Course Specifications

Size: px
Start display at page:

Download "Course Specifications"

Transcription

1 Development Cluster Computer and Networking Engineering (CNE) Cluster Lead Developer Amir Asif Module Names Module 1: Baseband and Bandpass Communications (40 characters or less Module 2: Channel Coding per module) Module 3: Synchronization and Spread-spectrum. Course Description (40 words or less) The course develops a mathematical and physical understanding of digital communication systems from the information source through the transmitter, channel, receiver, and the information sink. Course topics include: formatting and baseband transmission; modulation; channel coding; synchronization; and spread spectrum techniques. Module Description Module 1 discuses the overall digital communication systems and the tools used in analyzing such systems. Learners are introduced to transmit formatting, bandpass modulation and demodulation with an emphasis on the detection of the signal in the presence of noise. 1. Design PCM and other baseband modulation techniques for transmission of baseband signals. 2. Develop a matched filter for detection of binary signals. 3. Catalogue basic bandpass digital modulation techniques. Module 2: deals with link analysis that is commonly used to provide insight into the overall communication system. Channel coding is discussed in depth with an emphasis on linear block coding and convolutional coding. 1. Develop and analyze a link budget plan in search of optimum system performance. 2. Differentiate channel codes in two broad classes: waveform codes and structured sequences. 3. Implement and compare different channel coding schemes including block and convolutional codes Module 3: introduces synchronization of digital systems in particular the phase-locked-loop implementation for achieving carrier-synchronization; bit-synchronization; frame-synchronization; and network-synchronization along with an analysis of spread spectrum techniques and their application in such areas as multiple access, ranging, and interference rejection. 1. Compare various channel codes using performance analysis. 2. Remedify the fundamental problems and issues associated with synchronization in digital communications. 3. Implement and compare the major spread spectrum techniques including direct sequence and frequency hopping. Unit 1.1 Name: Review of Probability and Stochastic Processes 1. Review parameterization of deterministic signals. 2. Form efficient descriptions of stochastic signals including AWGN. 3. Analyze transmission of stochastic signals LTI systems. 4. Study different definitions of bandwidth. 1. Deterministic Signals 2. Stochastic Signals 3. Linear Systems 4. Bandwidth Materials/Text: Sklar text, Chapter 1 Proakis, Chapters 1 & 2. csd.doc File: C:\Download from U\asif\private\Courses\Level 3 Courses\DCS\csd.doc Page 1 of8 08/20/02

2 Unit 1.2 Name: Baseband Transmission 1. Learn transmit-formatting used to transform source information to digital symbols. 2. Analyze quantization. 3. Use PCM and DPCM for transmission of baseband signals. 1. Character Formatting 2. PCM and DPCM 3. Quantization 4. Baseband Transmission Unit 1.3 Materials/Text: Sklar text, Chapter 2, sections Name: Binary and Partial Response Signaling 4. Detect binary signals in the presence of AWGN. 5. Design matched filter for detection of binary signals. 6. Establish a lower bound on the channel bandwidth for symbol detection without ISI. 7. Learn the duobinary concept of adding controlled ISI to achieve bandwidth efficiency. Unit Binary Signal Detection 2. Matched Filter 3. Intersymbol Interference 4. Partial Response Signaling Materials/Text: Sklar text, Chapter 2, sections Van Trees, section 2.2; Proakis, chapter 5. Name: Bandpass Modulation and Demodulation 1. Catalogue basic bandpass digital modulation techniques. 2. Learn a geometric representation of signal and noise vectors. 3. Analyze and design coherent and noncoherent detection schemes. csd.doc File: C:\Download from U\asif\private\Courses\Level 3 Courses\DCS\csd.doc Page 2 of8 08/20/02

3 1. Bandpass Modulation techniques I 2. Bandpass Modulation techniques II 3. Coherent Detection 4. Noncoherent Detection Materials/Text: Sklar text, Chapter 2, sections Unit 2.1 Name: M-ary Signaling and Error Performance Analysis 1. Analyze M-ary signalling as possible extension of binary signalling. 2. Perform error performance analysis on both binary and M-ary detection systems. 1. Binary error performance analysis I 2. Binary error performance analysis II. 3. M-ary signalling. 4. M-ary error performance analysis. Materials/Text: Sklar text, Chapter 2, sections Unit 2.2 Name: Communication Link Analysis 4. Develop a link budget to provide overall system design 5. Analyze a link budget plan in search of optimum system performance. 1. Channel 2. Analysis of Link Budget 3. Measures for Noise 4. Example Materials/Text: Sklar text, Chapter 4 csd.doc File: C:\Download from U\asif\private\Courses\Level 3 Courses\DCS\csd.doc Page 3 of8 08/20/02

4 Unit 2.3 Name: Waveform and Linear Coding 1. Understand the general goals of channel coding. 2. Differentiate channel codes in two broad classes: waveform codes and structured sequences 3. Design and analyze linear block codes for an information sequence. 1. Waveform Coding 2. Structured Sequences 3. Linear Block Codes 4. Coding Strength Web Presentations: Online Conferencing: Face-to-Face Activities: Assessments: Other: Materials/Text: Sklar text, sections Unit 2.4 Name: Cyclic and Convolutional Coding 1. Implement cyclic codes, an easy implementation of block codes. 2. Encode an information sequence using convolutional codes. 3. Outline differences between block and convolutional codes. 1. Cyclic Codes 2. Other Block Codes 3. Convolutional Coding 4. Convolutional Decoding Unit 3.1 Materials/Text: Sklar text, sections , Name: Interleaving and Concatenated Codes 4. Decode information from a convolutional encoded sequence. 5. Use interleaving to eliminate the effect of bursty noise or periodic fading on block and convolutional codes. 6. Understand how an audio signal is saved on a CD. 7. Compare various channel codes using performance analysis. 1. Properties of Convolutional Codes csd.doc File: C:\Download from U\asif\private\Courses\Level 3 Courses\DCS\csd.doc Page 4 of8 08/20/02

5 2. Convolutional Decoding Algorithms 3. Concatenated Codes 4. Audio on Compact Discs Materials/Text: Sklar text, sections Unit 3.2 Name: Synchronization 1. Outline the fundamental problems and issues associated with synchronization in digital communications. 2. Understand receiver synchronization in particular the phase locked loops (PLL) and suppressed carrier loops. 3. Analyze symbol synchronization using open-loop and closed-loop synchronizers. 4. Accomplish frame synchronization. 1. Digital Communications 2. Receiver Synchronization 3. Network Synchronization Materials/Text: Sklar text, chapter 8 Unit 3.3 Name: Spread-Spectrum I 1. Understand the history of spread spectrum techniques. 2. Enumerate the benefits and types of spread spectrum techniques. 3. Generate different pseudorandom sequences. 4. Analyze the tow major spread spectrum techniques: direct sequence and frequency hopping. 1. Overview 2. Pseudorandom sequences 3. Direct Sequence Systems 4. Frequency Hopping Systems csd.doc File: C:\Download from U\asif\private\Courses\Level 3 Courses\DCS\csd.doc Page 5 of8 08/20/02

6 Materials/Text: Sklar text, sections Unit 3.4 Name: Spread-Spectrum II 1. Analyze effects of losing synchronization. 2. Exemplify spread-spectrum techniques through practical examples such as code-division multiple access. 3. Understand the subject of jamming and jam-resistant systems. 1. Synchronization 2. Applications 3. Jamming Materials/Text: Sklar text, sections TechWeek Activities TechWeek 1: Face-to-Face: Exam Take-Home Projects: N/A TechWeek 2: Face-to-Face: Exam Take-Home Projects: N/A TechWeek 3: Face-to-Face: Exam or possible review of a digital communications journal paper. Description of Learning Objects Time Structure/Learner Workload Delivery Model Lab Resources Learner Resources Take-Home Projects: N/A Modules 1, 2, and 3: PDF files, URLs, and possible animations. PDF files will be used to review and tabulate basic concepts in probability, random variables, and signal processing. URLs will Module 1, 2, and 3: Online Presentation: 1 hours / week Online Conferencing: None Offline Reading: 1.5 hours / week Face-to-Face: Req d Class 1.5 hours / week Req d Lab None Open Lab: 1.5 hours / week Assignments: hours / week Projects: 2 hour / week (includes 1.5 hours / week of open lab time) Other: Total Learner Hours: hours / week Presentational Cooperative (PC) Hardware: Standard PC (need 1 computer per 2 learners). Software: Matlab with the Communications toolbox. Lab requirements are the same for the three modules. The IT Lab already have access to Matlab. Communications toolbox would cost another dollars. Required Textbook: 1. Bernard Sklar, Digital Communications: Fundamentals and Applications, Prentice Hall, ISBN # (CA$ 84 from amazon.ca) csd.doc File: C:\Download from U\asif\private\Courses\Level 3 Courses\DCS\csd.doc Page 6 of8 08/20/02

7 Recommend book(s): 1. John G. Proakis, Digital Communications, Third Edition, McGraw Hill, ISBN # Simon Hakin, Digital Communications, John Wiley & Sons. Software: Matlab with the Communications toolbox (recommended). Other: None Teaching Resources Faculty time allocation: 16 hours / week for delivery for one section Preparation: 4 hours, Q&A Board, Feedback: 2 hours, Assessment: 6 hours, F2F session: 1.5 hours, Open Lab: 1.5 hours, Office hours: 1 hour. LSA time allocation: None for the first batch during course delivery. Space: Room with computers and enough space to move around. Both F2F session and open lab be arranged in a lab where computers are accessible. Equipment: Standard PC or a laptop be arranged for presentations in the F2F and open lab sessions. Assessment & Assignment Parameters Level of Content Level Tools Skills Vocab Background How does course build upon previous study? Module Specific Prerequisites, if any Integration within Program Area Integration Across Program Areas Pedagogical Innovation Links to other Courses Is course suitable as an elective? Development Schedule Other: None Module 1, 2, and 3: Quiz based on assignments (4): 1 per week, 7.5% each (Individual) Projects (4): 1 per week, 7.5% each (Team) TechWeek Exam (1), 40% (Individual) Module 1, 2, and 3: Level of the course: A sophomore / senior (3 rd / 4 th ) level course in Digital Communications. Tools & Skill acquired in the course: At successful completion of the course, the learners will have the interest and skills needed to participate in the exciting growth industry of Telecommunications, and the motivation to study advanced topics in communication systems design. Mathematical tools used for analyzing communication systems will be developed in the context of the course. Vocabulary: The learners will develop sufficient vocabulary and mathematical skills to understand the challenges faced in the design and analysis of a digital communication system and pursue advanced research in this evolving area. Background: Learners should have a basic understanding of signal processing and random variables before taking this course. The course builds on Data Processing and Communications, and Signal Processing and Communications. It applies signal-processing techniques to design digital communication systems. It also provides conceptual knowledge behind data networks. Module 1: Signal Processing & Communications (ITEC 233) or equivalent and basic Probability & Random Variables, Module 2: Successful completion of module 1. Module 3: Successful completion of module 2. The course provides an introduction to the theory of modern digital communication systems. It is a core course for the Computer and Communications Engineering concentration and an excellent applied course for the learners in Software Systems stream who desire to pursue a career in network design and software development. This is a core CCE course. Learners from Software Engineering cluster interested in computer networks will find the course useful in developing conceptual knowledge related to data networks. 1. This course deals exclusively with digital communication techniques and applications that is the heart of the information technology industry. The course will endeavour to provide both theoretical concepts of digital communications and augment the concepts with practical projects. 2. Some pedagogical innovation is being sought in delivery. For example in assessment, learners will be made responsible for the performance of other members of their team by awarding bonus points if individual members in the group perform above a certain threshold. 3. Office hours may be held using synchronous web-conferencing. There is a strong possibility of developing joint projects with the Computer Networks course. In principal yes. Learners from other program areas who are interested in taking this course should have a background in Mathematics and Signal Processing. This course may be too mathematical and conceptual for non-it learners who are advised to take a more applied communications course like Computer Networks. Module 1: Unit 1 Unit 2 Unit 3 Unit 4 TechWeek Activity Other csd.doc File: C:\Download from U\asif\private\Courses\Level 3 Courses\DCS\csd.doc Page 7 of8 08/20/02

8 Module 2: Unit 1 Unit 2 Unit 3 Unit 4 TechWeek Activity Other Module 3: Unit 1 Unit 2 Unit 3 Unit 4 TechWeek Activity Other csd.doc File: C:\Download from U\asif\private\Courses\Level 3 Courses\DCS\csd.doc Page 8 of8 08/20/02

Detection and Estimation of Signals in Noise. Dr. Robert Schober Department of Electrical and Computer Engineering University of British Columbia

Detection and Estimation of Signals in Noise. Dr. Robert Schober Department of Electrical and Computer Engineering University of British Columbia Detection and Estimation of Signals in Noise Dr. Robert Schober Department of Electrical and Computer Engineering University of British Columbia Vancouver, August 24, 2010 2 Contents 1 Basic Elements

More information

Principles of Communication Systems

Principles of Communication Systems Principles of Communication Systems Course code: EEE351 (3+1) Prerequisites: EEE223 - Signal and Systems Co requisites: - Course Catalog Description: Introduction to communication systems: Fundamental

More information

ECE 4600 Communication Systems

ECE 4600 Communication Systems ECE 4600 Communication Systems Dr. Bradley J. Bazuin Associate Professor Department of Electrical and Computer Engineering College of Engineering and Applied Sciences Course Topics Course Introduction

More information

COMMUNICATION SYSTEMS

COMMUNICATION SYSTEMS COMMUNICATION SYSTEMS 4TH EDITION Simon Hayhin McMaster University JOHN WILEY & SONS, INC. Ш.! [ BACKGROUND AND PREVIEW 1. The Communication Process 1 2. Primary Communication Resources 3 3. Sources of

More information

Table of Contents. Acknowledgments... XVII Prologue... 1

Table of Contents. Acknowledgments... XVII Prologue... 1 Introduction to Spread-Spectrum Communications By Roger L. Peterson (Motorola), Rodger E. Ziemer (University of Co. at Colorado Springs), and David E. Borth (Motorola) Prentice Hall, 1995 (Navtech order

More information

ITT Technical Institute. ET3330 Telecommunications Systems and Technology Onsite Course SYLLABUS

ITT Technical Institute. ET3330 Telecommunications Systems and Technology Onsite Course SYLLABUS ITT Technical Institute ET3330 Telecommunications Systems and Technology Onsite Course SYLLABUS Credit hours: 4.5 Contact/Instructional hours: 56 (34 Theory Hours, 22 Lab Hours) Prerequisite(s) and/or

More information

QUESTION BANK SUBJECT: DIGITAL COMMUNICATION (15EC61)

QUESTION BANK SUBJECT: DIGITAL COMMUNICATION (15EC61) QUESTION BANK SUBJECT: DIGITAL COMMUNICATION (15EC61) Module 1 1. Explain Digital communication system with a neat block diagram. 2. What are the differences between digital and analog communication systems?

More information

Principles of Communications

Principles of Communications 1 Principles of Communications Lin DAI 2 Lecture 1. Overview of Communication Systems Block Diagram of Communication Systems Noise and Distortion 3 SOURCE Source Info. Transmitter Transmitted signal Received

More information

: DIGITAL COMMUNICATION

: DIGITAL COMMUNICATION SRM UNIVERSITY FACULTY OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ECE COURSE PLAN Course Code : EC0307 Course Title : DIGITAL COMMUNICATION Semester : V Course Time : JULY NOVEMBER 2012 Location : S.R.M.TECH

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK. Subject Name: Digital Communication Techniques

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK. Subject Name: Digital Communication Techniques KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK Subject Code: EC1351 Year/Sem: III/IV Subject Name: Digital Communication Techniques UNIT I PULSE MODULATION

More information

KINGS DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING DIGITAL COMMUNICATION TECHNIQUES YEAR/SEM: III / VI BRANCH : ECE PULSE MODULATION

KINGS DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING DIGITAL COMMUNICATION TECHNIQUES YEAR/SEM: III / VI BRANCH : ECE PULSE MODULATION KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING SUB.NAME : EC1351 DIGITAL COMMUNICATION TECHNIQUES BRANCH : ECE YEAR/SEM: III / VI UNIT I PULSE MODULATION PART A (2

More information

GOPALAN COLLEGE OF ENGINEERING AND MANAGEMENT Electronics and communication Department

GOPALAN COLLEGE OF ENGINEERING AND MANAGEMENT Electronics and communication Department Appendix - F GOPALAN COLLEGE OF ENGINEERING AND MANAGEMENT Electronics and Department Academic Year: 2016-17 Semester: EVEN 6. COURSE PLAN Semester: VI Subject Code: 10EC61 Name of Subject: Digital Communication

More information

PROJECT 5: DESIGNING A VOICE MODEM. Instructor: Amir Asif

PROJECT 5: DESIGNING A VOICE MODEM. Instructor: Amir Asif PROJECT 5: DESIGNING A VOICE MODEM Instructor: Amir Asif CSE4214: Digital Communications (Fall 2012) Computer Science and Engineering, York University 1. PURPOSE In this laboratory project, you will design

More information

Syllabus. osmania university UNIT - I UNIT - II UNIT - III CHAPTER - 1 : INTRODUCTION TO DIGITAL COMMUNICATION CHAPTER - 3 : INFORMATION THEORY

Syllabus. osmania university UNIT - I UNIT - II UNIT - III CHAPTER - 1 : INTRODUCTION TO DIGITAL COMMUNICATION CHAPTER - 3 : INFORMATION THEORY i Syllabus osmania university UNIT - I CHAPTER - 1 : INTRODUCTION TO Elements of Digital Communication System, Comparison of Digital and Analog Communication Systems. CHAPTER - 2 : DIGITAL TRANSMISSION

More information

TCET3202 Analog and digital Communications II

TCET3202 Analog and digital Communications II NEW YORK CITY COLLEGE OF TECHNOLOGY The City University of New York DEPARTMENT: SUBJECT CODE AND TITLE: COURSE DESCRIPTION: REQUIRED COURSE Electrical and Telecommunications Engineering Technology TCET3202

More information

Language of Instruction Course Level Short Cycle ( ) First Cycle (x) Second Cycle ( ) Third Cycle ( ) Term Local Credit ECTS Credit Fall 3 5

Language of Instruction Course Level Short Cycle ( ) First Cycle (x) Second Cycle ( ) Third Cycle ( ) Term Local Credit ECTS Credit Fall 3 5 Course Details Course Name Telecommunications II Language of Instruction English Course Level Short Cycle ( ) First Cycle (x) Second Cycle ( ) Third Cycle ( ) Course Type Course Code Compulsory (x) Elective

More information

ELECTRONICS AND COMMUNICATION ENGINEERING

ELECTRONICS AND COMMUNICATION ENGINEERING INSTIT INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad -500 043 ELECTRONICS AND COMMUNICATION ENGINEERING COURSE DESCRIPTOR Course Title Course Code Programme DIGITAL COMMUNICATIONS

More information

Convolutional Coding Using Booth Algorithm For Application in Wireless Communication

Convolutional Coding Using Booth Algorithm For Application in Wireless Communication Available online at www.interscience.in Convolutional Coding Using Booth Algorithm For Application in Wireless Communication Sishir Kalita, Parismita Gogoi & Kandarpa Kumar Sarma Department of Electronics

More information

PRINCIPLES OF COMMUNICATIONS

PRINCIPLES OF COMMUNICATIONS PRINCIPLES OF COMMUNICATIONS Systems, Modulation, and Noise SIXTH EDITION INTERNATIONAL STUDENT VERSION RODGER E. ZIEMER University of Colorado at Colorado Springs WILLIAM H. TRANTER Virginia Polytechnic

More information

Advanced Digital Communication

Advanced Digital Communication Advanced Digital Communication Manjunatha. P manjup.jnnce@gmail.com Professor Dept. of ECE J.N.N. College of Engineering, Shimoga March 14, 2013 ADC Syllabus SEMSTER - II ADVANCED DIGITAL COMMUNICATIONS

More information

Performance Analysis of DSSS and FHSS Techniques over AWGN Channel

Performance Analysis of DSSS and FHSS Techniques over AWGN Channel Performance Analysis of DSSS and FHSS Techniques over AWGN Channel M. Katta Swamy, M.Deepthi, V.Mounika, R.N.Saranya Vignana Bharathi Institute of Technology, Hyderabad, and Andhra Pradesh, India. Corresponding

More information

Department of Electronics and Communication Engineering 1

Department of Electronics and Communication Engineering 1 UNIT I SAMPLING AND QUANTIZATION Pulse Modulation 1. Explain in detail the generation of PWM and PPM signals (16) (M/J 2011) 2. Explain in detail the concept of PWM and PAM (16) (N/D 2012) 3. What is the

More information

Integration of System Design and Standard Development in Digital Communication Education

Integration of System Design and Standard Development in Digital Communication Education Session F Integration of System Design and Standard Development in Digital Communication Education Xiaohua(Edward) Li State University of New York at Binghamton Abstract An innovative way is presented

More information

ECE 6640 Digital Communications

ECE 6640 Digital Communications ECE 6640 Digital Communications Dr. Bradley J. Bazuin Assistant Professor Department of Electrical and Computer Engineering College of Engineering and Applied Sciences Chapter 8 8. Channel Coding: Part

More information

UNIT I Source Coding Systems

UNIT I Source Coding Systems SIDDHARTH GROUP OF INSTITUTIONS: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code: DC (16EC421) Year & Sem: III-B. Tech & II-Sem Course & Branch: B. Tech

More information

Academic Course Description. CO2110 OFDM/OFDMA COMMUNICATIONS Third Semester, (Odd semester)

Academic Course Description. CO2110 OFDM/OFDMA COMMUNICATIONS Third Semester, (Odd semester) Academic Course Description SRM University Faculty of Engineering and Technology Department of Electronics and Communication Engineering CO2110 OFDM/OFDMA COMMUNICATIONS Third Semester, 2014-15 (Odd semester)

More information

Teaching Digital Communications in a Wireless World: Who Needs Equations?

Teaching Digital Communications in a Wireless World: Who Needs Equations? Teaching Digital Communications in a Wireless World: Who Needs Equations? Dennis Silage Electrical and Computer Engineering Temple University Abstract Digital communication is traditionally taught by examining

More information

San José State University Department of Electrical Engineering EE 161, Digital Communication Systems, Spring 2018

San José State University Department of Electrical Engineering EE 161, Digital Communication Systems, Spring 2018 San José State University Department of Electrical Engineering EE 161, Digital Communication Systems, Spring 2018 Instructor: Robert Morelos-Zaragoza Office Location: ENGR 373 Telephone: (408) 924-3879

More information

MATLAB^/Simulink for Digital Communication

MATLAB^/Simulink for Digital Communication /n- i-.1 MATLAB^/Simulink for Digital Communication Won Y. Yang, Yong S. Cho, Won G. Jeon, Jeong W. Lee, Jong H. Paik Jae K. Kim, Mi-Hyun Lee, Kyu I. Lee, Kyung W. Park, Kyung S. Woo V Table of j Contents

More information

Comparative Analysis of the BER Performance of WCDMA Using Different Spreading Code Generator

Comparative Analysis of the BER Performance of WCDMA Using Different Spreading Code Generator Science Journal of Circuits, Systems and Signal Processing 2016; 5(2): 19-23 http://www.sciencepublishinggroup.com/j/cssp doi: 10.11648/j.cssp.20160502.12 ISSN: 2326-9065 (Print); ISSN: 2326-9073 (Online)

More information

Communication Systems

Communication Systems Electrical Engineering Communication Systems Comprehensive Theory with Solved Examples and Practice Questions Publications Publications MADE EASY Publications Corporate Office: 44-A/4, Kalu Sarai (Near

More information

ICOM - Introduction to Communications

ICOM - Introduction to Communications Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2018 230 - ETSETB - Barcelona School of Telecommunications Engineering 739 - TSC - Department of Signal Theory and Communications

More information

Downloaded from 1

Downloaded from  1 VII SEMESTER FINAL EXAMINATION-2004 Attempt ALL questions. Q. [1] How does Digital communication System differ from Analog systems? Draw functional block diagram of DCS and explain the significance of

More information

THE STUDY OF BIT ERROR RATE EVOLUTION IN A MOBILE COMMUNICATIONS SYSTEM USING DS CDMA TECHNOLOGY

THE STUDY OF BIT ERROR RATE EVOLUTION IN A MOBILE COMMUNICATIONS SYSTEM USING DS CDMA TECHNOLOGY Journal of Engineering Studies and Research Volume 18 (2012) No. 2 110 THE STUDY OF BIT ERROR RATE EVOLUTION IN A MOBILE COMMUNICATIONS SYSTEM USING DS CDMA TECHNOLOGY POPA ION * Technical University "Gheorghe

More information

Communication Systems

Communication Systems Electronics Engineering Communication Systems Comprehensive Theory with Solved Examples and Practice Questions Publications Publications MADE EASY Publications Corporate Office: 44-A/4, Kalu Sarai (Near

More information

UNDERSTANDING LTE WITH MATLAB

UNDERSTANDING LTE WITH MATLAB UNDERSTANDING LTE WITH MATLAB FROM MATHEMATICAL MODELING TO SIMULATION AND PROTOTYPING Dr Houman Zarrinkoub MathWorks, Massachusetts, USA WILEY Contents Preface List of Abbreviations 1 Introduction 1.1

More information

Implementation of Different Interleaving Techniques for Performance Evaluation of CDMA System

Implementation of Different Interleaving Techniques for Performance Evaluation of CDMA System Implementation of Different Interleaving Techniques for Performance Evaluation of CDMA System Anshu Aggarwal 1 and Vikas Mittal 2 1 Anshu Aggarwal is student of M.Tech. in the Department of Electronics

More information

PRINCIPLES OF SPREAD-SPECTRUM COMMUNICATION SYSTEMS

PRINCIPLES OF SPREAD-SPECTRUM COMMUNICATION SYSTEMS PRINCIPLES OF SPREAD-SPECTRUM COMMUNICATION SYSTEMS PRINCIPLES OF SPREAD-SPECTRUM COMMUNICATION SYSTEMS By DON TORRIERI Springer ebook ISBN: 0-387-22783-0 Print ISBN: 0-387-22782-2 2005 Springer Science

More information

Msc Engineering Physics (6th academic year) Royal Institute of Technology, Stockholm August December 2003

Msc Engineering Physics (6th academic year) Royal Institute of Technology, Stockholm August December 2003 Msc Engineering Physics (6th academic year) Royal Institute of Technology, Stockholm August 2002 - December 2003 1 2E1511 - Radio Communication (6 ECTS) The course provides basic knowledge about models

More information

ECE 6640 Digital Communications

ECE 6640 Digital Communications ECE 6640 Digital Communications Dr. Bradley J. Bazuin Assistant Professor Department of Electrical and Computer Engineering College of Engineering and Applied Sciences Chapter 8 8. Channel Coding: Part

More information

B SCITEQ. Transceiver and System Design for Digital Communications. Scott R. Bullock, P.E. Third Edition. SciTech Publishing, Inc.

B SCITEQ. Transceiver and System Design for Digital Communications. Scott R. Bullock, P.E. Third Edition. SciTech Publishing, Inc. Transceiver and System Design for Digital Communications Scott R. Bullock, P.E. Third Edition B SCITEQ PUBLISHtN^INC. SciTech Publishing, Inc. Raleigh, NC Contents Preface xvii About the Author xxiii Transceiver

More information

Experiment 3. Direct Sequence Spread Spectrum. Prelab

Experiment 3. Direct Sequence Spread Spectrum. Prelab Experiment 3 Direct Sequence Spread Spectrum Prelab Introduction One of the important stages in most communication systems is multiplexing of the transmitted information. Multiplexing is necessary since

More information

Year : TYEJ Sub: Digital Communication (17535) Assignment No. 1. Introduction of Digital Communication. Question Exam Marks

Year : TYEJ Sub: Digital Communication (17535) Assignment No. 1. Introduction of Digital Communication. Question Exam Marks Assignment 1 Introduction of Digital Communication Sr. Question Exam Marks 1 Draw the block diagram of the basic digital communication system. State the function of each block in detail. W 2015 6 2 State

More information

Overview of Digital Mobile Communications

Overview of Digital Mobile Communications Overview of Digital Mobile Communications Dong In Kim (dikim@ece.skku.ac.kr) Wireless Communications Lab 1 Outline Digital Communications Multiple Access Techniques Power Control for CDMA IMT-2000 System

More information

Signal Processing Techniques for Software Radio

Signal Processing Techniques for Software Radio Signal Processing Techniques for Software Radio Behrouz Farhang-Boroujeny Department of Electrical and Computer Engineering University of Utah c 2007, Behrouz Farhang-Boroujeny, ECE Department, University

More information

Hani Mehrpouyan 1, Outline

Hani Mehrpouyan 1, Outline Hani Mehrpouyan 1, Department of Electrical and Computer Engineering, Lecture 20 (Error Probability) February 20 th, 2013 1 Some of the lectures notes here reproduced are taken from course textbooks: Digital

More information

PROPOSED SCHEME OF COURSE WORK

PROPOSED SCHEME OF COURSE WORK PROPOSED SCHEME OF COURSE WORK Course Details: Course Title : COMMUNICATION SYSTEMS Course Code : 13EC1145 L T P C : 4 1 0 3 Program: : B.Tech. Specialization: : Information Technology Semester : V Prerequisites

More information

UNIT TEST I Digital Communication

UNIT TEST I Digital Communication Time: 1 Hour Class: T.E. I & II Max. Marks: 30 Q.1) (a) A compact disc (CD) records audio signals digitally by using PCM. Assume the audio signal B.W. to be 15 khz. (I) Find Nyquist rate. (II) If the Nyquist

More information

MODERN DIGITAL MODULATION TECHNIQUES ELEN E6909

MODERN DIGITAL MODULATION TECHNIQUES ELEN E6909 1 MODERN DIGITAL MODULATION TECHNIQUES ELEN E6909 Columbia University Spring Semester-2008 Professor I. Kalet 16 April 2008 Assistants: Jian Tan Xiaozhu Kang 2 MODERN DIGITAL MODULATION TECHNIQUES ELEN

More information

Frequency-Hopped Spread-Spectrum

Frequency-Hopped Spread-Spectrum Chapter Frequency-Hopped Spread-Spectrum In this chapter we discuss frequency-hopped spread-spectrum. We first describe the antijam capability, then the multiple-access capability and finally the fading

More information

ECE 8771, Information Theory & Coding for Digital Communications Summer 2010 Syllabus & Outline (Draft 1 - May 12, 2010)

ECE 8771, Information Theory & Coding for Digital Communications Summer 2010 Syllabus & Outline (Draft 1 - May 12, 2010) ECE 8771, Information Theory & Coding for Digital Communications Summer 2010 Syllabus & Outline (Draft 1 - May 12, 2010) Instructor: Kevin Buckley, Tolentine 433a, 610-519-5658 (W), 610-519-4436 (F), buckley@ece.vill.edu,

More information

DEPARTMENT OF COMPUTER GCE@Bodi_ SCIENCE GCE@Bodi_ AND ENIGNEERING GCE@Bodi_ GCE@Bodi_ GCE@Bodi_ Analog and Digital Communication GCE@Bodi_ DEPARTMENT OF CsE Subject Name: Analog and Digital Communication

More information

COPYRIGHTED MATERIAL. Introduction. 1.1 Communication Systems

COPYRIGHTED MATERIAL. Introduction. 1.1 Communication Systems 1 Introduction The reliable transmission of information over noisy channels is one of the basic requirements of digital information and communication systems. Here, transmission is understood both as transmission

More information

Spread Spectrum Techniques

Spread Spectrum Techniques 0 Spread Spectrum Techniques Contents 1 1. Overview 2. Pseudonoise Sequences 3. Direct Sequence Spread Spectrum Systems 4. Frequency Hopping Systems 5. Synchronization 6. Applications 2 1. Overview Basic

More information

OFDM Systems For Different Modulation Technique

OFDM Systems For Different Modulation Technique Computing For Nation Development, February 08 09, 2008 Bharati Vidyapeeth s Institute of Computer Applications and Management, New Delhi OFDM Systems For Different Modulation Technique Mrs. Pranita N.

More information

Lab 3.0. Pulse Shaping and Rayleigh Channel. Faculty of Information Engineering & Technology. The Communications Department

Lab 3.0. Pulse Shaping and Rayleigh Channel. Faculty of Information Engineering & Technology. The Communications Department Faculty of Information Engineering & Technology The Communications Department Course: Advanced Communication Lab [COMM 1005] Lab 3.0 Pulse Shaping and Rayleigh Channel 1 TABLE OF CONTENTS 2 Summary...

More information

Testing c2k Mobile Stations Using a Digitally Generated Faded Signal

Testing c2k Mobile Stations Using a Digitally Generated Faded Signal Testing c2k Mobile Stations Using a Digitally Generated Faded Signal Agenda Overview of Presentation Fading Overview Mitigation Test Methods Agenda Fading Presentation Fading Overview Mitigation Test Methods

More information

QUESTION BANK. Staff In-Charge: M.MAHARAJA, AP / ECE

QUESTION BANK. Staff In-Charge: M.MAHARAJA, AP / ECE FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY Senkottai Village, Madurai Sivagangai Main Road, Madurai -625 020 An ISO 9001:2008 Certified Institution QUESTION BANK Sub. Code : EC 2301 Class : III

More information

Academic Course Description

Academic Course Description Academic Course Description SRM University Faculty of Engineering and Technology Department of Electronics and Communication Engineering CO2110 OFDM/OFDMA Communications Third Semester, 2016-17 (Odd semester)

More information

Introduction to Digital Communications System

Introduction to Digital Communications System Wireless Information Transmission System Lab. Introduction to Digital Communications System Institute of Communications Engineering National Sun Yat-sen University Recommended Books Digital Communications

More information

Contents Preview and Introduction Waveform Encoding

Contents Preview and Introduction Waveform Encoding Contents 1 Preview and Introduction... 1 1.1 Process of Communication..... 1 1.2 General Definition of Signal..... 3 1.3 Time-Value Definition of Signals Analog and Digital..... 6 1.3.1 Continuous Time

More information

SCHEME OF COURSE WORK. Course Code : 13EC1114 L T P C : ELECTRONICS AND COMMUNICATION ENGINEERING

SCHEME OF COURSE WORK. Course Code : 13EC1114 L T P C : ELECTRONICS AND COMMUNICATION ENGINEERING SCHEME OF COURSE WORK Course Details: Course Title : DIGITAL COMMUNICATIONS Course Code : 13EC1114 L T P C 4 0 0 3 Program Specialization Semester Prerequisites Courses to which it is a prerequisite :

More information

CDMA Mobile Radio Networks

CDMA Mobile Radio Networks - 1 - CDMA Mobile Radio Networks Elvino S. Sousa Department of Electrical and Computer Engineering University of Toronto Canada ECE1543S - Spring 1999 - 2 - CONTENTS Basic principle of direct sequence

More information

EXPERIMENT WISE VIVA QUESTIONS

EXPERIMENT WISE VIVA QUESTIONS EXPERIMENT WISE VIVA QUESTIONS Pulse Code Modulation: 1. Draw the block diagram of basic digital communication system. How it is different from analog communication system. 2. What are the advantages of

More information

Chaos based Communication System Using Reed Solomon (RS) Coding for AWGN & Rayleigh Fading Channels

Chaos based Communication System Using Reed Solomon (RS) Coding for AWGN & Rayleigh Fading Channels 2015 IJSRSET Volume 1 Issue 1 Print ISSN : 2395-1990 Online ISSN : 2394-4099 Themed Section: Engineering and Technology Chaos based Communication System Using Reed Solomon (RS) Coding for AWGN & Rayleigh

More information

A Novel Coding Technique To Minimise The Transmission Bandwidth And Bit Error Rate In DPSK

A Novel Coding Technique To Minimise The Transmission Bandwidth And Bit Error Rate In DPSK IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008 345 A Novel Coding Technique To Minimise The Transmission Bandwidth And Bit Error Rate In DPSK M.V.S.Sairam 1

More information

Communications I (ELCN 306)

Communications I (ELCN 306) Communications I (ELCN 306) c Samy S. Soliman Electronics and Electrical Communications Engineering Department Cairo University, Egypt Email: samy.soliman@cu.edu.eg Website: http://scholar.cu.edu.eg/samysoliman

More information

Book Review. Dobri Atanassov Batovski

Book Review. Dobri Atanassov Batovski A Conceptual Review of Digital Communication Systems (Author: Simon Haykin, 2014) Haykin, S. 2014. Digital Communication Systems. John Wiley & Sons, Inc., Hoboken, NJ, USA. Available: .

More information

BEING wideband, chaotic signals are well suited for

BEING wideband, chaotic signals are well suited for 680 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 51, NO. 12, DECEMBER 2004 Performance of Differential Chaos-Shift-Keying Digital Communication Systems Over a Multipath Fading Channel

More information

PERFORMANCE COMPARISON OF SOQPSK DETECTORS: COHERENT VS. NONCOHERENT

PERFORMANCE COMPARISON OF SOQPSK DETECTORS: COHERENT VS. NONCOHERENT PERFORMANCE COMPARISON OF SOQPSK DETECTORS: COHERENT VS. NONCOHERENT Tom Bruns L-3 Communications Nova Engineering, Cincinnati, OH ABSTRACT Shaped Offset Quadrature Shift Keying (SOQPSK) is a spectrally

More information

Emona Telecoms-Trainer ETT-101

Emona Telecoms-Trainer ETT-101 EXPERIMENTS IN MODERN COMMUNICATIONS Emona Telecoms-Trainer ETT-101 Multi-Experiment Single Board Telecommunications Trainer for Technical College and Technical High School Students EMONA INSTRUMENTS www.ett101.com

More information

TSKS01 Digital Communication Lecture 1

TSKS01 Digital Communication Lecture 1 TSKS01 Digital Communication Lecture 1 Introduction, Repetition, Channels as Filters, Complex-baseband representation Emil Björnson Department of Electrical Engineering (ISY) Division of Communication

More information

Text Book: Simon Haykin & Michael Moher,

Text Book: Simon Haykin & Michael Moher, Qassim University College of Engineering Electrical Engineering Department Electronics and Communications Course: EE322 Digital Communications Prerequisite: EE320 Text Book: Simon Haykin & Michael Moher,

More information

TSTE17 System Design, CDIO. General project hints. Behavioral Model. General project hints, cont. Lecture 5. Required documents Modulation, cont.

TSTE17 System Design, CDIO. General project hints. Behavioral Model. General project hints, cont. Lecture 5. Required documents Modulation, cont. TSTE17 System Design, CDIO Lecture 5 1 General project hints 2 Project hints and deadline suggestions Required documents Modulation, cont. Requirement specification Channel coding Design specification

More information

OFDM AS AN ACCESS TECHNIQUE FOR NEXT GENERATION NETWORK

OFDM AS AN ACCESS TECHNIQUE FOR NEXT GENERATION NETWORK OFDM AS AN ACCESS TECHNIQUE FOR NEXT GENERATION NETWORK Akshita Abrol Department of Electronics & Communication, GCET, Jammu, J&K, India ABSTRACT With the rapid growth of digital wireless communication

More information

MODULATION AND MULTIPLE ACCESS TECHNIQUES

MODULATION AND MULTIPLE ACCESS TECHNIQUES 1 MODULATION AND MULTIPLE ACCESS TECHNIQUES Networks and Communication Department Dr. Marwah Ahmed Outlines 2 Introduction Digital Transmission Digital Modulation Digital Transmission of Analog Signal

More information

DIGITAL COMMUNICATION. In this experiment you will integrate blocks representing communication system

DIGITAL COMMUNICATION. In this experiment you will integrate blocks representing communication system OBJECTIVES EXPERIMENT 7 DIGITAL COMMUNICATION In this experiment you will integrate blocks representing communication system elements into a larger framework that will serve as a model for digital communication

More information

Amplitude Frequency Phase

Amplitude Frequency Phase Chapter 4 (part 2) Digital Modulation Techniques Chapter 4 (part 2) Overview Digital Modulation techniques (part 2) Bandpass data transmission Amplitude Shift Keying (ASK) Phase Shift Keying (PSK) Frequency

More information

Study of Turbo Coded OFDM over Fading Channel

Study of Turbo Coded OFDM over Fading Channel International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 3, Issue 2 (August 2012), PP. 54-58 Study of Turbo Coded OFDM over Fading Channel

More information

QUESTION BANK EC 1351 DIGITAL COMMUNICATION YEAR / SEM : III / VI UNIT I- PULSE MODULATION PART-A (2 Marks) 1. What is the purpose of sample and hold

QUESTION BANK EC 1351 DIGITAL COMMUNICATION YEAR / SEM : III / VI UNIT I- PULSE MODULATION PART-A (2 Marks) 1. What is the purpose of sample and hold QUESTION BANK EC 1351 DIGITAL COMMUNICATION YEAR / SEM : III / VI UNIT I- PULSE MODULATION PART-A (2 Marks) 1. What is the purpose of sample and hold circuit 2. What is the difference between natural sampling

More information

Lecture 3: Wireless Physical Layer: Modulation Techniques. Mythili Vutukuru CS 653 Spring 2014 Jan 13, Monday

Lecture 3: Wireless Physical Layer: Modulation Techniques. Mythili Vutukuru CS 653 Spring 2014 Jan 13, Monday Lecture 3: Wireless Physical Layer: Modulation Techniques Mythili Vutukuru CS 653 Spring 2014 Jan 13, Monday Modulation We saw a simple example of amplitude modulation in the last lecture Modulation how

More information

ECE 6640 Digital Communications

ECE 6640 Digital Communications ECE 6640 Digital Communications Dr. Bradley J. Bazuin Assistant Professor Department of Electrical and Computer Engineering College of Engineering and Applied Sciences Course/Lecture Overview Syllabus

More information

Class 4 ((Communication and Computer Networks))

Class 4 ((Communication and Computer Networks)) Class 4 ((Communication and Computer Networks)) Lesson 5... SIGNAL ENCODING TECHNIQUES Abstract Both analog and digital information can be encoded as either analog or digital signals. The particular encoding

More information

COMPARISON OF CHANNEL ESTIMATION AND EQUALIZATION TECHNIQUES FOR OFDM SYSTEMS

COMPARISON OF CHANNEL ESTIMATION AND EQUALIZATION TECHNIQUES FOR OFDM SYSTEMS COMPARISON OF CHANNEL ESTIMATION AND EQUALIZATION TECHNIQUES FOR OFDM SYSTEMS Sanjana T and Suma M N Department of Electronics and communication, BMS College of Engineering, Bangalore, India ABSTRACT In

More information

V. CHANDRA SEKAR Professor and Head Department of Electronics and Communication Engineering SASTRA University, Kumbakonam

V. CHANDRA SEKAR Professor and Head Department of Electronics and Communication Engineering SASTRA University, Kumbakonam V. CHANDRA SEKAR Professor and Head Department of Electronics and Communication Engineering SASTRA University, Kumbakonam 1 Contents Preface v 1. Introduction 1 1.1 What is Communication? 1 1.2 Modulation

More information

Handout 11: Digital Baseband Transmission

Handout 11: Digital Baseband Transmission ENGG 23-B: Principles of Communication Systems 27 8 First Term Handout : Digital Baseband Transmission Instructor: Wing-Kin Ma November 7, 27 Suggested Reading: Chapter 8 of Simon Haykin and Michael Moher,

More information

Chapter 2 Channel Equalization

Chapter 2 Channel Equalization Chapter 2 Channel Equalization 2.1 Introduction In wireless communication systems signal experiences distortion due to fading [17]. As signal propagates, it follows multiple paths between transmitter and

More information

ECE 4400:693 - Information Theory

ECE 4400:693 - Information Theory ECE 4400:693 - Information Theory Dr. Nghi Tran Lecture 1: Introduction & Overview Dr. Nghi Tran (ECE-University of Akron) ECE 4400:693 Information Theory 1 / 26 Outline 1 Course Information 2 Course Overview

More information

Comparative Study of OFDM & MC-CDMA in WiMAX System

Comparative Study of OFDM & MC-CDMA in WiMAX System IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 9, Issue 1, Ver. IV (Jan. 2014), PP 64-68 Comparative Study of OFDM & MC-CDMA in WiMAX

More information

CDMA Systems Engineering Handbook

CDMA Systems Engineering Handbook CDMA Systems Engineering Handbook Jhong Sam Lee Leonard E. Miller Artech House Boston London Table of Contents Preface xix CHAPTER 1: INTRODUCTION AND REVIEW OF SYSTEMS ANALYSIS BASICS 1 1.1 Introduction

More information

Design and Simulation of COFDM for High Speed Wireless Communication and Performance Analysis

Design and Simulation of COFDM for High Speed Wireless Communication and Performance Analysis Design and Simulation of COFDM for High Speed Wireless Communication and Performance Analysis Arun Agarwal ITER College, Siksha O Anusandhan University Department of Electronics and Communication Engineering

More information

Sixth Semester B.E. Degree Examination, May/June 2010 Digital Communication Note: Answer any FIVEfull questions, selecting at least TWO questionsfrom each part. PART-A a. With a block diagram, explain

More information

A Novel Spread Spectrum System using MC-DCSK

A Novel Spread Spectrum System using MC-DCSK A Novel Spread Spectrum System using MC-DCSK Remya R.V. P.G. scholar Dept. of ECE Travancore Engineering College Kollam, Kerala,India Abstract A new spread spectrum technique using Multi- Carrier Differential

More information

Study on the UWB Rader Synchronization Technology

Study on the UWB Rader Synchronization Technology Study on the UWB Rader Synchronization Technology Guilin Lu Guangxi University of Technology, Liuzhou 545006, China E-mail: lifishspirit@126.com Shaohong Wan Ari Force No.95275, Liuzhou 545005, China E-mail:

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EECS 121 FINAL EXAM

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EECS 121 FINAL EXAM Name: UNIVERSIY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences Professor David se EECS 121 FINAL EXAM 21 May 1997, 5:00-8:00 p.m. Please write answers on

More information

Spread Spectrum. Chapter 18. FHSS Frequency Hopping Spread Spectrum DSSS Direct Sequence Spread Spectrum DSSS using CDMA Code Division Multiple Access

Spread Spectrum. Chapter 18. FHSS Frequency Hopping Spread Spectrum DSSS Direct Sequence Spread Spectrum DSSS using CDMA Code Division Multiple Access Spread Spectrum Chapter 18 FHSS Frequency Hopping Spread Spectrum DSSS Direct Sequence Spread Spectrum DSSS using CDMA Code Division Multiple Access Single Carrier The traditional way Transmitted signal

More information

Analog and Telecommunication Electronics

Analog and Telecommunication Electronics Politecnico di Torino ICT School Analog and Telecommunication Electronics A0 Course Introduction» Goals and contents» Course organization» Learning material» Reference system 15/03/2011-1 ATLCE - A0-2010

More information

ON SYMBOL TIMING RECOVERY IN ALL-DIGITAL RECEIVERS

ON SYMBOL TIMING RECOVERY IN ALL-DIGITAL RECEIVERS ON SYMBOL TIMING RECOVERY IN ALL-DIGITAL RECEIVERS 1 Ali A. Ghrayeb New Mexico State University, Box 30001, Dept 3-O, Las Cruces, NM, 88003 (e-mail: aghrayeb@nmsu.edu) ABSTRACT Sandia National Laboratories

More information

Cross Spectral Density Analysis for Various Codes Suitable for Spread Spectrum under AWGN conditions with Error Detecting Code

Cross Spectral Density Analysis for Various Codes Suitable for Spread Spectrum under AWGN conditions with Error Detecting Code Cross Spectral Density Analysis for Various Codes Suitable for Spread Spectrum under AWG conditions with Error Detecting Code CH.ISHATHI 1, R.SUDAR RAJA 2 Department of Electronics and Communication Engineering,

More information

Performance Evaluation Of Digital Modulation Techniques In Awgn Communication Channel

Performance Evaluation Of Digital Modulation Techniques In Awgn Communication Channel Performance Evaluation Of Digital Modulation Techniques In Awgn Communication Channel Oyetunji S. A 1 and Akinninranye A. A 2 1 Federal University of Technology Akure, Nigeria 2 MTN Nigeria Abstract The

More information