technische Universität Braunschweig November 22, 2010 Stephan Sigg

More information

On Using Channel Prediction in Adaptive Beamforming Systems

On Using Channel Prediction in Adaptive Beamforming Systems On Using Channel rediction in Adaptive Beamforming Systems T. R. Ramya and Srikrishna Bhashyam Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai - 600 036, India. Email:

More information

Dct Based Image Transmission Using Maximum Power Adaptation Algorithm Over Wireless Channel using Labview

Dct Based Image Transmission Using Maximum Power Adaptation Algorithm Over Wireless Channel using Labview Dct Based Image Transmission Using Maximum Power Adaptation Over Wireless Channel using Labview 1 M. Padmaja, 2 P. Satyanarayana, 3 K. Prasuna Asst. Prof., ECE Dept., VR Siddhartha Engg. College Vijayawada

More information

Diversity and Freedom: A Fundamental Tradeoff in Multiple Antenna Channels

Diversity and Freedom: A Fundamental Tradeoff in Multiple Antenna Channels Diversity and Freedom: A Fundamental Tradeoff in Multiple Antenna Channels Lizhong Zheng and David Tse Department of EECS, U.C. Berkeley Feb 26, 2002 MSRI Information Theory Workshop Wireless Fading Channels

More information

COOPERATIVE networks [1] [3] refer to communication

COOPERATIVE networks [1] [3] refer to communication 1800 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 7, NO. 5, MAY 2008 Lifetime Maximization for Amplify-and-Forward Cooperative Networks Wan-Jen Huang, Student Member, IEEE, Y.-W. Peter Hong, Member,

More information

Power and Bandwidth Allocation in Cooperative Dirty Paper Coding

Power and Bandwidth Allocation in Cooperative Dirty Paper Coding Power and Bandwidth Allocation in Cooperative Dirty Paper Coding Chris T. K. Ng 1, Nihar Jindal 2 Andrea J. Goldsmith 3, Urbashi Mitra 4 1 Stanford University/MIT, 2 Univeristy of Minnesota 3 Stanford

More information

Cooperative MIMO schemes optimal selection for wireless sensor networks

Cooperative MIMO schemes optimal selection for wireless sensor networks Cooperative MIMO schemes optimal selection for wireless sensor networks Tuan-Duc Nguyen, Olivier Berder and Olivier Sentieys IRISA Ecole Nationale Supérieure de Sciences Appliquées et de Technologie 5,

More information

3432 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 10, OCTOBER 2007

3432 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 10, OCTOBER 2007 3432 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL 53, NO 10, OCTOBER 2007 Resource Allocation for Wireless Fading Relay Channels: Max-Min Solution Yingbin Liang, Member, IEEE, Venugopal V Veeravalli, Fellow,

More information

A Bit of network information theory

A Bit of network information theory Š#/,% 0/,94%#(.)15% A Bit of network information theory Suhas Diggavi 1 Email: suhas.diggavi@epfl.ch URL: http://licos.epfl.ch Parts of talk are joint work with S. Avestimehr 2, S. Mohajer 1, C. Tian 3,

More information

ISSN Vol.07,Issue.01, January-2015, Pages:

ISSN Vol.07,Issue.01, January-2015, Pages: ISSN 2348 2370 Vol.07,Issue.01, January-2015, Pages:0145-0150 www.ijatir.org A Novel Approach for Delay-Limited Source and Channel Coding of Quasi- Stationary Sources over Block Fading Channels: Design

More information

Optimal Partner Selection and Power Allocation for Amplify and Forward Cooperative Diversity

Optimal Partner Selection and Power Allocation for Amplify and Forward Cooperative Diversity Optimal Partner Selection and Power Allocation for Amplify and Forward Cooperative Diversity Hadi Goudarzi EE School, Sharif University of Tech. Tehran, Iran h_goudarzi@ee.sharif.edu Mohamad Reza Pakravan

More information

SPATIAL CORRELATION BASED SENSOR SELECTION SCHEMES FOR PROBABILISTIC AREA COVERAGE

SPATIAL CORRELATION BASED SENSOR SELECTION SCHEMES FOR PROBABILISTIC AREA COVERAGE SPATIAL CORRELATION BASED SENSOR SELECTION SCHEMES FOR PROBABILISTIC AREA COVERAGE Ramesh Rajagopalan School of Engineering, University of St. Thomas, MN, USA ramesh@stthomas.edu ABSTRACT This paper develops

More information

Power Allocation based Hybrid Multihop Relaying Protocol for Sensor Networks

Power Allocation based Hybrid Multihop Relaying Protocol for Sensor Networks , pp.70-74 http://dx.doi.org/10.14257/astl.2014.46.16 Power Allocation based Hybrid Multihop Relaying Protocol for Sensor Networks Saransh Malik 1,Sangmi Moon 1, Bora Kim 1, Hun Choi 1, Jinsul Kim 1, Cheolhong

More information

SPATIAL DIVERSITY TECHNIQUES IN MIMO WITH FREE SPACE OPTICAL COMMUNICATION

SPATIAL DIVERSITY TECHNIQUES IN MIMO WITH FREE SPACE OPTICAL COMMUNICATION SPATIAL DIVERSITY TECHNIQUES IN MIMO WITH FREE SPACE OPTICAL COMMUNICATION Ruchi Modi 1, Vineeta Dubey 2, Deepak Garg 3 ABESEC Ghaziabad India, IPEC Ghaziabad India, ABESEC,Gahziabad (India) ABSTRACT In

More information

DYNAMIC POWER ALLOCATION SCHEME USING LOAD MATRIX TO CONTROL INTERFERENCE IN 4G MOBILE COMMUNICATION SYSTEMS

DYNAMIC POWER ALLOCATION SCHEME USING LOAD MATRIX TO CONTROL INTERFERENCE IN 4G MOBILE COMMUNICATION SYSTEMS DYNAMIC POWER ALLOCATION SCHEME USING LOAD MATRIX TO CONTROL INTERFERENCE IN 4G MOBILE COMMUNICATION SYSTEMS Srinivas karedla 1, Dr. Ch. Santhi Rani 2 1 Assistant Professor, Department of Electronics and

More information

Adaptive Modulation with Customised Core Processor

Adaptive Modulation with Customised Core Processor Indian Journal of Science and Technology, Vol 9(35), DOI: 10.17485/ijst/2016/v9i35/101797, September 2016 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 Adaptive Modulation with Customised Core Processor

More information

The Reachback Channel in Wireless Sensor Networks

The Reachback Channel in Wireless Sensor Networks The Reachback Channel in Wireless Sensor Networks Sergio D Servetto School of lectrical and Computer ngineering Cornell University http://peopleececornelledu/servetto/ DIMACS /1/0 Acknowledgements An-swol

More information

photons photodetector t laser input current output current

photons photodetector t laser input current output current 6.962 Week 5 Summary: he Channel Presenter: Won S. Yoon March 8, 2 Introduction he channel was originally developed around 2 years ago as a model for an optical communication link. Since then, a rather

More information

Social Learning Against Data Falsification in Sensor Networks

Social Learning Against Data Falsification in Sensor Networks Social Learning Against Data Falsification in Sensor Networks Fernando Rosas and Kwang-Cheng Chen, Fellow, IEEE arxiv:7.653v [eess.sp] 8 Oct 27 Abstract Although surveillance and sensor networks play a

More information

Collaborative decoding in bandwidth-constrained environments

Collaborative decoding in bandwidth-constrained environments 1 Collaborative decoding in bandwidth-constrained environments Arun Nayagam, John M. Shea, and Tan F. Wong Wireless Information Networking Group (WING), University of Florida Email: arun@intellon.com,

More information

Dynamic Subcarrier, Bit and Power Allocation in OFDMA-Based Relay Networks

Dynamic Subcarrier, Bit and Power Allocation in OFDMA-Based Relay Networks Dynamic Subcarrier, Bit and Power Allocation in OFDMA-Based Relay Networs Christian Müller*, Anja Klein*, Fran Wegner**, Martin Kuipers**, Bernhard Raaf** *Communications Engineering Lab, Technische Universität

More information

UNEQUAL POWER ALLOCATION FOR JPEG TRANSMISSION OVER MIMO SYSTEMS. Muhammad F. Sabir, Robert W. Heath Jr. and Alan C. Bovik

UNEQUAL POWER ALLOCATION FOR JPEG TRANSMISSION OVER MIMO SYSTEMS. Muhammad F. Sabir, Robert W. Heath Jr. and Alan C. Bovik UNEQUAL POWER ALLOCATION FOR JPEG TRANSMISSION OVER MIMO SYSTEMS Muhammad F. Sabir, Robert W. Heath Jr. and Alan C. Bovik Department of Electrical and Computer Engineering, The University of Texas at Austin,

More information

An Orthogonal Relay Protocol with Improved Diversity-Multiplexing Tradeoff

An Orthogonal Relay Protocol with Improved Diversity-Multiplexing Tradeoff SUBMITTED TO IEEE TRANS. WIRELESS COMMNS., NOV. 2009 1 An Orthogonal Relay Protocol with Improved Diversity-Multiplexing Tradeoff K. V. Srinivas, Raviraj Adve Abstract Cooperative relaying helps improve

More information

Relay Scheduling and Interference Cancellation for Quantize-Map-and-Forward Cooperative Relaying

Relay Scheduling and Interference Cancellation for Quantize-Map-and-Forward Cooperative Relaying 013 IEEE International Symposium on Information Theory Relay Scheduling and Interference Cancellation for Quantize-Map-and-Forward Cooperative Relaying M. Jorgovanovic, M. Weiner, D. Tse and B. Nikolić

More information