Phase-Only Adaptive Nulling with a Genetic Algorithm

Size: px
Start display at page:

Download "Phase-Only Adaptive Nulling with a Genetic Algorithm"

Transcription

1 Phase-Only Adaptive Nulling with a Genetic Algorithm Randy L. Haupt HQ USAFADFBE 2354 Fairchild Dr, Suite 2F6 USAF Academy, CO hauptrl.dfee@ usafa.af.mil Sue Ellen Haupt HQ USAFA/DFP 2354 Fairchild Dr USAF Academy, CO hauptse.dfp@usafa.af.mil Abstract-This paper describes a new approach to adaptive phase-only nulling with phased arrays. A genetic algorithm adjusts some of the least significant bits of the beam steering phase shifters in order to minimize the total output power. Using a few bits for nulling speeds convergence of the algorithm and limits pattern distortions. Various results are presented to show the advantages and limitations of this approach. TABLE OF CONTENTS 1. INTRODUCTION 2. PROBLEM FORMULATION 3. THE ADAPTIVE ALGORITHM 4. RESULTS 5. CONCLUSIONS 1. INTRODUCTION Low sidelobes don't guarantee adequate reception of a desired signal in the presence of interfering sources. Adaptive nulling complements the low sidelobe antenna by placing nulls in a few low sidelobes to reject the strongest interfering sources. An ideal adaptive algorithm for a phased array antenna has the following desirable characteristics: Places multiple deep nulls in the directions of interference, Rejects interference over the bandwidth of the antenna, Places the nulls very quickly, Complements existing phased array technology, and Minimizes pattern perturbations. An adaptive algorithm possesses some of these characteristics, but no adaptive algorithm meets all the characteristics. Selection of the adaptive algorithm, hence the desirable characteristics, depends upon the antenna, the cost, the performance requirements, and the interference environment. An off-the-shelf adaptive algorithm is not usually suitable for use with an off-the-shelf phased array antenna. Many adaptive antenna array algorithms originate from the generic signal processing literature [ 13 and require modification of the algorithm and the antenna in order to have a working adaptive array. An adaptive algorithm developed for data transmission requires hardware and software modification in order for it to successfully place nulls in the far field pattern of an array /97/$ IEEE 151

2 Most adaptive antenna algorithms multiply the quiescent weights by the inverse of the sampled covariance matrix to get the adapted weights. The resulting complex weights place nulls in the far field pattern in the directions of interference. A sampled covariance matrix is formed from the complex signals received at each element in the array. Although mathematically elegant and fast these methods have two impractical hardware requirements on the antenna array. First, the array must have an expensive receiver or correlation at each element. Most arrays have a single receiver at the output of the summer, so the antenna must be designed especially for the algorithm. Not only are multiple receivers expensive, but the receivers require a sophisticated method for calibration [2]. Second, the array must have variable analog amplitude and phase weights at each element. Usually, a phased array has only digital beam steering phase shifters at the elements. The feed network determines amplitude weights. There are two problems fkom an algorithmic standpoint as well. First, digital phase shifters only approximate the phase calculated by the adaptive algorithms. The weight quantization error limits null placement. Second, these algorithms get stuck in local minima [3]. As a result, they do not find the optimum weights to reject the interference at hand. Some common adaptive algorithms include Least Mean Square Algorithm and Howells-Applebaum Adaptive Processor, and examples can be found in references [3] and [4]. These methods are very fast but the difficulties mentioned prohibit their wide-spread use, particularly for arrays with more than a handful of elements. Another class of algorithms adjusts the phase shifter settings in order to reduce the total output power from the array [5], [61, [71. These algorithms are cheap to implement because they use the existing array architecture without expensive additions, such as adjustable amplitude weights or correlators. Their drawbacks include slow convergence and possibly high pattern distortions. This class has four approaches, the last of which is the topic of this paper. The first approach is the random search algorithm [3]. Random search algorithms randomly sample a small fraction of all possible phase settings in search of the minimum output power. The search space for the current algorithm iteration can be narrowed around the regions of the best weights of the previous iteration. This approach is usually too slow for beam steering and radar applications. It is less likely to get stuck in a local minimum and does not require an expensive receiver at each element. A second approach forms an approximate numerical gradient and uses a steepest descent algorithm to find the minimum output power [8]. This approach has been implemented experimentally but is slow and gets trapped in local minima. As a result, the best phase settings to achieve appropriate nulls are usually not found. The third approach is a beam space algorithm that assumes the location of the interference is known. This algorithm forms a cancellation beam in the direction of the interference. The height of the cancellation beam is adjusted to cancel the sidelobes and place a null in the interference direction. This approach is fast but requires knowledge of the interference locations and a reasonably accurate estimate of the amplitude and phase weights at each element. Serious drawbacks to current adaptive algorithms include: 1. They require an expensive receiver at each element - makes array impractical to build; 2. They get trapped in local minima - don't use full potential of the antenna to reject interference; 152

3 3. They slowly converge - often not useful for radar or scanning applications; 4. They can't be implemented on existing antennas--they require adjustable amplitude weights and receivers at every element in addition to beam steering phase shifters; 5. They cause the main beam to move from its desired pointing direction; and 6. They significantly raise the sidelobe levels of a low sidelobe array. elements \/ Y incident field This paper describes a simple technique suitable for implementation on existing phased arrays. The approach combines a genetic algorithm with the hardware limitations of the array to place nulls in the directions of interference with small perturbations to the far field pattern. Excellent nulling results are possible for most interference scenarios. 2. PROBLEM FORMUL,ATION A linear array antenna is a group of equally spaced antennas arranged along a line and whose outputs are added together to provide a single output. Figure 1 shows a diagram of such an array. Mathematically, the array far field pattern is given by [ 11 where wn = ant?" complex weight at element n 2N = number of elements in the array Y =kdu+ A k = 2dA A = wavelength d = spacing between elements U = cos$ $ = angle of incidence of electromagnetic plane wave A = beam steering phase Figure 1. Diagram of a phase-only adaptive linear array The amplitude weights are fixed. Lowering the sidelobe levels requires an even phase shift about the center of the array [9], while nulling requires an odd phase shift [lo]. Since nulling is of importance here, (1) simplifies to M(u) = N n=l cos[(n - 1)Y + A,, (2) Note that Y = kdu and no longer includes the beam steering phase. Since the beam steering phase is quantized, it differs from (n - l)a and must be represented by A,,. The steering phase, A,,, is calculated first and the beam steered to the proper angle, before the nulling phase, 6,, is found. Figure 1 is a diagram of a phase-only adaptive array with A,, 4. The digital phase shifters have B bits. B needs to be as small as possible to reduce the cost of the phase shifter but should be large enough to maintain low sidelobes over the scan angles of 1 53

4 the array. The quantized steering phase at element n is given by whereas the nulling phase is represented by P 6, = 2ax b, 2- (4) p=l where B = total number of bits in phase shifters P = number of phase bits used for nulling [ b,b,... bp] = vector containing the nulling bits representing 6, round{ *} = round * to the nearest integer rem{ *} = takes only the digits to the right of the decimal point of * In order to minimally perturb the array pattern, the adaptive algorithm assumes P<B. 3. THE ADAPTIVE ALGORITHM A phase-only adaptive algorithm modifies the quantized phase weights based on the total output power of the array. If no interference is present, then the algorithm tries to minimize the desired signal. To prevent desired signal degradation, the algorithm should only be turned on when the desired signal becomes swamped by the interference or the nulling phase shifts should be small. This potential problem is discussed in more detail in the next section. The disadvantages of the phase-only algorithms make them unlikely candidates for use with antenna arrays. This section presents a method that is as fast as the beam space algorithm, doesn t easily get stuck in local minima, and limits pattern distortion. The adaptive algorithm is based on a genetic algorithm and uses a limited number of bits of the digital phase shifters. A genetic algorithm is a computer program that finds an optimum solution by simulating evolution in nature. In this application the phase shifter settings evolve until the antenna pattern has nulls in the directions of jammers. A genetic algorithm was chosen for this application because it is an efficient method to perform a search of a very large, discrete space of phase settings to achieve the minimum output power of the array. An adaptive phase-only array has 2NB possible phase settings, many corresponding to local a in the total power output. Such a large number of phase settings and local minima make random search and gradient based algorithms impractical to use. Fill phase settings matrix with random 1 s and 0 s Figure 2. Flow chart of the genetic algorithm used for adaptive nulling. 154

5 phase shifter r, nulling bits Y Y Y Y Y E E E E E )b) b) 6) - output power Figure 3. A population of phase shifter settings with corresponding output powers. Figure 2 shows a flowchart of the adaptive genetic algorithm. It begins with an initial population consisting of a matrix fiued with random ones and zeros. Each row of the matrix (chromosome) consists of the nulling bits for each element placed side-by-side. There are NP columns and M rows. The output power corresponding to each chromosome in the matrix is measured and placed in a vector (Figure 3). M must be large enough to adequately search the solution space and help the genetic algorithm arrive at an excellent solution. On the other hand, M needs to be small, so the algorithm is fast. The speed of the algorithm is also a function of N and P. As N and P increase in size, M needs to be larger to keep the algorithm out of local minima, and the number of iterations required for convergence increases. The output power vector and associated chromosomes are ranked with the lowest output power on top and the highest output power on the bottom. The next step discards the bottom X% of the chromosomes, because they have the greatest output power. The algorithm generates new nulling chromosomes from the chromosomes that were kept to replace those discarded (Figure 4). Two chromosomes are selected at random. Chromosomes with lower output power receive a correspondingly higher probability of selection. Next, a random point is selected and bits to the right of the random point are swapped to form two new chromosomes. These new chromosomes are placed in the matrix to replace two settings that were discarded, and their output powers are measured. When enough new chromosomes are created to replace those discarded, the chromosomes are ranked and the process repeated. A small number (less than 1%) of the nulling bits in the matrix can be randomly switched from a one to zero or visa versa. These randomly induced errors (mutations) allow the algorithm to try new areas of the search space, while it converges on a solution. Usually, the best phase setting is not randomly altered. More general descriptions of genetic algorithms can be found in [ll] and [12]. The next section shows results for determining the best values for P and M. r m cd c e, d 9 phase shifter. output settings - power Figure 4. Two partners are selected from the mating pool to produce two offspring that are put back into the population to replace those chromosomes that were discarded. 155

6 4. RESULTS The genetic algorithm used here begins with 20 chromosomes. Only 10 are kept during the 25 iterations of the simulation. Each iteration, the bottom 6 chromosomes are discarded and replaced by chromosomes generated from the top 4 chromosomes. These numbers are small enough to keep the algorithm fast but large enough to place the nulls. The first example array modeled in this paper has 40 elements and a 30 db Chebychev amplitude taper. Elements are spaced 0.5A0 apart at the center frequency fo. Phase shifters must have six bit accuracy in order to keep the quantization lobe slightly below the general sidelobe level over the scan angles of the array (+-30" from broadside). The adaptive array model was tested for five different interference scenarios and judged based on three performance criteria. Results appear in Table 2. The first performance characteristic is the sidelobe reduction at the interference angle(s). When there are two interference sources (ui=.62 and.72), the minimum sidelobe reduction of the two angles is listed in the table. The second performance characteristic is the number of power measurements required for a 10 db reduction in the sidelobe level. This number directly relates to the speed of the algorithm. The third performance characteristic is the maximum sidelobe level, which is an indication of the amount of pattern distortion. A lower value for any performance characteristic indicates better performance. Table 1. The genetic algorithm adaptive array was tested for five scenarios. The seven columns to the right list the number of nulling bits and the phase value of the most significant bit (MSB). The three performance characteristics judge the algorithm for null depth, speed, and pattern distortion. A low value for a performance characteristic is good. 1 56

7 Two important parameters are the number of bits used for nulling and the maximum phase shift or the phase of the most significant bit (MSB). A genetic algorithm is often sensitive to the number of bits in a chromosome. Thus, comparing the performance of the algorithm against the number of bits used for nulling is important. The maximum phase shift impacts the main beam and sidelobe distortion and the null depth obtainable. Results for MSB phase values above.n/4 produced significant pattern distortions, so they are not listed in Table 1. a, t l5 N N N K INN INN I 11% N M NI I N A gradient-based algorithm using central difference approximations of the derivatives would take 80 power measurements per step in the algorithm. The genetic algorithm is a clear winner by converging in only 32 power measurements. Figure 7 is a graph of the maximum and average sidelobe reduction of the chromosomes in the population after each iteration. Iteration 0 is the quiescent level of the sidelobe. The average chromosome is of importance, because it indicates how well the antenna rejects interference during the adaptation. The average and best chromosomes are the same at iteration 11. They don't remain the same in later iterations because random mutations are introduced into the population. N NNN x -lo/ N N I -1 5 *!UN f * I element Figure 5. Adapted phase weights for the 40 element (d=0.5h) low sidelobe array with 6 bit phase shifters. Two bits were used for nulling with an MSB of d16. Interference sources appear at u=.62 and -72. Scenario 1 is a simple example of two interference sources at ui =.62 and.72. Sidelobe reduction is best for a middle-sized MSB and P. Convergence is fastest for a smaller P and MSB. As expected, sidelobe distortion increases with larger values of the phase of the MSB. This example suggests that P=2 and MSB phase = x/16 is the best combination. Figure 5 shows the adapted phase weights that produce the nulled pattern in Figure 6. The maximum phase shift to produce the nulling is ' The maximum sidelobe level increases to -27 db. B.- C " -10 E -20 B g ij - m p! U Figure 6. Adapted antenna pattern corresponding to the phase shifts in Figure

8 the size of the phase shift keeps the main beam intact. As long as P and MSB are small, then the algorithm has little effect on the main beam. An MSB phase of d16 or d32 does not require turning the algorithm off when no interference is present, because the algorithm can't attack the main beam iteration Figure 7. Genetic algorithm convergence is graphed over 25 iterations. The solid line represents the output power for the best chromosome, while the dashed line represents the average output power for all the chromosomes in the population. Scenario 2 presents the algorithm with the difficult situation where the jammers are at angles symmetric about the main beam. In Figure 6 notice the increase in the sidelobes symmetrically opposed to the nulls placed by the adaptive algorithm. This phenomena is discussed in [14]. As noted in Table 2, symmetric interference sources can only be nulled with large values of phase and many power measurements. Pattern distortions are quite high. Performance improves as the symmetry is broken. When the interference sources are one sidelobe apart, performance similar to Scenario 1 is obtained. Scenario 3 tests the bandwidth performance of the algorithm by placing two interference sources close together. In this case, the smaller P and MSB phase, the better the algorithm performance. For the most part, null depth is diminished for broadband jammers. Scenario 4 checks the algorithm when no interference is present, but the desired signal is received by the main beam. The algorithm should not attack the desired signal. Limiting Scenario 5 has the algorithm attempt to place a null in the quantization sidelobe. Results are marginal for all values of MSB phase. The quantization lobe results from the digital phase shifter quantization % 2 5-0) :._ xm *xx x m x It mx mx Ymx x 1 X!E%lK 111 i %!X * * O - X M x m x x** x x 1lx x y I x *sx element Figure 8. Adapted phase weights for the 100 element (d=0.5h) low sidelobe array with 6 bit phase shifters. Two bits were used for nulling with an MSB of n/16. Interference sources appear at u=.25 and

9 --lot.- C E i.- %! m - e U Figure 9. Adapted antenna pattern corresponding to the phase shifts in Figure 8. I I and the 100 element uniform array showed fast convergence, deep nulling capability, and small pattern distortions. Using only a few least significant bits and small phase values for the MSB are keys to the algorithm's performance. Its important advantage is that it is easy to implement on existing phased arrays. Disadvantages are: 1) little success at nulling interference entering a quantization sidelobe and 2) interference at symmetric angles about the main beam. Increasing the bandwidth of the interference also degrades algorithm performance. Phase-only adaptive nulling works on existing phased-array antenna designs, unlike signal processing based adaptive arrays that require receivers at every element. Its main disadvantage is slow convergence time. The genetic algorithm approach to phase-only adaptive nulling is significantly faster than the previous approaches of random search and gradient methods. Thus, it advances the stateof-the-art of phase-only adaptive nulling. I iteration Figure 10. Genetic algorithm convergence is graphed over 25 iterations. The solid line represents the output power for the best chromosome, while the dashed line represents [l] C. F. N. Cowan and P. M. Grant, Adaptive Filters, Englewood Cliffs, NJ: Prentice Hall, [2] R. Kinsey, "Array antenna self-calibration techniques," M A Workshop: Testing Phased Arrays and Diagnostics, San Jose, CA, Jun 89. [3] R. A. Monzingo and T. W. Miller, Introduction to Adaptive Antennas, New York: Wiley, the average Output power for all the [4] R. T. Compton, Adaptive Antennas Concepts and chromosomes in the population. Performance, Englewood Cliffs, NJ: Prentice Hall, CONCLUSIONS [5] C. A. Baird and G. G. Rassweiler, "Adaptive sidelobe nulling using digitally controlled phase- The genetic performed we' for two shifters," IEEE AfJ Trans., Vol 24, No. 5, pp , jammers that were: 1) separated by an angular sep76. width of at least one sidelobe and 2) were not symmetric in angular distance about the main beam. Both the 40 element low sidelobe array 159

10 [6] M. K. Leavitt, "A phase adaptation algorithm," IEEE AP-S Trans., Vol. 24, No. 5, pp , Sep 76. [7] H. Steyskal, "Simple method for pattern nulling by phase perturbation," IEEE AP-S Trans., Vol. 31, No. 1, pp , Jan 83. [8] R. L. Haupt, "Adaptive nulling in monopulse antennas," IEEE AP-S Trans., Vol. 36, No. 2, pp , Feb 88. [9] J. F. Deford and 0. P. Gandhi, "Phase-only synthesis of minimum peak sidelobe patterns for linear and planar arrays," IEEE AP-S Trans. Vol. 36, No. 1, pp , Jan 88. [ 101 R. A. Shore, "A proof of the odd-symmetry of the phases for minimum weight perturbation phase-only null synthesis," IEEE AP-S Trans., Vol. 32, No. 5, pp , May 84. [l 11 J. H. Holland, "Genetic algorithms," Sci. Amer., pp 66-72, July [12] R. L. Haupt, "An introduction to genetic algorithms for electromagnetics," IEEE Antennas and Propagation Magazine, Vol. 37, NO. 2, pp. 7-15, Apr 95. [13] S. Lundgren and J. Sanford, "A new technique for phase-only nulling with equispaced arrays," IEEE AP-S Symposium Digest, Vol. 1, pp , Jun 95. [141 R A. Shore, "Nulling at symmetric pattern location with phase-only weight control," IEEE AP-S Trans., Vol. 32, No. 5, pp , May 84. Randy Haupt is a Lieutenant Colonel in the USAF and a Professor of Electrical Engineering at the United States Air Force Academy. He received his BS in EE from the USAF Academy in 1978, his MS in Engineering Management from Western New England College in 1981, his MS in EE from Northeastern University in 1983, and his PhD in EE from The University of Michigan in He worked as a project engineer on the OTH-B Radar and as an antenna engineer for Rome Air Development Center. Lt Col Haupt was Federal Engineer of the Year in Sue Ellen Haupt is a Research Scientist in the PAOS Program at the University of Colorado, Boulder. For the academic year, she is on a sabatical as a visiting scholar at the Physics Department at the USAF Academy. She received her BS in Meterology from Penn State in 1978, her MS in Engineering Management from Western New England College in 1981, her MS in ME from Wochester Polytechnic Institute in 1984, and her PhD in Atmospheric Science from The University of Michigan in

Adaptive Antennas. Randy L. Haupt

Adaptive Antennas. Randy L. Haupt Adaptive Antennas Randy L. Haupt The Pennsylvania State University Applied Research Laboratory P. O. Box 30 State College, PA 16804-0030 haupt@ieee.org Abstract: This paper presents some types of adaptive

More information

NULL STEERING USING PHASE SHIFTERS

NULL STEERING USING PHASE SHIFTERS NULL STEERING USING PHASE SHIFTERS Maha Abdulameer Kadhim Department of Electronics, Middle Technical University (MTU), Technical Instructors Training Institute, Baghdad, Iraq E-Mail: Maha.kahdum@gmail..com

More information

Linear Array Geometry Synthesis Using Genetic Algorithm for Optimum Side Lobe Level and Null

Linear Array Geometry Synthesis Using Genetic Algorithm for Optimum Side Lobe Level and Null ISSN: 77 943 Volume 1, Issue 3, May 1 Linear Array Geometry Synthesis Using Genetic Algorithm for Optimum Side Lobe Level and Null I.Padmaja, N.Bala Subramanyam, N.Deepika Rani, G.Tirumala Rao Abstract

More information

IF ONE OR MORE of the antennas in a wireless communication

IF ONE OR MORE of the antennas in a wireless communication 1976 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 52, NO. 8, AUGUST 2004 Adaptive Crossed Dipole Antennas Using a Genetic Algorithm Randy L. Haupt, Fellow, IEEE Abstract Antenna misalignment in

More information

AN ALTERNATIVE METHOD FOR DIFFERENCE PATTERN FORMATION IN MONOPULSE ANTENNA

AN ALTERNATIVE METHOD FOR DIFFERENCE PATTERN FORMATION IN MONOPULSE ANTENNA Progress In Electromagnetics Research Letters, Vol. 42, 45 54, 213 AN ALTERNATIVE METHOD FOR DIFFERENCE PATTERN FORMATION IN MONOPULSE ANTENNA Jafar R. Mohammed * Communication Engineering Department,

More information

SMART ANTENNA ARRAY PATTERNS SYNTHESIS: NULL STEERING AND MULTI-USER BEAMFORMING BY PHASE CONTROL

SMART ANTENNA ARRAY PATTERNS SYNTHESIS: NULL STEERING AND MULTI-USER BEAMFORMING BY PHASE CONTROL Progress In Electromagnetics Research, PIER 6, 95 16, 26 SMART ANTENNA ARRAY PATTERNS SYNTHESIS: NULL STEERING AND MULTI-USER BEAMFORMING BY PHASE CONTROL M. Mouhamadou and P. Vaudon IRCOM- UMR CNRS 6615,

More information

Introduction to Multiple Beams Adaptive Linear Array Using Genetic Algorithm

Introduction to Multiple Beams Adaptive Linear Array Using Genetic Algorithm Introduction to Multiple Beams Adaptive Linear Array Using Genetic Algorithm Ummul Khair Maria Roohi Nawab Shah College of Engineering & Technology (Affliated to JNTUH), India Abstract: In this paper,

More information

LOG-PERIODIC DIPOLE ARRAY OPTIMIZATION. Y. C. Chung and R. Haupt

LOG-PERIODIC DIPOLE ARRAY OPTIMIZATION. Y. C. Chung and R. Haupt LOG-PERIODIC DIPOLE ARRAY OPTIMIZATION Y. C. Chung and R. Haupt Utah State University Electrical and Computer Engineering 4120 Old Main Hill, Logan, UT 84322-4160, USA Abstract-The element lengths, spacings

More information

International Journal of Innovative Research in Computer and Communication Engineering. (An ISO 3297: 2007 Certified Organization)

International Journal of Innovative Research in Computer and Communication Engineering. (An ISO 3297: 2007 Certified Organization) Optimization of linear antenna array using genetic algorithm for reduction in Side lobs levels and improving directivity based on modulating parameter M Pallavi Joshi 1, Nitin Jain 2, Rupesh Dubey 3 M.E.

More information

ADAPTIVE ANTENNAS. TYPES OF BEAMFORMING

ADAPTIVE ANTENNAS. TYPES OF BEAMFORMING ADAPTIVE ANTENNAS TYPES OF BEAMFORMING 1 1- Outlines This chapter will introduce : Essential terminologies for beamforming; BF Demonstrating the function of the complex weights and how the phase and amplitude

More information

Linear Antenna SLL Reduction using FFT and Cordic Method

Linear Antenna SLL Reduction using FFT and Cordic Method e t International Journal on Emerging Technologies 7(2): 10-14(2016) ISSN No. (Print) : 0975-8364 ISSN No. (Online) : 2249-3255 Linear Antenna SLL Reduction using FFT and Cordic Method Namrata Patel* and

More information

RANDY L. HAUPT Electromagnetic Sciences Division Rome Air Development Center Hanscom AFB, MA 01731

RANDY L. HAUPT Electromagnetic Sciences Division Rome Air Development Center Hanscom AFB, MA 01731 0 0 SIMULTAEOUS ULLIG I THE SUM AD DIFFERECE PATTERS OF A 0 MOO PULSE RADAR RADY L. HAUPT Electromagnetic Sciences Division Rome Air Development Center Hanscom AFB, MA 01731 75 Best Available Copy Abstract

More information

A Novel approach for Optimizing Cross Layer among Physical Layer and MAC Layer of Infrastructure Based Wireless Network using Genetic Algorithm

A Novel approach for Optimizing Cross Layer among Physical Layer and MAC Layer of Infrastructure Based Wireless Network using Genetic Algorithm A Novel approach for Optimizing Cross Layer among Physical Layer and MAC Layer of Infrastructure Based Wireless Network using Genetic Algorithm Vinay Verma, Savita Shiwani Abstract Cross-layer awareness

More information

Antenna Array Synthesis for Suppressed Side Lobe Level Using Evolutionary Algorithms

Antenna Array Synthesis for Suppressed Side Lobe Level Using Evolutionary Algorithms Antenna Array Synthesis for Suppressed Side Lobe Level Using Evolutionary Algorithms Ch.Ramesh, P.Mallikarjuna Rao Abstract: - Antenna performance was greatly reduced by the presence of the side lobe level

More information

Radio frequency interference mitigation with phase-only adaptive beam forming

Radio frequency interference mitigation with phase-only adaptive beam forming RADIO SCIENCE, VOL. 40,, doi:10.1029/2004rs003142, 2005 Radio frequency interference mitigation with phase-only adaptive beam forming P. A. Fridman ASTRON, Dwingeloo, Netherlands Received 5 August 2004;

More information

Log-Period Dipole Array Optimization

Log-Period Dipole Array Optimization Log-Period Dipole Array Optimization You Chung Chung University of Nevada, Reno Electrical Engineering Reno, NV 89557 775-784-6927 youchung @unr.edu Randy Haupt Utah State University Electrical and Computer

More information

Smart antenna technology

Smart antenna technology Smart antenna technology In mobile communication systems, capacity and performance are usually limited by two major impairments. They are multipath and co-channel interference [5]. Multipath is a condition

More information

INTERFERENCE REJECTION OF ADAPTIVE ARRAY ANTENNAS BY USING LMS AND SMI ALGORITHMS

INTERFERENCE REJECTION OF ADAPTIVE ARRAY ANTENNAS BY USING LMS AND SMI ALGORITHMS INTERFERENCE REJECTION OF ADAPTIVE ARRAY ANTENNAS BY USING LMS AND SMI ALGORITHMS Kerim Guney Bilal Babayigit Ali Akdagli e-mail: kguney@erciyes.edu.tr e-mail: bilalb@erciyes.edu.tr e-mail: akdagli@erciyes.edu.tr

More information

VOL. 3, NO.11 Nov, 2012 ISSN Journal of Emerging Trends in Computing and Information Sciences CIS Journal. All rights reserved.

VOL. 3, NO.11 Nov, 2012 ISSN Journal of Emerging Trends in Computing and Information Sciences CIS Journal. All rights reserved. Effect of Fading Correlation on the Performance of Spatial Multiplexed MIMO systems with circular antennas M. A. Mangoud Department of Electrical and Electronics Engineering, University of Bahrain P. O.

More information

Adaptive Beamforming Approach with Robust Interference Suppression

Adaptive Beamforming Approach with Robust Interference Suppression International Journal of Current Engineering and Technology E-ISSN 2277 46, P-ISSN 2347 56 25 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Adaptive Beamforming

More information

Progress In Electromagnetics Research, PIER 36, , 2002

Progress In Electromagnetics Research, PIER 36, , 2002 Progress In Electromagnetics Research, PIER 36, 101 119, 2002 ELECTRONIC BEAM STEERING USING SWITCHED PARASITIC SMART ANTENNA ARRAYS P. K. Varlamos and C. N. Capsalis National Technical University of Athens

More information

Null-steering GPS dual-polarised antenna arrays

Null-steering GPS dual-polarised antenna arrays Presented at SatNav 2003 The 6 th International Symposium on Satellite Navigation Technology Including Mobile Positioning & Location Services Melbourne, Australia 22 25 July 2003 Null-steering GPS dual-polarised

More information

Paper ID# USING A GENETIC ALGORITHM TO DETERMINE AN OPTIMAL POSITION FOR AN ANTENNA MOUNTED ON A PLATFORM

Paper ID# USING A GENETIC ALGORITHM TO DETERMINE AN OPTIMAL POSITION FOR AN ANTENNA MOUNTED ON A PLATFORM Paper ID# 90225 USING A GENETIC ALGORITHM TO DETERMINE AN OPTIMAL POSITION FOR AN ANTENNA MOUNTED ON A PLATFORM Jamie M. Knapil Infantolino (), M. Jeffrey Barney (), and Randy L. Haupt (2) () Remcom, Inc,

More information

Department of ECE, K L University, Vaddeswaram, Guntur, Andhra Pradesh, India. 1.

Department of ECE, K L University, Vaddeswaram, Guntur, Andhra Pradesh, India. 1. Volume 115 No. 7 2017, 465-469 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu REDUCTION OF MUTUAL COUPLING IN ANTENNA ARRAYS BY SPARSE ANTENNA ijpam.eu M.

More information

T/R Module failure correction in active phased array antenna system

T/R Module failure correction in active phased array antenna system E&EE An Electrical & Electronic Engineering Journal E&EEJ, 1(1), 2016 [001-007] T/R Module failure correction in active phased array antenna system Rizwan H.Alad Department of Electronics & Communication,Faculty

More information

Neural Network Synthesis Beamforming Model For Adaptive Antenna Arrays

Neural Network Synthesis Beamforming Model For Adaptive Antenna Arrays Neural Network Synthesis Beamforming Model For Adaptive Antenna Arrays FADLALLAH Najib 1, RAMMAL Mohamad 2, Kobeissi Majed 1, VAUDON Patrick 1 IRCOM- Equipe Electromagnétisme 1 Limoges University 123,

More information

Adaptive Digital Beam Forming using LMS Algorithm

Adaptive Digital Beam Forming using LMS Algorithm IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 9, Issue 2, Ver. IV (Mar - Apr. 2014), PP 63-68 Adaptive Digital Beam Forming using LMS

More information

DESIGN OF PRINTED YAGI ANTENNA WITH ADDI- TIONAL DRIVEN ELEMENT FOR WLAN APPLICA- TIONS

DESIGN OF PRINTED YAGI ANTENNA WITH ADDI- TIONAL DRIVEN ELEMENT FOR WLAN APPLICA- TIONS Progress In Electromagnetics Research C, Vol. 37, 67 81, 013 DESIGN OF PRINTED YAGI ANTENNA WITH ADDI- TIONAL DRIVEN ELEMENT FOR WLAN APPLICA- TIONS Jafar R. Mohammed * Communication Engineering Department,

More information

Performance Study of A Non-Blind Algorithm for Smart Antenna System

Performance Study of A Non-Blind Algorithm for Smart Antenna System International Journal of Electronics and Communication Engineering. ISSN 0974-2166 Volume 5, Number 4 (2012), pp. 447-455 International Research Publication House http://www.irphouse.com Performance Study

More information

Performance Analysis of Differential Evolution Algorithm based Beamforming for Smart Antenna Systems

Performance Analysis of Differential Evolution Algorithm based Beamforming for Smart Antenna Systems I.J. Wireless and Microwave Technologies, 2014, 1, 1-9 Published Online January 2014 in MECS(http://www.mecs-press.net) DOI: 10.5815/ijwmt.2014.01.01 Available online at http://www.mecs-press.net/ijwmt

More information

ENHANCEMENT OF PHASED ARRAY SIZE AND RADIATION PROPERTIES USING STAGGERED ARRAY CONFIGURATIONS

ENHANCEMENT OF PHASED ARRAY SIZE AND RADIATION PROPERTIES USING STAGGERED ARRAY CONFIGURATIONS Progress In Electromagnetics Research C, Vol. 39, 49 6, 213 ENHANCEMENT OF PHASED ARRAY SIZE AND RADIATION PROPERTIES USING STAGGERED ARRAY CONFIGURATIONS Abdelnasser A. Eldek * Department of Computer

More information

Invasive Weed Optimization (IWO) Algorithm for Control of Nulls and Sidelobes in a Concentric Circular Antenna Array (CCAA)

Invasive Weed Optimization (IWO) Algorithm for Control of Nulls and Sidelobes in a Concentric Circular Antenna Array (CCAA) Invasive Weed Optimization (IWO) Algorithm for Control of Nulls and Sidelobes in a Concentric Circular Antenna Array (CCAA) Thotakura T. Ramakrishna Satish Raj M.TECH Student, Dept. of E.C.E, S.R.K.R Engineering

More information

Beamforming Techniques for Smart Antenna using Rectangular Array Structure

Beamforming Techniques for Smart Antenna using Rectangular Array Structure International Journal of Electrical and Computer Engineering (IJECE) Vol. 4, No. 2, April 2014, pp. 257~264 ISSN: 2088-8708 257 Beamforming Techniques for Smart Antenna using Rectangular Array Structure

More information

ONE of the most common and robust beamforming algorithms

ONE of the most common and robust beamforming algorithms TECHNICAL NOTE 1 Beamforming algorithms - beamformers Jørgen Grythe, Norsonic AS, Oslo, Norway Abstract Beamforming is the name given to a wide variety of array processing algorithms that focus or steer

More information

ADAPTIVE ANTENNAS. NARROW BAND AND WIDE BAND BEAMFORMING

ADAPTIVE ANTENNAS. NARROW BAND AND WIDE BAND BEAMFORMING ADAPTIVE ANTENNAS NARROW BAND AND WIDE BAND BEAMFORMING 1 1- Narrowband beamforming array An array operating with signals having a fractional bandwidth (FB) of less than 1% f FB ( f h h fl x100% f ) /

More information

Side Lobe Level Reduction in Circular Antenna Array Using DE Algorithm

Side Lobe Level Reduction in Circular Antenna Array Using DE Algorithm Side Lobe Level Reduction in Circular Antenna Array Using DE Algorithm S.Aruna 1, Varre Madhuri 2, YadlaSrinivasa Rao 2, Joann Tracy Gomes 2 1 Assistant Professor, Department of Electronics and Communication

More information

K.NARSING RAO(08R31A0425) DEPT OF ELECTRONICS & COMMUNICATION ENGINEERING (NOVH).

K.NARSING RAO(08R31A0425) DEPT OF ELECTRONICS & COMMUNICATION ENGINEERING (NOVH). Smart Antenna K.NARSING RAO(08R31A0425) DEPT OF ELECTRONICS & COMMUNICATION ENGINEERING (NOVH). ABSTRACT:- One of the most rapidly developing areas of communications is Smart Antenna systems. This paper

More information

Performance improvement in beamforming of Smart Antenna by using LMS algorithm

Performance improvement in beamforming of Smart Antenna by using LMS algorithm Performance improvement in beamforming of Smart Antenna by using LMS algorithm B. G. Hogade Jyoti Chougale-Patil Shrikant K.Bodhe Research scholar, Student, ME(ELX), Principal, SVKM S NMIMS,. Terna Engineering

More information

VLA CONFIGURATION STUDY - STATUS REPORT. February 27, 1968

VLA CONFIGURATION STUDY - STATUS REPORT. February 27, 1968 VLA CONFIGURATION STUDY - STATUS REPORT February 27, 1968 Summary of Work for the Period January 1967 - February 1968 The work done during the period under review can be divided into four categories: (i)

More information

Study the Behavioral Change in Adaptive Beamforming of Smart Antenna Array Using LMS and RLS Algorithms

Study the Behavioral Change in Adaptive Beamforming of Smart Antenna Array Using LMS and RLS Algorithms Study the Behavioral Change in Adaptive Beamforming of Smart Antenna Array Using LMS and RLS Algorithms Somnath Patra *1, Nisha Nandni #2, Abhishek Kumar Pandey #3,Sujeet Kumar #4 *1, #2, 3, 4 Department

More information

Chapter 5 OPTIMIZATION OF BOW TIE ANTENNA USING GENETIC ALGORITHM

Chapter 5 OPTIMIZATION OF BOW TIE ANTENNA USING GENETIC ALGORITHM Chapter 5 OPTIMIZATION OF BOW TIE ANTENNA USING GENETIC ALGORITHM 5.1 Introduction This chapter focuses on the use of an optimization technique known as genetic algorithm to optimize the dimensions of

More information

Chapter - 1 PART - A GENERAL INTRODUCTION

Chapter - 1 PART - A GENERAL INTRODUCTION Chapter - 1 PART - A GENERAL INTRODUCTION This chapter highlights the literature survey on the topic of resynthesis of array antennas stating the objective of the thesis and giving a brief idea on how

More information

Fundamentals of Radio Interferometry

Fundamentals of Radio Interferometry Fundamentals of Radio Interferometry Rick Perley, NRAO/Socorro Fourteenth NRAO Synthesis Imaging Summer School Socorro, NM Topics Why Interferometry? The Single Dish as an interferometer The Basic Interferometer

More information

Chapter 3 Broadside Twin Elements 3.1 Introduction

Chapter 3 Broadside Twin Elements 3.1 Introduction Chapter 3 Broadside Twin Elements 3. Introduction The focus of this chapter is on the use of planar, electrically thick grounded substrates for printed antennas. A serious problem with these substrates

More information

DESIGN OF FOLDED WIRE LOADED ANTENNAS USING BI-SWARM DIFFERENTIAL EVOLUTION

DESIGN OF FOLDED WIRE LOADED ANTENNAS USING BI-SWARM DIFFERENTIAL EVOLUTION Progress In Electromagnetics Research Letters, Vol. 24, 91 98, 2011 DESIGN OF FOLDED WIRE LOADED ANTENNAS USING BI-SWARM DIFFERENTIAL EVOLUTION J. Li 1, 2, * and Y. Y. Kyi 2 1 Northwestern Polytechnical

More information

Adaptive beamforming using pipelined transform domain filters

Adaptive beamforming using pipelined transform domain filters Adaptive beamforming using pipelined transform domain filters GEORGE-OTHON GLENTIS Technological Education Institute of Crete, Branch at Chania, Department of Electronics, 3, Romanou Str, Chalepa, 73133

More information

Adaptive Nulling Algorithm for Null Synthesis on the Moving Jammer Environment

Adaptive Nulling Algorithm for Null Synthesis on the Moving Jammer Environment THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 2016 Aug.; 27(8), 676683. http://dx.doi.org/10.5515/kjkiees.2016.27.8.676 ISSN 1226-3133 (Print)ISSN 2288-226X (Online) Adaptive

More information

Adaptive Array Beamforming using LMS Algorithm

Adaptive Array Beamforming using LMS Algorithm Adaptive Array Beamforming using LMS Algorithm S.C.Upadhyay ME (Digital System) MIT, Pune P. M. Mainkar Associate Professor MIT, Pune Abstract Array processing involves manipulation of signals induced

More information

ADAPTIVE BEAMFORMING USING LMS ALGORITHM

ADAPTIVE BEAMFORMING USING LMS ALGORITHM ADAPTIVE BEAMFORMING USING LMS ALGORITHM Revati Joshi 1, Ashwinikumar Dhande 2 1 Student, E&Tc Department, Pune Institute of Computer Technology, Maharashtra, India 2 Professor, E&Tc Department, Pune Institute

More information

Mainlobe jamming can pose problems

Mainlobe jamming can pose problems Design Feature DIANFEI PAN Doctoral Student NAIPING CHENG Professor YANSHAN BIAN Doctoral Student Department of Optical and Electrical Equipment, Academy of Equipment, Beijing, 111, China Method Eases

More information

Design of Rotman Lens Antenna at Ku-Band Based on Substrate Integrated Technology

Design of Rotman Lens Antenna at Ku-Band Based on Substrate Integrated Technology Journal of Communication Engineering, Vol. 3, No.1, Jan.- June 2014 33 Design of Rotman Lens Antenna at Ku-Band Based on Substrate Integrated Technology S. A. R. Hosseini, Z. H. Firouzeh and M. Maddahali

More information

A PLANT GROWTH SIMULATION ALGORITHM FOR PATTERN NULLING OF LINEAR ANTENNA ARRAYS BY AMPLITUDE CONTROL

A PLANT GROWTH SIMULATION ALGORITHM FOR PATTERN NULLING OF LINEAR ANTENNA ARRAYS BY AMPLITUDE CONTROL Progress In Electromagnetics Research B, Vol. 17, 69 84, 2009 A PLANT GROWTH SIMULATION ALGORITHM FOR PATTERN NULLING OF LINEAR ANTENNA ARRAYS BY AMPLITUDE CONTROL K. Guney Department of Electrical and

More information

Some Notes on Beamforming.

Some Notes on Beamforming. The Medicina IRA-SKA Engineering Group Some Notes on Beamforming. S. Montebugnoli, G. Bianchi, A. Cattani, F. Ghelfi, A. Maccaferri, F. Perini. IRA N. 353/04 1) Introduction: consideration on beamforming

More information

A COMPACT TRI-BAND ANTENNA DESIGN USING BOOLEAN DIFFERENTIAL EVOLUTION ALGORITHM. Xidian University, Xi an, Shaanxi , P. R.

A COMPACT TRI-BAND ANTENNA DESIGN USING BOOLEAN DIFFERENTIAL EVOLUTION ALGORITHM. Xidian University, Xi an, Shaanxi , P. R. Progress In Electromagnetics Research C, Vol. 32, 139 149, 2012 A COMPACT TRI-BAND ANTENNA DESIGN USING BOOLEAN DIFFERENTIAL EVOLUTION ALGORITHM D. Li 1, *, F.-S. Zhang 1, and J.-H. Ren 2 1 National Key

More information

Performance Analysis of LMS and NLMS Algorithms for a Smart Antenna System

Performance Analysis of LMS and NLMS Algorithms for a Smart Antenna System International Journal of Computer Applications (975 8887) Volume 4 No.9, August 21 Performance Analysis of LMS and NLMS Algorithms for a Smart Antenna System M. Yasin Research Scholar Dr. Pervez Akhtar

More information

UNIT-3. Ans: Arrays of two point sources with equal amplitude and opposite phase:

UNIT-3. Ans: Arrays of two point sources with equal amplitude and opposite phase: `` UNIT-3 1. Derive the field components and draw the field pattern for two point source with spacing of λ/2 and fed with current of equal n magnitude but out of phase by 180 0? Ans: Arrays of two point

More information

6 Uplink is from the mobile to the base station.

6 Uplink is from the mobile to the base station. It is well known that by using the directional properties of adaptive arrays, the interference from multiple users operating on the same channel as the desired user in a time division multiple access (TDMA)

More information

Antenna Beam Broadening in Multifunction Phased Array Radar

Antenna Beam Broadening in Multifunction Phased Array Radar Vol. 119 (2011) ACTA PHYSICA POLONICA A No. 4 Physical Aspects of Microwave and Radar Applications Antenna Beam Broadening in Multifunction Phased Array Radar R. Fatemi Mofrad and R.A. Sadeghzadeh Electrical

More information

Design of Sectoral Horn Antenna with Low Side Lobe Level (S.L.L)

Design of Sectoral Horn Antenna with Low Side Lobe Level (S.L.L) Volume 117 No. 9 2017, 89-93 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: 10.12732/ijpam.v117i9.16 ijpam.eu Design of Sectoral Horn Antenna with Low

More information

MIMO-OFDM adaptive array using short preamble signals

MIMO-OFDM adaptive array using short preamble signals MIMO-OFDM adaptive array using short preamble signals Kentaro Nishimori 1a), Takefumi Hiraguri 2, Ryochi Kataoka 1, and Hideo Makino 1 1 Graduate School of Science and Technology, Niigata University 8050

More information

The Genetic Algorithm

The Genetic Algorithm The Genetic Algorithm The Genetic Algorithm, (GA) is finding increasing applications in electromagnetics including antenna design. In this lesson we will learn about some of these techniques so you are

More information

Synthesis and Analysis of an Edge Feed and Planar Array Microstrip Patch Antenna at 1.8GHz

Synthesis and Analysis of an Edge Feed and Planar Array Microstrip Patch Antenna at 1.8GHz Synthesis and Analysis of an Edge Feed and Planar Array Microstrip Patch Antenna at 1.8GHz Neeraj Kumar Amity Institute of Telecom Engineering and Management, Amity University, Noida, India A. K. Thakur

More information

Wide and multi-band antenna design using the genetic algorithm to create amorphous shapes using ellipses

Wide and multi-band antenna design using the genetic algorithm to create amorphous shapes using ellipses Wide and multi-band antenna design using the genetic algorithm to create amorphous shapes using ellipses By Lance Griffiths, You Chung Chung, and Cynthia Furse ABSTRACT A method is demonstrated for generating

More information

Fundamentals of Radio Interferometry

Fundamentals of Radio Interferometry Fundamentals of Radio Interferometry Rick Perley, NRAO/Socorro ATNF Radio Astronomy School Narrabri, NSW 29 Sept. 03 Oct. 2014 Topics Introduction: Sensors, Antennas, Brightness, Power Quasi-Monochromatic

More information

Eigenvalues and Eigenvectors in Array Antennas. Optimization of Array Antennas for High Performance. Self-introduction

Eigenvalues and Eigenvectors in Array Antennas. Optimization of Array Antennas for High Performance. Self-introduction Short Course @ISAP2010 in MACAO Eigenvalues and Eigenvectors in Array Antennas Optimization of Array Antennas for High Performance Nobuyoshi Kikuma Nagoya Institute of Technology, Japan 1 Self-introduction

More information

A Planar Equiangular Spiral Antenna Array for the V-/W-Band

A Planar Equiangular Spiral Antenna Array for the V-/W-Band 207 th European Conference on Antennas and Propagation (EUCAP) A Planar Equiangular Spiral Antenna Array for the V-/W-Band Paul Tcheg, Kolawole D. Bello, David Pouhè Reutlingen University of Applied Sciences,

More information

Direction of Arrival Estimation in Smart Antenna for Marine Communication. Deepthy M Vijayan, Sreedevi K Menon /16/$31.

Direction of Arrival Estimation in Smart Antenna for Marine Communication. Deepthy M Vijayan, Sreedevi K Menon /16/$31. International Conference on Communication and Signal Processing, April 6-8, 2016, India Direction of Arrival Estimation in Smart Antenna for Marine Communication Deepthy M Vijayan, Sreedevi K Menon Abstract

More information

Tracking System using Fixed Beamwidth Electronics Scanning Haythem H. Abdullah, Hala A. Elsadek, and Hesham Eldeeb

Tracking System using Fixed Beamwidth Electronics Scanning Haythem H. Abdullah, Hala A. Elsadek, and Hesham Eldeeb International Journal of Engineering & Technology IJET-IJENS Vol:14 No:01 166 Tracking System using Fixed Beamwidth Electronics Scanning Haythem H. Abdullah, Hala A. Elsadek, and Hesham Eldeeb Abstract

More information

Analysis of LMS and NLMS Adaptive Beamforming Algorithms

Analysis of LMS and NLMS Adaptive Beamforming Algorithms Analysis of LMS and NLMS Adaptive Beamforming Algorithms PG Student.Minal. A. Nemade Dept. of Electronics Engg. Asst. Professor D. G. Ganage Dept. of E&TC Engg. Professor & Head M. B. Mali Dept. of E&TC

More information

MANY communication and sensing systems use vertically

MANY communication and sensing systems use vertically IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 60, NO. 10, OCTOBER 2012 4485 A Wideband, Low Profile, Shorted Top Hat Monocone Antenna Daniel W. Aten, Member,IEEE, and Randy L. Haupt, Fellow, IEEE

More information

Fixed Point Lms Adaptive Filter Using Partial Product Generator

Fixed Point Lms Adaptive Filter Using Partial Product Generator Fixed Point Lms Adaptive Filter Using Partial Product Generator Vidyamol S M.Tech Vlsi And Embedded System Ma College Of Engineering, Kothamangalam,India vidyas.saji@gmail.com Abstract The area and power

More information

Non-Uniform Concentric Circular Antenna Array Design Using IPSO Technique for Side Lobe Reduction

Non-Uniform Concentric Circular Antenna Array Design Using IPSO Technique for Side Lobe Reduction Available online at www.sciencedirect.com Procedia Technology 6 ( ) 856 863 Non-Uniform Concentric Circular Antenna Array Design Using IPSO Technique for Side Lobe Reduction Durbadal Mandal, Md. Asif Iqbal

More information

Broadband array antennas using a self-complementary antenna array and dielectric slabs

Broadband array antennas using a self-complementary antenna array and dielectric slabs Broadband array antennas using a self-complementary antenna array and dielectric slabs Gustafsson, Mats Published: 24-- Link to publication Citation for published version (APA): Gustafsson, M. (24). Broadband

More information

SECTOR SYNTHESIS OF ANTENNA ARRAY USING GENETIC ALGORITHM

SECTOR SYNTHESIS OF ANTENNA ARRAY USING GENETIC ALGORITHM 2005-2008 JATIT. All rights reserved. SECTOR SYNTHESIS OF ANTENNA ARRAY USING GENETIC ALGORITHM 1 Abdelaziz A. Abdelaziz and 2 Hanan A. Kamal 1 Assoc. Prof., Department of Electrical Engineering, Faculty

More information

Study of Different Adaptive Filter Algorithms for Noise Cancellation in Real-Time Environment

Study of Different Adaptive Filter Algorithms for Noise Cancellation in Real-Time Environment Study of Different Adaptive Filter Algorithms for Noise Cancellation in Real-Time Environment G.V.P.Chandra Sekhar Yadav Student, M.Tech, DECS Gudlavalleru Engineering College Gudlavalleru-521356, Krishna

More information

Microphone Array Feedback Suppression. for Indoor Room Acoustics

Microphone Array Feedback Suppression. for Indoor Room Acoustics Microphone Array Feedback Suppression for Indoor Room Acoustics by Tanmay Prakash Advisor: Dr. Jeffrey Krolik Department of Electrical and Computer Engineering Duke University 1 Abstract The objective

More information

CLAUDIO TALARICO Department of Electrical and Computer Engineering Gonzaga University Spokane, WA ITALY

CLAUDIO TALARICO Department of Electrical and Computer Engineering Gonzaga University Spokane, WA ITALY Comprehensive study on the role of the phase distribution on the performances of the phased arrays systems based on a behavior mathematical model GIUSEPPE COVIELLO, GIANFRANCO AVITABILE, GIOVANNI PICCINNI,

More information

Abstract. Marío A. Bedoya-Martinez. He joined Fujitsu Europe Telecom R&D Centre (UK), where he has been working on R&D of Second-and

Abstract. Marío A. Bedoya-Martinez. He joined Fujitsu Europe Telecom R&D Centre (UK), where he has been working on R&D of Second-and Abstract The adaptive antenna array is one of the advanced techniques which could be implemented in the IMT-2 mobile telecommunications systems to achieve high system capacity. In this paper, an integrated

More information

G. A. Jafarabadi Department of Electronic and Telecommunication Bagher-Aloloom Research Institute Tehran, Iran

G. A. Jafarabadi Department of Electronic and Telecommunication Bagher-Aloloom Research Institute Tehran, Iran Progress In Electromagnetics Research Letters, Vol. 14, 31 40, 2010 DESIGN OF MODIFIED MICROSTRIP COMBLINE ARRAY ANTENNA FOR AVIONIC APPLICATION A. Pirhadi Faculty of Electrical and Computer Engineering

More information

3D radar imaging based on frequency-scanned antenna

3D radar imaging based on frequency-scanned antenna LETTER IEICE Electronics Express, Vol.14, No.12, 1 10 3D radar imaging based on frequency-scanned antenna Sun Zhan-shan a), Ren Ke, Chen Qiang, Bai Jia-jun, and Fu Yun-qi College of Electronic Science

More information

Smart Antenna of Aperiodic Array in Mobile Network

Smart Antenna of Aperiodic Array in Mobile Network IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 08, Issue 4 (April. 2018), VII PP 66-70 www.iosrjen.org Smart Antenna of Aperiodic Array in Mobile Network Pooja Raj,

More information

LINEAR ANTENNA ARRAY DESIGN WITH USE OF GENETIC, MEMETIC AND TABU SEARCH OPTIMIZATION ALGORITHMS

LINEAR ANTENNA ARRAY DESIGN WITH USE OF GENETIC, MEMETIC AND TABU SEARCH OPTIMIZATION ALGORITHMS Progress In Electromagnetics Research C, Vol. 1, 63 72, 2008 LINEAR ANTENNA ARRAY DESIGN WITH USE OF GENETIC, MEMETIC AND TABU SEARCH OPTIMIZATION ALGORITHMS Y. Cengiz and H. Tokat Department of Electronic

More information

Keysight Technologies Pulsed Antenna Measurements Using PNA Network Analyzers

Keysight Technologies Pulsed Antenna Measurements Using PNA Network Analyzers Keysight Technologies Pulsed Antenna Measurements Using PNA Network Analyzers White Paper Abstract This paper presents advances in the instrumentation techniques that can be used for the measurement and

More information

Performance Analysis of MUSIC and MVDR DOA Estimation Algorithm

Performance Analysis of MUSIC and MVDR DOA Estimation Algorithm Volume-8, Issue-2, April 2018 International Journal of Engineering and Management Research Page Number: 50-55 Performance Analysis of MUSIC and MVDR DOA Estimation Algorithm Bhupenmewada 1, Prof. Kamal

More information

Design of Non-Uniform Circular Arrays for Side lobe Reduction Using Real Coded Genetic Algorithm

Design of Non-Uniform Circular Arrays for Side lobe Reduction Using Real Coded Genetic Algorithm Design of Non-Uniform Circular Arrays for Side lobe Reduction Using Real Coded Genetic Algorithm M.Nirmala, Dr.K.Murali Krishna Assistant Professor, Dept. of ECE, Anil Neerukonda Institute of Technology

More information

Title. Author(s) Itoh, Keiichi; Miyata, Katsumasa; Igarashi, Ha. Citation IEEE Transactions on Magnetics, 48(2): Issue Date

Title. Author(s) Itoh, Keiichi; Miyata, Katsumasa; Igarashi, Ha. Citation IEEE Transactions on Magnetics, 48(2): Issue Date Title Evolutional Design of Waveguide Slot Antenna W Author(s) Itoh, Keiichi; Miyata, Katsumasa; Igarashi, Ha Citation IEEE Transactions on Magnetics, 48(2): 779-782 Issue Date 212-2 Doc URLhttp://hdl.handle.net/2115/4839

More information

DESIGN OF WIDEBAND TRIANGLE SLOT ANTENNAS WITH TUNING STUB

DESIGN OF WIDEBAND TRIANGLE SLOT ANTENNAS WITH TUNING STUB Progress In Electromagnetics Research, PIER 48, 233 248, 2004 DESIGN OF WIDEBAND TRIANGLE SLOT ANTENNAS WITH TUNING STUB A. A. Eldek, A. Z. Elsherbeni, and C. E. Smith Department of Electrical Engineering

More information

Innovative Approach Architecture Designed For Realizing Fixed Point Least Mean Square Adaptive Filter with Less Adaptation Delay

Innovative Approach Architecture Designed For Realizing Fixed Point Least Mean Square Adaptive Filter with Less Adaptation Delay Innovative Approach Architecture Designed For Realizing Fixed Point Least Mean Square Adaptive Filter with Less Adaptation Delay D.Durgaprasad Department of ECE, Swarnandhra College of Engineering & Technology,

More information

Evolutionary Optimization for the Channel Assignment Problem in Wireless Mobile Network

Evolutionary Optimization for the Channel Assignment Problem in Wireless Mobile Network (649 -- 917) Evolutionary Optimization for the Channel Assignment Problem in Wireless Mobile Network Y.S. Chia, Z.W. Siew, S.S. Yang, H.T. Yew, K.T.K. Teo Modelling, Simulation and Computing Laboratory

More information

A NOVEL DIGITAL BEAMFORMER WITH LOW ANGLE RESOLUTION FOR VEHICLE TRACKING RADAR

A NOVEL DIGITAL BEAMFORMER WITH LOW ANGLE RESOLUTION FOR VEHICLE TRACKING RADAR Progress In Electromagnetics Research, PIER 66, 229 237, 2006 A NOVEL DIGITAL BEAMFORMER WITH LOW ANGLE RESOLUTION FOR VEHICLE TRACKING RADAR A. Kr. Singh, P. Kumar, T. Chakravarty, G. Singh and S. Bhooshan

More information

Compensation for the Effects of Mutual Coupling on Direct Data Domain Adaptive Algorithms

Compensation for the Effects of Mutual Coupling on Direct Data Domain Adaptive Algorithms 86 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL 48, NO 1, JANUARY 2000 Compensation for the Effects of Mutual Coupling on Direct Data Domain Adaptive Algorithms Raviraj S Adve, Member, IEEE, and

More information

Circularly Polarized Post-wall Waveguide Slotted Arrays

Circularly Polarized Post-wall Waveguide Slotted Arrays Circularly Polarized Post-wall Waveguide Slotted Arrays Hisahiro Kai, 1a) Jiro Hirokawa, 1 and Makoto Ando 1 1 Department of Electrical and Electric Engineering, Tokyo Institute of Technology 2-12-1 Ookayama

More information

Prognostic Optimization of Phased Array Antenna for Self-Healing

Prognostic Optimization of Phased Array Antenna for Self-Healing Prognostic Optimization of Phased Array Antenna for Self-Healing David Allen 1 1 HRL Laboratories, LLC, Malibu, CA, 90265, USA dlallen@hrl.com ABSTRACT Phased array antennas are widely used in many applications

More information

Small and Low Side Lobe Beam-forming Antenna Composed of Narrow Spaced Patch Antennas for Wireless Sensor Networks

Small and Low Side Lobe Beam-forming Antenna Composed of Narrow Spaced Patch Antennas for Wireless Sensor Networks SENSORCOMM 214 : The Eighth International Conference on Sensor Technologies and Applications Small and Low Side Lobe Beam-forming Antenna Composed of Narrow Spaced Patch Antennas for Wireless Sensor Networks

More information

Effects on phased arrays radiation pattern due to phase error distribution in the phase shifter operation

Effects on phased arrays radiation pattern due to phase error distribution in the phase shifter operation Effects on phased arrays radiation pattern due to phase error distribution in the phase shifter operation Giuseppe Coviello 1,a, Gianfranco Avitabile 1,Giovanni Piccinni 1, Giulio D Amato 1, Claudio Talarico

More information

[Sukumar, 5(3): July-September, 2015] ISSN: Impact Factor: 3.145

[Sukumar, 5(3): July-September, 2015] ISSN: Impact Factor: 3.145 INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & MANAGEMENT REDUCED IN SIDE LOBE LEVEL (SLL) USING GENETIC ALGORITHM OF SMART ANTENNA SYSTEM Harish Sukumar 1, Sanjeev Kumar 2 Department of Electronics and

More information

Smart antenna for doa using music and esprit

Smart antenna for doa using music and esprit IOSR Journal of Electronics and Communication Engineering (IOSRJECE) ISSN : 2278-2834 Volume 1, Issue 1 (May-June 2012), PP 12-17 Smart antenna for doa using music and esprit SURAYA MUBEEN 1, DR.A.M.PRASAD

More information

DIGITAL FILTERING OF MULTIPLE ANALOG CHANNELS

DIGITAL FILTERING OF MULTIPLE ANALOG CHANNELS DIGITAL FILTERING OF MULTIPLE ANALOG CHANNELS Item Type text; Proceedings Authors Hicks, William T. Publisher International Foundation for Telemetering Journal International Telemetering Conference Proceedings

More information

Mutual Coupling Reduction in Two- Dimensional Array of Microstrip Antennas Using Concave Rectangular Patches

Mutual Coupling Reduction in Two- Dimensional Array of Microstrip Antennas Using Concave Rectangular Patches Mutual Coupling Reduction in Two- Dimensional Array of Microstrip Antennas Using Concave Rectangular Patches 64 Shahram Mohanna, Ali Farahbakhsh, and Saeed Tavakoli Abstract Using concave rectangular patches,

More information

FAQs on AESAs and Highly-Integrated Silicon ICs page 1

FAQs on AESAs and Highly-Integrated Silicon ICs page 1 Frequently Asked Questions on AESAs and Highly-Integrated Silicon ICs What is an AESA? An AESA is an Active Electronically Scanned Antenna, also known as a phased array antenna. As defined by Robert Mailloux,

More information