Measurement of Surge Propagation in Induction Machines

Size: px
Start display at page:

Download "Measurement of Surge Propagation in Induction Machines"

Transcription

1 Measurement of Surge Propagation in Induction Machines T. Humiston, Student Member, IEEE Department of Electrical and Computer Engineering Clarkson University Potsdam, NY 3699 P. Pillay, Senior Member, IEEE Department of Electrical and Computer Engineering Clarkson University Potsdam, NY 3699 Abstract Winding failures in induction machines have been a major concern in the past several years, and more so recently with the addition of variable speed drives (VSDs). Both the introduction of the vacuum breaker, and the use of pulse width modulation (PWM) drives, utilizing fast switching IGBT s, have resulted in an increase in winding failures in induction machines. Two mechanisms that cause winding failures are steepfronted surges, like those caused during the opening and closing of vacuum breakers, and transient overvoltages caused by impedance mismatch between the cable and load during VSD operation. There has been a fair amount of work done to date on the propagation of vacuum breaker induced steep-fronted surges in the windings of the induction machine. More recently, work has been progressing on overvoltages at the machine terminals as a result of VSD s operating with long cables connecting drive and machine. However the propagation of these surges down the coils and the interference of these PWM surges with each other in the coils as well as the coupling between turns and coils have not been thoroughly investigated. Such an investigation would allow more benign PWM strategies to be developed, which do not build up in the machine to unacceptably high levels. To this end, this paper presents a measurement technique which can be used to study PWM generated surges and their propagation within the coil, considering each turn at a time. This requires the inclusion of the differences in the surge impedances in each section of the coil. Detailed parameter measurements are made of each turn section (slot vs. overhang), which are then used to determine the surge impedance of each section. Reflection and refraction coefficients are calculated, then used to map, via lattice diagrams, the propagation of surges within the turns of one coil. I. INTRODUCTION Winding failures in induction machines have been a major concern in the past several years, and more so recently with the addition of variable speed drives (VSDs). Both the introduction of the vacuum breaker, and the introduction of PWM drives, utilizing fast switching IGBT s, have resulted in an increase in winding failures in induction machines. There are two mechanisms causing winding failures; steep-fronted surges, like those caused during the opening and closing of vacuum breakers, and transient overvoltages caused by impedance mismatch between cable and load during VSD operation. There has been a fair amount of work done to date on the propagation of vacuum breaker induced steep-fronted surges in the windings of large induction machines[5,6,8-]. The majority of this work has focused on a single event surge entering one winding of a multiphase machine. In addition, the winding parameters have been limited to calculated values. Here the intention is to study the propagation of multiple surges in the machine, their interaction through mutual inductive and capacitance coupling and when operated from individual single phase inverters supplying each phase. The machine under study is form-wound, hence parallel plate capacitance theory has been applied as shown in figure. Figure. Capacitance in a -turn coil. The individual values of C g and C p are calculated using parallel plate approximations and the r value of the respective insulations. This can give reasonably accurate capacitance values. But as for inductance values, some have used finite element methods[8], but most have used the equation [L]=[C ] - / c () where [L] is the inductance matrix, [C ] is the capacitance matrix found as mentioned above with the exception that all r =, and c is the velocity of propagation [6]. This method requires knowledge of the velocity of propagation in the coils. One study [6], assumed the wave propagation velocity in the overhang section of the coil is the same as within the slot region. This assumption is not supported by [9] which report the velocity of propagation in the slot as been lower than in the overhang. More recently, work has been progressing on overvoltages at the machine terminals as a result of VSD s operating with long cables connecting drive and machine [- 4]. The long cables have an impedance significantly different

2 from the impedance of the induction machine. When a steep fronted wave traveling along the cable encounters the impedance mismatch a voltage reflection occurs resulting in an overvoltage at the location of the mismatch, i.e. the machine terminals. As switching frequencies increase so do the rise times on the devices, translating into a higher dv/dt pulse/wave traveling down the cable. The higher the dv/dt the steeper the wave front impacting the impedance mismatch. Thus, peak overvoltages increase as the rise time of semiconductor devices reduces []. The result is that voltage reflections are dependent on VSD output pulse rise time and cable length. The work further focuses on the measurement of surge propagation, differentiating between the impedance of the slot sections and that of the overhang sections, of each turn. Detailed parameter measurements are made of each turn section (slot vs. overhang), which are then used to determine the surge impedance of each section. Reflection and refraction coefficients are calculated, then used to map, via lattice diagrams, the propagation of surges within the turns of one coil. The paper is divided into six sections. The first is on parameter measurements and the method used to obtain the measurements. Second, experimental set up for surge measurements. Third, single section lattice diagram simulation and measurement. Fourth, the Bewely lattice diagram is extended to map all sections of a coil within the induction machine. Fifth, PWM pulse tracking within the turns of a coil using a lattice diagram. And Sixth, the conclusions. Figure shows a diagram of a three-turn coil as segmented into the six regions, with slot and overhang regions marked. Figure. Multiconductor transmission model of induction motor coil with series sections. In previous work done, the capacitance and inductance values for the different regions were calculated. In this work the coil parameters are measured. A 5 hp, 3-phase, form wound induction machine was obtained for use as the test motor. To perform the required measurements the machine was disassembled down to the stator and frame, with only the coils left in place, as shown in figure 3. It has been shown in previous work [5,6,8,9,] that it is not necessary to have the rotor present when performing experimental research on surges within the stator windings. II. PARAMETER MEASUREMENTS The stator coils sit in slots, where the coils are surrounded on three sides by iron; in the overhang the coils are surrounded by air only. These two distinctly different environments cause the coils to have different surge impedances. For the slot region, because of the presence of the iron the inductance is much higher than for the overhang region. The effect on the capacitance is also greater in the slot, than in the overhang where the only coil coupling is to the adjacent coil. These regions become important when steep-fronted surges attempt to pass between them. An incident surge will experience reflections, refractions and cause overvoltages at impedance mismatches. There are also mismatches at the phase terminals, where the connection from the terminal meets the coil. The coil can be divided into six distinct regions of differing impedances. Since the wave front duration is much shorter than the coil propagation time each turn acts as a separate conductor, even though they are connected to one another. However, this only holds during the transient period of a few microseconds. Because of this, a coil can be modeled like a multiconductor transmission line [8-] with many series segments consisting of slot sections and overhang regions. The theories of wave propagation on multiconductor transmission lines can be applied to the coils of a machine. Figure 3. 5 HP, 3-phase, form wound induction motor used as test motor. In addition because of the air gap the effect of the rotor on the parameter measurements is negligible. Several coil sections were removed to gain clear access to the stator core from each end for measurement purposes. Figure 4 shows one complete coil as removed from the machine.

3 Figure 4. Shows one coil after being removed from the stator. Six regions in each coil are identified as having a different impedance from one region to the next. However, this does not necessarily imply that there are six different sets of parameters to measure. The two slot sections (B and D figure ) of each coil will be considered the same, as they are the same size and composed of the same materials. Likewise, overhang sections A and E, figure, are the same with the exception of their incoming and outgoing connections. To obtain each section s parameters the coil must be cut into the respective regions and each placed back into its working environment. Figure 5 shows the actual test machine coil cut into the sections representing the different impedance values as shown in figure. Figure 6. Test setup to measure capacitance in slot sections. Figure 5. Test coil cut into sections representing different zones of impedance. The parameter values were obtained using an Hewlett Packard 484A Hz-MHz Precision LCR Meter. Due to the size of the machine the standard test leads were not used. Even though a non-standard set of test leads were used the LCR meter had a correction capability via open circuit and short circuit tests to remove any errors introduced. A test setup was built to perform the capacitance measurements in the slot sections, which were placed back into the stator core. Figure 6 shows the capacitive setup. The capacitive measurements required only two contact points between the LCR meter test leads and the device under test (DUT). For the mutual, turn to turn inductances the test set up was modified to allow for four contact points to obtain the measurements. Also each contact point had to be independently movable to enable the complete set of turns to be measured. The test setup is shown in figure 7, while an inductance measurement is shown in figure 8. Figure 7. Test setup to measure inductance in slot sections. Figure 8. Inductance measurement of slot section of coil. With these two setups, all turn to ground capacitances, turn to turn capacitances, self inductances and mutual inductances were measured for each conductor/turn in both the lower and

4 upper coils in the double layer winding. As frequency plays an important role in impedance values all parameter measurements where taken over a range of frequencies from 6Hz to MHz in ten steps, as limited by the LCR meter. The ten frequencies used were 6Hz, Hz, 5Hz, KHz, 5KHz, KHz, 5KHz, KHz, 5KHz and MHz. The process was repeated for the overhang sections. A jig was constructed, matching the inside shape of the stator core on to which the overhang sections were mounted. From detailed, full scale drawings, templates were made to hold the coil sections in their proper alignment. The complete jig with coil sections installed is shown in figure 9. Adjacent coils need to be in placed to account for mutual coupling as well as surge propagation from coil to coil and the impedance mismatch between coils. The adjacent phase groups must also remain in place for phase to phase coupling, as the problem occurs during normal operation. Previous research has only examined one phase. parallel they run in opposite directions. There is only minimal overlap at the exit of the slot before turning in opposite directions. This would allow minimal coupling between upper and lower coils, and is supported by the measurements. The measured values show the coupling at a significantly low value as to be neglected. Figure. Test setup to measure capacitance and inductance in overhang. Figure 9. Form to hold overhang sections in proper alignment. As with the slot setup, an additional support structure was needed to hold the test leads in place on the conductors while the measurements were taken. This additional structure needed to be completely and independently adjustable for each of the four contact points from test lead to the conductor being measured. Figure shows the complete test setup to perform capacitance and inductance measurements on the overhang sections of the coils. Figure shows a mutual inductance measurement being conducted on one of the overhang coil sections. In the slot measurements, only turn to turn and turn to ground couplings associated with the two coils residing in the slot were considered as the stator core acts as a barrier to coupling with coils in adjacent slots. Since the machine used in the experimental tests and measurements is double layer, both upper and lower coils have to be considered. Within the slot region, since both coils are parallel, a significant coupling exists between the two coils. However, in the overhang, due to the nature of the double layer winding, the upper and lower coils do not run Figure. Inductance measurement of overhang section of coil. It is necessary, for determining the characteristic impedance of the turn sections, to have the parameter values in units per meter. Hence, all measured data was divided by its respective conductor length,.384m for the overhang region and.69m for the slot. Figure shows the self inductance of all 6 conductors (8 per coil) of the double layer winding for both the overhang and the slot regions in frequencies from 5Hz to Mhz. The left half of the figure shows the overhang values to 6 (left to right), while the right half show the slot region, to 6 (left to right). Figure 3 shows a comparison of the self inductance in the overhang turns versus that in the slot for a frequency of 5Hz (same data as used in figure ). The slot values show a linear decrease from turn one in the bottom of the slot to turn 6 at

5 the top (nearest to rotor), as expected, while the overhang shows a reasonably constant value. Figure 4 shows that as frequency increases the inductances within the slot regions converge Capacitance: Turn to Adjacent Turn -- Slot and Overhang 6 5 k. 5k 6. Inductance: Turns -6 self in Slot and Overhang Pico-Farad k 5k k 5k M Micro-Henry Hz khz 5 khz khz 5 khz khz 5 khz MHz. - S 3-4 S 5-6 S 7-8 S 9 - S - S 3-4 S 5-6 S Turn - 3 OH 4-5 OH 6-7 OH 8-9 OH - OH - 3 OH 4-5 OH.. -Self-OH -Self-OH 3-Self-OH 4-Self-OH 5-Self-OH 6-Self-OH 7-Self-OH 8-Self-OH 9-Self-OH -Self-OH -Self-OH -Self-OH 3-Self-OH 4-Self-OH 5-Self-OH 6-Self-OH -Self-S -Self-S 3-Self-S 4-Self-S 5-Self-S 6-Self-S 7-Self-S 8-Self-S 9-Self-S -Self-S -Self-S -Self-S 3-Self-S 4-Self-S 5-Self-S 6-Self-S Turns Figure. Measured self inductance of turns in overhang sections (left half) and in slot sections (right half). Figure 5. Measured turn to adjacent turn capacitance in slot sections (left half) and in overhang sections (right half) Capacitance: Turn to Adjacent Turn -- Slot and Overhang - S - 3 S 3-4 S 4-5 S Inductance: Turns -6 self at 5Hz. 5-6 S 6-7 S Micro-Henry Overhang Slot Pico-Farad k 5k k 5k k 5k M Frequency 7-8 S 8-9 S 9 - S - S - S - 3 S 3-4 S 4-5 S 5-6 S Turns Figure 6. Turn to adjacent turn capacitance in slot converging as frequency increases. Figure 3. Comparison of self inductance in overhang vs. slot at 5Hz. 6. Capacitance Turn to Ground -- Turns -8 Inductance: Turns -8 self 5. - g g 3 - g Micro-Henry Self-S -Self-S 3-Self-S 4-Self-S 5-Self-S 6-Self-S 7-Self-S 8-Self-S 9-Self-S -Self-S -Self-S Pico-Farad g 5 - g 6 - g 7 - g 8 - g.. -Self-S 3-Self-S 4-Self-S 5-Self-S 6-Self-S. 6 5 k 5k k 5k k 5k M Frequency. 5 Hz khz 5 khz khz 5 khz khz 5 khz MHz Frequency Figure 4. Self inductance in slot converging as frequency increases. Figure 5 shows turn to adjacent turn capacitance in both the slot sections and overhang sections, for frequencies of 6 Hz to MHz. The left half shows the slot measurements for both the lower and upper coils. The sharp drop is associated with the last turn of the lower coil and the first turn of the upper coil, where additional insulation is present. The overhang capacitance values (right half) are significantly lower than for the slot at all frequencies. Figure 6 shows as frequency is increased the slot capacitance values decrease and trend towards a constant value at high frequency. The turn to ground capacitance in the slot region also decreases as frequency increases but at a lesser rate than for the turn to turn values, as seen in figure 7. Figure 7. Turn to ground capacitance versus frequency in slot. III. EXPERIMENTAL SET UP FOR SURGE MEASUREMENTS To obtain experimental results a test set up was assembled. The two main components necessary were a source of steep fronted waves and a device to accurately measure the source and the propagating waves. For the source, two choices of function generators were used. A Tektronix FG 53 3MHz function generator, which had a slower rise time of 54 nsec on a pulse train waveform. The second was an Hewlett Packard 334A function generator, which had a faster rise time of 5. nsec. Both generators had internal impedance values of 5 Ω. For waveform measurements two CompuScope 85G waveform digitizers were used. Each device has two input

6 4 6 8 channels having 5 GS/s A/D Sampling simultaneously, with 5 MHz bandwidth and 8 bit resolution. This level of measurement capture was necessary due to the short rise times of the source, as well as the short propagation times of the coil sections. The sampled data was viewed and stored using GageScope Oscilloscope Software. To obtain measurements of waveforms at impedance boundaries within the coil, modifications were made to allow connections from the digitizers to the coil. At the location of a boundary change, i.e. slot to overhang, the insulation was removed and small leads attached, as seen in figure 8. stepped edge approximation shown in figure. Figure shows the resulting waveforms at points A and B for a simulated.5 per unit generated pulse while figure 3 shows the measured waveforms for the actual.5 per unit pulse. The simulation results match up accurately to the measured values verifying the functionality of the experimental set up Actual source rising edge and stepped approximation Figure. Stepped approximation of source rising edge. Figure 8. Leads attached to coil for waveform measurement. IV. SINGLE SECTION LATTICE DIAGRAM 4 Lattic Diagram -- Simple system -- Mohm To verify the operation of the experimental setup a simple system with conductors of known impedance values and propagation times was examined, figure 9. To the left of point A is the source, with internal impedance, connected to a 5 Ω coaxial cable. At point A the cable connects to channel of the digitizer, set to an impedance of 5 Ω. A second, longer length, coaxial cable is Figure. Lattice Diagram of simple system. Simulated -- Source Voltage and Termination voltage -- Mohm Figure 9. Simple experimental system. connected from channel to channel, where channel is set to an impedance of MΩ, making an impedance mismatch with the cable. There is also a mismatch in impedance with point A and the coaxial cable. Thus points A and B were used as the boundary points for a single section Bewely [3] lattice diagram analysis. Since the rise time of the source is long compared to the propagation time of the cables, a stepped approximation of the rising edge, shown in figure, is used for evaluation of the wave front at the boundaries. Figure shows the lattice diagram of reflections occurring between boundaries A and B. There are several lines, shifted in time, propagating simultaneously as a group representing the Figure. Simulation results at points A and B.

7 Measured -- Source Voltage and Termination voltage -- Mohm at the first boundary. Also shown in figure 5 is the source voltage as reference. The voltage at all eighteen boundaries are determined and shown in figure 6, while only the first and last boundary results are shown in figure 7..5 Lattice Diagram Figure 3. Measured results at points A and B. 8 V. MULTIPLE SECTION LATTICE DIAGRAMS With the coil parameters obtained, the impedance values associated with the coil sections were determined. These values were then used to determine the reflection and refraction coefficients associated with the boundaries between regions of differing impedance, i.e. slot to overhang. With reflection and refraction coefficients Bewely lattice theory[3] is used to map the propagation of a pulse/surge through the turns of a coil. The machine under test has four turns per coil, with two conductors per turn, a total of 8 conductors per coil. Here the two parallel conductors are modeled into one conductor having the appropriate impedance value. Initially only one coil is examined under surge conditions. With no inter coil connections both overhang sections are modeled having the same impedance values, with the exception of the connection to the source cable which is handled separately. One complete turn includes four regions of impedance mismatch, slot A overhang A Slot B overhang B. Hence, the lattice diagram must have four regions, each representing an impedance region of the coil. As each subsequent turn passes through the same four regions in sequence the lattice is further expanded to have 6 distinct regions. A seventeenth section representing the lead in, half overhang section, at the beginning of the coil is added, which has the same impedance value as a full overhang section. These 7 sections represent the complete coil. As the coil must be connected to a source via a cable, an eighteenth region is added to the front of the lattice. Figure 4 shows the multiple lattice diagram to track pulse propagation through the coil as each discontinuity is reached. A program using MATLAB was written to evaluate the pulse, the boundary conditions, reflections, refractions, traveling waves and voltages occurring at each location of impedance mismatch. Figure 4 is the lattice result for a test simulation on a simplified coil model, in which the effects of mutual inductive and capacitive coupling were not included. Figure 5 shows the tracking of voltage versus time occurring Figure 4. Lattice diagram of 4 turn coil differentiating slot sections from overhang sections, with a supply cable section first..5.5 Voltage vs Time at first boundry -- Cable to Figure 5. Voltage vs. Time diagram for the first boundary condition Voltage vs Time at all boundries w/ termination impedance set to Figure 6. Voltage vs. Time diagram for all 8 boundaries.

8 Voltage vs Time at first boundry -- Cable to Source & last boundry -- Overhang to Figure 7. First and last boundary voltages. VI. PWM PULSE TRACKING With single pulse tracking completed, the MATLAB program will be modified to accept variations in the source. A PWM source is added to supply a train of pulses to the coil. The lattice diagram tracks multiple pulses traveling in time at the impedance boundaries. With several pulses entering the coil and being reflected and refracted along with the variations in velocity of propagation from one turn section to another, there is a much greater chance that several reflections will arrive at a boundary simultaneously causing greater overvoltages than predicted in earlier works. Further use of the PWM lattice program allows the variation in PWM strategies to be tested, identifying which are most benign to the coil insulation. VII. CONCLUSIONS This work makes contributions on the measurement of motor parameters for surge propagation studies. A single coil of the machine is divided into regions of differing impedance namely the slot and the overhang regions. Detailed parameter measurements are made of each turn within each region, to include turn to ground and turn to turn capacitance and self and mutual inductances. This is then used to determine the surge impedance of each section. Bewely lattice theory is extended to track surge propagation within the coil. Boundary voltages located at the impedance mismatch are calculated to determine the magnitude of the overvoltages occurring within each turn of a coil. Future work will focus on PWM interaction inside the windings. REFERENCES [] Tianting Ren, Analysis of Voltage Source Inverters Operating With Long Cables, M.S. Thesis, Clarkson University, 997 [] R. J. Kerkman, D. Leggate and G. L. Skibinski, Interaction of Drive Modulation and Cable Parameters on AC Motor Transients, IEEE Transactions on Industry Applications, Vol. 33, No. 3, May/June 997, pp 7-73 [3] A. Von Jouanne, D. A. Rendusare, P. N. Enjeti and J. W. Gray, Filtering Techniques to Minimize the Effect of Long Motor Leads on PWM Inverter-Fed AC Motor Drive Systems, IEEE Transactions on Industry Applications, Vol. 3, No. 4, July/August 996, pp [4] A. H. Bonnett, Analysis of the Impact of Pulse-Width Modulated Inverter Voltage Waveforms on AC Induction Motors, IEEE Transactions on Industry Applications, Vol. 3, No., March/April 996, pp [5] P. G. McLaren and M. H. Abdel-Rahman, Modeling of Large AC Motor Coils for Steep-Fronted Surge Studies, IEEE Transactions on Industry Applications, Vol. 4, No. 3, May/June 988, pp [6] M. T. Wright, S. J. Yang and K. McLeay. General theory of fast-fronted interturn voltage distribution in electrical machine windings, IEE Proceedings, Vol. 3, Pt. B, No. 4, July 983, pp [7] L. M. Wedepohl, Application of matrix methods to the solution of traveling wave phenomena in polyphase systems IEEE Proceedings, Vol., No., December 963, pp. -. [8] P. G. McLaren and H. Oraee, Surge Voltage Distribution in Line-End Coils of Induction Machines, IEEE Transactions on Power Apparatus and Systems, Vol. PAS-4, No. 7, July 985, pp [9] K. J. Cornick and T. R. Thompson, Steep-Fronted Switching Voltage Transients and Their Distribution in Motor Windings Part : Distribution of Steep-Fronted Switching Voltage Transients in Motor Windings, IEE Proceedings, Vol. 9, pt. B, No., March 98, pp [] K. J. Cornick and T. R. Thompson, Steep-Fronted Switching Voltage Transients and Their Distribution in Motor Windings Part : System Measurements of Steep- Fronted Switching Voltage Transients, IEE Proceedings, Vol. 9, pt. B, No., March 98, pp [] W. W. L. Keerthipala and P. G. McLaren, A Multiconductor Transmission Line Model for Surge Propagation Studies in Large A.C. Machine Windings, Midwest Symposium on Circuits and Systems, V, August -5, 99, pp [] W. W. L. Keerthipala and P. G. McLaren, The Effects of Laminations on Steep Fronted Surge Propagation in Large A.C. Motor Coils, IEEE Transactions on Energy Conversion, Vol. 5, No., March 99, pp [3] L. V. Bewely, Traveling Waves On Transmission Systems, Dover Edition, Dover Publications, Inc. New York, 963

RCL filter to suppress motor terminal overvoltage in PWM inverter fed Permanent Magnet synchronous motor with long cable leads

RCL filter to suppress motor terminal overvoltage in PWM inverter fed Permanent Magnet synchronous motor with long cable leads RCL filter to suppress motor terminal overvoltage in PWM inverter fed Permanent Magnet synchronous motor with long cable leads M.B.RATHNAPRIYA1 A.JAGADEESWARAN2 M.E scholar, Department of EEE Sona College

More information

Analysis by Simulation of the Over-voltages in PWM-Inverter Fed Induction Motors

Analysis by Simulation of the Over-voltages in PWM-Inverter Fed Induction Motors International Journal of Electrical Energy, Vol.1, No.1, March 213 Analysis by Simulation of the Over-voltages in PWM-Inverter Fed Induction Motors Basavaraja Banakara GITAM University /EEE Department,

More information

Prediction of Transient Transfer Functions at Cable-Transformer Interfaces

Prediction of Transient Transfer Functions at Cable-Transformer Interfaces 1 Prediction of Transient Transfer Functions at Cable-Transformer Interfaces Joe Y. Zhou, Member, IEEE and Steven A. Boggs, Fellow, IEEE Joe Zhou participated in this work while completing his Ph.D. at

More information

Power Electronics. Exercise: Circuit Feedback

Power Electronics. Exercise: Circuit Feedback Lehrstuhl für Elektrische Antriebssysteme und Leistungselektronik Technische Universität München Prof Dr-Ing Ralph Kennel Aricsstr 21 Email: eat@eitumde Tel: +49 (0)89 289-28358 D-80333 München Internet:

More information

6. du/dt-effects in inverter-fed machines

6. du/dt-effects in inverter-fed machines 6. du/dt-effects in inverter-fed machines Source: A. Mütze, PhD Thesis, TU Darmstadt 6/1 6. du/dt-effects in inverter-fed machines 6.1 Voltage wave reflections at motor terminals Source: A. Mütze, PhD

More information

Mr. DILIP J. Final Year Mtech Student Dept of EEE The Oxford College of Engineering, Bangalore

Mr. DILIP J. Final Year Mtech Student Dept of EEE The Oxford College of Engineering, Bangalore International Journal of Research Studies in Electrical and Electronics Engineering (IJRSEEE) Volume 1, Issue 1, June 2015, PP 9-17 www.arcjournals.org The Proposed Research Technology and Data Implementation

More information

THE PROPAGATION OF PARTIAL DISCHARGE PULSES IN A HIGH VOLTAGE CABLE

THE PROPAGATION OF PARTIAL DISCHARGE PULSES IN A HIGH VOLTAGE CABLE THE PROPAGATION OF PARTIAL DISCHARGE PULSES IN A HIGH VOLTAGE CABLE Z.Liu, B.T.Phung, T.R.Blackburn and R.E.James School of Electrical Engineering and Telecommuniications University of New South Wales

More information

Transmission Line Transient Overvoltages (Travelling Waves on Power Systems)

Transmission Line Transient Overvoltages (Travelling Waves on Power Systems) Transmission Line Transient Overvoltages (Travelling Waves on Power Systems) The establishment of a potential difference between the conductors of an overhead transmission line is accompanied by the production

More information

Efficient HF Modeling and Model Parameterization of Induction Machines for Time and Frequency Domain Simulations

Efficient HF Modeling and Model Parameterization of Induction Machines for Time and Frequency Domain Simulations Efficient HF Modeling and Model Parameterization of Induction Machines for Time and Frequency Domain Simulations M. Schinkel, S. Weber, S. Guttowski, W. John Fraunhofer IZM, Dept.ASE Gustav-Meyer-Allee

More information

Identification of Impending Interturn Faults in Random Wound Induction Motors Used in Adjustable Speed Drives

Identification of Impending Interturn Faults in Random Wound Induction Motors Used in Adjustable Speed Drives Identification of Impending Interturn Faults in Random Wound Induction Motors Used in Adjustable Speed Drives S.PONNUSWAMY RAJKUMAR, J.SUDESH JOHNY, A. EBENEZER JEYAKUMAR Department of Electrical & Electronics

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION 1 CHAPTER 1 INTRODUCTION 1.1 GENERAL Induction motor drives with squirrel cage type machines have been the workhorse in industry for variable-speed applications in wide power range that covers from fractional

More information

Lightning transient analysis in wind turbine blades

Lightning transient analysis in wind turbine blades Downloaded from orbit.dtu.dk on: Aug 15, 2018 Lightning transient analysis in wind turbine blades Candela Garolera, Anna; Holbøll, Joachim; Madsen, Søren Find Published in: Proceedings of International

More information

Effect of High Frequency Cable Attenuation on Lightning-Induced Overvoltages at Transformers

Effect of High Frequency Cable Attenuation on Lightning-Induced Overvoltages at Transformers Voltage (kv) Effect of High Frequency Cable Attenuation on Lightning-Induced Overvoltages at Transformers Li-Ming Zhou, Senior Member, IEEE and Steven Boggs, Fellow, IEEE Abstract: The high frequency attenuation

More information

MODELING OF LONG-CABLE-FED INDUCTION MOTOR DRIVE SYSTEM FOR PREDICTING OVERVOLTAGE TRANSIENTS

MODELING OF LONG-CABLE-FED INDUCTION MOTOR DRIVE SYSTEM FOR PREDICTING OVERVOLTAGE TRANSIENTS MODELING OF LONG-CABLE-FED INDUCTION MOTOR DRIVE SYSTEM FOR PREDICTING OVERVOLTAGE TRANSIENTS L. Wang 1 and J. Jatskevich 2 1 ABB Sweden Inc. Corporate Research, Vasteras, SE-721 78, Sweden 2 University

More information

About the High-Frequency Interferences produced in Systems including PWM and AC Motors

About the High-Frequency Interferences produced in Systems including PWM and AC Motors About the High-Frequency Interferences produced in Systems including PWM and AC Motors ELEONORA DARIE Electrotechnical Department Technical University of Civil Engineering B-dul Pache Protopopescu 66,

More information

TD-106. HAEFELY HIPOTRONICS Technical Document. Partial Discharge Pulse Shape Analysis to Discriminate Near and Far End Failures for Cable Location

TD-106. HAEFELY HIPOTRONICS Technical Document. Partial Discharge Pulse Shape Analysis to Discriminate Near and Far End Failures for Cable Location HAEFELY HIPOTRONICS Technical Document Partial Discharge Pulse Shape Analysis to Discriminate Near and Far End Failures for Cable Location P. Treyer, P. Mraz, U. Hammer Haefely Hipotronics, Tettex Instruments

More information

Effect of Shielded Distribution Cable on Very Fast Transients

Effect of Shielded Distribution Cable on Very Fast Transients IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 15, NO. 3, JULY 2000 857 Effect of Shielded Distribution Cable on Very Fast Transients Li-Ming Zhou and Steven Boggs, Fellow, IEEE Abstract Fast transients in

More information

EXPERIMENTAL INVESTIGATION OF A TRANSIENT INDUCED VOLTAGE TO AN OVERHEAD CONTROL CABLE FROM A GROUNDING CIRCUIT

EXPERIMENTAL INVESTIGATION OF A TRANSIENT INDUCED VOLTAGE TO AN OVERHEAD CONTROL CABLE FROM A GROUNDING CIRCUIT EXPERIMENTAL INVESTIGATION OF A TRANSIENT INDUCED VOLTAGE TO AN OVERHEAD CONTROL CABLE FROM A GROUNDING CIRCUIT Akihiro AMETANI, Tomomi OKUMURA, Naoto NAGAOKA, Nobutaka, MORI Doshisha University - Japan

More information

CHAPTER-6 MEASUREMENT OF SHAFT VOLTAGE AND BEARING CURRENT IN 2, 3 AND 5-LEVEL INVERTER FED INDUCTION MOTOR DRIVE

CHAPTER-6 MEASUREMENT OF SHAFT VOLTAGE AND BEARING CURRENT IN 2, 3 AND 5-LEVEL INVERTER FED INDUCTION MOTOR DRIVE 12 CHAPTER-6 MEASUREMENT OF SHAFT VOLTAGE AND BEARING CURRENT IN 2, 3 AND 5-LEVEL INVERTER FED INDUCTION MOTOR DRIVE 6.1. INTRODUCTION Though the research work is concerned with the measurement of CM voltage,

More information

Comparison of Lamination Iron Losses Supplied by PWM Voltages: US and European Experiences

Comparison of Lamination Iron Losses Supplied by PWM Voltages: US and European Experiences Comparison of Lamination Iron Losses Supplied by PWM Voltages: US and European Experiences A. Boglietti, IEEE Member, A. Cavagnino, IEEE Member, T. L. Mthombeni, IEEE Student Member, P. Pillay, IEEE Fellow

More information

Overview of Grounding for Industrial and Commercial Power Systems Presented By Robert Schuerger, P.E.

Overview of Grounding for Industrial and Commercial Power Systems Presented By Robert Schuerger, P.E. Overview of Grounding for Industrial and Commercial Power Systems Presented By Robert Schuerger, P.E. HP Critical Facility Services delivered by EYP MCF What is VOLTAGE? Difference of Electric Potential

More information

Chapter 12: Transmission Lines. EET-223: RF Communication Circuits Walter Lara

Chapter 12: Transmission Lines. EET-223: RF Communication Circuits Walter Lara Chapter 12: Transmission Lines EET-223: RF Communication Circuits Walter Lara Introduction A transmission line can be defined as the conductive connections between system elements that carry signal power.

More information

The Reflective Wave Phenomena

The Reflective Wave Phenomena Application Note The Reflective Wave Phenomena Rev2.doc The Reflective Wave Phenomena Note to Specifiers This application note contains Cutler-Hammer s recommendations for the application of filters for

More information

University of Pennsylvania Department of Electrical and Systems Engineering ESE319

University of Pennsylvania Department of Electrical and Systems Engineering ESE319 University of Pennsylvania Department of Electrical and Systems Engineering ESE39 Laboratory Experiment Parasitic Capacitance and Oscilloscope Loading This lab is designed to familiarize you with some

More information

University of Jordan School of Engineering Electrical Engineering Department. EE 219 Electrical Circuits Lab

University of Jordan School of Engineering Electrical Engineering Department. EE 219 Electrical Circuits Lab University of Jordan School of Engineering Electrical Engineering Department EE 219 Electrical Circuits Lab EXPERIMENT 4 TRANSIENT ANALYSIS Prepared by: Dr. Mohammed Hawa EXPERIMENT 4 TRANSIENT ANALYSIS

More information

Measurement and reduction of EMI radiated by a PWM inverter-fed AC motor drive system

Measurement and reduction of EMI radiated by a PWM inverter-fed AC motor drive system Engineering Electrical Engineering fields Okayama University Year 1997 Measurement and reduction of EMI radiated by a PWM inverter-fed AC motor drive system Satoshi Ogasawara Okayama University Hirofumi

More information

External Drive Hardware

External Drive Hardware US1086e_External Drive Hardware, 08/2010 External Drive Hardware Selection and Application Answers Answers to external hardware questions A soup to nuts list of questions with installation / application

More information

Design and construction of double-blumlein HV pulse power supply

Design and construction of double-blumlein HV pulse power supply Sādhan ā, Vol. 26, Part 5, October 2001, pp. 475 484. Printed in India Design and construction of double-blumlein HV pulse power supply DEEPAK K GUPTA and P I JOHN Institute for Plasma Research, Bhat,

More information

Calculation of Transient Overvoltages by using EMTP software in a 2-Phase 132KV GIS

Calculation of Transient Overvoltages by using EMTP software in a 2-Phase 132KV GIS Calculation of Transient Overvoltages by using EMTP software in a 2-Phase 132KV GIS M. Kondalu, Dr. P.S. Subramanyam Electrical & Electronics Engineering, JNT University. Hyderabad. Joginpally B.R. Engineering

More information

Lab 1: Pulse Propagation and Dispersion

Lab 1: Pulse Propagation and Dispersion ab 1: Pulse Propagation and Dispersion NAME NAME NAME Introduction: In this experiment you will observe reflection and transmission of incident pulses as they propagate down a coaxial transmission line

More information

FGJTCFWP"KPUVKVWVG"QH"VGEJPQNQI[" FGRCTVOGPV"QH"GNGEVTKECN"GPIKPGGTKPI" VGG"246"JKIJ"XQNVCIG"GPIKPGGTKPI

FGJTCFWPKPUVKVWVGQHVGEJPQNQI[ FGRCTVOGPVQHGNGEVTKECNGPIKPGGTKPI VGG246JKIJXQNVCIGGPIKPGGTKPI FGJTFWP"KPUKWG"QH"GEJPQNQI[" FGRTOGP"QH"GNGETKEN"GPIKPGGTKPI" GG"46"JKIJ"XQNIG"GPIKPGGTKPI Resonant Transformers: The fig. (b) shows the equivalent circuit of a high voltage testing transformer (shown

More information

LOW VOLTAGE PWM INVERTER-FED MOTOR INSULATION ISSUES

LOW VOLTAGE PWM INVERTER-FED MOTOR INSULATION ISSUES LOW VOLTAGE PWM INVERTER-FED MOTOR INSULATION ISSUES Copyright Material IEEE Paper No. PCIC-4-15 RAPS-1433 Abstract - The topic of how low voltage IGBT-based PWM inverters create additional insulation

More information

Product Application Note

Product Application Note Application Note Product Application Note Motor Bearing urrent Phenomenon and 3-Level Inverter Technology Applicable Product: G7 Rev: 05-06 G7 three-level output waveform onventional two-level output waveform

More information

Selected Problems of Induction Motor Drives with Voltage Inverter and Inverter Output Filters

Selected Problems of Induction Motor Drives with Voltage Inverter and Inverter Output Filters 9 Selected Problems of Induction Motor Drives with Voltage Inverter and Inverter Output Filters Drives and Filters Overview. Fast switching of power devices in an inverter causes high dv/dt at the rising

More information

Analysis of Overvoltage and its Mitigation in Long Cable PWM Drives using Distributed-Parameter Representation

Analysis of Overvoltage and its Mitigation in Long Cable PWM Drives using Distributed-Parameter Representation Analysis of Overvoltage and its Mitigation in Long Cable PWM Drives using Distributed-Parameter Representation Thiago F. L. Milagres, Alessandro F. Moreira, Wallace C. Boaventura Departamento de Engenharia

More information

Parameters Affecting the Back Flashover across the Overhead Transmission Line Insulator Caused by Lightning

Parameters Affecting the Back Flashover across the Overhead Transmission Line Insulator Caused by Lightning Proceedings of the 14 th International Middle East Power Systems Conference (MEPCON 10), Cairo University, Egypt, December 19-21, 2010, Paper ID 111. Parameters Affecting the Back Flashover across the

More information

MECH 1100 Quiz 4 Practice

MECH 1100 Quiz 4 Practice Name: Class: Date: MECH 1100 Quiz 4 Practice True/False Indicate whether the statement is true or false. 1. An advantage of a of a three-phase induction motor is that it does not require starter windings.

More information

Pulse Transmission and Cable Properties ================================

Pulse Transmission and Cable Properties ================================ PHYS 4211 Fall 2005 Last edit: October 2, 2006 T.E. Coan Pulse Transmission and Cable Properties ================================ GOAL To understand how voltage and current pulses are transmitted along

More information

Shielding Effect of High Frequency Power Transformers for DC/DC Converters used in Solar PV Systems

Shielding Effect of High Frequency Power Transformers for DC/DC Converters used in Solar PV Systems Shielding Effect of High Frequency Power Transformers for DC/DC Converters used in Solar PV Systems Author Stegen, Sascha, Lu, Junwei Published 2010 Conference Title Proceedings of IEEE APEMC2010 DOI https://doiorg/101109/apemc20105475521

More information

MODELLING AND SIMULATION OF DIODE CLAMP MULTILEVEL INVERTER FED THREE PHASE INDUCTION MOTOR FOR CMV ANALYSIS USING FILTER

MODELLING AND SIMULATION OF DIODE CLAMP MULTILEVEL INVERTER FED THREE PHASE INDUCTION MOTOR FOR CMV ANALYSIS USING FILTER MODELLING AND SIMULATION OF DIODE CLAMP MULTILEVEL INVERTER FED THREE PHASE INDUCTION MOTOR FOR CMV ANALYSIS USING FILTER Akash A. Chandekar 1, R.K.Dhatrak 2 Dr.Z.J..Khan 3 M.Tech Student, Department of

More information

Electric Stresses on Surge Arrester Insulation under Standard and

Electric Stresses on Surge Arrester Insulation under Standard and Chapter 5 Electric Stresses on Surge Arrester Insulation under Standard and Non-standard Impulse Voltages 5.1 Introduction Metal oxide surge arresters are used to protect medium and high voltage systems

More information

The Principle V(SWR) The Result. Mirror, Mirror, Darkly, Darkly

The Principle V(SWR) The Result. Mirror, Mirror, Darkly, Darkly The Principle V(SWR) The Result Mirror, Mirror, Darkly, Darkly 1 Question time!! What do you think VSWR (SWR) mean to you? What does one mean by a transmission line? Coaxial line Waveguide Water pipe Tunnel

More information

Computation of Very Fast Transient Overvoltages in Transformer Windings

Computation of Very Fast Transient Overvoltages in Transformer Windings Computation of Very Fast Transient Overvoltages in Transformer Windings M. Popov, Senior Member, IEEE, L. van der Sluis, Senior Member, IEEE, G. C. Paap, Senior Member, IEEE, and H. de Herdt Abstract--

More information

Calculation of Transients at Different Distances in a Single Phase 220KV Gas insulated Substation

Calculation of Transients at Different Distances in a Single Phase 220KV Gas insulated Substation Calculation of Transients at Different Distances in a Single Phase 220KV Gas insulated Substation M. Kondalu1, Dr. P.S. Subramanyam2 Electrical & Electronics Engineering, JNT University. Hyderabad. 1 Kondalu_m@yahoo.com

More information

Generator Advanced Concepts

Generator Advanced Concepts Generator Advanced Concepts Common Topics, The Practical Side Machine Output Voltage Equation Pitch Harmonics Circulating Currents when Paralleling Reactances and Time Constants Three Generator Curves

More information

Experiment 2: Transients and Oscillations in RLC Circuits

Experiment 2: Transients and Oscillations in RLC Circuits Experiment 2: Transients and Oscillations in RLC Circuits Will Chemelewski Partner: Brian Enders TA: Nielsen See laboratory book #1 pages 5-7, data taken September 1, 2009 September 7, 2009 Abstract Transient

More information

Measurements for validation of high voltage underground cable modelling

Measurements for validation of high voltage underground cable modelling Measurements for validation of high voltage underground cable modelling Unnur Stella Gudmundsdottir, Claus Leth Bak, Wojciech T. Wiechowski, Kim Søgaard, Martin Randrup Knardrupgård Abstract-- This paper

More information

An Integrated Inverter Output Passive Sinewave Filter for Eliminating Both Common and Differential Mode PWM Motor Drive Problems

An Integrated Inverter Output Passive Sinewave Filter for Eliminating Both Common and Differential Mode PWM Motor Drive Problems An Integrated Inverter Output Passive Sinewave Filter for Eliminating Both Common and Differential Mode PWM Motor Drive Problems Todd Shudarek Director of Engineering MTE Corporation Menomonee Falls, WI

More information

Research Article A Simplified High Frequency Model of Interleaved Transformer Winding

Research Article A Simplified High Frequency Model of Interleaved Transformer Winding Research Journal of Applied Sciences, Engineering and Technology 10(10): 1102-1107, 2015 DOI: 10.19026/rjaset.10.1879 ISSN: 2040-7459; e-issn: 2040-7467 2015 Maxwell Scientific Publication Corp. Submitted:

More information

NOWADAYS, ac motor drives are widely used in electromechanical

NOWADAYS, ac motor drives are widely used in electromechanical 16 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 19, NO. 1, JANUARY 2004 Common- and Differential-Mode HF Current Components in AC Motors Supplied by Voltage Source Inverters Gabriele Grandi, Member, IEEE,

More information

Multi Layer Planar Concentrated Windings

Multi Layer Planar Concentrated Windings Multi Layer Planar Concentrated Windings T. Cox Force Engineering Ltd, Leicestershire, UK thomasdcox@ieee.org J. F. Eastham Department of Electronic & Electrical Engineering, The University of Bath, Bath,

More information

Exercise 1-2. Velocity of Propagation EXERCISE OBJECTIVE

Exercise 1-2. Velocity of Propagation EXERCISE OBJECTIVE Exercise 1-2 Velocity of Propagation EXERCISE OBJECTIVE Upon completion of this unit, you will know how to measure the velocity of propagation of a signal in a transmission line, using the step response

More information

PREDICTIVE CONTROL OF INDUCTION MOTOR DRIVE USING DSPACE

PREDICTIVE CONTROL OF INDUCTION MOTOR DRIVE USING DSPACE PREDICTIVE CONTROL OF INDUCTION MOTOR DRIVE USING DSPACE P. Karlovský, J. Lettl Department of electric drives and traction, Faculty of Electrical Engineering, Czech Technical University in Prague Abstract

More information

Improving Passive Filter Compensation Performance With Active Techniques

Improving Passive Filter Compensation Performance With Active Techniques IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 50, NO. 1, FEBRUARY 2003 161 Improving Passive Filter Compensation Performance With Active Techniques Darwin Rivas, Luis Morán, Senior Member, IEEE, Juan

More information

Assessment of Energy Efficient and Standard Induction Motor in MATLAB Environment

Assessment of Energy Efficient and Standard Induction Motor in MATLAB Environment Volume 4 Issue 4 December 2016 ISSN: 2320-9984 (Online) International Journal of Modern Engineering & Management Research Website: www.ijmemr.org Assessment of Energy Efficient and Standard Induction Motor

More information

CHAPTER 7 HARDWARE IMPLEMENTATION

CHAPTER 7 HARDWARE IMPLEMENTATION 168 CHAPTER 7 HARDWARE IMPLEMENTATION 7.1 OVERVIEW In the previous chapters discussed about the design and simulation of Discrete controller for ZVS Buck, Interleaved Boost, Buck-Boost, Double Frequency

More information

GIS Disconnector Switching Operation VFTO Study

GIS Disconnector Switching Operation VFTO Study GIS Disconnector Switching Operation VFTO Study Mariusz Stosur, Marcin Szewczyk, Wojciech Piasecki, Marek Florkowski, Marek Fulczyk ABB Corporate Research Center in Krakow Starowislna 13A, 31-038 Krakow,

More information

Application Note AN- 1094

Application Note AN- 1094 Application Note AN- 194 High Frequency Common Mode Analysis of Drive Systems with IRAMS Power Modules Cesare Bocchiola Table of Contents Page Section 1 : Introduction...2 Section 2 : The Conducted EMI

More information

HIGH VOLTAGE ENGINEERING(FEEE6402) LECTURER-24

HIGH VOLTAGE ENGINEERING(FEEE6402) LECTURER-24 LECTURER-24 GENERATION OF HIGH ALTERNATING VOLTAGES When test voltage requirements are less than about 300kV, a single transformer can be used for test purposes. The impedance of the transformer should

More information

CoolBLUE Inductive Absorbers NaLA Noise Line Absorbers

CoolBLUE Inductive Absorbers NaLA Noise Line Absorbers CoolBLUE Inductive Absorbers NaLA Noise Line Absorbers Motor Bearing Solution from MH&W International Corp. http://www.coolblue-mhw.com Variable Frequency Motor Drive Systems 1. What is the problem 2.

More information

Generation of Sub-nanosecond Pulses

Generation of Sub-nanosecond Pulses Chapter - 6 Generation of Sub-nanosecond Pulses 6.1 Introduction principle of peaking circuit In certain applications like high power microwaves (HPM), pulsed laser drivers, etc., very fast rise times

More information

EE 410/510: Electromechanical Systems Chapter 5

EE 410/510: Electromechanical Systems Chapter 5 EE 410/510: Electromechanical Systems Chapter 5 Chapter 5. Induction Machines Fundamental Analysis ayssand dcontrol o of Induction Motors Two phase induction motors Lagrange Eqns. (optional) Torque speed

More information

Technical White Paper

Technical White Paper Technical White Paper Increased Reports of Bearing Damage in AC Motors Operating from Modern PWM VFD's Repair shops and motor manufacturers are seeing an increased number of instances where bearings and

More information

Analysis of Propagation Paths of Partial Discharge Acoustic Emission Signals

Analysis of Propagation Paths of Partial Discharge Acoustic Emission Signals Analysis of Propagation Paths of Partial Discharge Acoustic Emission Signals Prathamesh Dhole, Tanmoy Sinha, Sumeet Nayak, Prasanta Kundu, N.K.Kishore Abstract Transformers are one of the most important

More information

Any wave shape can be reproduced by the sum of sine waves of the appropriate magnitude and frequency.

Any wave shape can be reproduced by the sum of sine waves of the appropriate magnitude and frequency. How do we use an oscilloscope? Measure signals with unknown wave shapes and frequency other than 60 Hz sine waves and dc. To get a picture of the waveform. Distortion? Phase duration? Magnitude Any wave

More information

Partial Discharge Inception and Propagation Characteristics of Magnet Wire for Inverter-fed Motor under Surge Voltage Application

Partial Discharge Inception and Propagation Characteristics of Magnet Wire for Inverter-fed Motor under Surge Voltage Application IEEE Transactions on Dielectrics and Electrical Insulation Vol. 14, No. 1; February 27 39 Partial Discharge Inception and Propagation Characteristics of Magnet Wire for Inverter-fed Motor under Surge Voltage

More information

Relay Protection of EHV Shunt Reactors Based on the Traveling Wave Principle

Relay Protection of EHV Shunt Reactors Based on the Traveling Wave Principle Relay Protection of EHV Shunt Reactors Based on the Traveling Wave Principle Jules Esztergalyos, Senior Member, IEEE Abstract--The measuring technique described in this paper is based on Electro Magnetic

More information

Design and Simulation of Passive Filter

Design and Simulation of Passive Filter Chapter 3 Design and Simulation of Passive Filter 3.1 Introduction Passive LC filters are conventionally used to suppress the harmonic distortion in power system. In general they consist of various shunt

More information

The Influence of a Cable on the Voltage Distribution in Transformer Windings G. Hoogendorp, M. Popov, L. van der Sluis

The Influence of a Cable on the Voltage Distribution in Transformer Windings G. Hoogendorp, M. Popov, L. van der Sluis The Influence of a Cable on the Voltage Distribution in Transformer Windings G. Hoogendorp, M. Popov, L. van der Sluis Abstract Voltage distribution in transformer windings is influenced by the presence

More information

Power Quality and Reliablity Centre

Power Quality and Reliablity Centre Technical Note No. 8 April 2005 Power Quality and Reliablity Centre TRANSIENT OVERVOLTAGES ON THE ELECTRICITY SUPPLY NETWORK CLASSIFICATION, CAUSES AND PROPAGATION This Technical Note presents an overview

More information

Single-turn and multi-turn coil domains in 3D COMSOL. All rights reserved.

Single-turn and multi-turn coil domains in 3D COMSOL. All rights reserved. Single-turn and multi-turn coil domains in 3D 2012 COMSOL. All rights reserved. Introduction This tutorial shows how to use the Single-Turn Coil Domain and Multi-Turn Coil Domain features in COMSOL s Magnetic

More information

Influence of Electrical Eigenfrequencies on Damped Voltage Resonance Based Sensorless Control of Switched Reluctance Drives

Influence of Electrical Eigenfrequencies on Damped Voltage Resonance Based Sensorless Control of Switched Reluctance Drives Influence of Electrical Eigenfrequencies on Damped Voltage Resonance ased Sensorless Control of Switched Reluctance Drives K.R. Geldhof, A. Van den ossche and J.A.A. Melkebeek Department of Electrical

More information

Impact of the Output Capacitor Selection on Switching DCDC Noise Performance

Impact of the Output Capacitor Selection on Switching DCDC Noise Performance Impact of the Output Capacitor Selection on Switching DCDC Noise Performance I. Introduction Most peripheries in portable electronics today tend to systematically employ high efficiency Switched Mode Power

More information

Automotive EMC. IEEE EMC Society Melbourne Chapter October 13, 2010 By Mark Steffka IEEE EMCS Distinguished Lecturer

Automotive EMC. IEEE EMC Society Melbourne Chapter October 13, 2010 By Mark Steffka IEEE EMCS Distinguished Lecturer Automotive EMC IEEE EMC Society Melbourne Chapter October 13, 2010 By Mark Steffka IEEE EMCS Distinguished Lecturer Email: msteffka@ieee.org IEEE 1 Automotive Systems Past and Present Today s vehicles

More information

A Reflectometer for Cable Fault Location with Multiple Pulse Reflection Method

A Reflectometer for Cable Fault Location with Multiple Pulse Reflection Method 2014 by IFSA Publishing, S. L. http://www.sensorsportal.com A Reflectometer for Cable Fault Location with Multiple Pulse Reflection Method Zheng Gongming Electronics & Information School, Yangtze University,

More information

ENERGY CABLE MODELING UNDER POWER ELECTRONIC CONVERTER CONSTRAINTS

ENERGY CABLE MODELING UNDER POWER ELECTRONIC CONVERTER CONSTRAINTS ENERGY CABLE MODELING UNDER POWER ELECTRONIC CONVERTER CONSTRAINTS Yannick WEENS, USTL - L2EP, (France), yannick.weens@ed-univ-lille1.fr Nadir IDIR, USTL - L2EP, (France), nadir.idir@univ-lille1.fr Jean

More information

Internal Model of X2Y Chip Technology

Internal Model of X2Y Chip Technology Internal Model of X2Y Chip Technology Summary At high frequencies, traditional discrete components are significantly limited in performance by their parasitics, which are inherent in the design. For example,

More information

Signal and Noise Measurement Techniques Using Magnetic Field Probes

Signal and Noise Measurement Techniques Using Magnetic Field Probes Signal and Noise Measurement Techniques Using Magnetic Field Probes Abstract: Magnetic loops have long been used by EMC personnel to sniff out sources of emissions in circuits and equipment. Additional

More information

Pulse Width Modulated Motor Drive Fault Detection Using Electrical Signature Analysis

Pulse Width Modulated Motor Drive Fault Detection Using Electrical Signature Analysis Pulse Width Modulated Motor Drive Fault Detection Using Electrical Signature Analysis By ALL-TEST Pro, LLC & EMA Inc. Industry s use of Motor Drives for AC motors continues to grow and the Pulse-Width

More information

THREE-PHASE voltage-source pulsewidth modulation

THREE-PHASE voltage-source pulsewidth modulation 1144 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 13, NO. 6, NOVEMBER 1998 A Novel Overmodulation Technique for Space-Vector PWM Inverters Dong-Choon Lee, Member, IEEE, and G-Myoung Lee Abstract In this

More information

Modeling of Conduction EMI Noise and Technology for Noise Reduction

Modeling of Conduction EMI Noise and Technology for Noise Reduction Modeling of Conduction EMI Noise and Technology for Noise Reduction Shuangching Chen Taku Takaku Seiki Igarashi 1. Introduction With the recent advances in high-speed power se miconductor devices, the

More information

ESO 210 Introduction to Electrical Engineering

ESO 210 Introduction to Electrical Engineering ESO 210 Introduction to Electrical Engineering Lecture-12 Three Phase AC Circuits Three Phase AC Supply 2 3 In general, three-phase systems are preferred over single-phase systems for the transmission

More information

Influence Of Lightning Strike Location On The Induced Voltage On a Nearby Overhead Line

Influence Of Lightning Strike Location On The Induced Voltage On a Nearby Overhead Line NATIONAL POWER SYSTEMS CONFERENCE NPSC22 563 Influence Of Lightning Strike Location On The Induced Voltage On a Nearby Overhead Line P. Durai Kannu and M. Joy Thomas Abstract This paper analyses the voltages

More information

Motor-CAD Brushless PM motor Combined electromagnetic and thermal model (February 2015)

Motor-CAD Brushless PM motor Combined electromagnetic and thermal model (February 2015) Motor-CAD Brushless PM motor Combined electromagnetic and thermal model (February 2015) Description The Motor-CAD allows the machine performance, losses and temperatures to be calculated for a BPM machine.

More information

A NEW DESIGN METHOD OF OUTPUT FILTER FOR SPACE VECTOR PWM FED INDUCTION MOTOR

A NEW DESIGN METHOD OF OUTPUT FILTER FOR SPACE VECTOR PWM FED INDUCTION MOTOR A NEW DESIGN METHOD OF OUTPUT FILTER FOR SPACE VECTOR PWM FED INDUCTION MOTOR Dr. Majid K. Al-Khatat *, Ola Hussian, Fadhil A. Hassan Electrical and Electronic Engineering Department, University of Technology

More information

Bucking Coils produce Energy Gain Cyril Smith, 2015

Bucking Coils produce Energy Gain Cyril Smith, 2015 Bucking Coils produce Energy Gain Cyril Smith, 015 1. Introduction There are many claims of overunity for systems that employ bucking coils. These are coils mounted on a common core and connected in series

More information

Experiment No. 6 Pre-Lab Transmission Lines and Time Domain Reflectometry

Experiment No. 6 Pre-Lab Transmission Lines and Time Domain Reflectometry Experiment No. 6 Pre-Lab Transmission Lines and Time Domain Reflectometry The Pre-Labs are informational and although they follow the procedures in the experiment, they are to be completed outside of the

More information

Design and Performance of a Selectable-Rate Streak-Camera Deflection Ramp Generator

Design and Performance of a Selectable-Rate Streak-Camera Deflection Ramp Generator Design and Performance of a Selectable-Rate Streak-Camera Deflection Ramp Generator Introduction Electro-optic streak cameras have been used at LLE for many years to resolve high-bandwidth, low-repetition-rate,

More information

Time Domain Reflectometry (TDR) and Time Domain Transmission (TDT) Measurement Fundamentals

Time Domain Reflectometry (TDR) and Time Domain Transmission (TDT) Measurement Fundamentals Time Domain Reflectometry (TDR) and Time Domain Transmission (TDT) Measurement Fundamentals James R. Andrews, Ph.D., IEEE Fellow PSPL Founder & former President (retired) INTRODUCTION Many different kinds

More information

MEASUREMENT OF SURFACE DISPLACEMENT EXCITED BY EMAT TRANSDUCER

MEASUREMENT OF SURFACE DISPLACEMENT EXCITED BY EMAT TRANSDUCER XIX IMEKO World Congress Fundamental and Applied Metrology September 6 11, 29, Lisbon, Portugal MEASUREMENT OF SURFACE DISPLACEMENT EXCITED BY EMAT TRANSDUCER Petr Fidler 1, Petr Beneš 2 1 Brno University

More information

VIDYARTHIPLUS - ANNA UNIVERSITY ONLINE STUDENTS COMMUNITY UNIT 1 DC MACHINES PART A 1. State Faraday s law of Electro magnetic induction and Lenz law. 2. Mention the following functions in DC Machine (i)

More information

Filters And Waveform Shaping

Filters And Waveform Shaping Physics 3330 Experiment #3 Fall 2001 Purpose Filters And Waveform Shaping The aim of this experiment is to study the frequency filtering properties of passive (R, C, and L) circuits for sine waves, and

More information

Analysis of Indirect Temperature-Rise Tests of Induction Machines Using Time Stepping Finite Element Method

Analysis of Indirect Temperature-Rise Tests of Induction Machines Using Time Stepping Finite Element Method IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 16, NO. 1, MARCH 2001 55 Analysis of Indirect Temperature-Rise Tests of Induction Machines Using Time Stepping Finite Element Method S. L. Ho and W. N. Fu Abstract

More information

Effect of Shielded Distribution Cables on Lightning-Induced Overvoltages in a Distribution System

Effect of Shielded Distribution Cables on Lightning-Induced Overvoltages in a Distribution System IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 17, NO. 2, APRIL 2002 569 Effect of Shielded Distribution Cables on Lightning-Induced Overvoltages in a Distribution System Li-Ming Zhou, Senior Member, IEEE,

More information

Determination of EMI of PWM fed Three Phase Induction Motor. Ankur Srivastava

Determination of EMI of PWM fed Three Phase Induction Motor. Ankur Srivastava Abstract International Journal of Technical Innovation in Modern Engineering & Science (IJTIMES) Impact Factor: 3.45 (SJIF-2015), e-issn: 2455-2584 Volume 3, Issue 05, May-2017 Determination of EMI of

More information

Hideo Okawara s Mixed Signal Lecture Series. DSP-Based Testing Fundamentals 37 F-matrix Simulation TDR

Hideo Okawara s Mixed Signal Lecture Series. DSP-Based Testing Fundamentals 37 F-matrix Simulation TDR Hideo Okawara s Mixed Signal Lecture Series DSP-Based Testing Fundamentals 37 F-matrix Simulation TDR Verigy Japan June 2011 Preface to the Series ADC and DAC are the most typical mixed signal devices.

More information

Electronic Package Failure Analysis Using TDR

Electronic Package Failure Analysis Using TDR Application Note Electronic Package Failure Analysis Using TDR Introduction Time Domain Reflectometry (TDR) measurement methodology is increasing in importance as a nondestructive method for fault location

More information

Ferroresonance Experience in UK: Simulations and Measurements

Ferroresonance Experience in UK: Simulations and Measurements Ferroresonance Experience in UK: Simulations and Measurements Zia Emin BSc MSc PhD AMIEE zia.emin@uk.ngrid.com Yu Kwong Tong PhD CEng MIEE kwong.tong@uk.ngrid.com National Grid Company Kelvin Avenue, Surrey

More information

ISSN: [Kumaravat * et al., 7(1): January, 2018] Impact Factor: 5.164

ISSN: [Kumaravat * et al., 7(1): January, 2018] Impact Factor: 5.164 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY A REVIEW ARTICLE OF MULTILEVEL INVERTER CONFRIGURATION 4 POLE INDUCTION MOTOR WITH SINGLE DC LINK Piyush Kumaravat *1 & Anil Kumar

More information

A Switched Boost Inverter Fed Three Phase Induction Motor Drive

A Switched Boost Inverter Fed Three Phase Induction Motor Drive A Switched Boost Inverter Fed Three Phase Induction Motor Drive 1 Riya Elizabeth Jose, 2 Maheswaran K. 1 P.G. student, 2 Assistant Professor 1 Department of Electrical and Electronics engineering, 1 Nehru

More information