Laboratory #2 PSpice Analyses

Size: px
Start display at page:

Download "Laboratory #2 PSpice Analyses"

Transcription

1 Laboratory #2 PSpice Analyses I. Objectives 1. Know the development of SPICE. 2. Learn to install the PSpice software. 3. Learn to use the Capture CIS to draw circuit. 4. Learn to use the four analyses provided by PSpice. (1) Bias point analysis (2) DC sweep analysis (3) AC sweep analysis (4) Transient analysis II. Components and Instruments 1. Components (1) Not required 2. Instruments (1) Computer with OrCAD PSpice installed III. Reading There are lots of resources for PSpice learning either in library or the internet. For example, a brief primer is provided in the University of Pennsylvania website, which gives more detail introduction for PSpice operation. IV. Preparation 1. Brief introduction To complete an electronic product, it needs the processes of design (approximate calculation), verification (measurement), manufacture and quality control. Before SPICE s invention, the designed circuit is verified through breadboard and instruments (power supply, signal generator, oscilloscope, etc). Such verification is actually not efficient either in time or cost, since wrong connection or design would most probably happen. Especially for IC, which is composed of thousands of transistors or much more components, is absolutely not possible to verify the function using breadboard. Other than that, high cost of 電子學實驗 ( 一 ) Electronics Laboratory (1), 2013 p. 2-1 成大電機 EE, NCKU, Tainan City, Taiwan

2 manufacturing prerequisites for IC requires that the designed IC is predicted almost perfect. In order to solve such problems, SPICE is thus invented. SPICE is abbreviated from Simulation Program with Integrated Circuit Emphasis, which is developed at the Electronics Research Laboratory of the University of California, Berkeley, is a bundle of programs. To SPICE, we could consider it as software-type breadboard, but much more powerful than breadboard. SPCIE has virtual probes, measurement (more accurate calculation), which speeds up the verification process and makes mass production of IC to be possible. Nowadays, there are different commercialized SPICEs in the market and they are used in different orientations: OrCAD PSpice of Cadence for regular simulation, ICAP4 IsSpice of IntuSoft for power application and HSpice of Synopsys for accurate simulation. 2. Setup guide The PSpice software could easily be obtained from the back cover of the text book Microelectronics Circuits 6 th edition, Sedra/Smith. Launch the CD-ROM and install the PSpice as the directions in the setup processes. Click the Link to Simulation Software Cadence R OrCAD R to download the PSpice software. The CD-ROM also contains SPICE examples and sedra_lib, which you will need in some Pre-Lab simulations. 電子學實驗 ( 一 ) Electronics Laboratory (1), 2013 p. 2-2 成大電機 EE, NCKU, Tainan City, Taiwan

3 After clicking the Link to Simulation Software Cadence R OrCAD R, you will enter the website shown as below. Click the OrCAD PCB Designer Lite DVD (Capture & PSpice only) and select the Download Free option. Fill in the required information and your , and you will receive a link in your . Click this link and select the OrCAD 16.5 Demo Software (Capture and PSPICE only) under OrCAD Demo Software to download the installer. 電子學實驗 ( 一 ) Electronics Laboratory (1), 2013 p. 2-3 成大電機 EE, NCKU, Tainan City, Taiwan

4 Especially note that, there are three items should be selected, a. Capture CIS (for circuit drawing); b. PSpice (circuit simulation) and c. Layout (printed circuit board), which will be used in this lab experiment. These three items are used separately in normal circuit design flow. 3. Use of Capture CIS (1) Opening a new project From the design flow above, we know that have to draw a circuit before all the steps. So, we need Capture CIS to help us. To start the program, we click on Start ( 開始 ) and follow All Programs ( 程式 電子學實驗 ( 一 ) Electronics Laboratory (1), 2013 p. 2-4 成大電機 EE, NCKU, Tainan City, Taiwan

5 集 ), Orcad Family Release 9.2 Lite Edition, and Capture CIS Lite Edition. Next, we are going to open a new project, the displayed window is as below. When opening a new project, it should note either in the Name or Location column, only English typing is allowed. (2) Placing part (electrical components) After this setting, a new project and a blank schematic are thus ready for drawing circuit. To place parts, click the button at the right toolbar. When first using the new project, there are no any added libraries. To add libraries, we can follow the instructions shown as below. The libraries are in.olb for its file extension and they are under the folder of C:\Program Files\OrcadLite\Capture 電子學實驗 ( 一 ) Electronics Laboratory (1), 2013 p. 2-5 成大電機 EE, NCKU, Tainan City, Taiwan

6 \Library\PSpice (XP version). Each library contains different parts (components), select the specified libraries if you are sure of it. Figure next to the instructions shows frequently used components while designing circuit. (3) Wiring parts together To wire parts together, click the button as the figure below and click on two points where need a connection. Especially note that whether the junction exists or not when it needs a connection there. As the figure below, R1, C1 and L1 are connected together in the left circuit; while R2, L2 are not connected in the right circuit. 電子學實驗 ( 一 ) Electronics Laboratory (1), 2013 p. 2-6 成大電機 EE, NCKU, Tainan City, Taiwan

7 (4) Editing parts properties There are mainly two properties we used to edit, Part Reference and Value. For instance, double click R1 can edit its Part Reference. This is needed when the same Part Reference is occurred, and it is not accepted while compiling (netlist generating). It is similar method for editing Value. 4. Circuit analyses (1) Setting of Ground part (component) While drawing circuit in Capture CIS, the ground should first be set, or else the compilation (netlist generation) will generate an error message. To set the ground component, double click on it and the following window would be displayed. Change the content in the Name column into 0, close that window and 電子學實驗 ( 一 ) Electronics Laboratory (1), 2013 p. 2-7 成大電機 EE, NCKU, Tainan City, Taiwan

8 thus complete the setting of ground component. (2) There are four analyses illustrated below and related examples come with them. These are examples are simple, but meaningful when first using PSpice. (3) Bias point analysis The purpose of this analysis is to observe the voltage and current at steady state. First of all, the designed circuit is drawn using Capture CIS. Here, we are going to observe the simple Ohm s law for this circuit. Before the simulation, we have to open a New Simulation Profile. The window in the next figure will be shown after choosing that option. In Simulation Setting, we have to choose Bias Point, and there is no any other modification. 電子學實驗 ( 一 ) Electronics Laboratory (1), 2013 p. 2-8 成大電機 EE, NCKU, Tainan City, Taiwan

9 To start running the simulation, click on the Run PSpice button. After simulation, the simulation result as the right side can be obtained by using the three buttons enable bias voltage, current and power display. (4) DC sweep analysis The purpose of this analysis is to sweep input voltage and observe output current. Here, we are going to observe the relationship between voltage and current in Ohm s law for this circuit. Note that the current marker should be connected at PIN. 電子學實驗 ( 一 ) Electronics Laboratory (1), 2013 p. 2-9 成大電機 EE, NCKU, Tainan City, Taiwan

10 Similar to the setting in Bias point analysis, we have to open a New Simulation Profile before the simulation. Since we already have a simulation profile, we can choose Edit Simulation Profile instead. In Simulation Setting, we have to choose DC point. In the column of Sweep variable, it is needed to choose the sweeping source and type in its name, such as V1 here. In the column of Sweep type, Linear means the input voltage is swept in the form of 1, 3, 5 ; while Logarithmic means the input voltage is swept in the form of 1, 10, 100 To start running the simulation, click on the Run PSpice button. Another window PSpice A/D Lite would pop up to show the simulation result. We can observe that the Y-axis is current and X-axis is voltage, and they are in linear relationship. 電子學實驗 ( 一 ) Electronics Laboratory (1), 2013 p 成大電機 EE, NCKU, Tainan City, Taiwan

11 (5) AC sweep analysis The purpose of this analysis is to sweep input frequency and observe output response. Here, we are going to observe the frequency response of RC network which had been learnt in Electronics lesson. The transfer function for the circuit shown is as below which has one pole at ω=1/cr. V o i s V s 1 1 scr In the column of AC Sweep Type, it is just similar to the setting in DC sweep analysis. But here, it is normally going to sweep in logarithmic way. Especially note that, in AC sweep 電子學實驗 ( 一 ) Electronics Laboratory (1), 2013 p 成大電機 EE, NCKU, Tainan City, Taiwan

12 analysis, the source is component, VAC. To start running the simulation, click on the Run PSpice button. In the simulation result, we can observe the pole s frequency is around 320 khz, which matches with the transfer function provided (ω=1/cr). In previous part, the trace is shown based on the voltage or current marker added. Now, in this part, we need to add traces Gain and Phase. Choose the option of Add Trace in window of PSpice A/D Lite. Then, in the window of Add trace, there are two columns, variables and functions. For instance, in order to add the trace of gain plot, choose the db function at the right column, then choose the related variable in the left column. 電子學實驗 ( 一 ) Electronics Laboratory (1), 2013 p 成大電機 EE, NCKU, Tainan City, Taiwan

13 Other than that, we may need to add parallel simulation result in one window to compare the waveforms, such as gain and phase. To do this, click on Add Plot to Window and a new plot would be generated. (6) Transient analysis The purpose of this analysis is to sweep time variable and observe the time-variant voltage or current. Here, we are going to compare the input voltage and output voltage, where they are different in amplitude and phase. We can explain this phenomenon based on the simulation result in AC sweep analysis. Similar to the previous setting, here, we have to choose 電子學實驗 ( 一 ) Electronics Laboratory (1), 2013 p 成大電機 EE, NCKU, Tainan City, Taiwan

14 Time Domain (Transient). Run to time means what time do you want to stop the time sweeping. Maximum step size means the time sweeping accuracy, the smaller the step size, the simulation result is more accurate. Having insight into the RC network, various input frequencies (50 khz, 300 khz and 1000 khz) are applied. These frequencies are set around the 3-dB pole frequency to observe the pole s effect. 電子學實驗 ( 一 ) Electronics Laboratory (1), 2013 p 成大電機 EE, NCKU, Tainan City, Taiwan

15 The derivation provided here is based on the Bode plot shown in AC sweep analysis. As the input frequency is 50 khz, the gain is around 0 db and phase delay is not obvious. As the input frequency is 300 khz, which is around 3-dB pole and the phase delay is around 45 o. As the input frequency is 1000 khz, the attenuation is much more obvious and the phase delay is around 90 o. Through these analyses, we could have a quick understanding on specified circuit without implementing on the PCB and real measuring. 5. Editing parts (components) If we would like to simulate MOSFET other than the parts provided in OrCAD PSpice, we need to open a new library and modify its parameters. Since we are going to modify a MOSFET, we could open a new part based on the PSpice provided MOSFET. So, follow the instructions shown below, we could copy the parts (IRF150) and paste it in the new library. 電子學實驗 ( 一 ) Electronics Laboratory (1), 2013 p 成大電機 EE, NCKU, Tainan City, Taiwan

16 After copying the parts under the new library, we can modify both its name and displayed picture. There are tools at the right side to draw a line, an arrow or other shapes. To edit the parameters, follows the next instruction figures. The electrical parameters could be found in the related companies. 電子學實驗 ( 一 ) Electronics Laboratory (1), 2013 p 成大電機 EE, NCKU, Tainan City, Taiwan

17 V. Exploration 1. Re-do the four examples as shown in this report, which come with the introduction of four analyses. Show the simulation results as what we have done. (1) Bias point analysis and (2) DC sweep analysis (Ohm s law) (3) AC sweep analysis (transfer function) (4) Transient analysis 電子學實驗 ( 一 ) Electronics Laboratory (1), 2013 p 成大電機 EE, NCKU, Tainan City, Taiwan

18 Class: Name: Laboratory #2 Pre-lab Student ID: 1. Obtains the PSpice CD-ROM from the text book, Microelectronics Circuits 5 th /6 th edition, Sedra/Smith and install it in your own computer. Familiarize with this software. (This does not need any answer) 2. What is the newest version of OrCAD demo at Cadence official website? And, what is the version do you get from Smith s text book? 3. Do you know that nodal analysis is chosen instead of mesh analysis when developing SPICE? What conditions support nodal analysis? 4. What benefits will you expect that SPICE would bring to you while you are designing an electronic circuit? List down as much as you can think. 電子學實驗 ( 一 ) Electronics Laboratory (1), 2013 p 成大電機 EE, NCKU, Tainan City, Taiwan

19 Class: Name: Laboratory #2 Report Student ID: Exploration 1 1. Bias point analysis (Ohm s law) (1) Simulation result 2. DC sweep analysis (Ohm s law) (1) Simulation result 3. AC sweep analysis (RC network) (1) Simulation result 4. Transient analysis (RC network) (1) Simulation result 1 (2) Simulation result 2 (3) Simulation result 3 電子學實驗 ( 一 ) Electronics Laboratory (1), 2013 p 成大電機 EE, NCKU, Tainan City, Taiwan

20 Problem 1 There are four other circuits shown below and you are required to complete them with the related instructions. 1. Use OrCAD Capture CIS to draw the circuit as below and try to analyze it with the Bias point analysis in PSpice. (1) Observe the bias points in the circuit. (2) Verify the simulation result with your hand calculation, Ohm s law. Is that matched? 2. Use OrCAD Capture CIS to draw the circuit as below and try to analyze it with the DC sweep analysis in PSpice. (1) Observe the relationship of I d to V ds. (2) Show the ohmic and saturation region on the simulation result. 3. Use OrCAD Capture CIS to draw the circuit as below and try to analyze it with the AC sweep analysis in PSpice. (1) Observe the frequency response of signal Vo. (2) Verify the simulation result with your hand calculation, transfer function. Is that matched? 電子學實驗 ( 一 ) Electronics Laboratory (1), 2013 p 成大電機 EE, NCKU, Tainan City, Taiwan

21 4. Use OrCAD Capture CIS to draw the circuit as below and try to analysis it with the Transient analysis in PSpice. (1) Observe the relationship between signals Vi and Vo. (2) What are the differences between waveforms Vi and Vo? What phenomena do you observe at the instance when the input rising or falling? Conclusion (Remark: this report is provided you a format, more meaningful comment or understanding on your simulation result is welcome) 電子學實驗 ( 一 ) Electronics Laboratory (1), 2013 p 成大電機 EE, NCKU, Tainan City, Taiwan

Laboratory #9 MOSFET Biasing and Current Mirror

Laboratory #9 MOSFET Biasing and Current Mirror Laboratory #9 MOSFET Biasing and Current Mirror. Objectives 1. Review the MOSFET characteristics and transfer function. 2. Understand the relationship between the bias, the input signal and the output

More information

Laboratory #5 BJT Basics and MOSFET Basics

Laboratory #5 BJT Basics and MOSFET Basics Laboratory #5 BJT Basics and MOSFET Basics I. Objectives 1. Understand the physical structure of BJTs and MOSFETs. 2. Learn to measure I-V characteristics of BJTs and MOSFETs. II. Components and Instruments

More information

Introduction to PSpice

Introduction to PSpice Electric Circuit I Lab Manual 4 Session # 5 Introduction to PSpice 1 PART A INTRODUCTION TO PSPICE Objective: The objective of this experiment is to be familiar with Pspice (learn how to connect circuits,

More information

A Brief Handout for Introduction to

A Brief Handout for Introduction to A Brief Handout for Introduction to Electric cal Engineering Course This handout is a compilation of PSPICE, A Brief Primer, Department of Electrical and Systems Engineering, University of Pennsylvania

More information

Background Theory and Simulation Practice

Background Theory and Simulation Practice CAD and Simulation Objectives Experiment Topic: CAD and Simulation PSpice 9.1 Student Version To obtain your free copy of the software and user s guide, go to Electronics Lab website ( http://www.electronics-lab.com/downloads/schematic/013/

More information

EE 210 Lab Exercise #3 Introduction to PSPICE

EE 210 Lab Exercise #3 Introduction to PSPICE EE 210 Lab Exercise #3 Introduction to PSPICE Appending 4 in your Textbook contains a short tutorial on PSPICE. Additional information, tutorials and a demo version of PSPICE can be found at the manufacturer

More information

Introduction to SPICE. Simulator of Electronic devices

Introduction to SPICE. Simulator of Electronic devices Introduction to SPICE Simulator of Electronic devices Main steps: Download Instalation Open OrCAD capture CIS Lite Create a circuit. Place parts. Design a Simulation Profile Run PSpice F11 View simulation

More information

Electronic Circuit Simulation Tools Using Pspice On Ac Analysis

Electronic Circuit Simulation Tools Using Pspice On Ac Analysis Electronic Circuit Simulation Tools Using Pspice On Ac Analysis This Design Idea shows it can handle digital filter simulation too. PSpice has become an industry standard tool for analog circuit simulations.

More information

EXPERIMENT NUMBER 10 TRANSIENT ANALYSIS USING PSPICE

EXPERIMENT NUMBER 10 TRANSIENT ANALYSIS USING PSPICE EXPERIMENT NUMBER 10 TRANSIENT ANALYSIS USING PSPICE Objective: To learn to use a circuit simulator package for plotting the response of a circuit in the time domain. Preliminary: Revise laboratory 8 to

More information

ECE 201 LAB 6 INTRODUCTION TO SPICE/PSPICE

ECE 201 LAB 6 INTRODUCTION TO SPICE/PSPICE Version 1.1 1 of 33 BEFORE YOU BEGIN PREREQUISITE LABS Resistive Circuits EXPECTED KNOWLEDGE ECE 201 LAB 6 INTRODUCTION TO SPICE/PSPICE Ohm's Law: v = ir Node Voltage and Mesh Current Methods of Circuit

More information

14:332:223 Principles of Electrical Engineering I Instructions for using PSPICE Tools Sharanya Chandrasekar February 1, 2006

14:332:223 Principles of Electrical Engineering I Instructions for using PSPICE Tools Sharanya Chandrasekar February 1, 2006 14:332:223 Principles of Electrical Engineering I Instructions for using PSPICE Tools Sharanya Chandrasekar February 1, 2006 1. Getting Started PSPICE is available on the ECE Computer labs in EE 103, DSV

More information

Revised: Summer 2010

Revised: Summer 2010 EE 2274 PRE-LAB EXPERIMENT 5 DIODE OR GATE & CLIPPING CIRCUIT COMPLETE PRIOR TO COMING TO LAB Part I: 1. Design a diode, Figure 1 OR gate in which the maximum input current,, Iin is less than 5mA. Show

More information

Introduction to OrCAD. Simulation Program With Integrated Circuits Emphasis.

Introduction to OrCAD. Simulation Program With Integrated Circuits Emphasis. Islamic University of Gaza Faculty of Engineering Electrical Engineering department Digital Electronics Lab (EELE 3121) Eng. Mohammed S. Jouda Eng. Amani S. abu reyala Experiment 1 Introduction to OrCAD

More information

Electric Circuit Fall 2015 Pingqiang Zhou. ShanghaiTech University. School of Information Science and Technology. Professor Pingqiang Zhou

Electric Circuit Fall 2015 Pingqiang Zhou. ShanghaiTech University. School of Information Science and Technology. Professor Pingqiang Zhou ShanghaiTech University School of Information Science and Technology Professor Pingqiang Zhou LABORATORY 2 CAD Tools Guide Practical circuit design occurs in three stages: 1. Design of an appropriate circuit

More information

Engineering 3821 Fall Pspice TUTORIAL 1. Prepared by: J. Tobin (Class of 2005) B. Jeyasurya E. Gill

Engineering 3821 Fall Pspice TUTORIAL 1. Prepared by: J. Tobin (Class of 2005) B. Jeyasurya E. Gill Engineering 3821 Fall 2003 Pspice TUTORIAL 1 Prepared by: J. Tobin (Class of 2005) B. Jeyasurya E. Gill 2 INTRODUCTION The PSpice program is a member of the SPICE (Simulation Program with Integrated Circuit

More information

EECE Circuits and Signals: Biomedical Applications. Lab 3. Basic Instruments, Components and Circuits. Introduction to Spice and AC circuits

EECE Circuits and Signals: Biomedical Applications. Lab 3. Basic Instruments, Components and Circuits. Introduction to Spice and AC circuits EECE 2150 - Circuits and Signals: Biomedical Applications Lab 3 Basic Instruments, Components and Circuits. Introduction to Spice and AC circuits Introduction and Preamble: In this lab you will experiment

More information

OrCAD PSpice - Tutorial. TA: 黃玉龍

OrCAD PSpice - Tutorial. TA: 黃玉龍 OrCAD PSpice - Tutorial TA: 黃玉龍 r9994320@ntu.edu.tw Outline 2 Introduction Preparation Schematic Simulation Conclusion Introduction 3 OrCAD PSpice is developed by Cadence Analog circuit simulation tool

More information

ENEE207 Electric Circuits Lab Manual

ENEE207 Electric Circuits Lab Manual ENEE207 Electric Circuits Lab Manual Department of Engineering, Physical & Computer Sciences Montgomery College Version 3 Copyright Lan Xiang (Do not distribute without permission) 1 TABLE OF CONTENTS

More information

FACULTY OF ENGINEERING LAB SHEET

FACULTY OF ENGINEERING LAB SHEET FACULTY OF ENGINEERING LAB SHEET CIRCUITS AND SIGNALS EEL 2186 TRIMESTER 1 (218/219) -Circuit analysis using ORCAD PSpice *Note: You will be given an assessment sheet during the lab session to be completed

More information

ET 304A Laboratory Tutorial-Circuitmaker For Transient and Frequency Analysis

ET 304A Laboratory Tutorial-Circuitmaker For Transient and Frequency Analysis ET 304A Laboratory Tutorial-Circuitmaker For Transient and Frequency Analysis All circuit simulation packages that use the Pspice engine allow users to do complex analysis that were once impossible to

More information

An Introductory Guide to Circuit Simulation using NI Multisim 12

An Introductory Guide to Circuit Simulation using NI Multisim 12 School of Engineering and Technology An Introductory Guide to Circuit Simulation using NI Multisim 12 This booklet belongs to: This document provides a brief overview and introductory tutorial for circuit

More information

EE 105 MICROELECTRONIC DEVICES & CIRCUITS FALL 2018 C. Nguyen. Laboratory 2: Characterization of the 741 Op Amp Preliminary Exercises

EE 105 MICROELECTRONIC DEVICES & CIRCUITS FALL 2018 C. Nguyen. Laboratory 2: Characterization of the 741 Op Amp Preliminary Exercises Laboratory 2: Characterization of the 741 Op Amp Preliminary Exercises This lab will characterize an actual 741 operational amplifier with emphasis on its non-ideal properties, such as finite gain and

More information

Lab 3: Circuit Simulation with PSPICE

Lab 3: Circuit Simulation with PSPICE Page 1 of 11 Laboratory Goals Introduce text-based PSPICE as a design tool Create transistor circuits using PSPICE Simulate output response for the designed circuits Introduce the Curve Tracer functionality.

More information

PSPICE T UTORIAL P ART I: INTRODUCTION AND DC ANALYSIS. for the Orcad PSpice Release 9.2 Lite Edition

PSPICE T UTORIAL P ART I: INTRODUCTION AND DC ANALYSIS. for the Orcad PSpice Release 9.2 Lite Edition PSPICE T UTORIAL P ART I: INTRODUCTION AND DC ANALYSIS for the Orcad PSpice Release 9.2 Lite Edition INTRODUCTION The Simulation Program with Integrated Circuit Emphasis (SPICE) circuit simulation tool

More information

Laboratory #4 Diode Basics and Applications (II)

Laboratory #4 Diode Basics and Applications (II) Revised date: 7/2/217 僅供成功大學電機系教學使用, 請勿擅自修改 重製或出版 Laboratory #4 iode Basics and Applications (II) I. Objectives 1. Understand the Zener shunt regulator circuit. 2. Understand the operational principles

More information

Lab 4: Analysis of the Stereo Amplifier

Lab 4: Analysis of the Stereo Amplifier ECE 212 Spring 2010 Circuit Analysis II Names: Lab 4: Analysis of the Stereo Amplifier Objectives In this lab exercise you will use the power supply to power the stereo amplifier built in the previous

More information

Laboratory experiments and reports

Laboratory experiments and reports LABORATORY INSTRUCTION MANUAL Page 1 of 8 Laboratory experiments and reports Summary This document describes how to carry out experimental exercises, and how to prepare the lab reports for the Electronic

More information

EE320L Electronics I. Laboratory. Laboratory Exercise #2. Basic Op-Amp Circuits. Angsuman Roy. Department of Electrical and Computer Engineering

EE320L Electronics I. Laboratory. Laboratory Exercise #2. Basic Op-Amp Circuits. Angsuman Roy. Department of Electrical and Computer Engineering EE320L Electronics I Laboratory Laboratory Exercise #2 Basic Op-Amp Circuits By Angsuman Roy Department of Electrical and Computer Engineering University of Nevada, Las Vegas Objective: The purpose of

More information

VERIFICATION OF SPICE MODEL OF MOSFET

VERIFICATION OF SPICE MODEL OF MOSFET VERIFICATION OF SPICE MODEL OF MOSFET Vishal V. Bodake 1,Prof.Amutha Jeyakumar 2,Devendrabhai Patel 3 1Student, Dept. of Electrical Engineering, VJTI, Mumbai, Maharashtra 2Associate Professor, Dept. of

More information

Since transmission lines can be modeled using PSpice, you can do your analysis by downloading the student version of this excellent program.

Since transmission lines can be modeled using PSpice, you can do your analysis by downloading the student version of this excellent program. PSpice Analysis Since transmission lines can be modeled using PSpice, you can do your analysis by downloading the student version of this excellent program. PSpice can be downloaded from the following

More information

EE320L Electronics I. Laboratory. Laboratory Exercise #6. Current-Voltage Characteristics of Electronic Devices. Angsuman Roy

EE320L Electronics I. Laboratory. Laboratory Exercise #6. Current-Voltage Characteristics of Electronic Devices. Angsuman Roy EE320L Electronics I Laboratory Laboratory Exercise #6 Current-Voltage Characteristics of Electronic Devices By Angsuman Roy Department of Electrical and Computer Engineering University of Nevada, Las

More information

FACULTY OF ENGINEERING LAB SHEET

FACULTY OF ENGINEERING LAB SHEET FACULTY OF ENGINEERING LAB SHEET CIRCUITS AND SIGNALS EEL 286 TRIMESTER (26/27) -Circuit analysis using ORCAD PSpice Experiment : Circuit analysis using ORCAD Pspice PRECAUTIONARY STEPS:. Read this experiment

More information

Curve Tracer Laboratory Assistant Using the Analog Discovery Module as A Curve Tracer

Curve Tracer Laboratory Assistant Using the Analog Discovery Module as A Curve Tracer Curve Tracer Laboratory Assistant Using the Analog Discovery Module as A Curve Tracer The objective of this lab is to become familiar with methods to measure the dc current-voltage (IV) behavior of diodes

More information

Week 4: Experiment 24. Using Nodal or Mesh Analysis to Solve AC Circuits with an addition of Equivalent Impedance

Week 4: Experiment 24. Using Nodal or Mesh Analysis to Solve AC Circuits with an addition of Equivalent Impedance Week 4: Experiment 24 Using Nodal or Mesh Analysis to Solve AC Circuits with an addition of Equivalent Impedance Lab Lectures You have two weeks to complete Experiment 27: Complex Power 2/27/2012 (Pre-Lab

More information

Lab 6: Building a Function Generator

Lab 6: Building a Function Generator ECE 212 Spring 2010 Circuit Analysis II Names: Lab 6: Building a Function Generator Objectives In this lab exercise you will build a function generator capable of generating square, triangle, and sine

More information

EECS 312: Digital Integrated Circuits Lab Project 1 Introduction to Schematic Capture and Analog Circuit Simulation

EECS 312: Digital Integrated Circuits Lab Project 1 Introduction to Schematic Capture and Analog Circuit Simulation EECS 312: Digital Integrated Circuits Lab Project 1 Introduction to Schematic Capture and Analog Circuit Simulation Teacher: Robert Dick GSI: Shengshuo Lu Assigned: 5 September 2013 Due: 17 September 2013

More information

MultiSim and Analog Discovery 2 Manual

MultiSim and Analog Discovery 2 Manual MultiSim and Analog Discovery 2 Manual 1 MultiSim 1.1 Running Windows Programs Using Mac Obtain free Microsoft Windows from: http://software.tamu.edu Set up a Windows partition on your Mac: https://support.apple.com/en-us/ht204009

More information

ENEE 307 Laboratory#2 (n-mosfet, p-mosfet, and a single n-mosfet amplifier in the common source configuration)

ENEE 307 Laboratory#2 (n-mosfet, p-mosfet, and a single n-mosfet amplifier in the common source configuration) Revised 2/16/2007 ENEE 307 Laboratory#2 (n-mosfet, p-mosfet, and a single n-mosfet amplifier in the common source configuration) *NOTE: The text mentioned below refers to the Sedra/Smith, 5th edition.

More information

ELEG 205 Analog Circuits Laboratory Manual Fall 2017

ELEG 205 Analog Circuits Laboratory Manual Fall 2017 ELEG 205 Analog Circuits Laboratory Manual Fall 2017 University of Delaware Dr. Mark Mirotznik Kaleb Burd Aric Lu Patrick Nicholson Colby Banbury Table of Contents Policies Policy Page 3 Labs Lab 1: Intro

More information

Introduction to NI Multisim & Ultiboard Software version 14.1

Introduction to NI Multisim & Ultiboard Software version 14.1 School of Engineering and Applied Science Electrical and Computer Engineering Department Introduction to NI Multisim & Ultiboard Software version 14.1 Dr. Amir Aslani August 2018 Parts Probes Tools Outline

More information

LABORATORY 4. Palomar College ENGR210 Spring 2017 ASSIGNED: 3/21/17

LABORATORY 4. Palomar College ENGR210 Spring 2017 ASSIGNED: 3/21/17 LABORATORY 4 ASSIGNED: 3/21/17 OBJECTIVE: The purpose of this lab is to evaluate the transient and steady-state circuit response of first order and second order circuits. MINIMUM EQUIPMENT LIST: You will

More information

Getting Started in Eagle Professional Schematic Software. Tyler Borysiak Team 9 Manager

Getting Started in Eagle Professional Schematic Software. Tyler Borysiak Team 9 Manager Getting Started in Eagle 7.3.0 Professional Schematic Software Tyler Borysiak Team 9 Manager 1 Executive Summary PCBs, or Printed Circuit Boards, are all around us. Almost every single piece of electrical

More information

The default account setup for the class should allow you to run HSPICE without any further configuration. To verify this, type:

The default account setup for the class should allow you to run HSPICE without any further configuration. To verify this, type: UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences HW #1: Circuit Simulation NTU IC541CA (Spring 2004) 1 Objective The objective of this homework

More information

EE 320 L LABORATORY 9: MOSFET TRANSISTOR CHARACTERIZATIONS. by Ming Zhu UNIVERSITY OF NEVADA, LAS VEGAS 1. OBJECTIVE 2. COMPONENTS & EQUIPMENT

EE 320 L LABORATORY 9: MOSFET TRANSISTOR CHARACTERIZATIONS. by Ming Zhu UNIVERSITY OF NEVADA, LAS VEGAS 1. OBJECTIVE 2. COMPONENTS & EQUIPMENT EE 320 L ELECTRONICS I LABORATORY 9: MOSFET TRANSISTOR CHARACTERIZATIONS by Ming Zhu DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING UNIVERSITY OF NEVADA, LAS VEGAS 1. OBJECTIVE Get familiar with MOSFETs,

More information

Electronics I LAB. Lab 1: Lab 1 : Introduction to PsPise

Electronics I LAB. Lab 1: Lab 1 : Introduction to PsPise Electronics I LAB Lab 1: Lab 1 : Introduction to PsPise 1-Introduction to PsPise : SPICE (Simulation Program for Integrated Circuits Emphasis.) is a po werful general purpo se analog and mixed-mode circuit

More information

Welcome to your second Electronics Laboratory Session. In this session you will learn about how to use resistors, capacitors and inductors to make

Welcome to your second Electronics Laboratory Session. In this session you will learn about how to use resistors, capacitors and inductors to make Welcome to your second Electronics Laboratory Session. In this session you will learn about how to use resistors, capacitors and inductors to make simple circuits. You will find out how these circuits

More information

OrCAD 17.2 Pspice Tutorial. High-Speed Circuits & Systems Lab. Yonsei University

OrCAD 17.2 Pspice Tutorial. High-Speed Circuits & Systems Lab. Yonsei University OrCAD 17.2 Pspice Tutorial High-Speed Circuits & Systems Lab. Yonsei University Installation Move to http://www.orcad.com/resources/orcaddownloads#demo Installation Click Download FREE-OrCAD 17.2 Lite

More information

ECE ECE285. Electric Circuit Analysis I. Spring Nathalia Peixoto. Rev.2.0: Rev Electric Circuits I

ECE ECE285. Electric Circuit Analysis I. Spring Nathalia Peixoto. Rev.2.0: Rev Electric Circuits I ECE285 Electric Circuit Analysis I Spring 2014 Nathalia Peixoto Rev.2.0: 140124. Rev 2.1. 140813 1 Lab reports Background: these 9 experiments are designed as simple building blocks (like Legos) and students

More information

Integrators, differentiators, and simple filters

Integrators, differentiators, and simple filters BEE 233 Laboratory-4 Integrators, differentiators, and simple filters 1. Objectives Analyze and measure characteristics of circuits built with opamps. Design and test circuits with opamps. Plot gain vs.

More information

UNIVERSITY OF PENNSYLVANIA EE 206

UNIVERSITY OF PENNSYLVANIA EE 206 UNIVERSITY OF PENNSYLVANIA EE 206 TRANSISTOR BIASING CIRCUITS Introduction: One of the most critical considerations in the design of transistor amplifier stages is the ability of the circuit to maintain

More information

Introduction to Pspice

Introduction to Pspice 1. Objectives Introduction to Pspice The learning objectives for this laboratory are to give the students a brief introduction to using Pspice as a tool to analyze circuits and also to demonstrate the

More information

STATION NUMBER: LAB SECTION: Filters. LAB 6: Filters ELECTRICAL ENGINEERING 43/100 INTRODUCTION TO MICROELECTRONIC CIRCUITS

STATION NUMBER: LAB SECTION: Filters. LAB 6: Filters ELECTRICAL ENGINEERING 43/100 INTRODUCTION TO MICROELECTRONIC CIRCUITS Lab 6: Filters YOUR EE43/100 NAME: Spring 2013 YOUR PARTNER S NAME: YOUR SID: YOUR PARTNER S SID: STATION NUMBER: LAB SECTION: Filters LAB 6: Filters Pre- Lab GSI Sign- Off: Pre- Lab: /40 Lab: /60 Total:

More information

PSPICE SIMULATIONS WITH THE RESONANT INVERTER POWER ELECTRONICS COLORADO STATE UNIVERSITY. Created by Colorado State University student

PSPICE SIMULATIONS WITH THE RESONANT INVERTER POWER ELECTRONICS COLORADO STATE UNIVERSITY. Created by Colorado State University student PSPICE SIMULATIONS WITH THE RESONANT INVERTER POWER ELECTRONICS COLORADO STATE UNIVERSITY Created by Colorado State University student Page 1 of 13 PURPOSE: The purpose of this lab is to simulate the resonant

More information

Experiment 2 Introduction to PSpice

Experiment 2 Introduction to PSpice Experiment 2 Introduction to PSpice W.T. Yeung and R.T. Howe UC Berkeley EE 105 Fall 2004 1.0 Objective One of the CAD tools you will be using as a circuit designer is SPICE, a Berkeleydeveloped industry-standard

More information

Class #8: Experiment Diodes Part I

Class #8: Experiment Diodes Part I Class #8: Experiment Diodes Part I Purpose: The objective of this experiment is to become familiar with the properties and uses of diodes. We used a 1N914 diode in two previous experiments, but now we

More information

EE4902 C Lab 7

EE4902 C Lab 7 EE4902 C2007 - Lab 7 MOSFET Differential Amplifier Resistive Load Active Load PURPOSE: The primary purpose of this lab is to measure the performance of the differential amplifier. This is an important

More information

Chapter 12: Electronic Circuit Simulation and Layout Software

Chapter 12: Electronic Circuit Simulation and Layout Software Chapter 12: Electronic Circuit Simulation and Layout Software In this chapter, we introduce the use of analog circuit simulation software and circuit layout software. I. Introduction So far we have designed

More information

Tsung-Chu Huang. Department of Electronic Engineering National Changhua University of Education /10/4-5 TCH NCUE

Tsung-Chu Huang. Department of Electronic Engineering National Changhua University of Education /10/4-5 TCH NCUE Digital IC Design Tsung-Chu Huang Department of Electronic Engineering National Changhua University of Education Email: tch@cc.ncue.edu.tw 2004/10/4-5 Page 1 Circuit Simulation Tools 1. Switch Level: Verilog,

More information

Using LTSPICE to Analyze Circuits

Using LTSPICE to Analyze Circuits Using LTSPICE to Analyze Circuits Overview: LTSPICE is circuit simulation software that automatically constructs circuit equations using circuit element models (built in or downloadable). In its modern

More information

SAMPLE: EXPERIMENT 2 Series RLC Circuit / Bode Plot

SAMPLE: EXPERIMENT 2 Series RLC Circuit / Bode Plot SAMPLE: EXPERIMENT 2 Series RLC Circuit / Bode Plot ---------------------------------------------------------------------------------------------------- This experiment is an excerpt from: Electric Experiments

More information

EE 221 L CIRCUIT II. Learn to use LTspice to run circuit simulations for voltage, current, etc.

EE 221 L CIRCUIT II. Learn to use LTspice to run circuit simulations for voltage, current, etc. EE 221 L CIRCUIT II LABORATORY 3: LTSPICE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING UNIVERSITY OF NEVADA, LAS VEGAS OBJECTIVE Learn to use LTspice to run circuit simulations for voltage, current,

More information

Introduction to SwitcherCAD

Introduction to SwitcherCAD Introduction to SwitcherCAD 1 PREFACE 1.1 What is SwitcherCAD? SwitcherCAD III is a new Spice based program that was developed for modelling board level switching regulator systems. The program consists

More information

Using Signal Express to Automate Analog Electronics Experiments

Using Signal Express to Automate Analog Electronics Experiments Session 3247 Using Signal Express to Automate Analog Electronics Experiments B.D. Brannaka, J. R. Porter Engineering Technology and Industrial Distribution Texas A&M University, College Station, TX 77843

More information

HSPICE (from Avant!) offers a more robust, commercial version of SPICE. PSPICE is a popular version of SPICE, available from Orcad (now Cadence).

HSPICE (from Avant!) offers a more robust, commercial version of SPICE. PSPICE is a popular version of SPICE, available from Orcad (now Cadence). Electronics II: SPICE Lab ECE 09.403/503 Team Size: 2-3 Electronics II Lab Date: 3/9/2017 Lab Created by: Chris Frederickson, Adam Fifth, and Russell Trafford Introduction SPICE (Simulation Program for

More information

Concept map Introduction E lectronics and Microelectronics Engineering have been highly strengthen by the micro and nanotechnology advances which have provided a wide range of applications and solutions

More information

Introduction to LT Spice IV with Examples

Introduction to LT Spice IV with Examples Introduction to LT Spice IV with Examples 400D - Fall 2015 Purpose Part of Electronics & Control Division Technical Training Series by Nicholas Lombardo The purpose of this document is to give a basic

More information

Experiment 5.A. Basic Wireless Control. ECEN 2270 Electronics Design Laboratory 1

Experiment 5.A. Basic Wireless Control. ECEN 2270 Electronics Design Laboratory 1 .A Basic Wireless Control ECEN 2270 Electronics Design Laboratory 1 Procedures 5.A.0 5.A.1 5.A.2 5.A.3 5.A.4 5.A.5 5.A.6 Turn in your pre lab before doing anything else. Receiver design band pass filter

More information

LABORATORY 3 v3 CIRCUIT ELEMENTS

LABORATORY 3 v3 CIRCUIT ELEMENTS University of California Berkeley Department of Electrical Engineering and Computer Sciences EECS 100, Professor Leon Chua LABORATORY 3 v3 CIRCUIT ELEMENTS The purpose of this laboratory is to familiarize

More information

ECE4902 C Lab 5 MOSFET Common Source Amplifier with Active Load Bandwidth of MOSFET Common Source Amplifier: Resistive Load / Active Load

ECE4902 C Lab 5 MOSFET Common Source Amplifier with Active Load Bandwidth of MOSFET Common Source Amplifier: Resistive Load / Active Load ECE4902 C2012 - Lab 5 MOSFET Common Source Amplifier with Active Load Bandwidth of MOSFET Common Source Amplifier: Resistive Load / Active Load PURPOSE: The primary purpose of this lab is to measure the

More information

Week 9: Series RC Circuit. Experiment 14

Week 9: Series RC Circuit. Experiment 14 Week 9: Series RC Circuit Experiment 14 Circuit to be constructed It is good practice to short the unused pin on the trimpot when using it as a variable resistor Velleman function generator Shunt resistor

More information

Mor M. Peretz Power Electronics Laboratory Department of Electrical and Computer Engineering Ben-Gurion University of the Negev, ISRAEL

Mor M. Peretz Power Electronics Laboratory Department of Electrical and Computer Engineering Ben-Gurion University of the Negev, ISRAEL Mor M. Peretz Power Electronics Laboratory Department of Electrical and Computer Engineering Ben-Gurion University of the Negev, ISRAEL [1] PSpice A/D simulation program allows to analyze electrical circuits

More information

University of Michigan EECS 311: Electronic Circuits Fall 2008 LAB 4 SINGLE STAGE AMPLIFIER

University of Michigan EECS 311: Electronic Circuits Fall 2008 LAB 4 SINGLE STAGE AMPLIFIER University of Michigan EECS 311: Electronic Circuits Fall 2008 LAB 4 SINGLE STAGE AMPLIFIER Issued 10/27/2008 Report due in Lecture 11/10/2008 Introduction In this lab you will characterize a 2N3904 NPN

More information

Experiment 1.A. Working with Lab Equipment. ECEN 2270 Electronics Design Laboratory 1

Experiment 1.A. Working with Lab Equipment. ECEN 2270 Electronics Design Laboratory 1 .A Working with Lab Equipment Electronics Design Laboratory 1 1.A.0 1.A.1 3 1.A.4 Procedures Turn in your Pre Lab before doing anything else Setup the lab waveform generator to output desired test waveforms,

More information

A Short SPICE Tutorial

A Short SPICE Tutorial A Short SPICE Tutorial Kenneth H. Carpenter Department of Electrical and Computer Engineering Kanas State University September 15, 2003 - November 10, 2004 1 Introduction SPICE is an acronym for Simulation

More information

Experiment 8 Frequency Response

Experiment 8 Frequency Response Experiment 8 Frequency Response W.T. Yeung, R.A. Cortina, and R.T. Howe UC Berkeley EE 105 Spring 2005 1.0 Objective This lab will introduce the student to frequency response of circuits. The student will

More information

ES330 Laboratory Experiment No. 9 Bipolar Differential Amplifier [Reference: Sedra/Smith (Chapter 9; Section 9.2; pp )]

ES330 Laboratory Experiment No. 9 Bipolar Differential Amplifier [Reference: Sedra/Smith (Chapter 9; Section 9.2; pp )] ES330 Laboratory Experiment No. 9 Bipolar Differential Amplifier [Reference: Sedra/Smith (Chapter 9; Section 9.2; pp. 614-627)] Objectives: 1. Explore the operation of a bipolar junction transistor differential

More information

1. Hand Calculations (in a manner suitable for submission) For the circuit in Fig. 1 with f = 7.2 khz and a source vin () t 1.

1. Hand Calculations (in a manner suitable for submission) For the circuit in Fig. 1 with f = 7.2 khz and a source vin () t 1. Objectives The purpose of this laboratory project is to introduce to equipment, measurement techniques, and simulations commonly used in AC circuit analysis. In this laboratory session, each student will:

More information

SIMULATIONS WITH THE BUCK-BOOST TOPOLOGY EE562: POWER ELECTRONICS I COLORADO STATE UNIVERSITY. Modified February 2006

SIMULATIONS WITH THE BUCK-BOOST TOPOLOGY EE562: POWER ELECTRONICS I COLORADO STATE UNIVERSITY. Modified February 2006 SIMULATIONS WITH THE BUCK-BOOST TOPOLOGY EE562: POWER ELECTRONICS I COLORADO STATE UNIVERSITY Modified February 2006 Page 1 of 13 PURPOSE: The purpose of this lab is to simulate the Buck-Boost converter

More information

ECE4902 Lab 5 Simulation. Simulation. Export data for use in other software tools (e.g. MATLAB or excel) to compare measured data with simulation

ECE4902 Lab 5 Simulation. Simulation. Export data for use in other software tools (e.g. MATLAB or excel) to compare measured data with simulation ECE4902 Lab 5 Simulation Simulation Export data for use in other software tools (e.g. MATLAB or excel) to compare measured data with simulation Be sure to have your lab data available from Lab 5, Common

More information

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering EXPERIMENT 8 MOSFET AMPLIFIER CONFIGURATIONS AND INPUT/OUTPUT IMPEDANCE OBJECTIVES The purpose of this experiment

More information

LABORATORY 3 v1 CIRCUIT ELEMENTS

LABORATORY 3 v1 CIRCUIT ELEMENTS University of California Berkeley Department of Electrical Engineering and Computer Sciences EECS 100, Professor Bernhard Boser LABORATORY 3 v1 CIRCUIT ELEMENTS The purpose of this laboratory is to familiarize

More information

MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Faculty of Engineering and Applied Science. Laboratory Manual for. Eng Circuit Analysis (2011)

MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Faculty of Engineering and Applied Science. Laboratory Manual for. Eng Circuit Analysis (2011) MEMORIAL UNIVERSITY OF NEWFOUNDLAND Faculty of Engineering and Applied Science Laboratory Manual for Eng. 3821 Circuit Analysis (2011) Instructor: E. Gill PREFACE The laboratory exercises in this manual

More information

ECE 310L : LAB 9. Fall 2012 (Hay)

ECE 310L : LAB 9. Fall 2012 (Hay) ECE 310L : LAB 9 PRELAB ASSIGNMENT: Read the lab assignment in its entirety. 1. For the circuit shown in Figure 3, compute a value for R1 that will result in a 1N5230B zener diode current of approximately

More information

SIMULATIONS WITH THE BOOST TOPOLOGY EE562: POWER ELECTRONICS I COLORADO STATE UNIVERSITY. Modified February 2006

SIMULATIONS WITH THE BOOST TOPOLOGY EE562: POWER ELECTRONICS I COLORADO STATE UNIVERSITY. Modified February 2006 SIMULATIONS WITH THE BOOST TOPOLOGY EE562: POWER ELECTRONICS I COLORADO STATE UNIVERSITY Modified February 26 Page 1 of 24 PURPOSE: The purpose of this lab is to simulate the Boost converter using ORCAD

More information

EE 210: CIRCUITS AND DEVICES

EE 210: CIRCUITS AND DEVICES EE 210: CIRCUITS AND DEVICES LAB #3: VOLTAGE AND CURRENT MEASUREMENTS This lab features a tutorial on the instrumentation that you will be using throughout the semester. More specifically, you will see

More information

Fig. 1. NI Elvis System

Fig. 1. NI Elvis System Lab 2: Introduction to I Elvis Environment. Objectives: The purpose of this laboratory is to provide an introduction to the NI Elvis design and prototyping environment. Basic operations provided by Elvis

More information

1.3 An Introduction to WinSPICE

1.3 An Introduction to WinSPICE Chapter 1 Introduction to CMOS Design 23 After the GDS file is generated, we can use the Gds2Tlc program to convert the GDS file back into TLC files. In the setups we must specify a directory where the

More information

NGSPICE- Usage and Examples

NGSPICE- Usage and Examples NGSPICE- Usage and Examples Debapratim Ghosh deba21pratim@gmail.com Electronic Systems Group Department of Electrical Engineering Indian Institute of Technology Bombay February 2013 Debapratim Ghosh Dept.

More information

Lab #2 First Order RC Circuits Week of 27 January 2015

Lab #2 First Order RC Circuits Week of 27 January 2015 ECE214: Electrical Circuits Laboratory Lab #2 First Order RC Circuits Week of 27 January 2015 1 Introduction In this lab you will investigate the magnitude and phase shift that occurs in an RC circuit

More information

EEC 116 Fall 2011 Lab #2: Analog Simulation Tutorial

EEC 116 Fall 2011 Lab #2: Analog Simulation Tutorial EEC 116 Fall 2011 Lab #2: Analog Simulation Tutorial Dept. of Electrical and Computer Engineering University of California, Davis Issued: September 28, 2011 Due: October 12, 2011, 4PM Reading: Rabaey Chapters

More information

EXPERIMENT 9 Problem Solving: First-order Transient Circuits

EXPERIMENT 9 Problem Solving: First-order Transient Circuits EXPERIMENT 9 Problem Solving: First-order Transient Circuits I. Introduction In transient analyses, we determine voltages and currents as functions of time. Typically, the time dependence is demonstrated

More information

Build Your Own Bose WaveRadio Bass Preamp Active Filter Design

Build Your Own Bose WaveRadio Bass Preamp Active Filter Design EE230 Filter Laboratory Build Your Own Bose WaveRadio Bass Preamp Active Filter Design Objectives 1) Design an active filter on paper to meet a particular specification 2) Verify your design using Spice

More information

Class #7: Experiment L & C Circuits: Filters and Energy Revisited

Class #7: Experiment L & C Circuits: Filters and Energy Revisited Class #7: Experiment L & C Circuits: Filters and Energy Revisited In this experiment you will revisit the voltage oscillations of a simple LC circuit. Then you will address circuits made by combining resistors

More information

MOSFET Amplifier Design

MOSFET Amplifier Design MOSFET Amplifier Design Introduction In this lab, you will design a basic 2-stage amplifier using the same 4007 chip as in lab 2. As a reminder, the PSpice model parameters are: NMOS: LEVEL=1, VTO=1.4,

More information

EE 233 Circuit Theory Lab 2: Amplifiers

EE 233 Circuit Theory Lab 2: Amplifiers EE 233 Circuit Theory Lab 2: Amplifiers Table of Contents 1 Introduction... 1 2 Precautions... 1 3 Prelab Exercises... 2 3.1 LM348N Op-amp Parameters... 2 3.2 Voltage Follower Circuit Analysis... 2 3.2.1

More information

Lab 2: Common Base Common Collector Design Exercise

Lab 2: Common Base Common Collector Design Exercise CSUS EEE 109 Lab - Section 01 Lab 2: Common Base Common Collector Design Exercise Author: Bogdan Pishtoy / Lab Partner: Roman Vermenchuk Lab Report due March 26 th Lab Instructor: Dr. Kevin Geoghegan 2016-03-25

More information

Lab Reference Manual. ECEN 326 Electronic Circuits. Texas A&M University Department of Electrical and Computer Engineering

Lab Reference Manual. ECEN 326 Electronic Circuits. Texas A&M University Department of Electrical and Computer Engineering Lab Reference Manual ECEN 326 Electronic Circuits Texas A&M University Department of Electrical and Computer Engineering Contents 1. Circuit Analysis in PSpice 3 1.1 Transient and DC Analysis 3 1.2 Measuring

More information

LAB EXERCISE 3 FET Amplifier Design and Linear Analysis

LAB EXERCISE 3 FET Amplifier Design and Linear Analysis ADS 2012 Workspaces and Simulation Tools (v.1 Oct 2012) LAB EXERCISE 3 FET Amplifier Design and Linear Analysis Topics: More schematic capture, DC and AC simulation, more on libraries and cells, using

More information

Lab 2: Linear and Nonlinear Circuit Elements and Networks

Lab 2: Linear and Nonlinear Circuit Elements and Networks OPTI 380B Intermediate Optics Laboratory Lab 2: Linear and Nonlinear Circuit Elements and Networks Objectives: Lean how to use: Function of an oscilloscope probe. Characterization of capacitors and inductors

More information

Cir cuit s 212 Lab. Lab #7 Filter Design. Introductions:

Cir cuit s 212 Lab. Lab #7 Filter Design. Introductions: Cir cuit s 22 Lab Lab #7 Filter Design The purpose of this lab is multifold. This is a three-week experiment. You are required to design a High / Low Pass filter using the LM38 OP AMP. In this lab, you

More information