Coordinated PID Secondary Voltage Control of a Power System Based on Genetic Algorithm

Size: px
Start display at page:

Download "Coordinated PID Secondary Voltage Control of a Power System Based on Genetic Algorithm"

Transcription

1 Helwan University From the SelectedWorks of Omar H. Abdalla Winter December 27, 26 Coordinated PID Secondary Voltage Control of a Power System Based on Genetic Algorithm Prof. Omar H. Abdalla, Helwan University Prof. A. M. Abdel Ghany, Helwan University Hady H. Fayek, Heliopolis University Available at:

2 Proc. 26 Eighteenth International Middle East Power Systems Conference (MEPCON), Paper ID: 58, pp , Helwan University, Cairo, Egypt, Dec. 26. Coordinated PID Secondary Voltage Control of a Power System Based on Genetic Algorithm Omar H. Abdalla, Life SMIEEE and A.M. Abdel Ghany, MIEEE Electrical Power and Machines Department Helwan University Cairo, Egypt ohabdalla@ieee.org, ghanymohamed@ieee.org Hady H. Fayek Electromechanics Department Heliopolis University Cairo, Egypt hadyhabib@hotmail.com Abstract This paper presents the design of secondary voltage control by tuning the parameters of coordinated PID controllers to eliminate voltage violations in power system contingencies. The coordinated PID control parameters are tuned by using genetic algorithm. The study is presented on modified IEEE 4 bus system. The coordinated secondary voltage control is assigned to the generators and STATCOMs in order to eliminate voltage violations in system contingencies. Here, a contingency means a disturbance leading to tripping a generator at a certain bus. Measurements of pilot buses voltage magnitudes are done by using minimum number of phasor measurement units. Simulation and optimization studies are performed by using MATLAB / Simulink software. Key words: Coordinated secondary voltage control, Coordinated PID controller, Genetic algorithm (GA), Pilot buses. I. INTRODUCTION One of the main reasons of blackouts or brownouts of a power grid is the voltage instability. Voltage stability phenomenon is defined in [] as the ability of a power system to maintain steady voltages at all buses in the system after being subjected to a disturbance from a given initial operating condition. Voltage stability also plays the most important role in the reliability and security evaluation of the grid [], [2]. Voltage control in power system consists of three hierarchical control levels: Automatic Voltage Regulation (AVR), Secondary Voltage Control (SecVC), and Tertiary Voltage Control (TerVC) [3]. AVR aims to control the voltage magnitude of the buses where the reactive power sources (such as synchronous generators, synchronous condensers, static var compensators, Static Compensators (STATCOM), etc.) are installed. The measurements used in this control level are taken locally [4]. SecVC aims to control the voltage magnitude of a pilot bus which is a certain load bus required to be controlled. This control level is normally performed by using hardware that leads to adjust the reference point of the AVR(s) which is/are located at the same region of the pilot bus at a speed slower than that of the AVR control level. SecVC is also responsible for the determination of the voltage control regions and indicates its association with each load bus. As power system operating conditions continuously changes so SecVC should be flexible enough to change the control regions and the set point which cope with the entire grid conditions. TerVC is responsible for the determination of optimal reference value of each load bus voltage magnitude in the grid. The optimal values are calculated from optimal load flow computations which are done to achieve a certain objective function such as minimum power losses or minimum load shedding or optimizing reactive power reserve. TerVC has a time range from half an hour to a complete hour to be periodically performed [4]. In modern power systems (smart grid) more facilities will be available for monitoring, communication, controlling and protection among all the grid levels. The three voltage control levels will be widely required especially with the high penetration level of renewables. Smart grid is characterized by wide area measurement using Phasor Measurement Units (PMUs) based on Global Positioning System (GPS). The coherent and time-synchronized measured quantities are essential for accurate and real-time wide-area power system voltage control [5], [6]. This paper is focused on SecVC by using a coordinated PID controller which is designed using genetic algorithm. The controller used to eliminate voltage violation under different contingencies such as generator outage. The proposed approach employs minimum numbers of PMUs to get real time measurements as control feedback signals, so that a precise and fast secondary voltage control can be achieved. The subsequent sections are organized as follows: Section II describes the SecVC and the design of its proposed PID controller. Section III shows the system description. Section IV presents a proposed method for determining the minimum number of PMUs. Section V briefly describes the GA. Section VI presents the application of the coordinated SecVC to the IEEE 4-Bus system. Section VII presents the simulation results and Section VIII summarizes the main conclusions. II. SECONDARY VOLTAGE CONTROL As mentioned in details in [4], for SecVC application the power grid is divided into many voltage control regions; for example the IEEE 4 bus has 8 regions, assuming that each Published in IEEE Xplore, DOI:.9/MEPCON

3 load bus represents a region. The voltage magnitude of each load bus is controlled by a selected set of reactive power sources in the same region. The main objective of SecVC is to control the pilot bus voltage magnitude by changing the reference points of the regional generators AVRs and STATCOM S firing circuits in a coordinated way. Fig.. SecVC overall structure [3]. control level function. This is done by setting the dominant time constant of the SecVC more than that of all the AVRs in the power grid and the TerVC repetition time is higher than that of all SecVCs [3]. The voltage control sequence is done with the following procedure: The AVR controls the bus voltage of the generating unit or the station, which is done in most cases by a using local controller. The time constant of the AVR is set to be near.5 sec. Unit Cluster Control (CC) is shown in Fig. 2. The AVR voltage reference VG S could be varied between V min and V max which obtains the unit reactive power production Q G corresponding to its reference value Q ref as illustrated in (). V GS K t G ( Q ref Q G dt ) V V max min () Where K G is the regulator integral gain and it is equal to (X TG + X eq ) / (T G ) and tuned in such a way that the closed loop has a dominant time constant (T G ) of about 5s, X TG represents the transformer generator reactance while X eq represents the equivalent reactance of the line connecting the supporter generator with the pilot bus. The AVR dynamic response should be fast enough to deal with the local network disturbances to avoid being affected with the reactive power loop. The reference value Q ref is obtained from the product of the reactive power level q by the unit capability limit Q GL as shown in (2). Q GL is computed on-line based on the operation conditions of the reactive power source. Q ref q * QGL (2) The reactive power level q may be provided by the pilot Central Area Control (CAC). In closed-loop and realtime, the reactive level q in the interval between its minimum q min = -% and its maximum q max = % which achieves load bus voltage magnitude V p corresponding to its reference value V pref. [4]. Fig. 2. Generator SecVC scheme. Fig. shows the overall structure of the three voltage control levels in a power system with a zoom in SecVC configuration. The three voltage control levels are constructed in such a way that each level takes a time less than that of the higher level. In other words the inner loop is faster than the outer ones to avoid the overlap between each Vp Vpref Vp (3) t dvp q KpVp KI VpdtK (4) D dt. where K P, K I, K D are the parameters of the coordinated proportional integral derivative controller. The V pref is given originally by optimal load flow calculations to achieve a certain objective function (such as minimum load shedding or minimum power losses or even optimal reactive power reserve) at a certain condition with restriction to some constraints as active and reactive power limits and also bus voltage limits. In this paper V pref is assumed to be per unit.

4 III. SYSTEM DESCRIPTION This research is applied to the IEEE 4 bus system after performing some modifications. The test system used in Fig. 3 consists of eight PQ buses and five PV buses. The idea of the SecVC is that the reactive power sources at the PV buses should support the loads in PQ buses in case of any disturbance. The reactive power sources installed in the IEEE 4 bus network are generators at buses and 2, STATCOM at bus 6 and synchronous condensers at buses 3 and 8. Each generator has its own AVR based on its type and size; typical examples are shown in Fig. 4 and Fig. 5. Fig. 3. Modified 4-Bus System. Fig. 4. AVR for some steam units. Fig. 5. AVR for some hydraulic and nuclear units []. IV. MINIMUM NUMBER OF PMU S FOR VOLTAGE MEASUREMENTS At the end of the past century, supervisory control and data acquisition (SCADA) system were widely used to transfer power information (such as power flow computations, bus voltage measurements, etc.) from point to point [7]. The problem of the SCADA is that it needs to be connected point to point which means transferring information over large distances is very difficult, also now days with the aim to convert the power system to smart grid a real time synchronized monitoring, measurements are needed to perform real time control and protection. PMUs were first introduced in last 98s are now one of the main components of any smart grid as it allows having wide area of measurements at same time and capturing the power system data at real time. Measurements which is transferred by using global positioning system (GPS) with accuracy better than micro second, enables WAMPAC system to provide real-time measurements of bus voltage and branch current phasors [8]. Installing PMU in each bus will give accurate real time measurements. The main problem of the PMU is that still expensive so the idea is to keep the entire grid observable by locating the PMUs in proper buses. Accessing the optima number of PMUs to have a complete observable power network requires a suitable optimization technique which has been widely handled by several researchers in recent years. In this research sequential linear programming optimization technique is used to get the minimum number of PMU s to be used as a feedback control on the load buses [9]. The optimization problem is defined as follows: - Objective function: minimizing the number of PMUs n (Min. i w ix i ) Where n is the number of buses. - Variables: Buses include PMU s - Constraints: Each bus should be measured by at least one PMU ( f ( x) ) (PMU can measure the voltage of the installed bus and the buses which are directly connected through transmission line or transformer to the installed bus). In this paper the optimization was made on the 4 bus network shown in Fig. 3. After performing the optimization on MATLAB, we set the PMU s at buses 2, 6, 8, and 9. The PMU plays an important role in the proposed SecVC not only to be used as feedback signal with the actual value of the pilot bus voltage magnitude but also will be used as an indicator for the contingency element in the network. Each contingency will

5 have its own SecVC controller design which will be discussed in section V. To facilitate the optimization the network is converted to a spiral shape as shown in Fig. 6. Fig Bus system spiral shape. V. GENETIC ALGORITHM During the last decades there has been a growing interest in problem solving system based on principles of evolution and hereditary. GA is a type of evolution-based computer program to search for the fit solution of a particular problem []. Genetic algorithms are attractive techniques that employing natural evolution to solve problems in a wide field of complex applications. The GA is an iterative optimization technique, working with a number of candidate solutions (known as a population). If knowledge of the problem domain, is not available a priory, the GA begins its search from a random population of solutions []. A suitable coding (or representation) for the problem to be solved, must be defined first. In addition, a fitness function should be defined to assign a figure of merit to each coding solution. During the run, if the termination condition is not satisfied, parents must be selected for reproduction. Then, these are recombined to generate offspring using the reproduction, crossover and mutation operators to update the population of candidate solutions. Usually, a simple genetic algorithm consists of three operators: selection, crossover, and mutation. The application of these operations produces new strings (offspring), new population, and new generation, respectively. The overall process is then repeated with the new generation until the appropriate criterion is clearly satisfied. The GA applied in this work is performed by using the double vector population type with population size of 2. The Elite count reproduction is 2 and the crossover fraction is.8. VI. APPLICATION OF THE COORDINATED SECVC The SecVC control scheme shown in Fig. 2 has constant parameters all of them can be calculated easily from the network except the coordinated PID controller parameters which should be designed to achieve the objective of the SecVC, i.e. to reach the reference value of the load bus at a time range longer than that of the AVR at any disturbance. In this paper a steady state disturbances is chosen to test the SecVC control scheme. In each steady state disturbance which will be a contingency of an effective element in the network as the generator or the transmission line, the load bus coordinated PID should be designed to reach the reference under that condition. This means that under each contingency the design of PID controller parameters will be changed to achieve the desired reference at a certain time. Moreover the design will be varied also if the reactive power source which will support the load bus is changed or even increased. The design of the PID controller parameters will be made for each condition separately using genetic the algorithm tool box in MATLAB. The optimization problem is described as follows: - Objective Function: Minimizing integration of square error (ΔV p ) - Variables: PID parameters - Constraints: V GS and q limits. After finishing the PID controller design for each contingency and simulate this design in each case to show its effectiveness on the network, a what-if analysis should be created for all the possible contingencies and the coordinated PID controller design for each case. The scenarios should be stored in an artificial intelligence element (as neural network) which should get the optimal values of the PID controller to reach the desired voltage magnitude at certain contingency with certain reactive power source(s). The PMU reading will be the input of the neural network based on the stored condition inside it; the optimal values of the PID designed for the entire contingency should be set as shown in Fig. 7. Fig. 7. Neural Network used in SecVC. The neural network used in this work consists of two inputs, three outputs and a hidden layer having neurons. The network was trained by the well-known Lavenberg- Marquardt backpropagation method. VII. SIMULATION RESULTS In this paper load bus 5 is chosen to be the controlled bus at different tests. The aim is to let voltage magnitude of bus 5

6 Voltage magnitude in PU Voltage magnitude in PU voltage in pu Voltage in PU reaches. pu (as assumed in this research) under different disturbances by the reactive power supporters surrounding bus 5. Test : A contingency is to trip the generator installed at bus. The generator which is installed at bus 2 will provide the support to load bus 5. The PID controller parameters designed by GA at this condition are set to be K P =.74, K I =.36 and K D =.24. The GA takes 22 iterations to converge. Fig. 8 shows that the SecVC has returned the bus 5 voltage to its preset steady-state value (. pu), while using AVR only will result in a significant steady state error in the voltage. Test 2: Now, we assume a contingency of the generator at bus 2 leading to tripping this generator. The generator at bus will function to support voltage at load bus 5..4 Voltage at bus 5 support to load bus 5. The PID controller parameters which were designed in Test are used here. Fig. shows the voltage response at load bus 5. The voltage response is unsatisfactory. It transiently exceeds.4 pu and still away from the desired value more than s. Test 4: A contingency as Test takes place and leading to tripping the generator at bus. Now both the generator which is installed at bus 2 and the STATCOM installed at bus 6 will work together to provide support to load bus 5. The PID controller parameters designed by GA at this condition are: K P =.56, K I =.52and K D =.62. The GA requires 9 iterations to converge..5 Control without ANN.2 SecVC AVR time in sec Fig. 8. Load bus-5 voltage magnitude when the network subjected to test. The PID controller parameters designed by GA at this condition are set to be K P =2.74, K I =.56and K D =.874. The number of iterations taken by the GA is 7..4 Bus 5 Voltage magnitude Time in sec Fig.. SecVC to bus 5 without neural network Time in sec Fig.. Load bus 5 voltage response when the network subjected to Test Time in sec Fig. 9. Load bus 5 voltage response when the network subjected to Test 2. Test 3: A contingency 2 is to trip the generator installed at bus 2. In this case the generator installed at bus will do the The response in Fig. shows that using more than one reactive power source improves the performance of the SecVC. Compared to the response in Fig. 8, the response in Fig. has a lower undershoot value and the overshoot value is almost eliminated. Moreover it gives the chance to have more reactive power reserve.

7 VIII. CONCLUSIONS This paper investigates the coordinated secondary voltage control by reactive power sources to eliminate the steadystate voltage violations in power system contingencies. The parameters of the coordinated PID controller differ from disturbance to another. Therefore, a neural network has been used to store the controller parameters of each event. The PMUs are essential in the proposed work to provide real time voltage measurements to be used as inputs to the neural network, which provides appropriate values of the PID controller parameters. The simulation studies have shown that the proposed secondary voltage control scheme provides improved voltage regulation and allows more effective utilization of available reactive power sources. REFERENCES [] Prabha Kundur, John Paserba, Venkat Ajjarapu, Göran Andersson, Anjan Bose, Claudio Canizares, Nikos Hatziargyriou, David Hill, Alex Stankovic, Carson Taylor, Thierry Van Cutsem, and Vijay Vittal, Definition and classification of power system stability, IEEE Trans. Power Systems, July 24. [2] Bo Hu, Secondary and tertiary voltage regulation based on optimal power flows, 2 IREP Symposium - Bulk Power System Dynamics and Control VIII (IREP), Buzios, RJ, Brazil, Aug. -6, 2. [3] Qinglai Guo, Hongbin Sun, Mingye Zhang, Jianzhong Tong, Boming Zhang, Bin Wang Optimal voltage control of PJM smart transmission grid: study, implementation, and evaluation, IEEE Trans. Smart Grid, vol. 4, no. 3, Sept. 23. [4] Sandro Corsi, Massimo Pozzi, Carlo Sabelli, Antonio Serrani, The coordinated automatic voltage control of the Italian transmission grid Part I: Reasons of the choice and overview of the consolidated hierarchical system, IEEE Trans. Power Systems, vol. 9, no. 4, Nov. 24. [5] Yi Su, Chih-Wen Liu, An Adaptive PMU-Based Secondary Voltage Control Scheme IEEE Trans. Smart Grid, vol. 4, no. 3, Sept. 23. [6] Coordinated voltage control in transmission network, CIGRE Task Force, C4.62, Tech. Rep., Feb. 27. [7] A. Bose, Smart transmission grid applications and their supporting infrastructure, IEEE Trans. Smart Grid, vol., no., pp. 9, June 2. [8] Mahari, A., Seyedi, H. Optimal PMU placement for power system observability using BICA, considering measurement redundancy Electrical Power System Res. 3, 78 85, 23. [9] Chakrabarti, S., Kyriakides, E., Eliades, D.G Placement of synchronized measurements for power system observability, IEEE Trans. Power Delivery, vol. 24, no., pp. 2 9, 29. [] Omar H. Abdalla, Wedad M. Refaey, Mohamed K. Saad,Gamal Sarhan, Coordinated design of power system stabilizers and static VAR compensators in a multimachine power system using genetic algorithms, Proc. of the 6th International Conference on Electrical Engineering (ICEENG), Military Technical College, Cairo, Egypt, May, 28. [] D. Dracopoulos, Genetic algorithms and genetic programming for control, in Dasgupta and Michalewicz (eds.), Evolutionary Algorithms in Engineering Applications, Spriger-Verlag, pp

Modelling and Analysis of Single Machine Infinite Bus System with and without UPFC for Different Locations of Unsymmetrical Fault

Modelling and Analysis of Single Machine Infinite Bus System with and without UPFC for Different Locations of Unsymmetrical Fault Modelling and Analysis of Single Machine Infinite Bus System with and without UPFC for Different Locations of Unsymmetrical Fault Saurabh S. Shingare Department of Electrical Engineering, University of

More information

Transient stability improvement by using shunt FACT device (STATCOM) with Reference Voltage Compensation (RVC) control scheme

Transient stability improvement by using shunt FACT device (STATCOM) with Reference Voltage Compensation (RVC) control scheme I J E E E C International Journal of Electrical, Electronics ISSN No. (Online) : 2277-2626 and Computer Engineering 2(1): 7-12(2013) Transient stability improvement by using shunt FACT device (STATCOM)

More information

Control of Load Frequency of Power System by PID Controller using PSO

Control of Load Frequency of Power System by PID Controller using PSO Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 5, Issue 6, June 206) Control of Load Frequency of Power System by PID Controller using PSO Shiva Ram Krishna, Prashant Singh 2, M. S. Das 3,2,3 Dept.

More information

APPLICATION OF INVERTER BASED SHUNT DEVICE FOR VOLTAGE SAG MITIGATION DUE TO STARTING OF AN INDUCTION MOTOR LOAD

APPLICATION OF INVERTER BASED SHUNT DEVICE FOR VOLTAGE SAG MITIGATION DUE TO STARTING OF AN INDUCTION MOTOR LOAD APPLICATION OF INVERTER BASED SHUNT DEVICE FOR VOLTAGE SAG MITIGATION DUE TO STARTING OF AN INDUCTION MOTOR LOAD A. F. Huweg, S. M. Bashi MIEEE, N. Mariun SMIEEE Universiti Putra Malaysia - Malaysia norman@eng.upm.edu.my

More information

Real-time Decentralized Voltage Stability Monitoring and Protection against Voltage Collapse

Real-time Decentralized Voltage Stability Monitoring and Protection against Voltage Collapse Real-time Decentralized Voltage Stability Monitoring and Protection against Voltage Collapse Costas Vournas National Technical University of Athens vournas@power.ece.ntua.gr 1 Outline Introduction to Voltage

More information

Fault Location Using Sparse Wide Area Measurements

Fault Location Using Sparse Wide Area Measurements 319 Study Committee B5 Colloquium October 19-24, 2009 Jeju Island, Korea Fault Location Using Sparse Wide Area Measurements KEZUNOVIC, M., DUTTA, P. (Texas A & M University, USA) Summary Transmission line

More information

Design Of PID Controller In Automatic Voltage Regulator (AVR) System Using PSO Technique

Design Of PID Controller In Automatic Voltage Regulator (AVR) System Using PSO Technique Design Of PID Controller In Automatic Voltage Regulator (AVR) System Using PSO Technique Vivek Kumar Bhatt 1, Dr. Sandeep Bhongade 2 1,2 Department of Electrical Engineering, S. G. S. Institute of Technology

More information

Optimal Voltage Control using Singular Value Decomposition of Fast Decoupled Load Flow Jacobian

Optimal Voltage Control using Singular Value Decomposition of Fast Decoupled Load Flow Jacobian Optimal Voltage Control using Singular Value Decomposition of Fast Decoupled Load Flow Jacobian Talha Iqbal, Ali Dehghan Banadaki, Ali Feliachi Lane Department of Computer Science and Electrical Engineering

More information

Voltage Stability Assessment in Power Network Using Artificial Neural Network

Voltage Stability Assessment in Power Network Using Artificial Neural Network Voltage Stability Assessment in Power Network Using Artificial Neural Network Swetha G C 1, H.R.Sudarshana Reddy 2 PG Scholar, Dept. of E & E Engineering, University BDT College of Engineering, Davangere,

More information

Transfer Capability Enhancement of Transmission Line using Static Synchronous Compensator (STATCOM)

Transfer Capability Enhancement of Transmission Line using Static Synchronous Compensator (STATCOM) International Journal of Advanced Computer Research (ISSN (print): 49777 ISSN (online): 77797) Volume Number4 Issue7 December Transfer Capability Enhancement of Transmission Line using Static Synchronous

More information

Evolutionary Programming Optimization Technique for Solving Reactive Power Planning in Power System

Evolutionary Programming Optimization Technique for Solving Reactive Power Planning in Power System Evolutionary Programg Optimization Technique for Solving Reactive Power Planning in Power System ISMAIL MUSIRIN, TITIK KHAWA ABDUL RAHMAN Faculty of Electrical Engineering MARA University of Technology

More information

Load Frequency and Voltage Control of Two Area Interconnected Power System using PID Controller. Kavita Goswami 1 and Lata Mishra 2

Load Frequency and Voltage Control of Two Area Interconnected Power System using PID Controller. Kavita Goswami 1 and Lata Mishra 2 e t International Journal on Emerging Technologies (Special Issue NCETST-2017) 8(1): 722-726(2017) (Published by Research Trend, Website: www.researchtrend.net) ISSN No. (Print) : 0975-8364 ISSN No. (Online)

More information

Arvind Pahade and Nitin Saxena Department of Electrical Engineering, Jabalpur Engineering College, Jabalpur, (MP), India

Arvind Pahade and Nitin Saxena Department of Electrical Engineering, Jabalpur Engineering College, Jabalpur, (MP), India e t International Journal on Emerging Technologies 4(1): 10-16(2013) ISSN No. (Print) : 0975-8364 ISSN No. (Online) : 2249-3255 Control of Synchronous Generator Excitation and Rotor Angle Stability by

More information

PMU based Wide Area Voltage Control of Smart Grid: A Real Time Implementation Approach

PMU based Wide Area Voltage Control of Smart Grid: A Real Time Implementation Approach PMU based Wide Area Voltage Control of Smart Grid: A Real Time Implementation Approach Ahmed S. Musleh, S. M. Muyeen, Ahmed Al-Durra, and Haris M. Khalid Department of Electrical Engineering, The Petroleum

More information

Keywords: Stability, Power transfer, Flexible a.c. transmission system (FACTS), Unified power flow controller (UPFC). IJSER

Keywords: Stability, Power transfer, Flexible a.c. transmission system (FACTS), Unified power flow controller (UPFC). IJSER International Journal of Scientific & Engineering Research, Volume, Issue, March-4 74 ISSN 9-8 IMPACT OF UPFC ON SWING, VOLTAGE STABILITY AND POWER TRANSFER CAPABILITY IN TRANSMISSION SYSTEM Mr. Rishi

More information

Genetic Algorithms as a Reactive Power Source Dispatching Aid for Voltage Security Enhancement

Genetic Algorithms as a Reactive Power Source Dispatching Aid for Voltage Security Enhancement Proc. Natl. Sci. Counc. ROC(A) Vol. 25, No. 1, 2001. pp. 53-62 Genetic Algorithms as a Reactive Power Source Dispatching Aid for Voltage Security Enhancement CHIH-WEN LIU *, CHEN-SUNG CHANG *, AND JOE-AIR

More information

A Novel PSS Design for Single Machine Infinite Bus System Based on Artificial Bee Colony

A Novel PSS Design for Single Machine Infinite Bus System Based on Artificial Bee Colony A Novel PSS Design for Single Machine Infinite Bus System Based on Artificial Bee Colony Prof. MS Jhamad*, Surbhi Shrivastava** *Department of EEE, Chhattisgarh Swami Vivekananda Technical University,

More information

Study on the Improvement of the Special Protection Scheme (SPS) in the Korean power system

Study on the Improvement of the Special Protection Scheme (SPS) in the Korean power system Study on the Improvement of the Special Protection Scheme (SPS) in the Korean power system Jeonghoon Shin, Suchul Nam, Seungtae Cha, Jaegul Lee, Taekyun Kim, Junyoen Kim, Taeok Kim, Hwachang Song Abstract--This

More information

INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET)

INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET) INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET) ISSN 0976 6545(Print) ISSN 0976 6553(Online) Volume 3, Issue 1, January- June (2012), pp. 226-234 IAEME: www.iaeme.com/ijeet.html Journal

More information

Load Frequency Controller Design for Interconnected Electric Power System

Load Frequency Controller Design for Interconnected Electric Power System Load Frequency Controller Design for Interconnected Electric Power System M. A. Tammam** M. A. S. Aboelela* M. A. Moustafa* A. E. A. Seif* * Department of Electrical Power and Machines, Faculty of Engineering,

More information

VOLTAGE STABILITY OF THE NORDIC TEST SYSTEM

VOLTAGE STABILITY OF THE NORDIC TEST SYSTEM 1 VOLTAGE STABILITY OF THE NORDIC TEST SYSTEM Thierry Van Cutsem Department of Electrical and Computer Engineering University of Liège, Belgium Modified version of a presentation at the IEEE PES General

More information

IMPROVING POWER SYSTEM STABILITY USING REAL-CODED GENETIC ALGORITHM BASED PI CONTROLLER FOR STATCOM

IMPROVING POWER SYSTEM STABILITY USING REAL-CODED GENETIC ALGORITHM BASED PI CONTROLLER FOR STATCOM IMPROVING POWER SYSTEM STABILITY USING REAL-CODED GENETIC ALGORITHM BASED PI CONTROLLER FOR STATCOM SANGRAM KESHORI MOHAPATRA 1 & KUMARESH ROUT 2 1 Dept. of Electrical Engineering, C V Raman College of

More information

Automatic Voltage Control For Power System Stability Using Pid And Fuzzy Logic Controller

Automatic Voltage Control For Power System Stability Using Pid And Fuzzy Logic Controller Automatic Voltage Control For Power System Stability Using Pid And Fuzzy Logic Controller Mr. Omveer Singh 1, Shiny Agarwal 2, Shivi Singh 3, Zuyyina Khan 4, 1 Assistant Professor-EEE, GCET, 2 B.tech 4th

More information

STABILITY IMPROVEMENT OF POWER SYSTEM BY USING PSS WITH PID AVR CONTROLLER IN THE HIGH DAM POWER STATION ASWAN EGYPT

STABILITY IMPROVEMENT OF POWER SYSTEM BY USING PSS WITH PID AVR CONTROLLER IN THE HIGH DAM POWER STATION ASWAN EGYPT 3 rd International Conference on Energy Systems and Technologies 16 19 Feb. 2015, Cairo, Egypt STABILITY IMPROVEMENT OF POWER SYSTEM BY USING PSS WITH PID AVR CONTROLLER IN THE HIGH DAM POWER STATION ASWAN

More information

Voltage Stability Calculations in Power Transmission Lines: Indications and Allocations (IEEE 30 BUS SYSTEM)

Voltage Stability Calculations in Power Transmission Lines: Indications and Allocations (IEEE 30 BUS SYSTEM) Voltage Stability Calculations in Power Transmission Lines: Indications and Allocations (IEEE 30 BUS SYSTEM) 1 Bikram Singh Pal, 2 Dr. A. K. Sharma 1, 2 Dept. of Electrical Engineering, Jabalpur Engineering

More information

REACTIVE POWER TCIPG READING GROUP, OCTOBER 3, 2014 TIM YARDLEY AND PETE SAUER TRUSTWORTHY CYBER INFRASTRUCTURE FOR THE POWER GRID TCIPG.

REACTIVE POWER TCIPG READING GROUP, OCTOBER 3, 2014 TIM YARDLEY AND PETE SAUER TRUSTWORTHY CYBER INFRASTRUCTURE FOR THE POWER GRID TCIPG. REACTIVE POWER TCIPG READING GROUP, OCTOBER 3, 2014 TIM YARDLEY AND PETE SAUER UNIVERSITY OF ILLINOIS DARTMOUTH COLLEGE UC DAVIS WASHINGTON STATE UNIVERSITY FUNDING SUPPORT PROVIDED BY DOE-OE AND DHS S&T

More information

Identifying Long Term Voltage Stability Caused by Distribution Systems vs Transmission Systems

Identifying Long Term Voltage Stability Caused by Distribution Systems vs Transmission Systems Identifying Long Term Voltage Stability Caused by Distribution Systems vs Transmission Systems Amarsagar Reddy Ramapuram M. Ankit Singhal Venkataramana Ajjarapu amar@iastate.edu ankit@iastate.edu vajjarapu@iastate.edu

More information

Genetic Neural Networks - Based Strategy for Fast Voltage Control in Power Systems

Genetic Neural Networks - Based Strategy for Fast Voltage Control in Power Systems Genetic Neural Networks - Based Strategy for Fast Voltage Control in Power Systems M. S. Kandil, A. Elmitwally, Member, IEEE, and G. Elnaggar The authors are with the Electrical Eng. Dept., Mansoura university,

More information

Online Wide-Area Voltage Stability Monitoring and Control: RT-VSMAC Tool

Online Wide-Area Voltage Stability Monitoring and Control: RT-VSMAC Tool Online Wide-Area Voltage Stability Monitoring and Control: RT-VSMAC Tool A. Srivastava and S. Biswas The School of Electrical Engineering and Computer Science Smart Grid Demonstration and Research Investigation

More information

Implementation of Line Stability Index for Contingency Analysis and Screening in Power Systems

Implementation of Line Stability Index for Contingency Analysis and Screening in Power Systems Journal of Computer Science 8 (4): 585-590, 2012 ISSN 1549-3636 2012 Science Publications Implementation of Line Stability Index for Contingency Analysis and Screening in Power Systems Subramani, C., Subhransu

More information

Differential Evolution and Genetic Algorithm Based MPPT Controller for Photovoltaic System

Differential Evolution and Genetic Algorithm Based MPPT Controller for Photovoltaic System Differential Evolution and Genetic Algorithm Based MPPT Controller for Photovoltaic System Nishtha Bhagat 1, Praniti Durgapal 2, Prerna Gaur 3 Instrumentation and Control Engineering, Netaji Subhas Institute

More information

Transient Stability Analysis of Multimachine System Using Statcom

Transient Stability Analysis of Multimachine System Using Statcom IOSR Journal of Engineering (IOSRJEN) e-issn: 2250-3021, p-issn: 2278-8719 Vol. 3, Issue 5(May. 2013), V3 PP 39-45 Transient Stability Analysis of Multimachine System Using Statcom Sujith. S, T.Nandagopal

More information

A Novel Online Wide Area Voltage Stability Control Algorithm for Power Systems: RT-VSMAC Tool

A Novel Online Wide Area Voltage Stability Control Algorithm for Power Systems: RT-VSMAC Tool A Novel Online Wide Area Voltage Stability Control Algorithm for Power Systems: RT-VSMAC Tool Saugata S. Biswas School of Electrical Engineering & Computer Science Washington State University Pullman,

More information

A Software Tool for Real-Time Prediction of Potential Transient Instabilities using Synchrophasors

A Software Tool for Real-Time Prediction of Potential Transient Instabilities using Synchrophasors A Software Tool for Real-Time Prediction of Potential Transient Instabilities using Synchrophasors Dinesh Rangana Gurusinghe Yaojie Cai Athula D. Rajapakse International Synchrophasor Symposium March 25,

More information

Simulation Programs for Load Shedding Studies: Expermintal Results

Simulation Programs for Load Shedding Studies: Expermintal Results Simulation Programs for Load Shedding Studies: Expermintal Results Rasha M. El Azab and P.Lataire Department Of Electrical Engineering And Energy Technology Vrije Universiteit Brussel Brussels, Belgium

More information

Neural Network based Multi-Dimensional Feature Forecasting for Bad Data Detection and Feature Restoration in Power Systems

Neural Network based Multi-Dimensional Feature Forecasting for Bad Data Detection and Feature Restoration in Power Systems Neural Network based Multi-Dimensional Feature Forecasting for Bad Data Detection and Feature Restoration in Power Systems S. P. Teeuwsen, Student Member, IEEE, I. Erlich, Member, IEEE, Abstract--This

More information

Power System Stability Enhancement Using Static Synchronous Series Compensator (SSSC)

Power System Stability Enhancement Using Static Synchronous Series Compensator (SSSC) Vol. 3, Issue. 4, Jul - Aug. 2013 pp-2530-2536 ISSN: 2249-6645 Power System Stability Enhancement Using Static Synchronous Series Compensator (SSSC) B. M. Naveen Kumar Reddy 1, Mr. G. V. Rajashekar 2,

More information

Coordination of overcurrent relay using Hybrid GA- NLP method

Coordination of overcurrent relay using Hybrid GA- NLP method Coordination of overcurrent relay using Hybrid GA- NLP method 1 Sanjivkumar K. Shakya, 2 Prof.G.R.Patel 1 P.G. Student, 2 Assistant professor Department Of Electrical Engineering Sankalchand Patel College

More information

FOUR TOTAL TRANSFER CAPABILITY. 4.1 Total transfer capability CHAPTER

FOUR TOTAL TRANSFER CAPABILITY. 4.1 Total transfer capability CHAPTER CHAPTER FOUR TOTAL TRANSFER CAPABILITY R structuring of power system aims at involving the private power producers in the system to supply power. The restructured electric power industry is characterized

More information

Dynamic stability of power systems

Dynamic stability of power systems Dynamic stability of power systems Dr Rafael Segundo Research Associate Zurich University of Applied Science segu@zhaw.ch SCCER School- Shaping the Energy Transition Engelberg, 20 October 2017 Agenda Fundamentals

More information

Transient Stability Improvement of Multi Machine Power Systems using Matrix Converter Based UPFC with ANN

Transient Stability Improvement of Multi Machine Power Systems using Matrix Converter Based UPFC with ANN IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 04, 2015 ISSN (online): 2321-0613 Transient Stability Improvement of Multi Machine Power Systems using Matrix Converter

More information

Enhancement of Power System Voltage Stability Using SVC and TCSC

Enhancement of Power System Voltage Stability Using SVC and TCSC International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-2013 1 Enhancement of Power System Voltage Stability Using SVC and TCSC Deepa Choudhary Department of electrical engineering

More information

Analysis of Effect on Transient Stability of Interconnected Power System by Introduction of HVDC Link.

Analysis of Effect on Transient Stability of Interconnected Power System by Introduction of HVDC Link. Analysis of Effect on Transient Stability of Interconnected Power System by Introduction of HVDC Link. Mr.S.B.Dandawate*, Mrs.S.L.Shaikh** *,**(Department of Electrical Engineering, Walchand College of

More information

State Estimation Advancements Enabled by Synchrophasor Technology

State Estimation Advancements Enabled by Synchrophasor Technology State Estimation Advancements Enabled by Synchrophasor Technology Contents Executive Summary... 2 State Estimation... 2 Legacy State Estimation Biases... 3 Synchrophasor Technology Enabling Enhanced State

More information

Identification of weak buses using Voltage Stability Indicator and its voltage profile improvement by using DSTATCOM in radial distribution systems

Identification of weak buses using Voltage Stability Indicator and its voltage profile improvement by using DSTATCOM in radial distribution systems IOSR Journal of Electrical And Electronics Engineering (IOSRJEEE) ISSN : 2278-1676 Volume 2, Issue 4 (Sep.-Oct. 2012), PP 17-23 Identification of weak buses using Voltage Stability Indicator and its voltage

More information

ANFIS based 48-Pulse STATCOM Controller for Enhancement of Power System Stability

ANFIS based 48-Pulse STATCOM Controller for Enhancement of Power System Stability ANFIS based 48-Pulse STATCOM Controller for Enhancement of Power System Stility Subir Datta and Anjan Kumar Roy Abstract The paper presents a new ANFIS-based controller for enhancement of voltage stility

More information

INTELLIGENT PID POWER SYSTEM STABILIZER FOR A SYNCHRONOUS MACHINE IN SIMULINK ENVIRONMENT

INTELLIGENT PID POWER SYSTEM STABILIZER FOR A SYNCHRONOUS MACHINE IN SIMULINK ENVIRONMENT International Journal of Electrical and Electronics Engineering Research (IJEEER) ISSN 2250-155X Vol. 3, Issue 4, Oct 2013, 139-148 TJPRC Pvt. Ltd. INTELLIGENT PID POWER SYSTEM STABILIZER FOR A SYNCHRONOUS

More information

ECE 422/522 Power System Operations & Planning/Power Systems Analysis II 5 - Reactive Power and Voltage Control

ECE 422/522 Power System Operations & Planning/Power Systems Analysis II 5 - Reactive Power and Voltage Control ECE 422/522 Power System Operations & Planning/Power Systems Analysis II 5 - Reactive Power and Voltage Control Spring 2014 Instructor: Kai Sun 1 References Saadat s Chapters 12.6 ~12.7 Kundur s Sections

More information

COMPARATIVE PERFORMANCE OF SMART WIRES SMARTVALVE WITH EHV SERIES CAPACITOR: IMPLICATIONS FOR SUB-SYNCHRONOUS RESONANCE (SSR)

COMPARATIVE PERFORMANCE OF SMART WIRES SMARTVALVE WITH EHV SERIES CAPACITOR: IMPLICATIONS FOR SUB-SYNCHRONOUS RESONANCE (SSR) 7 February 2018 RM Zavadil COMPARATIVE PERFORMANCE OF SMART WIRES SMARTVALVE WITH EHV SERIES CAPACITOR: IMPLICATIONS FOR SUB-SYNCHRONOUS RESONANCE (SSR) Brief Overview of Sub-Synchronous Resonance Series

More information

VECTOR CONTROL SCHEME FOR INDUCTION MOTOR WITH DIFFERENT CONTROLLERS FOR NEGLECTING THE END EFFECTS IN HEV APPLICATIONS

VECTOR CONTROL SCHEME FOR INDUCTION MOTOR WITH DIFFERENT CONTROLLERS FOR NEGLECTING THE END EFFECTS IN HEV APPLICATIONS VECTOR CONTROL SCHEME FOR INDUCTION MOTOR WITH DIFFERENT CONTROLLERS FOR NEGLECTING THE END EFFECTS IN HEV APPLICATIONS M.LAKSHMISWARUPA 1, G.TULASIRAMDAS 2 & P.V.RAJGOPAL 3 1 Malla Reddy Engineering College,

More information

Pareto Optimal Solution for PID Controller by Multi-Objective GA

Pareto Optimal Solution for PID Controller by Multi-Objective GA Pareto Optimal Solution for PID Controller by Multi-Objective GA Abhishek Tripathi 1, Rameshwar Singh 2 1,2 Department Of Electrical Engineering, Nagaji Institute of Technology and Management, Gwalior,

More information

Frequency Prediction of Synchronous Generators in a Multi-machine Power System with a Photovoltaic Plant Using a Cellular Computational Network

Frequency Prediction of Synchronous Generators in a Multi-machine Power System with a Photovoltaic Plant Using a Cellular Computational Network 2015 IEEE Symposium Series on Computational Intelligence Frequency Prediction of Synchronous Generators in a Multi-machine Power System with a Photovoltaic Plant Using a Cellular Computational Network

More information

Simulation Analysis of Control System in an Innovative Magnetically-Saturated Controllable Reactor

Simulation Analysis of Control System in an Innovative Magnetically-Saturated Controllable Reactor Journal of Power and Energy Engineering, 2014, 2, 403-410 Published Online April 2014 in SciRes. http://www.scirp.org/journal/jpee http://dx.doi.org/10.4236/jpee.2014.24054 Simulation Analysis of Control

More information

Optimal PMU Placement in Power System Networks Using Integer Linear Programming

Optimal PMU Placement in Power System Networks Using Integer Linear Programming ISSN (Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology Volume 3, Special Issue 3, March 2014 2014 International Conference

More information

Design of Fractional Order PID Controller for SMIB Power System with UPFC Tuned by Multi-Objectives Genetic Algorithm. Abstract:

Design of Fractional Order PID Controller for SMIB Power System with UPFC Tuned by Multi-Objectives Genetic Algorithm. Abstract: 16 th International Conference on AEROSPACE SCIENCES & AVIATION TECHNOLOGY, ASAT - 16 May 26-28, 215, E-Mail: asat@mtc.edu.eg Military Technical College, Kobry Elkobbah, Cairo, Egypt Tel : +(22) 2425292

More information

Stability Issues of Smart Grid Transmission Line Switching

Stability Issues of Smart Grid Transmission Line Switching Preprints of the 19th World Congress The International Federation of Automatic Control Stability Issues of Smart Grid Transmission Line Switching Garng. M. Huang * W. Wang* Jun An** *Texas A&M University,

More information

Development of Real time controller of a Single Machine Infinite Bus system with PSS

Development of Real time controller of a Single Machine Infinite Bus system with PSS Development of Real time controller of a Single Machine Infinite Bus system with PSS Mrs.Ami T.Patel 1, Mr.Hardik A.Shah 2 Prof.S. K.Shah 3 1 Research Scholar, Electrical Engineering Department: FTE,M.S.University

More information

Enhancement of Power Quality in Distribution System Using D-Statcom for Different Faults

Enhancement of Power Quality in Distribution System Using D-Statcom for Different Faults Enhancement of Power Quality in Distribution System Using D-Statcom for Different s Dr. B. Sure Kumar 1, B. Shravanya 2 1 Assistant Professor, CBIT, HYD 2 M.E (P.S & P.E), CBIT, HYD Abstract: The main

More information

Testing and Validation of Synchrophasor Devices and Applications

Testing and Validation of Synchrophasor Devices and Applications Testing and Validation of Synchrophasor Devices and Applications Anurag K Srivastava The School of Electrical Engineering and Computer Science Smart Grid Demonstration and Research Investigation Lab Washington

More information

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET)

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET) INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET) International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 ISSN 0976-6480 (Print) ISSN

More information

STATCOM Tuned Based on Tabu Search for Voltage Support in Power Systems

STATCOM Tuned Based on Tabu Search for Voltage Support in Power Systems J. Basic. Appl. Sci. Res., 1(10)1334-1341, 2011 2011, TextRoad Publication ISSN 2090-424X Journal of Basic and Applied Scientific Research www.textroad.com STATCOM Tuned Based on Tabu Search for Voltage

More information

Contingency Analysis using Synchrophasor Measurements

Contingency Analysis using Synchrophasor Measurements Proceedings of the 14 th International Middle East Power Systems Conference (MEPCON 1), Cairo University, Egypt, December 19-21, 21, Paper ID 219. Contingency Analysis using Synchrophasor Measurements

More information

ECE 692 Advanced Topics on Power System Stability 5 - Voltage Stability

ECE 692 Advanced Topics on Power System Stability 5 - Voltage Stability ECE 692 Advanced Topics on Power System Stability 5 - Voltage Stability Spring 2016 Instructor: Kai Sun 1 Content Basic concepts Voltage collapse and Saddle-node bifurcation P-V curve and V-Q curve Causes

More information

Wide Area Control Systems (1.4) Mani V. Venkatasubramanian Washington State University (

Wide Area Control Systems (1.4) Mani V. Venkatasubramanian Washington State University ( Wide Area Control Systems (1.4) Mani V. Venkatasubramanian Washington State University (email: mani@eecs.wsu.edu) PSERC Future Grid Initiative May 29, 2013 Task Objectives Wide-area control designs for

More information

Analysis and Enhancement of Voltage Stability using Shunt Controlled FACTs Controller

Analysis and Enhancement of Voltage Stability using Shunt Controlled FACTs Controller Volume 1, Issue 2, October-December, 2013, pp. 25-33, IASTER 2013 www.iaster.com, Online: 2347-5439, Print: 2348-0025 Analysis and Enhancement of Voltage Stability using Shunt Controlled FACTs Controller

More information

Application Example Document ID: SA Rev. - September 24, 2004

Application Example Document ID: SA Rev. - September 24, 2004 Application Example Rev. - September 24, 2004 1 Summary Phasor based control of braking resistors A case study applied to large power oscillations experienced in the Swedish grid 1997 Phasor measurement,

More information

Overview of State Estimation Technique for Power System Control

Overview of State Estimation Technique for Power System Control IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 8, Issue 5 (Nov. - Dec. 2013), PP 51-55 Overview of State Estimation Technique for Power System

More information

Comparative Analysis of Air Conditioning System Using PID and Neural Network Controller

Comparative Analysis of Air Conditioning System Using PID and Neural Network Controller International Journal of Scientific and Research Publications, Volume 3, Issue 8, August 2013 1 Comparative Analysis of Air Conditioning System Using PID and Neural Network Controller Puneet Kumar *, Asso.Prof.

More information

Probabilistic Neural Network Based Voltage Stability Monitoring of Electrical Transmission Network in Energy Management Scenario

Probabilistic Neural Network Based Voltage Stability Monitoring of Electrical Transmission Network in Energy Management Scenario Probabilistic Neural Network Based Voltage Stability Monitoring of Electrical Transmission Network in Energy Management Scenario GitanjaliSaha #1, KabirChakraborty *, PriyanathDas #3 # Electrical Engineering

More information

In addition to wide-area monitoring systems, synchrophasors offer an impressive range of system benefits, including:

In addition to wide-area monitoring systems, synchrophasors offer an impressive range of system benefits, including: Synchrophasors Before synchrophasor technology and its contributions towards transmission resiliency are discussed, it is important to first understand the concept of phasors. A phasor is a complex number

More information

IOSR Journal of Electrical and Electronics Engineering (IOSRJEEE) ISSN: Volume 1, Issue 5 (July-Aug. 2012), PP

IOSR Journal of Electrical and Electronics Engineering (IOSRJEEE) ISSN: Volume 1, Issue 5 (July-Aug. 2012), PP IOSR Journal of Electrical Electronics Engineering (IOSRJEEE) ISSN: 2278-1676 Volume 1, Issue 5 (July-Aug. 2012), PP 16-25 Real Power Loss Voltage Stability Limit Optimization Incorporating through DE

More information

Performance Analysis of Conventional Controllers for Automatic Voltage Regulator (AVR)

Performance Analysis of Conventional Controllers for Automatic Voltage Regulator (AVR) Performance Analysis of Conventional Controllers for Automatic Voltage Regulator (AVR) Ajit Kumar Mittal M.TECH Student, B.I.T SINDRI Dhanbad, India Dr. Pankaj Rai Associate Professor, Department of Electrical

More information

Power Quality enhancement of a distribution line with DSTATCOM

Power Quality enhancement of a distribution line with DSTATCOM ower Quality enhancement of a distribution line with DSTATCOM Divya arashar 1 Department of Electrical Engineering BSACET Mathura INDIA Aseem Chandel 2 SMIEEE,Deepak arashar 3 Department of Electrical

More information

Development of Dynamic Test Cases in OPAL-RT Real-time Power System Simulator

Development of Dynamic Test Cases in OPAL-RT Real-time Power System Simulator Development of Dynamic Test Cases in OPAL-RT Real-time Power System Simulator Shiv Kumar Singh, Bibhu P. Padhy, Student Member, IEEE, S. Chakrabarti, Senior Member, IEEE, S.N. Singh, Senior Member, IEEE,

More information

6545(Print), ISSN (Online) Volume 4, Issue 1, January- February (2013), IAEME & TECHNOLOGY (IJEET)

6545(Print), ISSN (Online) Volume 4, Issue 1, January- February (2013), IAEME & TECHNOLOGY (IJEET) INTERNATIONAL International Journal of JOURNAL Electrical Engineering OF ELECTRICAL and Technology (IJEET), ENGINEERING ISSN 0976 & TECHNOLOGY (IJEET) ISSN 0976 6545(Print) ISSN 0976 6553(Online) Volume

More information

THD Reduction Using Series Transformer Connection In A STATCOM Within Mosul Ring System

THD Reduction Using Series Transformer Connection In A STATCOM Within Mosul Ring System Al-Nimma: THD reduction using series transformer connection in a STATCOM within THD Reduction Using Series Transformer Connection In A STATCOM Within Mosul Ring System Dhaiya A. Al-Nimma Majed S. Al-Hafid

More information

TWO AREA CONTROL OF AGC USING PI & PID CONTROL BY FUZZY LOGIC

TWO AREA CONTROL OF AGC USING PI & PID CONTROL BY FUZZY LOGIC TWO AREA CONTROL OF AGC USING PI & PID CONTROL BY FUZZY LOGIC Puran Lal 1, Mainak Roy 2 1 M-Tech (EL) Student, 2 Assistant Professor, Department of EEE, Lingaya s University, Faridabad, (India) ABSTRACT

More information

New Techniques for the Prevention of Power System Collapse

New Techniques for the Prevention of Power System Collapse New Techniques for the Prevention of Power System Collapse F. A. Shaikh, Ramanshu Jain, Mukesh Kotnala, Nickey Agarwal Department of Electrical & Electronics Engineering, Krishna Institute of Engineering

More information

Local Identification of Voltage Instability from Load Tap Changer Response

Local Identification of Voltage Instability from Load Tap Changer Response Local Identification of Voltage Instability from Load Tap Changer Response Tilman Weckesser a,, Lampros Papangelis a, Costas D. Vournas b, Thierry Van Cutsem c a Dept. Electrical Engineering & Computer

More information

DSP-Based Simple Technique for Synchronization of 3 phase Alternators with Active and Reactive Power Load Sharing

DSP-Based Simple Technique for Synchronization of 3 phase Alternators with Active and Reactive Power Load Sharing DSP-Based Simple Technique for Synchronization of 3 phase Alternators with Active and Reactive Power Load Sharing M. I. Nassef (1), H. A. Ashour (2), H. Desouki (3) Department of Electrical and Control

More information

CLASSIFICATION OF VOLTAGE STABILITY STATES OF A MULTI-BUS POWER SYSTEM NETWORK USING PROBABILISTIC NEURAL NETWORK (PNN)

CLASSIFICATION OF VOLTAGE STABILITY STATES OF A MULTI-BUS POWER SYSTEM NETWORK USING PROBABILISTIC NEURAL NETWORK (PNN) CLASSIFICATION OF VOLTAGE STABILITY STATES OF A MULTI-BUS POWER SYSTEM NETWORK USING PROBABILISTIC NEURAL NETWORK (PNN) Gitanjali Saha 1, Kabir Chakraborty 1 and Priyanath Das 2 1 Tripura Institute of

More information

Advanced Direct Power Control for Grid-connected Distribution Generation System Based on Fuzzy Logic and Artificial Neural Networks Techniques

Advanced Direct Power Control for Grid-connected Distribution Generation System Based on Fuzzy Logic and Artificial Neural Networks Techniques International Journal of Power Electronics and Drive System (IJPEDS) Vol. 8, No. 3, September 2017, pp. 979~989 ISSN: 2088-8694, DOI: 10.11591/ijpeds.v8i3.pp979-989 979 Advanced Direct Power Control for

More information

NEURAL NETWORK BASED LOAD FREQUENCY CONTROL FOR RESTRUCTURING POWER INDUSTRY

NEURAL NETWORK BASED LOAD FREQUENCY CONTROL FOR RESTRUCTURING POWER INDUSTRY Nigerian Journal of Technology (NIJOTECH) Vol. 31, No. 1, March, 2012, pp. 40 47. Copyright c 2012 Faculty of Engineering, University of Nigeria. ISSN 1115-8443 NEURAL NETWORK BASED LOAD FREQUENCY CONTROL

More information

Transient Stability Improvement Of IEEE 9 Bus System With Shunt FACTS Device STATCOM

Transient Stability Improvement Of IEEE 9 Bus System With Shunt FACTS Device STATCOM Transient Stability Improvement Of IEEE 9 Bus System With Shunt FACTS Device STATCOM P.P. Panchbhai 1, P.S.Vaidya 2 1Pratiksha P Panchbhai, Dept. of Electrical Engineering, G H Raisoni College of Engineering

More information

ROBUST TECHNIQUE LFC OF TWO-AREA POWER SYSTEM WITH DYNAMIC PERFORMANCE OF COMBINED SMES AND SSSC CONTROL

ROBUST TECHNIQUE LFC OF TWO-AREA POWER SYSTEM WITH DYNAMIC PERFORMANCE OF COMBINED SMES AND SSSC CONTROL 3 rd International Conference on Energy Systems and Technologies 6 9 Feb. 25, Cairo, Egypt ROBUST TECHNIQUE LFC OF TWO-AREA POWER SYSTEM WITH DYNAMIC PERFORMANCE OF COMBINED SMES AND SSSC CONTROL A.M.

More information

Enhancement of Voltage Stability by SVC and TCSC Using Genetic Algorithm

Enhancement of Voltage Stability by SVC and TCSC Using Genetic Algorithm ISSN (Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology Volume 3, Special Issue 3, March 2014 2014 International Conference

More information

PV CURVE APPROACH FOR VOLTAGE STABILITY ANALYSIS

PV CURVE APPROACH FOR VOLTAGE STABILITY ANALYSIS 373 PV CURVE APPROACH FOR VOLTAGE STABILITY ANALYSIS 1 Neha Parsai, 2 Prof. Alka Thakur 1 M. Tech. Student, 2 Assist. Professor, Department of Electrical Engineering SSSIST Shore, M.P. India ABSTRACT Voltage

More information

Application of a MW-Scale Motor-Generator Set to Establish Power-Hardware-in-the-Loop Capability

Application of a MW-Scale Motor-Generator Set to Establish Power-Hardware-in-the-Loop Capability Application of a MW-Scale Motor-Generator Set to Establish Power-Hardware-in-the-Loop Capability Qiteng Hong 1, Ibrahim Abdulhadi 2, Andrew Roscoe 1, and Campbell Booth 1 1 Institute for Energy and Environment,

More information

Design of Improved Solar Energy Harvested Hybrid Active Power Filter for Harmonic Reduction, Power factor Correction and Current Compensation

Design of Improved Solar Energy Harvested Hybrid Active Power Filter for Harmonic Reduction, Power factor Correction and Current Compensation IJSTE - International Journal of Science Technology & Engineering Volume 2 Issue 07 January 2016 ISSN (online): 2349-784X Design of Improved Solar Energy Harvested Hybrid Active Power Filter for Harmonic

More information

Combination of Adaptive and Intelligent Load Shedding Techniques for Distribution Network

Combination of Adaptive and Intelligent Load Shedding Techniques for Distribution Network Combination of Adaptive and Intelligent Load Shedding Techniques for Distribution Network M. Karimi, Student Member, IEEE, H. Mokhlis, Member, IEEE, A. H. A. Bakar, Member, IEEE, J. A. Laghari, A. Shahriari,

More information

PID Controller Tuning using Soft Computing Methodologies for Industrial Process- A Comparative Approach

PID Controller Tuning using Soft Computing Methodologies for Industrial Process- A Comparative Approach Indian Journal of Science and Technology, Vol 7(S7), 140 145, November 2014 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 PID Controller Tuning using Soft Computing Methodologies for Industrial Process-

More information

D-STATCOM FOR VOLTAGE SAG, VOLTAGE SWELL MITIGATION USING MATLAB SIMULINK

D-STATCOM FOR VOLTAGE SAG, VOLTAGE SWELL MITIGATION USING MATLAB SIMULINK D-STATCOM FOR VOLTAGE SAG, VOLTAGE SWELL MITIGATION USING MATLAB SIMULINK Manbir Kaur 1, Prince Jindal 2 1 Research scholar, Department of Electrical Engg., BGIET, Sangrur, Punjab (India), 2 Research scholar,

More information

Improvement of Power Quality in Distribution System using D-STATCOM With PI and PID Controller

Improvement of Power Quality in Distribution System using D-STATCOM With PI and PID Controller Improvement of Power Quality in Distribution System using D-STATCOM With PI and PID Controller Phanikumar.Ch, M.Tech Dept of Electrical and Electronics Engineering Bapatla Engineering College, Bapatla,

More information

POWER TRANSFORMER PROTECTION USING ANN, FUZZY SYSTEM AND CLARKE S TRANSFORM

POWER TRANSFORMER PROTECTION USING ANN, FUZZY SYSTEM AND CLARKE S TRANSFORM POWER TRANSFORMER PROTECTION USING ANN, FUZZY SYSTEM AND CLARKE S TRANSFORM 1 VIJAY KUMAR SAHU, 2 ANIL P. VAIDYA 1,2 Pg Student, Professor E-mail: 1 vijay25051991@gmail.com, 2 anil.vaidya@walchandsangli.ac.in

More information

PMUs Placement with Max-Flow Min-Cut Communication Constraint in Smart Grids

PMUs Placement with Max-Flow Min-Cut Communication Constraint in Smart Grids PMUs Placement with Max-Flow Min-Cut Communication Constraint in Smart Grids Ali Gaber, Karim G. Seddik, and Ayman Y. Elezabi Department of Electrical Engineering, Alexandria University, Alexandria 21544,

More information

ELEMENTS OF FACTS CONTROLLERS

ELEMENTS OF FACTS CONTROLLERS 1 ELEMENTS OF FACTS CONTROLLERS Rajiv K. Varma Associate Professor Hydro One Chair in Power Systems Engineering University of Western Ontario London, ON, CANADA rkvarma@uwo.ca POWER SYSTEMS - Where are

More information

Voltage Control and Power System Stability Enhancement using UPFC

Voltage Control and Power System Stability Enhancement using UPFC International Conference on Renewable Energies and Power Quality (ICREPQ 14) Cordoba (Spain), 8 th to 10 th April, 2014 Renewable Energy and Power Quality Journal (RE&PQJ) ISSN 2172-038 X, No.12, April

More information

PID Tuning Using Genetic Algorithm For DC Motor Positional Control System

PID Tuning Using Genetic Algorithm For DC Motor Positional Control System PID Tuning Using Genetic Algorithm For DC Motor Positional Control System Mamta V. Patel Assistant Professor Instrumentation & Control Dept. Vishwakarma Govt. Engineering College, Chandkheda Ahmedabad,

More information

Available online at ScienceDirect. Procedia Computer Science 92 (2016 ) 36 41

Available online at   ScienceDirect. Procedia Computer Science 92 (2016 ) 36 41 Available online at www.sciencedirect.com ScienceDirect Procedia Computer Science 92 (2016 ) 36 41 2nd International Conference on Intelligent Computing, Communication & Convergence (ICCC-2016) Srikanta

More information

Improvement of Voltage Stability Based on Static and Dynamic Criteria

Improvement of Voltage Stability Based on Static and Dynamic Criteria 16th NATIONAL POWER SYSTEMS CONFERENCE, 15th-17th DECEMBER, 2010 710 1 Improvement of Voltage Stability Based on Static and Dynamic Criteria M. V. Reddy, Student Member, IEEE, Yemula Pradeep, Student Member,

More information