Frozen wave generation of bandwidth-tunable two-cycle THz radiation

Size: px
Start display at page:

Download "Frozen wave generation of bandwidth-tunable two-cycle THz radiation"

Transcription

1 Holzman et al. Vol. 17, No. 8/August 2000/J. Opt. Soc. Am. B 1457 Frozen wave generation of bandwidth-tunable two-cycle THz radiation Jonathan F. Holzman, Fred E. Vermeulen, and Abdul Y. Elezzabi Ultrafast Photonics Laboratory, Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, T6G 2G7, Canada Received January 3, 2000 We report on the application of a photoconductive frozen wave generator (FWG) for the generation of 0.36-THz radiation. Through the excitation of a bipolar photoconductive array, a two-cycle THz electrical transient is created. The THz electrical transient occurs on a time scale much shorter than the carrier lifetime in the semiconductor. Furthermore, variations in the uniformity of the optical excitation intensity across the photoconductive array introduce a controlled THz temporal chirp, thus providing for fine bandwidth tunability of the device. Modeling of the FWG is successful in describing both the time variation and the amplitude spectrum of the photogenerated THz radiation Optical Society of America [S (00) ] OCIS codes: , , , INTRODUCTION With recent advances in the application of ultrashort laser pulses to optoelectronics, a new ultrahigh-frequency electromagnetic frontier ranging from 0.1 to 10 THz is being explored. Ultrashort THz pulses are currently being investigated for applications including inter- and intrachip communication, 1 spectroscopy and chemical identification, 2 6 miniature impulse radar, 7,8 and imaging. 9,10 A wide variety of techniques have been proposed and demonstrated in the generation, propagation, and detection of this freely propagating THz radiation. Although certain generation techniques exploit nonlinear interactions, such as photomixing in semiconductors 11,12 and optical rectification in electro-optic materials, 13 the most common approach to generate ultrashort THz pulses employs the excitation of a Hertzian dipole source that has an ultrafast time dependence and a length smaller than the radiated THz wavelengths. In such a technique, an ultrashort laser pulse photoconductively shorts a charged coplanar transmission line to produce an ultrashort THz pulse. Although it is possible to generate THz radiation with long lifetime substrates by edge illuminating 18,19 a coplanar transmission line and exploiting the depletion field at the metal semiconductor interface to accelerate the carriers, the amplitude of the generated THz radiation is relatively weak compared with that of the radiation generated by electrically biased Hertzian dipoles. In this paper we report on the application of an optoelectronic technique for the generation of tunable THz radiation. Our approach employs the concept of frozen wave generation in the formation of ultrahighfrequency radiation. Operation of our device is independent of the semiconductor substrate carrier lifetime as long as the carrier lifetime, c, is longer than both the transit time of the waveform across the frozen wave generator (FWG) segments and the discharge time of the photoconductive switches. The concept of the photoconductively excited frozen wave generator (PC-FWG) as a potential dc-to-rf converter was first demonstrated by Proud and Norman 20 as an alternative to the existing electronically driven or spark-gap-switched FWG modules. 21,22 These authors activated three sequential silicon photoconductive switches (Auston switches) with a 10-ns excitation laser pulse to produce a two-cycle waveform with a bandwidth of 100 MHz. Lee, 23 by using a similar experimental arrangement and a shorter laser pulse duration of 1 ps, later demonstrated a two-and-onehalf-cycle waveform with a bandwidth of 200 MHz. Since optically activated FWG s offer low jitter and high switching efficiency, the potential exists for these devices to operate at even larger bandwidths. Thaxter and Bell 24 successfully demonstrated a two-and-one-half-cycle device that produced a 6-GHz pulse train. Interestingly, all the previously reported FWG devices have bandwidths in the MHz to GHz range, are operated as singlefrequency generators, are cumbersome in size, and require a relatively high energy per pulse to close the photoconductive switches. In these devices, the maximum bandwidth is limited by two factors: the rise time of the switches and the inherent propagation delay between the sequential photoconductive switches that is due to cable interconnections. Thus to tune the waveform duration (or bandwidth), one must physically modify the length of the cable interconnecting the photoconductive switches. Although this approach might be simple for GHz devices, it proves to be a challenge at higher bandwidths (THz) at which the delay-line lengths require monolithic integration. Device tuning in this high-frequency regime is therefore extremely difficult, as the dimensions of the interconnections are only a few hundred micrometers in length. The principal objectives of our work are to demonstrate the operation of a THz FWG and to describe a temporalchirping mechanism for bandwidth tuning of the THz radiation. To our knowledge, the demonstration of an /2000/ $ Optical Society of America

2 1458 J. Opt. Soc. Am. B/ Vol. 17, No. 8/ August 2000 Holzman et al. ultrahigh-bandwidth, temporally chirped FWG has not been reported in the literature. The free-space characteristics of the FWG THz radiation are demonstrated as well, through transmission and reception of these THz radiation pulses by resonantly coupled integrated planar dipole antennas. For a propagation distance within the near-field regime, it is found that the received signal accurately replicates the transmitted signal. 2. EXPERIMENTAL ARRANGEMENT The experimental arrangement for the generation and detection of the THz radiation is shown schematically in Fig. 1. The FWG microcircuit and the integrated dipoles are fabricated by use of standard photolithographic techniques on a 600- m-thick semi-insulating ( 10 7 cm) GaAs substrate. Onto the substrate Ti and Au metallization is performed, with respective thicknesses of 50 and 150 nm. The FWG microcircuit comprises four 20- mwide bias electrodes, each separated by 30 m. The four FWG electrode segments are biased to 10 V and 10 V, with their alternative polarities arranged in the manner depicted in Fig. 1. The coplanar transmission line, which is responsible for propagating the ultrafast electrical signal from the FWG to the integrated antenna pair, is fabricated by use of two 20- m-wide conductors separated by 20 m. Both the FWG coplanar transmission line and the receiver coplanar transmission line are terminated by identical dipole antennas, separated by 400 m. The planar dipole antennas are patterned with 20- m-wide conductors with an overall length of 160 m. Such an antenna length corresponds, approximately, to a halfwave resonance at 0.35 THz, taking into account the dielectric loading of the GaAs on the antenna. 26,27 The transmitting dipole is driven by the FWG waveform propagating on the coplanar transmission line, whereas the receiving dipole antenna is driven by the freely propagating THz electric field waveform that is polarized parallel to the receiving dipole antenna. A standard pump probe experimental arrangement is incorporated for the generation and detection of the THz radiation. The pump and probe pulses are delivered by Fig. 1. Pump probe experimental arrangement for the FWG, the dipole transmitter and dipole receiver, and the LiTaO 3 electro-optic transducer. an 8-fs, 80-MHz, 800-nm Ti:sapphire laser. The pump beam, with an average power of 100 mw, illuminates all the photoconductive gaps in the FWG. Through the creation of effective short circuits between the four bias electrodes, a bipolar two-cycle voltage transient is launched on the coplanar transmission line. The probe beam, with an average power of 20 mw, is delivered, by means of a 20 microscope objective and a total-internal-reflection mount, to a 20- m-thick LiTaO 3 electro-optic crystal transducer positioned over the coplanar transmission line 28 at a distance of 400 m from the nearest end of the FWG. By means of scanning through the temporal delay between the pump pulses and probe pulses and monitoring the polarization rotation of the probe beam, a time-domain representation of the electrical signal on the coplanar transmission line is constructed. To achieve noise reduction, high-frequency (3 MHz) electrical signal mixing 29 and differential lock-in detection techniques are incorporated into the biasing arrangement of the electrodes. Rather than biasing the electrodes of the FWG with dc voltages of alternating polarity, a 3-MHz signal is applied where a phase shift of 180 exists between adjacent FWG electrodes. 3. TERAHERTZ FROZEN WAVE GENERATION Electro-optic sampling at location A yields the temporal shape of the electrical waveform generated by the FWG. Excitation of the generator is carried out by the pump pulse, which is carefully focused to achieve a nearuniform intensity across all the FWG photoconductive gaps. The time-domain waveform measured is shown in Fig. 2(a). The figure shows four prominent voltage peaks of alternating polarity, spanning a time interval of 6.4 ps. The amplitude of these voltage peaks decreases steadily with time such that the second positive peak amplitude is 35% of the first positive peak amplitude. The decaying amplitude is due to multiple electrical reflections from the impedance mismatch between the transmission line segments and the photoexcited gaps as the pulse train propagates through the FWG segments. Portions of the voltage waveform that are generated furthest from the point of sampling will undergo the largest number of reflections and therefore suffer the greatest attenuation. 26 The detected signal of Fig. 2(a) shows two voltage cycles, both with a period of 3.2 ps. Since the 0.31-THz central frequency associated with this period is generated in a spatially periodic structure, of which a significant length (60%) consists of an optically generated plasma, the corresponding wavelength is expected to differ significantly from that of a standard dielectric-loaded transmission line. With an effective dielectric constant of 12.0 and a wavelength of 100 m (corresponding to one spatial period of bipolar electrode arrangement), standard dielectric-loaded transmission line analysis 24 would suggest that the full-wave period is approximately 1 ps, corresponding to a central frequency of 1 THz. The large difference between this predicted period and the measured period in Fig. 2(a) makes clear that this array of photoconductive switches acts very differently from a standard transmission line of similar dimensions. The

3 Holzman et al. Vol. 17, No. 8/August 2000/J. Opt. Soc. Am. B 1459 Fig. 2. (a) Time-domain waveform of the THz electrical signal measured at point A for the case of uniform excitation of the FWG gaps. (b) Spectral intensity of the electrical signal showing both the experimental curve (circles) and the calculated curve (solid curve) for T 0 s/m. Fig. 3. Equivalent circuit representation of a single photoconductive switch consisting of a time-dependent conductance, G(t), parallel with a gap capacitance, C. spectral intensity of the time-domain signal produced under uniform illumination of the FWG is shown in Fig. 2(b). The peak-frequency response of this two-cycle voltage waveform is f THz, while the full width halfmaximum (FWHM) of the spectral intensity is 0.20 THz. The time-varying conduction current and displacement current within an individual photoconductive gap of the FWG can be modeled by the parallel combination of a conductor and a capacitor, since the dimensions of each switch are much smaller than the wavelengths in the generated current pulse. 30,31 This circuit model is shown in Fig. 3, where Z 0 is the characteristic line impedance of the device, G(t) is the time-varying conductance of the photoconductive switch, C is the capacitance of the photoconductive switch, and q(t) is the time-varying charge stored in the gap. After the illumination of the photoconductive switch, the time-varying voltage that exists on the transmission line can be analyzed in terms of three propagating voltage transients as shown in Fig. 3: v i (t) is the incident voltage waveform, v r (t) is the reflected voltage waveform, and v t (t) is the transmitted voltage waveform. 30,31 In treating each gap as an independent element, it is assumed that the rise time of each switch is less than the time required for reflected voltage transients to return from adjacent gaps. As is evident from Fig. 2(a), the 1-ps rise time inherent to each gap is, in fact, less than the 2 ps required for a reflected voltage transient to return from an adjacent electrode, and hence, the reflected waveforms do not interfere with the generation process. On optical excitation, the conductance across each gap increases rapidly. For an excitation pulse of duration much less than the response time of the circuit, as is the case in our experiment, one can model the conductance of each photoconductive switch as a step response in which 0; t 0 G t G; t 0. (1) At the same time, the parallel capacitors discharge, and a voltage waveform is created at the output of the FWG. The speed with which this process occurs is limited by the interaction of these internal circuit elements with the external transmission line. The transmitted voltage waveforms, v t (t), is related to the circuit elements by v t t V b 2Z 0 G Z 0 G exp, t (2) where the rise time of the voltage waveform is limited by the time constant 2Z 0C 1 2Z 0 G, (3) and V b is the initial bias voltage across the photoconductive gap. 31 An interesting relationship is seen to exist between the exponential time constant in Eq. (3) and the gap conductance G, where the conductance can be related to the incident intensity, I, through G w eff e d I. (4) lh Here w is the width of the gap, l is the length of the gap, eff is the effective mobility of GaAs, is the frequency of the optical pulse, d is the pulse duration, e is the electronic charge, and h is Planck s constant. For low levels of photoinjection, G is small, suggesting an electrical time constant of 2Z 0 C. As the level of excitation is increased, however, the conductance across the gap increases and the time constant of the transmitted signal decreases significantly. Owing to this relationship, the electrical response time of the photoconductive gap can be increased or decreased, simply by adjusting the level of photogenerated carrier density within the gap. 30,31

4 1460 J. Opt. Soc. Am. B/ Vol. 17, No. 8/ August 2000 Holzman et al. The dependence of the electrical response time of the photoconductive gaps in the FWG on the incident pump intensity can be exploited as a frequency control mechanism for the photogenerated THz signal. By illuminating the photoconductive gaps of the entire FWG with a pulse intensity that gradually increases or decreases along the length of the structure, a variation in the rise times of the voltage waveforms generated at each gap can be introduced. This effect broadens the spectral intensity of the generated electrical waveforms. This scenario is investigated by focusing the pump beam into an elliptical pattern of large eccentricity and positioning the FWG onto a side lobe of the Gaussian beam profile to approximate a linearly varying intensity along the length of the structure. The results obtained are shown in Fig. 4(a), in which the photoconductive gap furthest from the point of sampling receives the greatest level of excitation. The variation in the rise time across the electrical waveform is readily apparent from this time-domain signal, as the temporal period of each successive peak is seen to decrease in time. The spectral intensity curve of Fig. 4(b) illustrates this point in the frequency domain where, by introducing a variation in the periods of the waveforms in the time domain, we have in effect broadened the spectrum of the electrical waveform. For the present case of nonuniform linear illumination, the central frequency has increased to f THz and the power spectral density FWHM has increased significantly to 0.36 THz. To gain further understanding of the relationship between the uniformity of illumination and the electrical response of the FWG, a model of the experimentally observed time-domain signals is developed. Taking the intensity that illuminates the FWG to be in fact linear, the intensity distribution is described by I x I 0 I x, (5) where the term I 0 is the intensity that is incident on the photoconductive gap closest to the point of sampling, I is the intensity linearization constant, and x describes the spatial dimension across the FWG, as shown in Fig. 1. Through Eq. (4), it is apparent that this linear intensity distribution across the FWG will manifest itself as a linear variation in conductance in which G x w eff e d I 0 I x. (6) lh The conductance distribution function of Eq. (6) can be linked to the rise time through Eq. (3). On expansion of the resulting equation, for I x I 0, it is found that the rise time across the device varies as where 0 T 0 T x, (7) 2Z 0 Clh lh 2Z 0 w eff e d I 0, (8) 4Z 0 2 Clh w eff e d I lh 2Z 0 w eff e d I 0 2. (9) Fig. 4. (a) Time-domain waveform of the THz electrical signal measured at point A for the case of nonuniform excitation of the FWG gaps. (b) Spectral intensity of the electrical signal showing both the experimental curve (circles) and the calculated curve (solid curve) for T s/m. Indeed, the broadening of the spectral intensity curve in Fig. 4(b), relative to that of Fig. 2(b), is a result of this linear variation in the electrical rise time. The circuit response slows with decreasing x along the length of the FWG and a linear chirp in the temporal period is introduced. To illustrate this point further and to obtain a value of the chirp parameter, T, the experimental FWG pulse trains for both uniform and nonuniform excitations are fitted to two-cycle THz waveforms of exponentially decaying amplitude and, in the case of nonuniform illumination, a linear distribution of rise times across the device. The calculated Fourier transforms for uniform and nonuniform illumination are shown as solid curves in Figs. 2(b) and 4(b), respectively, and are found to fit the corresponding experimental data well. The bandwidth broadening that is due to nonuniform illumination, as shown in Fig. 4(b), is accurately obtained from the case of uniform illumination, depicted in Fig. 2(b), with the introduction of a linear variation in the electrical rise time, where ps and T s/m provide the best fit between the calculated and the experimental results. Indeed, the larger the amount of period chirping, the wider the bandwidth of the THz signal. This rise-time-induced chirping mechanism can be used to fine tune the bandwidth of the THz radiation.

5 Holzman et al. Vol. 17, No. 8/August 2000/J. Opt. Soc. Am. B FREE-SPACE THz PROPAGATION The FWG generates THz electrical transients on the transmission line, and a method is required to launch these transients to make them useful for applications. The free-space propagation characteristics of the THz electrical signal are investigated through the use of integrated planar dipole antennas for the transmitter and the receiver, as shown in Fig. 1. The electrical waveform generated by the FWG under nonuniform illumination, as shown in Fig. 4(a), is fed to the dipole transmitter, and electro-optic sampling is performed on the coplanar transmission line at position B. The time-domain waveform measured is shown in Fig. 5(a). The time scale for this figure is adjusted so that the zero time correlates with the time at which the electrical signal arrives at the transmitting dipole. Though several features are evident, the most prominent characteristic of the waveform is the twocycle bipolar THz oscillation commencing at 15 ps. This time interval corresponds to the time it takes the THz radiation pattern to reflect off the back side of the GaAs substrate and be picked up again by the receiver, an effect similar to that observed by McGowan and Grischkowsky. 1 For a 600- m-thick substrate and a transmitter receiver separation of 400 m, this propagation distance is in the near-field regime. The similarity between the transmitted signal of Fig. 4(a) and the close-up of the THz oscillation in Fig. 5(b) confirms this point, as the received signal is simply a scaled replica of the transmitted signal. An important point related to the fact that the integrated dipole pair is operated both in a near-field regime and in a dielectric half-space, is that near-field surface pulses can propagate directly from the transmitter to the receiver both in the air and through the GaAs substrate. This effect manifests itself as the superposition of two signals at the receiver, one corresponding to propagation through the air and the other through the substrate. These artifacts are clearly shown in Fig. 5(a). At a time of 1.3 ps the first pulse, corresponding to propagation through the air, arrives after traveling the 400 m from the transmitter to the receiver. The propagation time of 1.3 ps for this direct pattern is clearly evident in the timedomain signal of Fig. 5(a), where a waveform is seen to commence at this moment. At a later time (4.8 ps), this signal is superimposed with the direct-wave pattern corresponding to propagation through the GaAs substrate. The resonance response of the dipole transmitter and receiver can be illustrated through a half-wave resonance approach, incorporating the loading of the dielectric halfspace. The free-space half-wave resonance frequency of the dipole, f r 0.92 THz, is modified by the dielectric constant of the GaAs substrate, 12.8, to give an effective half-wave resonance frequency of f eff 0.35 THz for 0.36 THz. The power spectrum of the signal measured at the dipole receiver is shown in Fig. 5(c) and is found to peak at a frequency of f THz. Though the frequency response of the received waveform is similar in form to the frequency response of the transmitted f eff f r / eff, (10) where the effective dielectric constant, eff is eff 1 /2. (11) The dipole length is therefore well suited for the transmitted signal of Fig. 4(b), which is centered at f 0 Fig. 5. (a) Time-domain waveform of the THz electrical signal measured at point B for the case of nonuniform excitation of the FWG gaps. (b) Expanded view of the near-field pattern measured at point B. (c) Spectral intensity of the electrical signal in (b).

6 1462 J. Opt. Soc. Am. B/ Vol. 17, No. 8/ August 2000 Holzman et al. waveform, the peak value is shifted downward by 50 GHz, indicating that the dipole resonance occurs at a value lower than predicted. This downward shift in the resonant frequency has been observed in other center-fed dipole investigations (as opposed to end-fed dipoles for which little resonant frequency shifting is observed) CONCLUSION In conclusion, we have reported on a method for the generation of THz radiation. The high-frequency response of the photogenerated THz radiation is found to depend on both the device dimensions and the illumination uniformity. The FWG allows for the creation of two-cycle radiation in which the central frequency and the spectral bandwidth are tunable through variations in the laser pump-beam uniformity. The free-space propagation characteristics of the FWG THz radiation are demonstrated through the use of resonantly coupled planar dipole antennas. The generation method of the waveform can be described with a model that involves a linear risetime chirp of the waveform train. Indeed, by increasing the number of the photoconductive switches in the FWG, it is possible to achieve narrower bandwidth THz radiation. This task can be accomplished by the use of an injection-fwg that does not suffer from multiple electrical reflections from the impedance mismatch between the transmission line segments and the photoexcited gaps. This new FWG configuration is currently being investigated. ACKNOWLEDGMENTS This study is supported by the Natural Sciences and Engineering Research Council of Canada, province of Alberta Intellectual Infrastructure Partnership Program, and the Canadian Foundation for Innovations. The corresponding author, F. E. Vermeulen, can be reached at the address on the title page, by telephone at , by fax at , or by at vermeulen@ee.ualberta.ca. The other authors can be reached at the address on the title page or by telephone at REFERENCES 1. R. W. McGowan and D. Grischkowsky, Experimental timedomain study of THz signals from impulse excitation of a horizontal surface dipole, Appl. Phys. Lett. 74, (1999). 2. L. Thrane, R. H. Jacobsen, P. Uhd Jepsen, and S. R. Keiding, THz reflection spectroscopy of liquid water, Chem. Phys. Lett. 240, (1995). 3. B. B. Hu, E. A. De Souza, W. H. Knox, J. E. Cunningham, M. C. Nuss, A. V. Kuznetsov, and S. L. Chuang, Identifying the distinct phases of carrier transport in semiconductors with 10 fs resolution, Phys. Rev. Lett. 74, (1995). 4. N. Katzenellenbogen and D. Grischkowsky, Electrical characterization to 4 THz of n- and p-type GaAs using THz time-domain spectroscopy, Appl. Phys. Lett. 61, (1992). 5. D. Grischkowsky, S. R. Keiding, M. van Exter, and Ch. Fatinger, Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors, J. Opt. Soc. Am. B 7, (1990). 6. M. van Exter and D. Grischkowsky, Optical and electronic properties of doped silicon from 0.1 to 2 THz, Appl. Phys. Lett. 56, (1990). 7. R. A. Cheville and D. Grischkowsky, Time domain terahertz impulse ranging studies, Appl. Phys. Lett. 67, (1995). 8. R. W. McGowan and D. Grischkowsky, Direct observation of Gouy phase shift in THz impulse ranging, Appl. Phys. Lett. 76, (2000). 9. D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, T-ray imaging, IEEE J. Sel. Top. Quantum Electron. 2, (1996). 10. B. B. Hu and M. C. Nuss, Imaging with terahertz waves, Opt. Lett. 20, (1995). 11. K. A. McIntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. DiNatale, and T. M. Lyszczara, Terahertz measurements of resonant planar antennas coupled to lowtemperature-grown GaAs photomixers, Appl. Phys. Lett. 69, (1996). 12. S. Matsuura, M. Tani, and K. Sakai, Generation of coherent radiation by photomixing in dipole photoconductive antennas, Appl. Phys. Lett. 70, (1997). 13. A. Nahata and T. F. Heinz, Generation of subpicosecond electrical pulses by optical rectification, Opt. Lett. 23, (1998). 14. P. Uhd Jepsen, R. H. Jacobsen, and S. R. Keiding, Generation and detection of terahertz pulses from biased semiconductor antennas, J. Opt. Soc. Am. B 13, (1996). 15. R. K. Lai, J. Hwang, T. B. Norris, and J. F. Whitaker, A photoconductive, miniature terahertz source, Appl. Phys. Lett. 72, (1998). 16. C. W. Siders, J. L. W. Siders, A. J. Taylor, S. G. Park, M. R. Melloch, and A. M. Weiner, Generation and characterization of terahertz pulse trains from biased, large-aperture photoconductors, Opt. Lett. 24, (1999). 17. X.-C. Zhang and D. H. Auston, Optically induced THz electromagnetic radiation from planar photoconducting structures, J. Electromagn. Waves Appl. 6, (1992). 18. F. G. Sun, G. A. Wagoner, and X.-C. Zhang, Measurement of free-space terahertz pulses via long-lifetime photoconductors, Appl. Phys. Lett. 67, (1995). 19. C. Wang, M. Currie, R. Sobolewski, and T. Y. Hsiang, Subpicosecond electrical pulse generation by edge illumination of silicon and phosphide photoconductive switches, Appl. Phys. Lett. 67, (1995). 20. J. M. Proud, Jr., and S. L. Norman, High-frequency generation using optoelectronic switching in silicon, IEEE Trans. Microwave Theory Tech. 26, (1978). 21. E. S. Weibel, High power rf pulse generator, Rev. Sci. Instrum. 35, (1964). 22. H. M. Cronson, Picosecond pulse sequential waveform generation, IEEE Trans. Microwave Theory Tech. 23, (1975). 23. C. H. Lee, Picosecond optics and microwave technology, IEEE Trans. Microwave Theory Tech. 38, (1990). 24. J. B. Thaxter and R. E. Bell, Experimental 6-GHz frozen wave generator with fiber-optic feed, IEEE Trans. Microwave Theory Tech. 43, (1995). 25. M. L. Forcier, M. F. Rose, L. F. Rinehart, and R. J. Gripshover, Frozen-wave hertzian generators: theory and applications, IEEE International Pulsed Power Conference Digest of Technical Papers (Institute of Electrical and Electronics Engineers, New York, 1979), Vol. 2, p Y. Pastol, G. Arjavalingam, J. M. Halbout, and G. V. Kopcsay, Characterization of an optoelectronically pulsed broadband microwave antenna, Electron. Lett. 24, (1988). 27. P. R. Smith, D. H. Auston, and M. C. Nuss, Subpicosecond

7 Holzman et al. Vol. 17, No. 8/August 2000/J. Opt. Soc. Am. B 1463 photoconducting dipole antenna, IEEE J. Quantum Electron. 24, (1988). 28. J. A. Valdmanis, G. Mourou, and C. W. Gabel, Picosecond electro-optic sampling system, Appl. Phys. Lett. 41, (1982). 29. J. M. Chwalek and D. R. Dykaar, A mixer based electrooptic sampling system for submillivolt signal detection, Rev. Sci. Instrum. 61, (1990). 30. J. F. Holzman, F. E. Vermeulen, and A. Y. Elezzabi, Ultrafast photoconductive self-switching of subpicosecond electrical pulses, IEEE J. Quantum Electron. 36, (2000). 31. D. H. Auston, Impulse response of photoconductors in transmission lines, IEEE J. Quantum Electron. 19, (1983).

Photomixer as a self-oscillating mixer

Photomixer as a self-oscillating mixer Photomixer as a self-oscillating mixer Shuji Matsuura The Institute of Space and Astronautical Sciences, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 9-8510, Japan. e-mail:matsuura@ir.isas.ac.jp Abstract Photomixing

More information

Imaging with terahertz waves

Imaging with terahertz waves 1716 OPTICS LETTERS / Vol. 20, No. 16 / August 15, 1995 Imaging with terahertz waves B. B. Hu and M. C. Nuss AT&T Bell Laboratories, 101 Crawfords Corner Road, Holmdel, New Jersey 07733-3030 Received May

More information

IN RECENT YEARS, there has been a growing interest

IN RECENT YEARS, there has been a growing interest IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 2, NO. 3, SEPTEMBER 1996 709 Terahertz Waveform Synthesis via Optical Pulse Shaping Yongqian Liu, Sang-Gyu Park, and A. M. Weiner Abstract We

More information

z t h l g 2009 John Wiley & Sons, Inc. Published 2009 by John Wiley & Sons, Inc.

z t h l g 2009 John Wiley & Sons, Inc. Published 2009 by John Wiley & Sons, Inc. x w z t h l g Figure 10.1 Photoconductive switch in microstrip transmission-line geometry: (a) top view; (b) side view. Adapted from [579]. Copyright 1983, IEEE. I g G t C g V g V i V r t x u V t Z 0 Z

More information

Cross-Phase modulation of laser pulses by strong single-cycle terahertz pulse

Cross-Phase modulation of laser pulses by strong single-cycle terahertz pulse Cross-Phase modulation of laser pulses by strong single-cycle terahertz pulse Nan Yang 1, Hai-Wei Du * 1 Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics, Shanghai Jiaotong

More information

2.C A Substrate-Independent Noncontact Electro-Optic Probe Using Total Internal Reflection. 5. LLE Review 27, (1986).

2.C A Substrate-Independent Noncontact Electro-Optic Probe Using Total Internal Reflection. 5. LLE Review 27, (1986). LLE REVIEW, Volume 32 transmission lines and the DUT may be fabricated on a common substrate, eliminating the need for wirebond connections. 3. Photoconductive switching and electro-optic sampling allow

More information

Phase-sensitive high-speed THz imaging

Phase-sensitive high-speed THz imaging Phase-sensitive high-speed THz imaging Toshiaki Hattori, Keisuke Ohta, Rakchanok Rungsawang and Keiji Tukamoto Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573

More information

Improvement of terahertz imaging with a dynamic subtraction technique

Improvement of terahertz imaging with a dynamic subtraction technique Improvement of terahertz imaging with a dynamic subtraction technique Zhiping Jiang, X. G. Xu, and X.-C. Zhang By use of dynamic subtraction it is feasible to adopt phase-sensitive detection with a CCD

More information

The field of optics has had significant impact on a wide

The field of optics has had significant impact on a wide 1999 ARTVILLE, LLC The field of optics has had significant impact on a wide range of scientific disciplines and an ever-increasing array of technological applications. In particular, optical radiation

More information

THz Emission Characteristics of Photoconductive Antennas with. Different Gap Size Fabricated on Arsenic-Ion-Implanted GaAs

THz Emission Characteristics of Photoconductive Antennas with. Different Gap Size Fabricated on Arsenic-Ion-Implanted GaAs THz Emission Characteristics of Photoconductive Antennas with Different Gap Size Fabricated on Arsenic-Ion-Implanted GaAs Tze-An Lju', Masahiko Tani', Gong-Ru Ljfl' and Ci-Ling Pane' alnstitute of Electro-Optic

More information

Optically reconfigurable balanced dipole antenna

Optically reconfigurable balanced dipole antenna Loughborough University Institutional Repository Optically reconfigurable balanced dipole antenna This item was submitted to Loughborough University's Institutional Repository by the/an author. Citation:

More information

Picosecond-Domain Radiation Pattern Measurement Using Fiber-Coupled Photoconductive Antenna

Picosecond-Domain Radiation Pattern Measurement Using Fiber-Coupled Photoconductive Antenna IEEE JOURNAL ON SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 7, NO. 4, JULY/AUGUST 2001 667 Picosecond-Domain Radiation Pattern Measurement Using Fiber-Coupled Photoconductive Antenna Heeseok Lee, Jongjoo

More information

bias laser ω 2 ω 1 active area GaAs substrate antenna LTG-GaAs layer THz waves (ω 1 - ω 2 ) interdigitated electrode R L V C to antenna

bias laser ω 2 ω 1 active area GaAs substrate antenna LTG-GaAs layer THz waves (ω 1 - ω 2 ) interdigitated electrode R L V C to antenna The Institute of Space and Astronautical Science Report SP No.14, December 2000 A Photonic Local Oscillator Source for Far-IR and Sub-mm Heterodyne Receivers By Shuji Matsuura Λ, Geoffrey A. Blake y, Pin

More information

DIFFRACTION of electromagnetic radiation through apertures

DIFFRACTION of electromagnetic radiation through apertures IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 2, NO. 3, SEPTEMBER 1996 701 Reshaping of Freely Propagating Terahertz Pulses by Diffraction Ajay Nahata and Tony F. Heinz Abstract We discuss

More information

Instruction manual and data sheet ipca h

Instruction manual and data sheet ipca h 1/15 instruction manual ipca-21-05-1000-800-h Instruction manual and data sheet ipca-21-05-1000-800-h Broad area interdigital photoconductive THz antenna with microlens array and hyperhemispherical silicon

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Information Real-space imaging of transient carrier dynamics by nanoscale pump-probe microscopy Yasuhiko Terada, Shoji Yoshida, Osamu Takeuchi, and Hidemi Shigekawa*

More information

Measurement of Spatio-Temporal Terahertz Field Distribution by Using Chirped Pulse Technology

Measurement of Spatio-Temporal Terahertz Field Distribution by Using Chirped Pulse Technology 1214 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 36, NO. 10, OCTOBER 2000 Measurement of Spatio-Temporal Terahertz Field Distribution by Using Chirped Pulse Technology Zhiping Jiang and Xi-Cheng Zhang, Senior

More information

THz Signal Generators Based on Lift-Off LT-GaAs on Transparent Substrates H.-M. Heiliger, M. Vollebfirger, H. G. Roskos,

THz Signal Generators Based on Lift-Off LT-GaAs on Transparent Substrates H.-M. Heiliger, M. Vollebfirger, H. G. Roskos, 6-1 THz Signal Generators Based on Lift-Off LT-GaAs on Transparent Substrates H.-M. Heiliger, M. Vollebfirger, H. G. Roskos, R. Heyt, K. Ploogt, and H. Kurz Institut ftir Halbleitertechnik II, Rheinisch-Westfalische

More information

Slot waveguide-based splitters for broadband terahertz radiation

Slot waveguide-based splitters for broadband terahertz radiation Slot waveguide-based splitters for broadband terahertz radiation Shashank Pandey, Gagan Kumar, and Ajay Nahata* Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah

More information

Enhancement in the spectral irradiance of photoconducting terahertz emitters by chirped-pulse mixing

Enhancement in the spectral irradiance of photoconducting terahertz emitters by chirped-pulse mixing A. S. Weling and T. F. Heinz Vol. 16, No. 9/September 1999/J. Opt. Soc. Am. B 1455 Enhancement in the spectral irradiance of photoconducting terahertz emitters by chirped-pulse mixing Aniruddha S. Weling

More information

A new picosecond Laser pulse generation method.

A new picosecond Laser pulse generation method. PULSE GATING : A new picosecond Laser pulse generation method. Picosecond lasers can be found in many fields of applications from research to industry. These lasers are very common in bio-photonics, non-linear

More information

Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter

Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter REVIEW OF SCIENTIFIC INSTRUMENTS VOLUME 73, NUMBER 4 APRIL 2002 Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter G. Zhao, R. N. Schouten, N. van der

More information

MILLIMETER WAVE RADIATION GENERATED BY OPTICAL MIXING IN FETs INTEGRATED WITH PRINTED CIRCUIT ANTENNAS

MILLIMETER WAVE RADIATION GENERATED BY OPTICAL MIXING IN FETs INTEGRATED WITH PRINTED CIRCUIT ANTENNAS Second International Symposium on Space Terahertz Technology Page 523 MILLIMETER WAVE RADIATION GENERATED BY OPTICAL MIXING IN FETs INTEGRATED WITH PRINTED CIRCUIT ANTENNAS by D.V. Plant, H.R. Fetterman,

More information

Testing with Femtosecond Pulses

Testing with Femtosecond Pulses Testing with Femtosecond Pulses White Paper PN 200-0200-00 Revision 1.3 January 2009 Calmar Laser, Inc www.calmarlaser.com Overview Calmar s femtosecond laser sources are passively mode-locked fiber lasers.

More information

Generation of Terahertz Radiation via Nonlinear Optical Methods

Generation of Terahertz Radiation via Nonlinear Optical Methods IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 1, NO. 1, NOV 2100 1 Generation of Terahertz Radiation via Nonlinear Optical Methods Zhipeng Wang, Student Member, IEEE Abstract There is presently

More information

ALMA MEMO 399 Millimeter Wave Generation Using a Uni-Traveling-Carrier Photodiode

ALMA MEMO 399 Millimeter Wave Generation Using a Uni-Traveling-Carrier Photodiode ALMA MEMO 399 Millimeter Wave Generation Using a Uni-Traveling-Carrier Photodiode T. Noguchi, A. Ueda, H.Iwashita, S. Takano, Y. Sekimoto, M. Ishiguro, T. Ishibashi, H. Ito, and T. Nagatsuma Nobeyama Radio

More information

Timing Noise Measurement of High-Repetition-Rate Optical Pulses

Timing Noise Measurement of High-Repetition-Rate Optical Pulses 564 Timing Noise Measurement of High-Repetition-Rate Optical Pulses Hidemi Tsuchida National Institute of Advanced Industrial Science and Technology 1-1-1 Umezono, Tsukuba, 305-8568 JAPAN Tel: 81-29-861-5342;

More information

Emission and detection of terahertz pulses from a metal-tip antenna

Emission and detection of terahertz pulses from a metal-tip antenna Walther et al. Vol. 22, No. 11/ November 2005 / J. Opt. Soc. Am. B 2357 Emission and detection of terahertz pulses from a metal-tip antenna Markus Walther, Geoffrey S. Chambers, Zhigang Liu, Mark R. Freeman,

More information

3.C High-Repetition-Rate Amplification of Su bpicosecond Pulses

3.C High-Repetition-Rate Amplification of Su bpicosecond Pulses 5. P. R. Smith, D. H. Auston, A. M. Johnson, and W. M. Augustyniak, Appl. Phys. Lett. 38, 47-50 (1 981). 6. F. J. Leonburger and P. F. Moulton, Appl. Phys. Lett. 35, 712-714 (1 979). 7. A. P. Defonzo,

More information

Propagation of Single-Mode and Multi-Mode Terahertz Radiation Through a Parallel-Plate Waveguide

Propagation of Single-Mode and Multi-Mode Terahertz Radiation Through a Parallel-Plate Waveguide Journal of the Korean Physical Society, Vol. 53, No. 4, October 2008, pp. 18911896 Propagation of Single-Mode and Multi-Mode Terahertz Radiation Through a Parallel-Plate Waveguide Eui Su Lee, Jin Seok

More information

ELECTRO-OPTIC SURFACE FIELD IMAGING SYSTEM

ELECTRO-OPTIC SURFACE FIELD IMAGING SYSTEM ELECTRO-OPTIC SURFACE FIELD IMAGING SYSTEM L. E. Kingsley and W. R. Donaldson LABORATORY FOR LASER ENERGETICS University of Rochester 250 East River Road Rochester, New York 14623-1299 The use of photoconductive

More information

Dielectric-lined cylindrical metallic THz waveguides: mode structure and dispersion

Dielectric-lined cylindrical metallic THz waveguides: mode structure and dispersion Dielectric-lined cylindrical metallic THz waveguides: mode structure and dispersion Oleg Mitrofanov 1 * and James A. Harrington 2 1 Department of Electronic and Electrical Engineering, University College

More information

Combless broadband terahertz generation with conventional laser diodes

Combless broadband terahertz generation with conventional laser diodes Combless broadband terahertz generation with conventional laser diodes D. Molter, 1,2, A. Wagner, 1,2 S. Weber, 1,2 J. Jonuscheit, 1 and R. Beigang 1,2 1 Fraunhofer Institute for Physical Measurement Techniques

More information

Negative Differential Resistance (NDR) Frequency Conversion with Gain

Negative Differential Resistance (NDR) Frequency Conversion with Gain Third International Symposium on Space Tcrahertz Technology Page 457 Negative Differential Resistance (NDR) Frequency Conversion with Gain R. J. Hwu, R. W. Aim, and S. C. Lee Department of Electrical Engineering

More information

Chad A. Husko 1,, Sylvain Combrié 2, Pierre Colman 2, Jiangjun Zheng 1, Alfredo De Rossi 2, Chee Wei Wong 1,

Chad A. Husko 1,, Sylvain Combrié 2, Pierre Colman 2, Jiangjun Zheng 1, Alfredo De Rossi 2, Chee Wei Wong 1, SOLITON DYNAMICS IN THE MULTIPHOTON PLASMA REGIME Chad A. Husko,, Sylvain Combrié, Pierre Colman, Jiangjun Zheng, Alfredo De Rossi, Chee Wei Wong, Optical Nanostructures Laboratory, Columbia University

More information

Picosecond Pulses for Test & Measurement

Picosecond Pulses for Test & Measurement Picosecond Pulses for Test & Measurement White Paper PN 200-0100-00 Revision 1.1 September 2003 Calmar Optcom, Inc www.calamropt.com Overview Calmar s picosecond laser sources are actively mode-locked

More information

Arūnas Krotkus Center for Physical Sciences & Technology, Vilnius, Lithuania

Arūnas Krotkus Center for Physical Sciences & Technology, Vilnius, Lithuania Arūnas Krotkus Center for Physical Sciences & Technology, Vilnius, Lithuania Introduction. THz optoelectronic devices. GaBiAs: technology and main physical characteristics. THz time-domain system based

More information

Testing with 40 GHz Laser Sources

Testing with 40 GHz Laser Sources Testing with 40 GHz Laser Sources White Paper PN 200-0500-00 Revision 1.1 January 2009 Calmar Laser, Inc www.calmarlaser.com Overview Calmar s 40 GHz fiber lasers are actively mode-locked fiber lasers.

More information

Characterization of guided resonances in photonic crystal slabs using terahertz time-domain spectroscopy

Characterization of guided resonances in photonic crystal slabs using terahertz time-domain spectroscopy JOURNAL OF APPLIED PHYSICS 100, 123113 2006 Characterization of guided resonances in photonic crystal slabs using terahertz time-domain spectroscopy Zhongping Jian and Daniel M. Mittleman a Department

More information

Special Issue Review. 1. Introduction

Special Issue Review. 1. Introduction Special Issue Review In recently years, we have introduced a new concept of photonic antennas for wireless communication system using radio-over-fiber technology. The photonic antenna is a functional device

More information

2. Pulsed Acoustic Microscopy and Picosecond Ultrasonics

2. Pulsed Acoustic Microscopy and Picosecond Ultrasonics 1st International Symposium on Laser Ultrasonics: Science, Technology and Applications July 16-18 2008, Montreal, Canada Picosecond Ultrasonic Microscopy of Semiconductor Nanostructures Thomas J GRIMSLEY

More information

A NOVEL SCHEME FOR OPTICAL MILLIMETER WAVE GENERATION USING MZM

A NOVEL SCHEME FOR OPTICAL MILLIMETER WAVE GENERATION USING MZM A NOVEL SCHEME FOR OPTICAL MILLIMETER WAVE GENERATION USING MZM Poomari S. and Arvind Chakrapani Department of Electronics and Communication Engineering, Karpagam College of Engineering, Coimbatore, Tamil

More information

A simple terahertz spectrometer based on a lowreflectivity Fabry-Perot interferometer using Fourier transform spectroscopy

A simple terahertz spectrometer based on a lowreflectivity Fabry-Perot interferometer using Fourier transform spectroscopy A simple terahertz spectrometer based on a lowreflectivity Fabry-Perot interferometer using Fourier transform spectroscopy Li-Jin Chen, Tzeng-Fu Kao, Ja-Yu Lu, and Chi-Kuang Sun* Department of Electrical

More information

THz-Imaging on its way to industrial application

THz-Imaging on its way to industrial application THz-Imaging on its way to industrial application T. Pfeifer Laboratory for Machine Tools and Production Engineering (WZL) of RWTH Aachen niversity Manfred-Weck Building, Steinbachstraße 19, D-52074 Aachen,

More information

Terahertz Subsurface Imaging System

Terahertz Subsurface Imaging System Terahertz Subsurface Imaging System E. Nova, J. Abril, M. Guardiola, S. Capdevila, A. Broquetas, J. Romeu, L. Jofre, AntennaLab, Signal Theory and Communications Dpt. Universitat Politècnica de Catalunya

More information

Designing for Femtosecond Pulses

Designing for Femtosecond Pulses Designing for Femtosecond Pulses White Paper PN 200-1100-00 Revision 1.1 July 2013 Calmar Laser, Inc www.calmarlaser.com Overview Calmar s femtosecond laser sources are passively mode-locked fiber lasers.

More information

STUDY OF APPLICATION OF THZ TIME DOMAIN SPECTROSCOPY IN FOOD SAFETY

STUDY OF APPLICATION OF THZ TIME DOMAIN SPECTROSCOPY IN FOOD SAFETY STUDY OF APPLICATION OF THZ TIME DOMAIN SPECTROSCOPY IN FOOD SAFETY Liying Lang 1 *, Na Cai 2 1 Hebei University of Engineering, Handan, China, 056038; 2 College of Information and Electrical Engineering,

More information

Modulation of light. Direct modulation of sources Electro-absorption (EA) modulators

Modulation of light. Direct modulation of sources Electro-absorption (EA) modulators Modulation of light Direct modulation of sources Electro-absorption (EA) modulators Why Modulation A communication link is established by transmission of information reliably Optical modulation is embedding

More information

Cavity QED with quantum dots in semiconductor microcavities

Cavity QED with quantum dots in semiconductor microcavities Cavity QED with quantum dots in semiconductor microcavities M. T. Rakher*, S. Strauf, Y. Choi, N.G. Stolz, K.J. Hennessey, H. Kim, A. Badolato, L.A. Coldren, E.L. Hu, P.M. Petroff, D. Bouwmeester University

More information

Analogical chromatic dispersion compensation

Analogical chromatic dispersion compensation Chapter 2 Analogical chromatic dispersion compensation 2.1. Introduction In the last chapter the most important techniques to compensate chromatic dispersion have been shown. Optical techniques are able

More information

4 Photonic Wireless Technologies

4 Photonic Wireless Technologies 4 Photonic Wireless Technologies 4-1 Research and Development of Photonic Feeding Antennas Keren LI, Chong Hu CHENG, and Masayuki IZUTSU In this paper, we presented our recent works on development of photonic

More information

Terahertz waveform synthesis via optical rectification of shaped ultrafast laser pulses

Terahertz waveform synthesis via optical rectification of shaped ultrafast laser pulses Terahertz waveform synthesis via optical rectification of shaped ultrafast laser pulses J. Ahn, A. V. Efimov, R. D. Averitt, and A. J. Taylor Los Alamos National Laboratory Material Science and Technology

More information

Fabrication of antenna integrated UTC-PDs as THz sources

Fabrication of antenna integrated UTC-PDs as THz sources Invited paper Fabrication of antenna integrated UTC-PDs as THz sources Siwei Sun 1, Tengyun Wang, Xiao xie 1, Lichen Zhang 1, Yuan Yao and Song Liang 1* 1 Key Laboratory of Semiconductor Materials Science,

More information

3D radar imaging based on frequency-scanned antenna

3D radar imaging based on frequency-scanned antenna LETTER IEICE Electronics Express, Vol.14, No.12, 1 10 3D radar imaging based on frequency-scanned antenna Sun Zhan-shan a), Ren Ke, Chen Qiang, Bai Jia-jun, and Fu Yun-qi College of Electronic Science

More information

THz Filter Using the Transverse-electric (TE 1 ) Mode of the Parallel-plate Waveguide

THz Filter Using the Transverse-electric (TE 1 ) Mode of the Parallel-plate Waveguide Journal of the Optical Society of Korea ol. 13 No. December 9 pp. 3-7 DOI: 1.387/JOSK.9.13..3 THz Filter Using the Transverse-electric (TE 1 ) Mode of the Parallel-plate Waveguide Eui Su Lee and Tae-In

More information

Spectral phase shaping for high resolution CARS spectroscopy around 3000 cm 1

Spectral phase shaping for high resolution CARS spectroscopy around 3000 cm 1 Spectral phase shaping for high resolution CARS spectroscopy around 3 cm A.C.W. van Rhijn, S. Postma, J.P. Korterik, J.L. Herek, and H.L. Offerhaus Mesa + Research Institute for Nanotechnology, University

More information

Identification of periodic structure target using broadband polarimetry in terahertz radiation

Identification of periodic structure target using broadband polarimetry in terahertz radiation Identification of periodic structure target using broadband polarimetry in terahertz radiation Yuki Kamagata, Hiroaki Nakabayashi a), Koji Suizu, and Keizo Cho Chiba Institute of Technology, Tsudanuma,

More information

Up-conversion Time Microscope Demonstrates 103x Magnification of an Ultrafast Waveforms with 300 fs Resolution. C. V. Bennett B. H.

Up-conversion Time Microscope Demonstrates 103x Magnification of an Ultrafast Waveforms with 300 fs Resolution. C. V. Bennett B. H. UCRL-JC-3458 PREPRINT Up-conversion Time Microscope Demonstrates 03x Magnification of an Ultrafast Waveforms with 3 fs Resolution C. V. Bennett B. H. Kolner This paper was prepared for submittal to the

More information

Controlling the transmission resonance lineshape of a single subwavelength aperture

Controlling the transmission resonance lineshape of a single subwavelength aperture Controlling the transmission resonance lineshape of a single subwavelength aperture Hua Cao, Amit Agrawal and Ajay Nahata Department of Electrical and Computer Engineering, University of Utah, Salt Lake

More information

Communication using Synchronization of Chaos in Semiconductor Lasers with optoelectronic feedback

Communication using Synchronization of Chaos in Semiconductor Lasers with optoelectronic feedback Communication using Synchronization of Chaos in Semiconductor Lasers with optoelectronic feedback S. Tang, L. Illing, J. M. Liu, H. D. I. barbanel and M. B. Kennel Department of Electrical Engineering,

More information

PHOTONIC INTEGRATED CIRCUITS FOR PHASED-ARRAY BEAMFORMING

PHOTONIC INTEGRATED CIRCUITS FOR PHASED-ARRAY BEAMFORMING PHOTONIC INTEGRATED CIRCUITS FOR PHASED-ARRAY BEAMFORMING F.E. VAN VLIET J. STULEMEIJER # K.W.BENOIST D.P.H. MAAT # M.K.SMIT # R. VAN DIJK * * TNO Physics and Electronics Laboratory P.O. Box 96864 2509

More information

ULTRA-WIDEBAND ELECTRICAL PULSE GENERATOR USING PHOTOCONDUCTIVE SEMICONDUCTOR SWITCHES

ULTRA-WIDEBAND ELECTRICAL PULSE GENERATOR USING PHOTOCONDUCTIVE SEMICONDUCTOR SWITCHES ULTRA-WIDEBAND ELECTRICAL PULSE GENERATOR USING PHOTOCONDUCTIVE SEMICONDUCTOR SWITCHES B. Vergne ξ, V. Couderc and A. Barthélémy IRCOM, 123 avenue Albert Thomas 87060 Limoges, France M. Lalande and V.

More information

Optimization of a Terahertz Radiator

Optimization of a Terahertz Radiator University of New Mexico UNM Digital Repository Electrical and Computer Engineering ETDs Engineering ETDs 2-8-2011 Optimization of a Terahertz Radiator Douglas Brown Follow this and additional works at:

More information

Optoelectronic Oscillator Topologies based on Resonant Tunneling Diode Fiber Optic Links

Optoelectronic Oscillator Topologies based on Resonant Tunneling Diode Fiber Optic Links Optoelectronic Oscillator Topologies based on Resonant Tunneling Diode Fiber Optic Links Bruno Romeira* a, José M. L Figueiredo a, Kris Seunarine b, Charles N. Ironside b, a Department of Physics, CEOT,

More information

Fabrication of High-Speed Resonant Cavity Enhanced Schottky Photodiodes

Fabrication of High-Speed Resonant Cavity Enhanced Schottky Photodiodes Fabrication of High-Speed Resonant Cavity Enhanced Schottky Photodiodes Abstract We report the fabrication and testing of a GaAs-based high-speed resonant cavity enhanced (RCE) Schottky photodiode. The

More information

TAPERED MEANDER SLOT ANTENNA FOR DUAL BAND PERSONAL WIRELESS COMMUNICATION SYSTEMS

TAPERED MEANDER SLOT ANTENNA FOR DUAL BAND PERSONAL WIRELESS COMMUNICATION SYSTEMS are closer to grazing, where 50. However, once the spectral current distribution is windowed, and the level of the edge singularity is reduced by this process, the computed RCS shows a much better agreement

More information

Optoelectronic Characterization of Transmission Lines and Waveguides by Terahertz Time-Domain Spectroscopy

Optoelectronic Characterization of Transmission Lines and Waveguides by Terahertz Time-Domain Spectroscopy 1122 IEEE JOURNAL ON SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 6, NO. 6, NOVEMBER/DECEMBER 2000 Optoelectronic Characterization of Transmission Lines and Waveguides by Terahertz Time-Domain Spectroscopy

More information

print close Related Low-Cost UWB Source Low-Cost Mixers Build On LTCC Reliability LTCC Launches Miniature, Wideband, Low-Cost Mixers

print close Related Low-Cost UWB Source Low-Cost Mixers Build On LTCC Reliability LTCC Launches Miniature, Wideband, Low-Cost Mixers print close Design A Simple, Low-Cost UWB Source Microwaves and RF Yeap Yean Wei Fri, 2006-12-15 (All day) Using an inexpensive commercial step recovery diode (SRD) and a handful of passive circuit elements,

More information

Frequency Tunable Low-Cost Microwave Absorber for EMI/EMC Application

Frequency Tunable Low-Cost Microwave Absorber for EMI/EMC Application Progress In Electromagnetics Research Letters, Vol. 74, 47 52, 2018 Frequency Tunable Low-Cost Microwave Absorber for EMI/EMC Application Gobinda Sen * and Santanu Das Abstract A frequency tunable multi-layer

More information

Investigating Factors Affecting Photoconductive Microwave Switch Performance using 3D EM Simulation

Investigating Factors Affecting Photoconductive Microwave Switch Performance using 3D EM Simulation Investigating Factors Affecting Photoconductive Microwave Switch Performance using 3D EM Simulation Emma K. Kowalczuk, Rob D. Seager and Chinthana J. Panagamuwa WiCR Group, School of Electronic, Electrical

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2015.137 Controlled steering of Cherenkov surface plasmon wakes with a one-dimensional metamaterial Patrice Genevet *, Daniel Wintz *, Antonio Ambrosio *, Alan

More information

Terahertz control of nanotip photoemission

Terahertz control of nanotip photoemission Terahertz control of nanotip photoemission L. Wimmer, G. Herink, D. R. Solli, S. V. Yalunin, K. E. Echternkamp, and C. Ropers Near-infrared pulses of 800 nm wavelength, 50 fs duration and at 1 khz repetition

More information

Pulse Shaping Application Note

Pulse Shaping Application Note Application Note 8010 Pulse Shaping Application Note Revision 1.0 Boulder Nonlinear Systems, Inc. 450 Courtney Way Lafayette, CO 80026-8878 USA Shaping ultrafast optical pulses with liquid crystal spatial

More information

A silicon avalanche photodetector fabricated with standard CMOS technology with over 1 THz gain-bandwidth product

A silicon avalanche photodetector fabricated with standard CMOS technology with over 1 THz gain-bandwidth product A silicon avalanche photodetector fabricated with standard CMOS technology with over 1 THz gain-bandwidth product Myung-Jae Lee and Woo-Young Choi* Department of Electrical and Electronic Engineering,

More information

Photoswitch Material Recombination Effects on the Injection Wave Generator

Photoswitch Material Recombination Effects on the Injection Wave Generator Photoswitch ecombination Effects on the Injection Wave Generator J.. Mayes and W. C. Nunnally The University of Missouri-Columbia Columbia, Missouri 65 Abstract The photoswitched Injection Wave Generator,,3

More information

Research Article Influence of Substrate Material on Radiation Characteristics of THz Photoconductive Emitters

Research Article Influence of Substrate Material on Radiation Characteristics of THz Photoconductive Emitters Antennas and Propagation Volume 215, Article ID 54175, 7 pages http://dx.doi.org/1.1155/215/54175 Research Article Influence of Substrate Material on Radiation Characteristics of THz Photoconductive Emitters

More information

Response of GaAs Photovoltaic Converters Under Pulsed Laser Illumination

Response of GaAs Photovoltaic Converters Under Pulsed Laser Illumination Response of GaAs Photovoltaic Converters Under Pulsed Laser Illumination TIQIANG SHAN 1, XINGLIN QI 2 The Third Department Mechanical Engineering College Shijiazhuang, Hebei CHINA stq0701@163.com 1, xinling399@163.com

More information

Characterization of Chirped volume bragg grating (CVBG)

Characterization of Chirped volume bragg grating (CVBG) Characterization of Chirped volume bragg grating (CVBG) Sobhy Kholaif September 7, 017 1 Laser pulses Ultrashort laser pulses have extremely short pulse duration. When the pulse duration is less than picoseconds

More information

Theory and Applications of Frequency Domain Laser Ultrasonics

Theory and Applications of Frequency Domain Laser Ultrasonics 1st International Symposium on Laser Ultrasonics: Science, Technology and Applications July 16-18 2008, Montreal, Canada Theory and Applications of Frequency Domain Laser Ultrasonics Todd W. MURRAY 1,

More information

Microwave switchable frequency selective surface with high quality factor resonance and low polarization sensitivity

Microwave switchable frequency selective surface with high quality factor resonance and low polarization sensitivity 263 Microwave switchable frequency selective surface with high quality factor resonance and low polarization sensitivity Victor Dmitriev and Marcelo N. Kawakatsu Department of Electrical Engineering, Federal

More information

G. Norris* & G. McConnell

G. Norris* & G. McConnell Relaxed damage threshold intensity conditions and nonlinear increase in the conversion efficiency of an optical parametric oscillator using a bi-directional pump geometry G. Norris* & G. McConnell Centre

More information

AIR-COUPLED PHOTOCONDUCTIVE ANTENNAS

AIR-COUPLED PHOTOCONDUCTIVE ANTENNAS AIR-COUPLED PHOTOCONDUCTIVE ANTENNAS Report: Air-Coupled Photoconductive Antennas In this paper, we present air-coupled terahertz photoconductive antenna (THz-PCAs) transmitters and receivers made on high-resistive

More information

Nd:YSO resonator array Transmission spectrum (a. u.) Supplementary Figure 1. An array of nano-beam resonators fabricated in Nd:YSO.

Nd:YSO resonator array Transmission spectrum (a. u.) Supplementary Figure 1. An array of nano-beam resonators fabricated in Nd:YSO. a Nd:YSO resonator array µm Transmission spectrum (a. u.) b 4 F3/2-4I9/2 25 2 5 5 875 88 λ(nm) 885 Supplementary Figure. An array of nano-beam resonators fabricated in Nd:YSO. (a) Scanning electron microscope

More information

Synchronization in Chaotic Vertical-Cavity Surface-Emitting Semiconductor Lasers

Synchronization in Chaotic Vertical-Cavity Surface-Emitting Semiconductor Lasers Synchronization in Chaotic Vertical-Cavity Surface-Emitting Semiconductor Lasers Natsuki Fujiwara and Junji Ohtsubo Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu, 432-8561 Japan

More information

High-frequency tuning of high-powered DFB MOPA system with diffraction limited power up to 1.5W

High-frequency tuning of high-powered DFB MOPA system with diffraction limited power up to 1.5W High-frequency tuning of high-powered DFB MOPA system with diffraction limited power up to 1.5W Joachim Sacher, Richard Knispel, Sandra Stry Sacher Lasertechnik GmbH, Hannah Arendt Str. 3-7, D-3537 Marburg,

More information

A pulsed THz Imaging System with a line focus and a balanced 1-D detection scheme with two industrial CCD line-scan cameras

A pulsed THz Imaging System with a line focus and a balanced 1-D detection scheme with two industrial CCD line-scan cameras A pulsed THz Imaging System with a line focus and a balanced 1-D detection scheme with two industrial CCD line-scan cameras Christian Wiegand 1, Michael Herrmann 2, Sebastian Bachtler 1, Jens Klier 2,

More information

Chapter 7 Design of the UWB Fractal Antenna

Chapter 7 Design of the UWB Fractal Antenna Chapter 7 Design of the UWB Fractal Antenna 7.1 Introduction F ractal antennas are recognized as a good option to obtain miniaturization and multiband characteristics. These characteristics are achieved

More information

All-Optical Signal Processing and Optical Regeneration

All-Optical Signal Processing and Optical Regeneration 1/36 All-Optical Signal Processing and Optical Regeneration Govind P. Agrawal Institute of Optics University of Rochester Rochester, NY 14627 c 2007 G. P. Agrawal Outline Introduction Major Nonlinear Effects

More information

ENHANCEMENT OF PRINTED DIPOLE ANTENNAS CHARACTERISTICS USING SEMI-EBG GROUND PLANE

ENHANCEMENT OF PRINTED DIPOLE ANTENNAS CHARACTERISTICS USING SEMI-EBG GROUND PLANE J. of Electromagn. Waves and Appl., Vol. 2, No. 8, 993 16, 26 ENHANCEMENT OF PRINTED DIPOLE ANTENNAS CHARACTERISTICS USING SEMI-EBG GROUND PLANE F. Yang, V. Demir, D. A. Elsherbeni, and A. Z. Elsherbeni

More information

taccor Optional features Overview Turn-key GHz femtosecond laser

taccor Optional features Overview Turn-key GHz femtosecond laser taccor Turn-key GHz femtosecond laser Self-locking and maintaining Stable and robust True hands off turn-key system Wavelength tunable Integrated pump laser Overview The taccor is a unique turn-key femtosecond

More information

Chapter 3 OPTICAL SOURCES AND DETECTORS

Chapter 3 OPTICAL SOURCES AND DETECTORS Chapter 3 OPTICAL SOURCES AND DETECTORS 3. Optical sources and Detectors 3.1 Introduction: The success of light wave communications and optical fiber sensors is due to the result of two technological breakthroughs.

More information

Tunable THz Generation by the Interaction of a Super-luminous Laser Pulse with Biased Semiconductor Plasma

Tunable THz Generation by the Interaction of a Super-luminous Laser Pulse with Biased Semiconductor Plasma Tunable THz Generation by the Interaction of a Super-luminous Laser Pulse with Biased Semiconductor Plasma K. Papadopoulos 1,2 and A. Zigler 1,3 1 BAE Systems-ATI 2 University of Maryland, College Park

More information

Terahertz beam propagation measured through three-dimensional amplitude profile determination

Terahertz beam propagation measured through three-dimensional amplitude profile determination Reiten et al. Vol. 20, No. 10/October 2003/J. Opt. Soc. Am. B 2215 Terahertz beam propagation measured through three-dimensional amplitude profile determination Matthew T. Reiten, Stacee A. Harmon, and

More information

Figure1. To construct a light pulse, the electric component of the plane wave should be multiplied with a bell shaped function.

Figure1. To construct a light pulse, the electric component of the plane wave should be multiplied with a bell shaped function. Introduction The Electric field of a monochromatic plane wave is given by is the angular frequency of the plane wave. The plot of this function is given by a cosine function as shown in the following graph.

More information

Waveguiding in PMMA photonic crystals

Waveguiding in PMMA photonic crystals ROMANIAN JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY Volume 12, Number 3, 2009, 308 316 Waveguiding in PMMA photonic crystals Daniela DRAGOMAN 1, Adrian DINESCU 2, Raluca MÜLLER2, Cristian KUSKO 2, Alex.

More information

WDM Transmitter Based on Spectral Slicing of Similariton Spectrum

WDM Transmitter Based on Spectral Slicing of Similariton Spectrum WDM Transmitter Based on Spectral Slicing of Similariton Spectrum Leila Graini and Kaddour Saouchi Laboratory of Study and Research in Instrumentation and Communication of Annaba (LERICA), Department of

More information

Spatial Investigation of Transverse Mode Turn-On Dynamics in VCSELs

Spatial Investigation of Transverse Mode Turn-On Dynamics in VCSELs Spatial Investigation of Transverse Mode Turn-On Dynamics in VCSELs Safwat W.Z. Mahmoud Data transmission experiments with single-mode as well as multimode 85 nm VCSELs are carried out from a near-field

More information

Line-Source Switched-Oscillator Antenna

Line-Source Switched-Oscillator Antenna Sensor and Simulation Notes Note 551 February, 010 Line-Source Switched-Oscillator Antenna Carl E. Baum, Prashanth Kumar and Serhat Altunc University of New Mexico Department of Electrical and Computer

More information

A novel tunable diode laser using volume holographic gratings

A novel tunable diode laser using volume holographic gratings A novel tunable diode laser using volume holographic gratings Christophe Moser *, Lawrence Ho and Frank Havermeyer Ondax, Inc. 85 E. Duarte Road, Monrovia, CA 9116, USA ABSTRACT We have developed a self-aligned

More information

Coherent Receivers Principles Downconversion

Coherent Receivers Principles Downconversion Coherent Receivers Principles Downconversion Heterodyne receivers mix signals of different frequency; if two such signals are added together, they beat against each other. The resulting signal contains

More information