Dynamic Resource Allocation for Multi Source-Destination Relay Networks

Size: px
Start display at page:

Download "Dynamic Resource Allocation for Multi Source-Destination Relay Networks"

Transcription

1 Dynamic Resource Allocation for Multi Source-Destination Relay Networks Onur Sahin, Elza Erkip Electrical and Computer Engineering, Polytechnic University, Brooklyn, New York, USA Abstract We consider a wireless network consisting of multiple sources communicating with their corresponding destinations utilizing a single half-duplex relay. The goal is to minimize the outage probability of the total rate in the network by allocating transmission powers and durations as well as rates to the nodes based on instantaneous channel gains, while satisfying a total average network power. The sources are allowed to use the relay opportunistically, that is only when relaying reduces overall power as opposed to direct transmission. We investigate the effect of interference when all sources transmit simultaneously, and the impact of time division among the sources.we show that dynamic allocation and opportunistic transmission based on instantaneous channel states provide signicant reduction in outage compared to any constant resource allocation scheme. I. INTRODUCTION Wireless ad-hoc network design is challenging because of the arbitrary and rapidly changing topology and interference created by simultaneous communications. Moreover, it is shown in [] that the interference severely impacts the throughput of a wireless ad-hoc network as the number of nodes increase. This necessitates more robust and scalable network model such as a hierarchical architecture, in which some of the nodes in the network are more capable than the others in terms of signal reception and transmission. These nodes act as relays in the network, receiving information from the source nodes and forwarding to another relay via multi-hop transmission or to the desired destinations. On the other hand, power consumption, as well as throughput, is a key design parameter for wireless ad-hoc networks, since each node may have a limited battery life. Hence optimal power allocation for a given network model with respect to different performance metrics such as minimum outage, or maximum throughput provides signicant power savings [2], [3] leading to an increased system performance. In this work we consider a network in which a dedicated relay helps a source pair that wishes to communicate with a destination pair. Relay operates in half-duplex decode-and-forward fashion such that the reception and transmission modes take place in orthogonal time slots and the received signals are decoded and forwarded. Each source wishes to communicate to a distinct destination. Hence the channel model becomes the interference relay channel [4]. Since the capacity of the interference channel is not known in general, our goal in this paper is to describe some simple communication and resource allocation strategies Supported by NSF under Grant No.: for the fading scenario. We assume centralized control utilizing partial channel state information (CSI of the whole network to dynamically allocate powers, rates and transmission durations of all nodes. The partial CSI of the network consists of the channel gains, as phase information is harder to obtain and maintain. Even though estimating and distributing this partial network CSI will create overhead, the gains we observe suggest the importance of CSI and motivate further analysis with limited CSI such as quantized channel states [5]. As the performance metric, we consider outage probability for the total rate from the sources to the destinations. The resource allocation aims at minimizing the total outage probability while the total average source and relay transmission powers is kept constant. Even though minimizing total source and relay powers may not guarantee optimal individual power allocation for each node, it has signicant implications systemwise. As an example, this will minimize the total interference caused to other nodes in the network. In [3], it is assumed that the relay helps to sources in an orthogonal fashion, such that each different Source-Relay- Destination transmission takes place in non-overlapping channels in time (TDMA or frequency (FDMA. Our model is more general, the sources are allowed to transmit simultaneously and the relay also broadcasts the aggregate information to the destinations. Even though each destination will observe interference from the other source in this case, this scheme will allow the system to operate at the optimal points of the multiple access channel connecting the sources to the relay. Moreover, since TDMA is not able to achieve the broadcast capacity region for any power and time allocation, simultaneous transmission from the relay to the destinations will increase the system performance. In order to understand the effect of interference from the sources to the destinations, we also consider TDMA only for source transmissions along with dynamic power and time allocations which removes the effect of the interference at the destinations. To further minimize the outage probability of the system, in addition to dynamically allocated resources based on instantaneous CSI, we also allow sources to transmit opportunistically [6]. In [6], it was shown that in a single Source- Relay-Destination system, allowing the source to transmit either directly without using the relay during the whole time slot or to transmit via relay with optimal time and power allocation provides outage performance very close to the cut-set bound.

2 This motives us to use the relay opportunistically for the two sources and their corresponding destinations as well. In Section II, the system model is given. In Section III, we assume the sources transmit simultaneously and the relay transmits to the destinations during the next slot using superposition. Section IV analyzes the case in which sources transmit in orthogonal fashion (TDMA, however the relay still transmits simultaneously to both destinations. For comparison, Section IV also considers TDMA for relay-to-destination links as well with xed transmission times for all nodes in the network. In Section V, we give numerical results, provide comparisons and conclude the paper in Section VI. II. SYSTEM MODEL We consider a relay network with a single relay and two Source-Destination pairs (S i, D i i =, 2 as shown in Figure. This channel is also referred to as interference relay channel [4]. Each source only wishes to communicate with its dedicated destination opportunistically [6], such that the relay helps the source or the source transmits directly without help of the relay depending on whichever is more power efcient. We consider a half-duplex relay which decodes the signal received from S, S 2 or both and forwards the decoded signals to their corresponding destinations. The AWGN noises at the relay and destinations are independent with variances. Channels have independent Rayleigh fading, that is the channel power gains α i, γ i, β i and ξ i, i =, 2, are iid exponential with means (m αi, m γi, m βi, m ξi, respectively, where the means include the distance and shadowing effect. Here α i represents the channel from S i to R, γ i from R to D i and β i from S i to D i for i =, 2. Also ξ (ξ 2 represents the interference link from S (S 2 to D 2 (D. We will denote the network state, which includes the instantaneous power gain of each channel, (α, α 2, γ, γ 2, β, β 2, ξ, ξ 2 by θ. We assume a slow fading (quasi-static environment in which the channels stay constant for the duration of a channel frame. Centralized resource allocation is assumed using the network CSI θ. The resource allocation consists of power, time and rate adaptation. The transmission powers of S, S 2, R and total network power are denoted by P S, P S2, P R and P tot respectively. There is a long term total network power constraint such that P tot P total. In this work, we consider the total achievable end-to-end rate R T = R + R 2, where R i denotes the transmission rate from S i to D i for i =, 2. Our goal is to minimize the outage on the total rate, that is the probability that a total rate R T U cannot be supported subject to long term total network power constraint, P total. Following the analysis in [6] for each communication strategy, we rst consider the minimum total power, P tot,min (θ, needed to guarantee total rate R T U for each channel state θ. We then apply a threshold, P th, to P tot,min (θ such that the sources transmit only if P tot,min (θ is less than this threshold power level P th. For the channel states where P tot,min (θ exceeds the threshold, the sources are not allowed to transmit and the system will be in outage. Using [6], we argue that the proper choice of P th minimizes the outage probability for the chosen transmission scheme while satisfying the total power constraint. Fig.. System Model. Each source S i wishes to communicate with its destination D i. (α i, β i, γ i, ξ i denote instantaneous power gains, i =, 2. Fig. 2. Channel Allocation for simultaneous transmission at the sources: (a corresponds to Section III Case, (b Section III Case 2, (c Section III Case 3. III. SIMULTANEOUS TRANSMISSION AT THE SOURCES In this section, we consider simultaneous transmission at the sources and superposition of decoded information at the relay as shown in Figure 2. Using the opportunistic transmission scheme [6] and considering the half-duplex limitation of the relay, S and S 2 can exploit the relay appropriately depending on the network channel conditions as argued in the following three cases. Note that as in [6], since the phase information of the fading coefcients are not available, beamforming is not possible and it is suboptimal for the sources to continue transmission along with the relay under total power constraint. In order to simplify the notation, without loss of generality, it is assumed that γ > γ 2 throughout the analysis. Case : This case corresponds to both sources utilizing the relay (Fig. 2-(a. During the rst time slot (0 t t m, S and S 2 transmit simultaneously to R, which constitutes a multiple access channel (MAC from the perspective of the relay. Each destination also receives the signal coming from its corresponding source as well as interference from the other source during this period. When the transmission of the sources is completed, in the second time slot (t m < t, the relay transmits the decoded signals to the destinations using superimposed independent Gaussian codebooks. Our power allocation strategy will ensure that decoding is always possible. The destinations then combine the signals received during the rst and the second time slot. Note that the overall received signal at the destinations

3 follows the interference channel model. However, rather that trying to cancel the interference, we will treat it as part of the noise. Even though this may cause degradation in achievable rates, it simplies the analysis and provides a lower bound on the performance. Furthermore when the interference is low, this strategy still gives relatively good performance [8]. We will denote the relay to destination transmissions combined with source signals in the rst slot as modied broadcast channel (MBC where we see increase in the achievable rates due to source transmissions in the rst time slot. Since the relay decodes-and-forwards the received signals, in order to achieve individual rates R and R 2 leading to total rate R T U = R +R 2, (R, R 2 should be supported both at the MAC and at the MBC. The conditions on the supported transmission rates will be; R (S R t log( + α P s R (S 2 R 2 t log( + α 2P s2 R (S R + R (S 2 R 2 t log( + α P s + α 2 P s2 R (S,R D t log( + β P s ξ 2 P s2 + +( t log( + γ P R R (S2,R D2 2 t log( + β 2P s2 ξ P s + +( t log( + γ 2 P R2 γ 2 P R + ( where t is the time allocated for simultaneous transmission of (S, S 2 R and P R and P R2 are the relay powers dedicated relaying the signals of S and S 2, respectively. The superscripts of the rates denote corresponding transmissions. At a given channel state θ, we will denote the minimum total network power to achieve total rate R T U for this case as P (C tot. Since the transmission rates satisfying total rate R T U depends on t, minimum total network power for this case is; P (C t,p S,P S2,P R,P R2 (t P s + t P s2 + ( t P R + ( t P R2 such that R + R 2 R T U (2 where R = min (R (S R, R (S,R D and R 2 = min (R (S 2 R 2, R (S 2,R D 2 2 satisfy eqn. (. Case 2: Similar to single Source-Relay-Destination scheme given in [6], only one of the sources, say S, may decide to use the relay and the other source (S 2 in this case directly transmits to its destination. This would happen, for example if β < α, β 2 > α 2 and ξ =ξ 2 =0. In this case, the source which doesn't use the relay, S 2, transmits during the whole time slot directly to its destination (Fig. 2-(b, while S and R utilize time division as in Case. Since the signal coming from S 2 is not decoded by R, it will cause interference at R during the rst time slot as well as at the destinations. Also the signal transmitted by R will interfere with S 2 during the second time slot. Using these observations, and again treating interference as noise, the end-to-end transmission rates from (S D and (S 2 D 2, assuming R helps S and S 2 transmits directly to D 2 can be written as follows; R (S2 D2 2 t log( + β 2P s2 ξ P s + +( t log( + β 2P s2 γ 2 P R + R (S R t log ( + α P s α 2 P s2 + R (S,R D t log ( + β P s ξ 2 P s2 + +( t log ( + γ P R ξ 2 P s2 + (3 where t is the channel time allocated for the transmission of S to R. Again denoting the minimum total network power that achieves total rate R T U for a given channel state θ as P (C2 tot, we have; P (C2 t,p s,p s2,p R (t P s + P s2 + ( t P R such that R + R 2 R T U (4 where R = min (R (S R, R (S,R D, R 2 = R (S2 D2 2 satisfying eqn (3. Note that Case 2 would also include the scenario in which S transmits directly while S 2 uses the relay. Case 3: When both of the sources choose to directly transmit to their destinations without utilizing the relay, (Fig. 2-(c, we have the classical interference channel, whose capacity region is not known for all channel gains [9]. Again for simplicity not allowing the destinations to successively cancel the signals coming directly from the interfering source (which obviously will be suboptimal, achievable transmission rates for this case can be written as; R log ( + β P s, R 2 log ( + β 2P s2 (5 ξ 2 P s2 + ξ P s + Minimum total network power for this case is; P (C3 (P s + P s2 such that R + R 2 R T U (6 The central controller will choose Case, 2, or 3 depending on which one results in smaller total power, that is Ptot sim = min{p (C tot, P (C 2 tot, P (C 3 tot } In Section V, we obtain the minimum total network power Ptot sim satisfying total rate R T U for each channel state θ numerically and as discussed in Section II, apply a properly chosen threshold, P th to Ptot sim, at each channel state θ to obtain minimum outage probability vs average total network power for the simultaneous transmission scheme. Discussion: Since the optimizations in (2, (4, (6 are nonconvex, it is hard to obtain an analytical solution that minimizes total power. However to gain insights, we discuss some special cases for xed network state θ. First, consider the situation where the sources and the destinations are far away from each other. Then

4 the effect of the interference and direct links will be small due to path loss and can be neglected, and ξ i = β i = 0, i =, 2. Eq. ( suggests that the transmission rates have to operate at the intersection of the MAC region, (S, S 2 R, and BC region, R (D, D 2. Also, since the sources do not have the opportunity to transmit directly without using the relay, only Case can occur. For the MAC from sources to the relay, in order to maximize rate sum, total source power P s +P s2 is minimized by only letting the user with the best α i, i =, 2 transmit [0]. Moreover, for the BC from the relay to the destinations, the optimal power allocation at the relay, PR, maximizing rate sum suggests transmitting to the destination with highest γ i, user in this case [0]. Hence, if α > α 2 and γ > γ 2 then the total network power P tot (θ is minimized by only letting S transmit. This can be interpreted as a type of multiuser diversity for this multihop channel, which requires a user to have the best hops. However, when α < α 2 and γ > γ 2, then optimal allocation gives power and time to both of the users depending their channel qualities. The analytical solution can be obtained by parameterizing the total power in terms of optimization variables, (P s, t. A more general case occurs when the interference links are weak, i.e. ξ i = 0, i =, 2, but the direct links to desired destinations are present. These conditions may be valid when the destinations are close to their sources but further away from the interfering transmitters. In this case, the intersection of the MAC and MBC regions constitute the capacity region []. For the situation where none of the sources use the relay as in Case 3, then the system parameters can be allocated optimally using water-lling among the parallel links (S D and (S 2 D 2 [7]. However, when only one source (say S exploits the relay, while the other one (S 2 transmits directly as analyzed in Case 2, due to interference free nature of the system, we obrain two parallel channels (S, R, D and (S 2, D 2. Based on the results of [2] obtained for the orthogonal relay channel, we expect a water-lling type power allocation among these two parallel links for optimal resource allocation. IV. ORTHOGONAL TRANSMISSION AT THE SOURCES We have seen in Section III that solving the most general resource allocation problem is quite complex. In this section, we consider an alternative to simultaneous transmission, which orthogonal transmission from sources to the relay using timedivision. When S and S 2 transmit to the R in orthogonal time slots, (Fig. 3, instead of simultaneous fashion as in Section III, the destinations will not receive any direct interference from the sources. We rst consider R transmitting to the destinations simultaneously, since time-division for BC channel may cause an achievable region much smaller than simultaneous transmission especially when the asymmetry among the transmitted nodes increases. As suggested in Section III, opportunistic transmission can also be used in the TDMA mode. However, since S and S 2 are not allowed to transmit during the whole time slot due to interference constraints, the advantage of opportunistic communication cannot be fully exploited. In the case when both 0 S S2 2 S(S2 S t (a 0 t (c t2 S2(S 2(D 0 t t2 (b S2 2 R,D2 R (D2 Fig. 3. Channel Allocation for orthogonal transmission at the sources: (a corresponds to Section IV Case, (b Section IV Case 2, (c Section IV Case 3. of sources transmit directly to their destinations, the system simplies to two source-destination TDMA system. Case : In this case, both sources utilize the relay for transmission to their corresponding destinations (Fig. 3-(a. S transmits to R for 0 t t, S 2 transmits to R for t < t t 2 and R transmits the aggregate information for t 2 < t to the destinations using independent Gaussian codebooks with respect to the sources. Since the sources transmit in orthogonal time slots, their corresponding destinations receive non-interfered signals, and BC region of the R (D, D 2 is shifted accordingly. Using this observation and considering the decode-and-forward strategy of the relay, the transmission rates can be written as, R (S R t log ( + α P s R (S 2 R 2 (t 2 t log ( + α 2P s2 R (S,R D t log ( + β P s +( t 2 log ( + γ P R R (S2,R D2 2 (t 2 t log ( + β 2P s2 γ 2 P R2 +( t 2 log ( + (7 γ 2 P R + where t is the time allocated for the transmission of S R, (t 2 t is the time allocated for the transmission of S 2 R, and P R and P R2 are the relay powers dedicated for the transmission of S, S 2, respectively. Minimum total power satisfying total end-to-end rate R T U requires optimizing t, t 2, P s, P s2, P R and P R2 and can be written as; P (C t,t 2,P s,p s2,p R,P R2 (t P s + (t 2 t P s2 + ( t 2 P R + ( t 2 P R2 such that R + R 2 R T U (8 (R, R 2 satisfy eqn (7 with R =min (R (S R, R (S,R D and R 2 =min (R (S 2 R 2, R (S 2,R D 2 2. Case 2: In this case, only one source, say S uses R and the other source, S 2, directly transmits its signal to D 2. The time allocation of the scheme can be seen at Fig. 3-(b. Due to

5 Fig. 4. Channel Allocation for constant time transmission This corresponds to Case in eq ( and (7. Similarly, we can formulate case 2 and 3 where only one source or both transmit directly for constant time allocation strategy and derive corresponding outage probabilities. Minimum total power in this case will be, P (C2 t,t 2,P s,p s2,p R (t P s + (t 2 t P s2 + ( t 2 P R such that R + R 2 R T U (0 where R = min (R (S R, R (S,R D, R 2 = R (S2 D2 2 satisfy eqn (9. Case 3: In this case neither S nor S 2 utilize R and transmit in optimized orthogonal time slots (Fig. 3-(c. Then, R t log ( + β P s R 2 ( t log ( + β 2P s2 ( Minimum total power will satisfy the following such that; P (C3 t,p s,p s2 (t P s + ( t P s2 such that R + R 2 R T U (2 where (R, R 2 satises eqn (. Similar to Section III, for the orthogonal transmission from (S, S 2 R, the minimum total power satisfying end-to-end total rate R T U will be the minimum of the total powers given in Case-Case3 such that, Ptot orth = min{p (C tot, P (C 2 tot, P (C 3 tot }. Then P th and the corresponding outage probability can be computed using Ptot orth and the total power constraint. In order to understand the performance gain obtained by opportunistic transmission, we next consider a transmitting strategy similar to the one given in [3], in which the sources and relay transmit in non-overlapping and equal length time-slots (Fig. 4. Each source (S i is allowed to transmit directly to its destination (D i if the channel gain in between, β i, is better than the channel gain to the relay, α i. We also allow the nodes to dynamically allocate their transmission powers depending on the channel conditions for a given total network power constraint. When both S and S 2 use R, the end-to-end transmission rates for i =, 2 will be; R (S i R i R (S i,r D i i 4 log ( + α ip si 4 log ( + γ ip Ri + 4 log ( + β ip si V. SIMULATION RESULTS orthogonal transmission, S 2 does not cause interference at R, and In this section, the outage probability performance of the D 2 does not observe interference from R during (t 2 < t. resource allocation schemes are compared via simulations for The end-to-end transmission rates can be written as follows; the desired total rate R T U = bits/channel use. R (S2 D2 2 (t 2 t log ( + β 2P s2 In Figure 5, we consider a symmetric network model with power gain means (m αi, m γi, m βi, m ξi = R (S R t log ( + α P s (, 0.2, , In this case, simultaneous transmission of the sources as in Section III has better outage performance R (S,R D t log ( + β P s + ( t 2 log ( + γ P R than orthogonal transmission and constant time allocation N schemes of Section IV. The performance difference between o (9 simultaneous and orthogonal transmission at the sources occur due to the fact that in simultaneous transmission, the directly transmitting source S 2 (S has full access to the channel during the whole time slot (0 t (Section III, Case2, whereas in orthogonal transmission, each source is still constrained to transmit in non-overlapping time slots (Section IV, Case2 restricting the advantage of opportunistic transmission. The gains are present despite interference caused by simultaneous transmission. On the other hand, the same gure shows that simultaneous transmission scheme outperforms constant time allocation around 3 db at P out = 0 3 and orthogonal transmission at the sources provides 2 db power gain compared to constant time allocation scheme. The gure also shows the outage performance of direct transmission without a relay. For direct transmission the source-destination power gain means are equal to the symmetric network, i.e. m βi =0.0625, and the channel model is idealized such that the interference links are removed, that is ξ = ξ 2 = 0. However, as can be seen from Figure 5, even this idealistic direct transmission performance is 4 5 db worse than opportunistic schemes using relay. Figure 6 shows the outage performance of an asymmetric network, where S has better average channel gains compared to S 2. The power gain means of S are (m α, m γ, m β, m ξ =(4, 2, 0.08, and S 2 are (m α2, m γ2, m β2, m ξ2 =(0.3, 0.2, 0.06, In this case, it can be seen that simultaneous and orthogonal transmissions have closer outage performances, compared to the symmetric network model, however both of the schemes still outperform constant time transmission signicantly. Idealized direct transmission without relay performs even worse than symmetric network. Figure 7 shows the power allocation of simultaneous transmission at the sources at each node for the asymmetric network considered in Figure 6, corresponding to (0 3.5dB range of total network power. It can be seen that in order to obtain total transmission rate R T U =, most of the network power is allocated to source, as it has better average channel gain. Since S 2 is muted or transmits with very low power compared to S, simultaneous and orthogonal transmission schemes, given in Section III and Section IV, become equivalent and have similar outage performances. However, when total network power is increased, more power is allocated to S 2 as

6 0 0 0 Opportunistic simultaneous transmission Opportunistic orthogonal transmission Constant time transmission Direct transmission w/o relay (No intf Opportunistic simultaneous transmission Opportunistic orthogonal transmission Constant time transmission Direct transmission w/o relay (No intf. Outage Probability 0 2 Outage Probability Average Power (db Average Power (db Fig. 5. Symmetric network: (m αi, m γi, m βi, m ξi = (, 0.2, , i =, 2. R= bit/channel use. Fig. 6. Asymmetric network: (m α, m γ, m β, m ξ = (4, 2, 0.08, 0.004, (m α2, m γ2, m β2, m ξ2 = (0.3, 0.2, 0.06, R= bit/channel use. well as R begins allocating power to help S 2 and simultaneous transmission outperforms orthogonal transmission as shown in Figures 6 and P s P s2 P R P R2 VI. CONCLUSION In this paper, the outage performance of a network consisting multiple sources, single relay and multiple destinations is analyzed considering a total average network power constraint. We consider simultaneous transmission of the sources as well as TDMA, followed by a broadcast relay signal. Both sources and relay allocate transmission powers, rate and channel access times dynamically. Moreover each source is allowed to transmit to its corresponding destination either directly or using the relay. While TDMA based scheme removes the interference among the sources, it limits the gains due to opportunistic transmission, since sources do not have channel access all the time. Simulations show that, for symmetric networks, i.e. when both sources have comparable overall average channel gains, simultaneous transmission outperforms TDMA whereas both schemes signicantly perform better than equal time allocation. However, when the network favors a specic source, i.e, when one source has a signicantly better overall channel state with respect to the other, the performance difference between simultaneous and orthogonal transmission vanishes for lower total network powers; however both opportunistic schemes still perform signicantly better than constant time allocation scheme. For a possible extension, performance of the considered schemes with nite rate CSI, as well as distributed resource allocation can be investigated. REFERENCES [] P. Gupta and P. R. Kumar, The capacity of wireless networks IEEE Tran. Info. Theory, Vol. 46, pp , March [2] Z. Yang, A. Host-Madsen, Minimum Outage Probability Routing and Power Allocation in Wireless Ad-hoc Networks, IWCMC [3] S. Serbetli, A. Yener, Optimum Power Allocation for Relay Assisted F/TDMA Ad Hoc Networks, WirelessCom [4] H. Bolcskei and R. U. Nabar, Realizing MIMO gains without user cooperation in large single-antenna wireless networks, ISIT Node Powers Total Power Fig. 7. Node Power Allocation for the asymmetric network of Fig. 6, simultaneous transmission at the sources. (P R, P R2 are the relay power used for S and S 2, respectively. [5] K. K. Mukkavilli, Sabharwal, E. Erkip and B. Aazhang, On beamforming with nite rate feedback in multiple antenna systems, IEEE Tran. on Info. Theory, vol. 49, no.0, pp , October [6] D. Gunduz, E. Erkip, Opportunistic cooperation by dynamic resource allocation, To appear, journal available at elza/publications/opp05.pdf [7] T. Cover, J. Thomas, Elements of Information Theory, Wiley & Sons, New York, 99. [8] A. Carleial, Interference Channels, IEEE Tran. on Info. Theory Volume 24, Issue, pp , Jan 978 [9] G. Kramer, Review of Rate Regions for Interference Channels, IZS 2006 [0] D. Tse, P. Viswanath, Fundamentals od Wireless Communications, Cambridge University Press, [] A. Tajer, A. Nosratinia, A broadcasting relay for orthogonal multiuser channels, IEEE Globecom, Nov 2006 [2] Yingbin Liang, V.V. Veeravalli, Gaussian Orthogonal Relay Channels: Optimal Resource Allocation and Capacity IEEE Tran. on Info. Theory, Volume 5, Issue 9, pp.: Sept. 2005

OUTAGE MINIMIZATION BY OPPORTUNISTIC COOPERATION. Deniz Gunduz, Elza Erkip

OUTAGE MINIMIZATION BY OPPORTUNISTIC COOPERATION. Deniz Gunduz, Elza Erkip OUTAGE MINIMIZATION BY OPPORTUNISTIC COOPERATION Deniz Gunduz, Elza Erkip Department of Electrical and Computer Engineering Polytechnic University Brooklyn, NY 11201, USA ABSTRACT We consider a wireless

More information

Optimum Power Allocation in Cooperative Networks

Optimum Power Allocation in Cooperative Networks Optimum Power Allocation in Cooperative Networks Jaime Adeane, Miguel R.D. Rodrigues, and Ian J. Wassell Laboratory for Communication Engineering Department of Engineering University of Cambridge 5 JJ

More information

Capacity and Cooperation in Wireless Networks

Capacity and Cooperation in Wireless Networks Capacity and Cooperation in Wireless Networks Chris T. K. Ng and Andrea J. Goldsmith Stanford University Abstract We consider fundamental capacity limits in wireless networks where nodes can cooperate

More information

Joint Relaying and Network Coding in Wireless Networks

Joint Relaying and Network Coding in Wireless Networks Joint Relaying and Network Coding in Wireless Networks Sachin Katti Ivana Marić Andrea Goldsmith Dina Katabi Muriel Médard MIT Stanford Stanford MIT MIT Abstract Relaying is a fundamental building block

More information

Optimal Power Allocation over Fading Channels with Stringent Delay Constraints

Optimal Power Allocation over Fading Channels with Stringent Delay Constraints 1 Optimal Power Allocation over Fading Channels with Stringent Delay Constraints Xiangheng Liu Andrea Goldsmith Dept. of Electrical Engineering, Stanford University Email: liuxh,andrea@wsl.stanford.edu

More information

A Brief Review of Opportunistic Beamforming

A Brief Review of Opportunistic Beamforming A Brief Review of Opportunistic Beamforming Hani Mehrpouyan Department of Electrical and Computer Engineering Queen's University, Kingston, Ontario, K7L3N6, Canada Emails: 5hm@qlink.queensu.ca 1 Abstract

More information

PERFORMANCE OF TWO-PATH SUCCESSIVE RELAYING IN THE PRESENCE OF INTER-RELAY INTERFERENCE

PERFORMANCE OF TWO-PATH SUCCESSIVE RELAYING IN THE PRESENCE OF INTER-RELAY INTERFERENCE PERFORMANCE OF TWO-PATH SUCCESSIVE RELAYING IN THE PRESENCE OF INTER-RELAY INTERFERENCE 1 QIAN YU LIAU, 2 CHEE YEN LEOW Wireless Communication Centre, Faculty of Electrical Engineering, Universiti Teknologi

More information

Exploiting Interference through Cooperation and Cognition

Exploiting Interference through Cooperation and Cognition Exploiting Interference through Cooperation and Cognition Stanford June 14, 2009 Joint work with A. Goldsmith, R. Dabora, G. Kramer and S. Shamai (Shitz) The Role of Wireless in the Future The Role of

More information

SPECTRUM SHARING IN CRN USING ARP PROTOCOL- ANALYSIS OF HIGH DATA RATE

SPECTRUM SHARING IN CRN USING ARP PROTOCOL- ANALYSIS OF HIGH DATA RATE Int. J. Chem. Sci.: 14(S3), 2016, 794-800 ISSN 0972-768X www.sadgurupublications.com SPECTRUM SHARING IN CRN USING ARP PROTOCOL- ANALYSIS OF HIGH DATA RATE ADITYA SAI *, ARSHEYA AFRAN and PRIYANKA Information

More information

IN RECENT years, wireless multiple-input multiple-output

IN RECENT years, wireless multiple-input multiple-output 1936 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 3, NO. 6, NOVEMBER 2004 On Strategies of Multiuser MIMO Transmit Signal Processing Ruly Lai-U Choi, Michel T. Ivrlač, Ross D. Murch, and Wolfgang

More information

On Multiple Users Scheduling Using Superposition Coding over Rayleigh Fading Channels

On Multiple Users Scheduling Using Superposition Coding over Rayleigh Fading Channels On Multiple Users Scheduling Using Superposition Coding over Rayleigh Fading Channels Item Type Article Authors Zafar, Ammar; Alnuweiri, Hussein; Shaqfeh, Mohammad; Alouini, Mohamed-Slim Eprint version

More information

Source and Channel Coding for Quasi-Static Fading Channels

Source and Channel Coding for Quasi-Static Fading Channels Source and Channel Coding for Quasi-Static Fading Channels Deniz Gunduz, Elza Erkip Dept. of Electrical and Computer Engineering Polytechnic University, Brooklyn, NY 2, USA dgundu@utopia.poly.edu elza@poly.edu

More information

3432 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 10, OCTOBER 2007

3432 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 10, OCTOBER 2007 3432 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL 53, NO 10, OCTOBER 2007 Resource Allocation for Wireless Fading Relay Channels: Max-Min Solution Yingbin Liang, Member, IEEE, Venugopal V Veeravalli, Fellow,

More information

Adaptive Resource Allocation in Wireless Relay Networks

Adaptive Resource Allocation in Wireless Relay Networks Adaptive Resource Allocation in Wireless Relay Networks Tobias Renk Email: renk@int.uni-karlsruhe.de Dimitar Iankov Email: iankov@int.uni-karlsruhe.de Friedrich K. Jondral Email: fj@int.uni-karlsruhe.de

More information

arxiv: v2 [cs.it] 29 Mar 2014

arxiv: v2 [cs.it] 29 Mar 2014 1 Spectral Efficiency and Outage Performance for Hybrid D2D-Infrastructure Uplink Cooperation Ahmad Abu Al Haija and Mai Vu Abstract arxiv:1312.2169v2 [cs.it] 29 Mar 2014 We propose a time-division uplink

More information

Optimum Threshold for SNR-based Selective Digital Relaying Schemes in Cooperative Wireless Networks

Optimum Threshold for SNR-based Selective Digital Relaying Schemes in Cooperative Wireless Networks Optimum Threshold for SNR-based Selective Digital Relaying Schemes in Cooperative Wireless Networks Furuzan Atay Onat, Abdulkareem Adinoyi, Yijia Fan, Halim Yanikomeroglu, and John S. Thompson Broadband

More information

Chapter 10. User Cooperative Communications

Chapter 10. User Cooperative Communications Chapter 10 User Cooperative Communications 1 Outline Introduction Relay Channels User-Cooperation in Wireless Networks Multi-Hop Relay Channel Summary 2 Introduction User cooperative communication is a

More information

On the Achievable Diversity-vs-Multiplexing Tradeoff in Cooperative Channels

On the Achievable Diversity-vs-Multiplexing Tradeoff in Cooperative Channels On the Achievable Diversity-vs-Multiplexing Tradeoff in Cooperative Channels Kambiz Azarian, Hesham El Gamal, and Philip Schniter Dept of Electrical Engineering, The Ohio State University Columbus, OH

More information

Maximising Average Energy Efficiency for Two-user AWGN Broadcast Channel

Maximising Average Energy Efficiency for Two-user AWGN Broadcast Channel Maximising Average Energy Efficiency for Two-user AWGN Broadcast Channel Amir AKBARI, Muhammad Ali IMRAN, and Rahim TAFAZOLLI Centre for Communication Systems Research, University of Surrey, Guildford,

More information

When Network Coding and Dirty Paper Coding meet in a Cooperative Ad Hoc Network

When Network Coding and Dirty Paper Coding meet in a Cooperative Ad Hoc Network When Network Coding and Dirty Paper Coding meet in a Cooperative Ad Hoc Network Nadia Fawaz, David Gesbert Mobile Communications Department, Eurecom Institute Sophia-Antipolis, France {fawaz, gesbert}@eurecom.fr

More information

Two Models for Noisy Feedback in MIMO Channels

Two Models for Noisy Feedback in MIMO Channels Two Models for Noisy Feedback in MIMO Channels Vaneet Aggarwal Princeton University Princeton, NJ 08544 vaggarwa@princeton.edu Gajanana Krishna Stanford University Stanford, CA 94305 gkrishna@stanford.edu

More information

Low Complexity Power Allocation in Multiple-antenna Relay Networks

Low Complexity Power Allocation in Multiple-antenna Relay Networks Low Complexity Power Allocation in Multiple-antenna Relay Networks Yi Zheng and Steven D. Blostein Dept. of Electrical and Computer Engineering Queen s University, Kingston, Ontario, K7L3N6, Canada Email:

More information

Capacity Gain from Two-Transmitter and Two-Receiver Cooperation

Capacity Gain from Two-Transmitter and Two-Receiver Cooperation Capacity Gain from Two-Transmitter and Two-Receiver Cooperation Chris T. K. Ng, Student Member, IEEE, Nihar Jindal, Member, IEEE, Andrea J. Goldsmith, Fellow, IEEE and Urbashi Mitra, Fellow, IEEE arxiv:0704.3644v1

More information

Space-Time Coded Cooperative Multicasting with Maximal Ratio Combining and Incremental Redundancy

Space-Time Coded Cooperative Multicasting with Maximal Ratio Combining and Incremental Redundancy Space-Time Coded Cooperative Multicasting with Maximal Ratio Combining and Incremental Redundancy Aitor del Coso, Osvaldo Simeone, Yeheskel Bar-ness and Christian Ibars Centre Tecnològic de Telecomunicacions

More information

How (Information Theoretically) Optimal Are Distributed Decisions?

How (Information Theoretically) Optimal Are Distributed Decisions? How (Information Theoretically) Optimal Are Distributed Decisions? Vaneet Aggarwal Department of Electrical Engineering, Princeton University, Princeton, NJ 08544. vaggarwa@princeton.edu Salman Avestimehr

More information

Performance Analysis of Cooperative Communication System with a SISO system in Flat Fading Rayleigh channel

Performance Analysis of Cooperative Communication System with a SISO system in Flat Fading Rayleigh channel Performance Analysis of Cooperative Communication System with a SISO system in Flat Fading Rayleigh channel Sara Viqar 1, Shoab Ahmed 2, Zaka ul Mustafa 3 and Waleed Ejaz 4 1, 2, 3 National University

More information

6 Multiuser capacity and

6 Multiuser capacity and CHAPTER 6 Multiuser capacity and opportunistic communication In Chapter 4, we studied several specific multiple access techniques (TDMA/FDMA, CDMA, OFDM) designed to share the channel among several users.

More information

Strategic Versus Collaborative Power Control in Relay Fading Channels

Strategic Versus Collaborative Power Control in Relay Fading Channels Strategic Versus Collaborative Power Control in Relay Fading Channels Shuangqing Wei Department of Electrical and Computer Eng. Louisiana State University Baton Rouge, LA 70803 Email: swei@ece.lsu.edu

More information

Amplify-and-Forward Space-Time Coded Cooperation via Incremental Relaying Behrouz Maham and Are Hjørungnes

Amplify-and-Forward Space-Time Coded Cooperation via Incremental Relaying Behrouz Maham and Are Hjørungnes Amplify-and-Forward Space-Time Coded Cooperation via Incremental elaying Behrouz Maham and Are Hjørungnes UniK University Graduate Center, University of Oslo Instituttveien-5, N-7, Kjeller, Norway behrouz@unik.no,

More information

Opportunistic network communications

Opportunistic network communications Opportunistic network communications Suhas Diggavi School of Computer and Communication Sciences Laboratory for Information and Communication Systems (LICOS) Ecole Polytechnique Fédérale de Lausanne (EPFL)

More information

Degrees of Freedom of the MIMO X Channel

Degrees of Freedom of the MIMO X Channel Degrees of Freedom of the MIMO X Channel Syed A. Jafar Electrical Engineering and Computer Science University of California Irvine Irvine California 9697 USA Email: syed@uci.edu Shlomo Shamai (Shitz) Department

More information

PERFORMANCE ANALYSIS OF COLLABORATIVE HYBRID-ARQ INCREMENTAL REDUNDANCY PROTOCOLS OVER FADING CHANNELS

PERFORMANCE ANALYSIS OF COLLABORATIVE HYBRID-ARQ INCREMENTAL REDUNDANCY PROTOCOLS OVER FADING CHANNELS PERFORMANCE ANALYSIS OF COLLABORATIVE HYBRID-ARQ INCREMENTAL REDUNDANCY PROTOCOLS OVER FADING CHANNELS Igor Stanojev, Osvaldo Simeone and Yeheskel Bar-Ness Center for Wireless Communications and Signal

More information

Opportunistic Communication in Wireless Networks

Opportunistic Communication in Wireless Networks Opportunistic Communication in Wireless Networks David Tse Department of EECS, U.C. Berkeley October 10, 2001 Networking, Communications and DSP Seminar Communication over Wireless Channels Fundamental

More information

Exploiting Distributed Spatial Diversity in Wireless Networks

Exploiting Distributed Spatial Diversity in Wireless Networks In Proc. Allerton Conf. Commun., Contr., Computing, (Illinois), Oct. 2000. (invited paper) Exploiting Distributed Spatial Diversity in Wireless Networks J. Nicholas Laneman Gregory W. Wornell Research

More information

On the Optimum Power Allocation in the One-Side Interference Channel with Relay

On the Optimum Power Allocation in the One-Side Interference Channel with Relay 2012 IEEE Wireless Communications and etworking Conference: Mobile and Wireless etworks On the Optimum Power Allocation in the One-Side Interference Channel with Relay Song Zhao, Zhimin Zeng, Tiankui Zhang

More information

Cooperative Diversity Routing in Wireless Networks

Cooperative Diversity Routing in Wireless Networks Cooperative Diversity Routing in Wireless Networks Mostafa Dehghan, Majid Ghaderi, and Dennis L. Goeckel Department of Computer Science, University of Calgary, Emails: {mdehghan, mghaderi}@ucalgary.ca

More information

Cooperative Source and Channel Coding for Wireless Multimedia Communications

Cooperative Source and Channel Coding for Wireless Multimedia Communications IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 1, NO. 1, MONTH, YEAR 1 Cooperative Source and Channel Coding for Wireless Multimedia Communications Hoi Yin Shutoy, Deniz Gündüz, Elza Erkip,

More information

Threshold-based Adaptive Decode-Amplify-Forward Relaying Protocol for Cooperative Systems

Threshold-based Adaptive Decode-Amplify-Forward Relaying Protocol for Cooperative Systems Threshold-based Adaptive Decode-Amplify-Forward Relaying Protocol for Cooperative Systems Safwen Bouanen Departement of Computer Science, Université du Québec à Montréal Montréal, Québec, Canada bouanen.safouen@gmail.com

More information

A Novel Retransmission Strategy without Additional Overhead in Relay Cooperative Network

A Novel Retransmission Strategy without Additional Overhead in Relay Cooperative Network A Novel Retransmission Strategy without Additional Overhead in Relay Cooperative Network Shao Lan, Wang Wenbo, Long Hang, Peng Yuexing Wireless Signal Processing and Network Lab Key Laboratory of Universal

More information

ABSTRACT. Ahmed Salah Ibrahim, Doctor of Philosophy, 2009

ABSTRACT. Ahmed Salah Ibrahim, Doctor of Philosophy, 2009 ABSTRACT Title of Dissertation: RELAY DEPLOYMENT AND SELECTION IN COOPERATIVE WIRELESS NETWORKS Ahmed Salah Ibrahim, Doctor of Philosophy, 2009 Dissertation directed by: Professor K. J. Ray Liu Department

More information

Multi-user Two-way Deterministic Modulo 2 Adder Channels When Adaptation Is Useless

Multi-user Two-way Deterministic Modulo 2 Adder Channels When Adaptation Is Useless Forty-Ninth Annual Allerton Conference Allerton House, UIUC, Illinois, USA September 28-30, 2011 Multi-user Two-way Deterministic Modulo 2 Adder Channels When Adaptation Is Useless Zhiyu Cheng, Natasha

More information

Stability Analysis for Network Coded Multicast Cell with Opportunistic Relay

Stability Analysis for Network Coded Multicast Cell with Opportunistic Relay This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 00 proceedings Stability Analysis for Network Coded Multicast

More information

An Orthogonal Relay Protocol with Improved Diversity-Multiplexing Tradeoff

An Orthogonal Relay Protocol with Improved Diversity-Multiplexing Tradeoff SUBMITTED TO IEEE TRANS. WIRELESS COMMNS., NOV. 2009 1 An Orthogonal Relay Protocol with Improved Diversity-Multiplexing Tradeoff K. V. Srinivas, Raviraj Adve Abstract Cooperative relaying helps improve

More information

ISSN Vol.07,Issue.01, January-2015, Pages:

ISSN Vol.07,Issue.01, January-2015, Pages: ISSN 2348 2370 Vol.07,Issue.01, January-2015, Pages:0145-0150 www.ijatir.org A Novel Approach for Delay-Limited Source and Channel Coding of Quasi- Stationary Sources over Block Fading Channels: Design

More information

Energy Efficiency Optimization in Multi-Antenna Wireless Powered Communication Network with No Channel State Information

Energy Efficiency Optimization in Multi-Antenna Wireless Powered Communication Network with No Channel State Information Vol.141 (GST 016), pp.158-163 http://dx.doi.org/10.1457/astl.016.141.33 Energy Efficiency Optimization in Multi-Antenna Wireless Powered Communication Networ with No Channel State Information Byungjo im

More information

1162 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 63, NO. 4, APRIL 2015

1162 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 63, NO. 4, APRIL 2015 116 IEEE TRANSACTIONS ON COMMUNICATIONS VOL. 63 NO. 4 APRIL 15 Outage Analysis for Coherent Decode-Forward Relaying Over Rayleigh Fading Channels Ahmad Abu Al Haija Student Member IEEE andmaivusenior Member

More information

Multiple Antennas. Mats Bengtsson, Björn Ottersten. Basic Transmission Schemes 1 September 8, Presentation Outline

Multiple Antennas. Mats Bengtsson, Björn Ottersten. Basic Transmission Schemes 1 September 8, Presentation Outline Multiple Antennas Capacity and Basic Transmission Schemes Mats Bengtsson, Björn Ottersten Basic Transmission Schemes 1 September 8, 2005 Presentation Outline Channel capacity Some fine details and misconceptions

More information

Scaling Laws for Cognitive Radio Network with Heterogeneous Mobile Secondary Users

Scaling Laws for Cognitive Radio Network with Heterogeneous Mobile Secondary Users Scaling Laws for Cognitive Radio Network with Heterogeneous Mobile Secondary Users Y.Li, X.Wang, X.Tian and X.Liu Shanghai Jiaotong University Scaling Laws for Cognitive Radio Network with Heterogeneous

More information

Optimization of Coded MIMO-Transmission with Antenna Selection

Optimization of Coded MIMO-Transmission with Antenna Selection Optimization of Coded MIMO-Transmission with Antenna Selection Biljana Badic, Paul Fuxjäger, Hans Weinrichter Institute of Communications and Radio Frequency Engineering Vienna University of Technology

More information

Lecture 8 Multi- User MIMO

Lecture 8 Multi- User MIMO Lecture 8 Multi- User MIMO I-Hsiang Wang ihwang@ntu.edu.tw 5/7, 014 Multi- User MIMO System So far we discussed how multiple antennas increase the capacity and reliability in point-to-point channels Question:

More information

Soft Channel Encoding; A Comparison of Algorithms for Soft Information Relaying

Soft Channel Encoding; A Comparison of Algorithms for Soft Information Relaying IWSSIP, -3 April, Vienna, Austria ISBN 978-3--38-4 Soft Channel Encoding; A Comparison of Algorithms for Soft Information Relaying Mehdi Mortazawi Molu Institute of Telecommunications Vienna University

More information

Throughput Optimization in Wireless Multihop Networks with Successive Interference Cancellation

Throughput Optimization in Wireless Multihop Networks with Successive Interference Cancellation Throughput Optimization in Wireless Multihop Networks with Successive Interference Cancellation Patrick Mitran, Catherine Rosenberg, Samat Shabdanov Electrical and Computer Engineering Department University

More information

Information Theory at the Extremes

Information Theory at the Extremes Information Theory at the Extremes David Tse Department of EECS, U.C. Berkeley September 5, 2002 Wireless Networks Workshop at Cornell Information Theory in Wireless Wireless communication is an old subject.

More information

Delay Tolerant Cooperation in the Energy Harvesting Multiple Access Channel

Delay Tolerant Cooperation in the Energy Harvesting Multiple Access Channel Delay Tolerant Cooperation in the Energy Harvesting Multiple Access Channel Onur Kaya, Nugman Su, Sennur Ulukus, Mutlu Koca Isik University, Istanbul, Turkey, onur.kaya@isikun.edu.tr Bogazici University,

More information

Achievable Transmission Capacity of Cognitive Radio Networks with Cooperative Relaying

Achievable Transmission Capacity of Cognitive Radio Networks with Cooperative Relaying Achievable Transmission Capacity of Cognitive Radio Networks with Cooperative Relaying Xiuying Chen, Tao Jing, Yan Huo, Wei Li 2, Xiuzhen Cheng 2, Tao Chen 3 School of Electronics and Information Engineering,

More information

A Cognitive Subcarriers Sharing Scheme for OFDM based Decode and Forward Relaying System

A Cognitive Subcarriers Sharing Scheme for OFDM based Decode and Forward Relaying System A Cognitive Subcarriers Sharing Scheme for OFM based ecode and Forward Relaying System aveen Gupta and Vivek Ashok Bohara WiroComm Research Lab Indraprastha Institute of Information Technology IIIT-elhi

More information

Location Aware Wireless Networks

Location Aware Wireless Networks Location Aware Wireless Networks Behnaam Aazhang CMC Rice University Houston, TX USA and CWC University of Oulu Oulu, Finland Wireless A growing market 2 Wireless A growing market Still! 3 Wireless A growing

More information

Power and Bandwidth Allocation in Cooperative Dirty Paper Coding

Power and Bandwidth Allocation in Cooperative Dirty Paper Coding Power and Bandwidth Allocation in Cooperative Dirty Paper Coding Chris T. K. Ng 1, Nihar Jindal 2 Andrea J. Goldsmith 3, Urbashi Mitra 4 1 Stanford University/MIT, 2 Univeristy of Minnesota 3 Stanford

More information

Bounds on Achievable Rates for Cooperative Channel Coding

Bounds on Achievable Rates for Cooperative Channel Coding Bounds on Achievable Rates for Cooperative Channel Coding Ameesh Pandya and Greg Pottie Department of Electrical Engineering University of California, Los Angeles {ameesh, pottie}@ee.ucla.edu Abstract

More information

Opportunities, Constraints, and Benefits of Relaying in the Presence of Interference

Opportunities, Constraints, and Benefits of Relaying in the Presence of Interference Opportunities, Constraints, and Benefits of Relaying in the Presence of Interference Peter Rost, Gerhard Fettweis Technische Universität Dresden, Vodafone Chair Mobile Communications Systems, 01069 Dresden,

More information

Distributed Energy-Efficient Cooperative Routing in Wireless Networks

Distributed Energy-Efficient Cooperative Routing in Wireless Networks Distributed Energy-Efficient Cooperative Routing in Wireless Networks Ahmed S. Ibrahim, Zhu Han, and K. J. Ray Liu Department of Electrical and Computer Engineering, University of Maryland, College Park,

More information

Space-Division Relay: A High-Rate Cooperation Scheme for Fading Multiple-Access Channels

Space-Division Relay: A High-Rate Cooperation Scheme for Fading Multiple-Access Channels Space-ivision Relay: A High-Rate Cooperation Scheme for Fading Multiple-Access Channels Arumugam Kannan and John R. Barry School of ECE, Georgia Institute of Technology Atlanta, GA 0-050 USA, {aru, barry}@ece.gatech.edu

More information

Improved Throughput Scaling in Wireless Ad Hoc Networks With Infrastructure

Improved Throughput Scaling in Wireless Ad Hoc Networks With Infrastructure Improved Throughput Scaling in Wireless Ad Hoc Networks With Infrastructure Won-Yong Shin, Sang-Woon Jeon, Natasha Devroye, Mai H. Vu, Sae-Young Chung, Yong H. Lee, and Vahid Tarokh School of Electrical

More information

Random Beamforming with Multi-beam Selection for MIMO Broadcast Channels

Random Beamforming with Multi-beam Selection for MIMO Broadcast Channels Random Beamforming with Multi-beam Selection for MIMO Broadcast Channels Kai Zhang and Zhisheng Niu Dept. of Electronic Engineering, Tsinghua University Beijing 84, China zhangkai98@mails.tsinghua.e.cn,

More information

Fractional Cooperation and the Max-Min Rate in a Multi-Source Cooperative Network

Fractional Cooperation and the Max-Min Rate in a Multi-Source Cooperative Network Fractional Cooperation and the Max-Min Rate in a Multi-Source Cooperative Network Ehsan Karamad and Raviraj Adve The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of

More information

UNEQUAL POWER ALLOCATION FOR JPEG TRANSMISSION OVER MIMO SYSTEMS. Muhammad F. Sabir, Robert W. Heath Jr. and Alan C. Bovik

UNEQUAL POWER ALLOCATION FOR JPEG TRANSMISSION OVER MIMO SYSTEMS. Muhammad F. Sabir, Robert W. Heath Jr. and Alan C. Bovik UNEQUAL POWER ALLOCATION FOR JPEG TRANSMISSION OVER MIMO SYSTEMS Muhammad F. Sabir, Robert W. Heath Jr. and Alan C. Bovik Department of Electrical and Computer Engineering, The University of Texas at Austin,

More information

Keywords: Wireless Relay Networks, Transmission Rate, Relay Selection, Power Control.

Keywords: Wireless Relay Networks, Transmission Rate, Relay Selection, Power Control. 6 International Conference on Service Science Technology and Engineering (SSTE 6) ISB: 978--6595-35-9 Relay Selection and Power Allocation Strategy in Micro-power Wireless etworks Xin-Gang WAG a Lu Wang

More information

Mitigating Channel Estimation Error with Timing Synchronization Tradeoff in Cooperative Communications

Mitigating Channel Estimation Error with Timing Synchronization Tradeoff in Cooperative Communications Mitigating Channel Estimation Error with Timing Synchronization Tradeoff in Cooperative Communications Ahmed S. Ibrahim and K. J. Ray Liu Department of Signals and Systems Chalmers University of Technology,

More information

On the Performance of Cooperative Routing in Wireless Networks

On the Performance of Cooperative Routing in Wireless Networks 1 On the Performance of Cooperative Routing in Wireless Networks Mostafa Dehghan, Majid Ghaderi, and Dennis L. Goeckel Department of Computer Science, University of Calgary, Emails: {mdehghan, mghaderi}@ucalgary.ca

More information

Transmit Outage Pre-Equalization for Amplify-and-Forward Relay Channels

Transmit Outage Pre-Equalization for Amplify-and-Forward Relay Channels Transmit Outage Pre-Equalization for Amplify-and-Forward Relay Channels Fernando Sánchez and Gerald Matz Institute of Telecommunications, Vienna University of Technology, Vienna, Austria fernandoandressanchez@gmail.com,

More information

Capacity and Optimal Resource Allocation for Fading Broadcast Channels Part I: Ergodic Capacity

Capacity and Optimal Resource Allocation for Fading Broadcast Channels Part I: Ergodic Capacity IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 3, MARCH 2001 1083 Capacity Optimal Resource Allocation for Fading Broadcast Channels Part I: Ergodic Capacity Lang Li, Member, IEEE, Andrea J. Goldsmith,

More information

Performance Analysis of Cognitive Radio based on Cooperative Spectrum Sensing

Performance Analysis of Cognitive Radio based on Cooperative Spectrum Sensing Performance Analysis of Cognitive Radio based on Cooperative Spectrum Sensing Sai kiran pudi 1, T. Syama Sundara 2, Dr. Nimmagadda Padmaja 3 Department of Electronics and Communication Engineering, Sree

More information

Combined Opportunistic Beamforming and Receive Antenna Selection

Combined Opportunistic Beamforming and Receive Antenna Selection Combined Opportunistic Beamforming and Receive Antenna Selection Lei Zan, Syed Ali Jafar University of California Irvine Irvine, CA 92697-262 Email: lzan@uci.edu, syed@ece.uci.edu Abstract Opportunistic

More information

Performance Evaluation of Dual Hop Multi-Antenna Multi- Relay System using Nakagami Fading Environment

Performance Evaluation of Dual Hop Multi-Antenna Multi- Relay System using Nakagami Fading Environment Performance Evaluation of Dual Hop Multi-Antenna Multi- Relay System using Environment Neha Pathak 1, Mohammed Ahmed 2, N.K Mittal 3 1 Mtech Scholar, 2 Prof., 3 Principal, OIST Bhopal Abstract-- Dual hop

More information

Interference: An Information Theoretic View

Interference: An Information Theoretic View Interference: An Information Theoretic View David Tse Wireless Foundations U.C. Berkeley ISIT 2009 Tutorial June 28 Thanks: Changho Suh. Context Two central phenomena in wireless communications: Fading

More information

Stability Regions of Two-Way Relaying with Network Coding

Stability Regions of Two-Way Relaying with Network Coding Stability Regions of Two-Way Relaying with Network Coding (Invited Paper) Ertugrul Necdet Ciftcioglu Department of Electrical Engineering The Pennsylvania State University University Park, PA 680 enc8@psu.edu

More information

Degrees of Freedom in Multiuser MIMO

Degrees of Freedom in Multiuser MIMO Degrees of Freedom in Multiuser MIMO Syed A Jafar Electrical Engineering and Computer Science University of California Irvine, California, 92697-2625 Email: syed@eceuciedu Maralle J Fakhereddin Department

More information

Throughput-optimal number of relays in delaybounded multi-hop ALOHA networks

Throughput-optimal number of relays in delaybounded multi-hop ALOHA networks Page 1 of 10 Throughput-optimal number of relays in delaybounded multi-hop ALOHA networks. Nekoui and H. Pishro-Nik This letter addresses the throughput of an ALOHA-based Poisson-distributed multihop wireless

More information

Interference Management in Wireless Networks

Interference Management in Wireless Networks Interference Management in Wireless Networks Aly El Gamal Department of Electrical and Computer Engineering Purdue University Venu Veeravalli Coordinated Science Lab Department of Electrical and Computer

More information

Noncoherent Demodulation for Cooperative Diversity in Wireless Systems

Noncoherent Demodulation for Cooperative Diversity in Wireless Systems Noncoherent Demodulation for Cooperative Diversity in Wireless Systems Deqiang Chen and J. Nicholas Laneman Department of Electrical Engineering University of Notre Dame Notre Dame IN 46556 Email: {dchen

More information

Performance Analysis of Multiuser MIMO Systems with Scheduling and Antenna Selection

Performance Analysis of Multiuser MIMO Systems with Scheduling and Antenna Selection Performance Analysis of Multiuser MIMO Systems with Scheduling and Antenna Selection Mohammad Torabi Wessam Ajib David Haccoun Dept. of Electrical Engineering Dept. of Computer Science Dept. of Electrical

More information

arxiv: v1 [cs.it] 12 Jan 2011

arxiv: v1 [cs.it] 12 Jan 2011 On the Degree of Freedom for Multi-Source Multi-Destination Wireless Networ with Multi-layer Relays Feng Liu, Chung Chan, Ying Jun (Angela) Zhang Abstract arxiv:0.2288v [cs.it] 2 Jan 20 Degree of freedom

More information

Fig.1channel model of multiuser ss OSTBC system

Fig.1channel model of multiuser ss OSTBC system IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 9, Issue 1, Ver. V (Feb. 2014), PP 48-52 Cooperative Spectrum Sensing In Cognitive Radio

More information

SUPERPOSITION CODING IN THE DOWNLINK OF CDMA CELLULAR SYSTEMS

SUPERPOSITION CODING IN THE DOWNLINK OF CDMA CELLULAR SYSTEMS SUPERPOSITION ODING IN THE DOWNLINK OF DMA ELLULAR SYSTEMS Surendra Boppana, John M. Shea Wireless Information Networking Group Department of Electrical and omputer Engineering University of Florida 458

More information

Scaling Laws of Cognitive Networks

Scaling Laws of Cognitive Networks Scaling Laws of Cognitive Networks Mai Vu, 1 Natasha Devroye, 1, Masoud Sharif, and Vahid Tarokh 1 1 Harvard University, e-mail: maivu, ndevroye, vahid @seas.harvard.edu Boston University, e-mail: sharif@bu.edu

More information

Practical Cooperative Coding for Half-Duplex Relay Channels

Practical Cooperative Coding for Half-Duplex Relay Channels Practical Cooperative Coding for Half-Duplex Relay Channels Noah Jacobsen Alcatel-Lucent 600 Mountain Avenue Murray Hill, NJ 07974 jacobsen@alcatel-lucent.com Abstract Simple variations on rate-compatible

More information

Smart Scheduling and Dumb Antennas

Smart Scheduling and Dumb Antennas Smart Scheduling and Dumb Antennas David Tse Department of EECS, U.C. Berkeley September 20, 2002 Berkeley Wireless Research Center Opportunistic Communication One line summary: Transmit when and where

More information

Research Collection. Multi-layer coded direct sequence CDMA. Conference Paper. ETH Library

Research Collection. Multi-layer coded direct sequence CDMA. Conference Paper. ETH Library Research Collection Conference Paper Multi-layer coded direct sequence CDMA Authors: Steiner, Avi; Shamai, Shlomo; Lupu, Valentin; Katz, Uri Publication Date: Permanent Link: https://doi.org/.399/ethz-a-6366

More information

Throughput Improvement for Cell-Edge Users Using Selective Cooperation in Cellular Networks

Throughput Improvement for Cell-Edge Users Using Selective Cooperation in Cellular Networks Throughput Improvement for Cell-Edge Users Using Selective Cooperation in Cellular Networks M. R. Ramesh Kumar S. Bhashyam D. Jalihal Sasken Communication Technologies,India. Department of Electrical Engineering,

More information

Relay Scheduling and Interference Cancellation for Quantize-Map-and-Forward Cooperative Relaying

Relay Scheduling and Interference Cancellation for Quantize-Map-and-Forward Cooperative Relaying 013 IEEE International Symposium on Information Theory Relay Scheduling and Interference Cancellation for Quantize-Map-and-Forward Cooperative Relaying M. Jorgovanovic, M. Weiner, D. Tse and B. Nikolić

More information

Cooperative Relaying Networks

Cooperative Relaying Networks Cooperative Relaying Networks A. Wittneben Communication Technology Laboratory Wireless Communication Group Outline Pervasive Wireless Access Fundamental Performance Limits Cooperative Signaling Schemes

More information

Error Correcting Codes for Cooperative Broadcasting

Error Correcting Codes for Cooperative Broadcasting San Jose State University SJSU ScholarWorks Faculty Publications Electrical Engineering 11-30-2010 Error Correcting Codes for Cooperative Broadcasting Robert H. Morelos-Zaragoza San Jose State University,

More information

Orthogonal vs Non-Orthogonal Multiple Access with Finite Input Alphabet and Finite Bandwidth

Orthogonal vs Non-Orthogonal Multiple Access with Finite Input Alphabet and Finite Bandwidth Orthogonal vs Non-Orthogonal Multiple Access with Finite Input Alphabet and Finite Bandwidth J. Harshan Dept. of ECE, Indian Institute of Science Bangalore 56, India Email:harshan@ece.iisc.ernet.in B.

More information

WHEN NETWORK CODING AND DIRTY PAPER CODING MEET IN A COOPERATIVE AD HOC NETWORK

WHEN NETWORK CODING AND DIRTY PAPER CODING MEET IN A COOPERATIVE AD HOC NETWORK WHEN NETWORK CODING AND DIRTY PAPER CODING MEET IN A COOPERATIVE AD HOC NETWORK Nadia Fawaz, David Gesbert, Merouane Debbah To cite this version: Nadia Fawaz, David Gesbert, Merouane Debbah. WHEN NETWORK

More information

OPTIMAL POWER ALLOCATION FOR MULTIPLE ACCESS CHANNEL

OPTIMAL POWER ALLOCATION FOR MULTIPLE ACCESS CHANNEL International Journal of Wireless & Mobile Networks (IJWMN) Vol. 8, No. 6, December 06 OPTIMAL POWER ALLOCATION FOR MULTIPLE ACCESS CHANNEL Zouhair Al-qudah Communication Engineering Department, AL-Hussein

More information

Analysis and Improvements of Linear Multi-user user MIMO Precoding Techniques

Analysis and Improvements of Linear Multi-user user MIMO Precoding Techniques 1 Analysis and Improvements of Linear Multi-user user MIMO Precoding Techniques Bin Song and Martin Haardt Outline 2 Multi-user user MIMO System (main topic in phase I and phase II) critical problem Downlink

More information

Superposition Coding in the Downlink of CDMA Cellular Systems

Superposition Coding in the Downlink of CDMA Cellular Systems Superposition Coding in the Downlink of CDMA Cellular Systems Surendra Boppana and John M. Shea Wireless Information Networking Group University of Florida Feb 13, 2006 Outline of the talk Introduction

More information

On the Capacity Regions of Two-Way Diamond. Channels

On the Capacity Regions of Two-Way Diamond. Channels On the Capacity Regions of Two-Way Diamond 1 Channels Mehdi Ashraphijuo, Vaneet Aggarwal and Xiaodong Wang arxiv:1410.5085v1 [cs.it] 19 Oct 2014 Abstract In this paper, we study the capacity regions of

More information

TIME- OPTIMAL CONVERGECAST IN SENSOR NETWORKS WITH MULTIPLE CHANNELS

TIME- OPTIMAL CONVERGECAST IN SENSOR NETWORKS WITH MULTIPLE CHANNELS TIME- OPTIMAL CONVERGECAST IN SENSOR NETWORKS WITH MULTIPLE CHANNELS A Thesis by Masaaki Takahashi Bachelor of Science, Wichita State University, 28 Submitted to the Department of Electrical Engineering

More information

On the Unicast Capacity of Stationary Multi-channel Multi-radio Wireless Networks: Separability and Multi-channel Routing

On the Unicast Capacity of Stationary Multi-channel Multi-radio Wireless Networks: Separability and Multi-channel Routing 1 On the Unicast Capacity of Stationary Multi-channel Multi-radio Wireless Networks: Separability and Multi-channel Routing Liangping Ma arxiv:0809.4325v2 [cs.it] 26 Dec 2009 Abstract The first result

More information