Minimization of amplified spontaneous emission noise in upstream SuperPON 512 ONU, 10 Gbit/s.

Size: px
Start display at page:

Download "Minimization of amplified spontaneous emission noise in upstream SuperPON 512 ONU, 10 Gbit/s."

Transcription

1 Minimization of amplified spontaneous emission noise in upstream SuperPON 512, 10 Gbit/s. A.J. Sakena* a, M.Y. Jamro b and J.M. Senior b a Faculty of Engineering, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia. b Department of Electronic Communication and Electrical Engineering, Faculty of Engineering and Information Science, University of Hertfordshire, College Lane, AL10 9AB, Hatfield, United Kingdom. ABSTRACT We demonstrated the effect of presenting optical band pass filter for point to multipoint architecture such SuperPON. The position of optical filter and the range of optical filter bandwidth to minimise amplified spontaneous emission noise for upstream SuperPON with 512 at transmission speed of 10 Gbit/s will also be exp lored. Keywords: Optical band pass filter, SuperPON, optical filter bandwidth, amplified spontaneous emission. 1. INTRODUCTION The optical amplifier application as an in-line amplifier for point to multipoint architecture, associated with system s parameter values are required further investigation as mentioned in ITU-TG 663(04/2000) 1. The point to multipoint architecture such SuperPON employed optical amplifier in the architecture to enhance the budgeting power is one of the ideal systems to be examined. Since the SuperPON is an amplified system, it is suffered from amplified spontaneous emission (ASE) noise. The downstream transmission of SuperPON present less challenging problems compare to upstream transmission. Nowadays, the challenge arises from the time response of optical amplifier with micro second bursts of data at the upstream SuperPON is consider solved by installing burst mode receiver at the optical line termination unit () 2. Unfortunately, the accumulation of ASE noise at the upstream of SuperPON still needs attentions. The pioneer SuperPON architecture of 2048, had discovered the accumulation of noise at the upstream due to the semiconductor optical amplifier (SOA) was placed in between splitter 1 16 and The possibility of deploying SuperPON 8192 had also been investigated by considering the minimum noise in the several architectures 4. The high speed upstream SuperPON of 10 Gbit/s with of 1024 also discussed the noise issue which considers the gain at the pre amplifier r eceiver must operate more than 20 db to achieve best performance 5. In this paper, the accumulation of ASE noise will be handled by placing optical band pass filter. The position of optical band pass filter and the optical filter bandwidth (OFB) will also be investigated. 2. DESCRIPTION OF SIMULATION MODEL The simulation of SuperPON 512 has done using Virtual Photonic Integration, (VPI). Figure 1 shows the SuperPON model which is designed based on the current PON standard which defines the maximum distribution distance of 20 km 6. The 512 optical network units () are generated from combination of splitter 32 1 and In the simulation fiber is replaced with the attenuator to examine the noise effect accurately. The dispersion is neglected due to the SuperPON using single mode fiber with narrow spectral width of semiconductor laser 7. The upstream SuperPON architecture for 512 is designed based on downstream architecture 8, where an optical amplifier was placed in front the splitter at feeder length. This respective architecture 8 provides minimum noise accumulation. * phone ; fax

2 10 km Figure 1: Simulation model for upstream SuperPON 512, 100 km. For the upstream, erbium doped fiber amplifier () is also used. The gain of an was modelled by choosing the suitable value of Er 3+ ion concentration at the particular overlapping factor. The signal from does not need to boost due to the in-line optical amplifier, employed high gain (=20 db) and it sufficient enough to eliminate the fiber loss and splitter loss in SuperPON. The optical amplifier produces gain and ASE simultaneously. At the optical line termination unit (), the receiver is using sensitivity of -20 dbm without pre amplifier. Thus, the optical amplifier cost could be reduced. 2.1 ASE noise and optical band pass filter The ASE noise had been studied and minimized using several approaches. A variable polarization beam splitter had been used to reduce ASE power and noise figure concurrently 9. The accumulation of ASE noise in WDM multistage amplified system could be rejected by using uniform fiber grating 10. Another approach is using the cascaded optical fiber grating couplers to reduce ASE noise and improved signal to noise ratio in for WDM signals 11. The optical band pass filter was used to minimize the noise in the upstream SuperPON due to the optical amplifier generates wide band noise. For point-to-point transmission, rectangular band pass filter is most suitable 1. A precaution must be taken in point to multi point transmission such SuperPON because the optical spectrum from the splitter perform wide band signal. Here, optical band pass filter with Gaussian function was used to avoid a part of signals missing. The SuperPON model with 512 has been simulated with transmission speed of 10 Gbit/s. In order to assess the effect of optical band pass filter, the following steps has applied; a) Simulation with and without optical band pass filter. The different spectrum power is displayed using optical spectrum analyser. b) The optical band pass filter is placed in different position to obtain the effective placement. It is evaluated based on the eye opening ratio and Q factor. c) The variation OFB will be applied to identify the minimum ASE power. 2.2 Simulation procedure of presenting optical band pass filter 10 km OSA: Power Spectrum Figure 2: Measurement of presenting optical filter for SuperPON architecture.

3 At first the measurement of spectrum powers are taken without optical filter. The transmits the signal through optical fiber and splitter. The signal is amplified and reaches together with ASE noise. In the simulation, has not receiver module to avoid receiver noises are included. The optical spectrum analyser is used to obtain the spectrum power of signal and ASE noise. The effect of presenting optical filter is discovered by placing the filter at any place in front the amplifier. The OFB of 80 GHz had been applied in this simulation. 2.3 Simulation procedure of optical band pass filter placement The SuperPON was designed to provide the efficient optical access network especially in term of system performance and cost saving. The main objective of placing the filter at different positions is to achieve a better signal and save the filter cost. In this simulation two different positions which provide minimum cost are identified. The simulation of optical band pass filter placement was constructed as shown in figure 3 and figure 4. In figure 3, the optical band pass filter is placed in front of before optical fiber. It is known as position 1, (P1). The alternative position of filter is known as position 2, (P2) and depicted in figure 4 where the filter is placed just before s. The in each figure has identical receiver module and oscilloscope to measure the eye opening and Q_factor. Distance 10 to 20 km P1 Distance 10 to 20 km P2 Bandpass filter at Position 1 Figure 3: SuperPON with optical band pass filter at position 1 Eye Opening Factor and Q_dB Eye Opening Factor and Q_dB Band pass filter at Position 2 Figure 4: SuperPON with optical band pass filter at position 2 The optical filter positions are evaluated by determining eye opening factor and Q-factor. The eye opening is defined as an eye closure Gaussian which, expressed by the following equation 12, ( P -3σ ) ( P + 3σ ) top top base base EyeOpeningFactor = (1) P top P base where P top is average logic power level one, P base is average logic power level zero, σ top is standard deviation of level one, σ base is standard deviation of level zero. The Q-factor is obtained from extraction of the Gaussian probability density function with power mean and unit standard deviation. It is calculated according to the following expression Ptop P base Q factor = (2) σ top + σ base For more comfy the Q_factor is expressed in decibel unit or known as Q_dB, the equation (2) is written as Q_dB = 20* (Log 10 (Q)) (3) For optical fiber communication, the good transmission system is obtained when bit error rate (BER) is lower than BER 1E-9 with Q factor more than 6 7. In this section simulation will be done by fixing the OFB at any values of filter bandwidth, for example 80 GHz. The variation distribution distance from 10 km up to 20 km will be considered.

4 2.4 Simulation procedure for determining a range of OFB The most suitable position of optical band pass filter will be used. In order to prevent the noise, it is necessary to determine a range of OFB. The measurement of ASE power at the variation of OFB is taken. The minimum value of ASE power indicates the good value of OFB. The simulat ion procedure based on mathematical approach is depicted in figure 5. There are two identical SuperPON architectures. The first SuperPON has with ASE noise and the second SuperPON has without ASE noise. The subtraction process of both architectur es nullifies the total losses and left the ASE power. The OFB is varied to measure the ASE noise power and to obtain the optimum range of bandwidth. Here, the operation of optical band pass filter is more likely a gate. Distance 10 km P2 Distance 10 km with ASE noise ON Band pass filter at Position 2 P2 + - ASE power measurement with ASE noise OFF Band pass filter at Position 2 Figure 5: Simulation procedure for obtaining the ASE power at various values of OFB. The simulation parameters are summarized in the Table 1. The transmitter power at the has been identified after several simulations in which cannot be shown here and has been obtained based on the desired, BER of 1E-9. Table 1: Typical value s of the various parameters used in the simulation of SuperPON 512. Parameter Value Unit Transmitter power 10 Gbit/s 1.9 mw Extinction Ratio 30 db Wavelength 1530 nm Receiver Sensitivity (BER 1E-10, Q 6.38, Responsivity = 1 A/W ½ ) -20 dbm Noise Figure 3 db 2 Stages Splitter Loss (1 16) (1 32) db db Attenuation 0.2 db/km Feeder Length Distance (DD) DD- Loss km db

5 3. RESULTS AND DISCUSSIONS This section describes the simulation results and discussions of the effect presenting optical band pass filter, the most suitable position of optical band pass filter and the optimum range of OFB. 3.1 The effect of presenting optical band pass filter The effect of presenting optical band pass filter is plotted in figure 6. It shows the total spectral power, ASE and signal under different condition: (a) without filter and (b) with filter. The graphs present power in dbm versus wavelength (nm). It shows that the signal beat noise at the operating wavelength of 1530 nm, where the effect of ASE noise is higher. Obviously, in figure 6 (a) the ASE noise increase when the wavelength increase and reach up to -50 dbm at 1530 nm. The ASE noise decreases after 1530 nm step by step, with three stages of wavelengths, nm, nm and nm. These figures show that filtering method provides a minimum ASE noise at the particular value of OFB, e.g 80 GHz as shown in figure 6 (b). Figure 6(a): SuperPON 512 without optical band pass filter. Figure 6(b): SuperPON 512 with optical band pass filter. 3.2 The position of optical band pass filter The relative position of the optical band pass filter within the upstream SuperPON architecture affects the system performance. The optical band pass filter has a detrimental effect on the ASE noise performance of the upstream SuperPON when placed towards either end of or at the. Figure 7: EOF of SuperPON 512 against distribution distance loss, db. Figure 8: Q_dB against distribution distance loss, db.

6 Figure 7 and 8 show the effect of different position of optical band pass filter for upstream SuperPON 512 at transmission speed of 10 Gbit/s. The measured EOF of SuperPON 512 as a function of distribution distance with and without optical band pass filter is shown in figure 7. The EOF slope of three sets measurements are decreased when the distance of SuperPON increased. The position 2 provides the better position of optical band pass filter where a good signal received by. The performance of overall upstream SuperPON archit ecture was measured by plotting Q_dB with and without optical band pass filter against the distribution distance as shown in figure 8. It confirms that the position 2 is the most suitable place for installing optical band pass filter. 3.3 The optimum range of OFB The measured ASE power for SuperPON 512 ON, 100 km with transmission speed of 10 Gbit/s is plotted against the OFB. The ASE power below than zero microwatt is considered as background power. For above zero microwatt the ASE power is foreground pow er. The 3 db filter bandwidth occurs at nearly 40 GHz. From figure, it clear that there exists a range of OFB hereafter called optimum range of OFB where ASE power has minimum value. The optimum value of OFB begins at 50 GHz up to 160 GHz. The SuperPON s signal could be congested if OFB below than 50 GHz because the gate width too narrow. The ASE power reduction of ~-0.02 µm is achieved at the OFB of 160 GHz. If the OFB exceeds more than 160 GHz, the upstream SuperPON will suffer from ASE of inferior quality. The spectrum power of SuperPON at 50 GHz is shown in figure. It is showing the effect of ASE noise in minimum condition. Figure 9: ASE noise power (µw) versus OFB (GHz) Figure 10: Spectrum power of upstream SuperPON at OFB, 50 GHz (nm) 4. CONCLUSION The minimization of ASE noise in upstream SuperPON with low number of at 10 Gbit/s using optical band pass filter had been demonstrated. The placement of optical band pass filter results the most suitable place is at P2, near to the. It was found that the range of OFB of 50 GHz up to 160 GHz can be used to minimize the ASE noise power. REFERENCES 1. ITU-T G.663 (04/2000) Application related Aspects of Optical Amplifier devices and sub systems. 2. Brigati, S. Colombara, P. D'Ascoli, L. Gatti, U. Kerekes, T. Malcovati, P, A SiGe BiCMOS burst-mode 155-Mb/s receiver for PON, IEEE Journal of Solid-State Circuits, Vol: 37, Issue: 7, July 2002, pp Moss, S. E. Senior, J. M. Qiu, X. Z. Vandewege, J, Modelling the Upstr eam Semiconductor Optical Amplifier Cascade in the PLANET SuperPON, Proceedings of the European Conference on Networks and Optical Communications 1999, pp Mestdagh, D., Martin, C., The SuperPON Concepts and It technical challenges, Broadband Communication, April, 1996.

7 5. Shea, D.P, Mitchell, J.E, Davey, R.P and Lord, A., Analytical Upstream Modelling of Amplified 10 Gbit/s, 1024 split, 100 km SuperPONs, London Communication Symposium ITU-G (10/1998) Broadband optical access systems based on Passive Optical Networks (PON) 7. Agrawal, -Optic Communication Systems, John Wiley & Sons Inc, Sakena, A.J.; Jamro, M.Y; Senior, J.M., Optical amplifier number and placement in the SuperPON architecture, The 6th International Conference on Advanced Communication Technology, Vol. 1, Feb. 9-11, 2004, pp Pan, J.J., Yuan Shi, Kai Zhang, Optical amplifier noise-figure reduction using a variable polarisation beam splitter, Electronics Letters, Volume: 31, Issue: 12, 8 June 1995, pp Pastor, D., Mut, F., Capmany, J., and Marti, J., Inter Channel Power Equalization and ASE Noise Rejection In Multistage Amplified WDM Systems Employing Fibre Gratings, IEE Colloqium On Optical Fibre Gratings (Digest No. 1997/037) 7 February 1997, pp 14/1-14/6 11. Yokota, H., Kamoto, K., Igarashi, J.-I., Mouri, N., Sasaki, Y., SNR improvement in repeaters using cascaded optical fiber grating couplers, Optical Communication Conference and Exhibit, OFC 2001, Volume: 3, 2001, pp. WI3-1 - WI3-3 vol Derrickson, D, Optics Testing and Measurement, Prentice Hall, 1998.

Bit error rate and cross talk performance in optical cross connect with wavelength converter

Bit error rate and cross talk performance in optical cross connect with wavelength converter Vol. 6, No. 3 / March 2007 / JOURNAL OF OPTICAL NETWORKING 295 Bit error rate and cross talk performance in optical cross connect with wavelength converter M. S. Islam and S. P. Majumder Department of

More information

Optical Fibre Amplifiers Continued

Optical Fibre Amplifiers Continued 1 Optical Fibre Amplifiers Continued Stavros Iezekiel Department of Electrical and Computer Engineering University of Cyprus ECE 445 Lecture 09 Fall Semester 2016 2 ERBIUM-DOPED FIBRE AMPLIFIERS BASIC

More information

Optimisation of DSF and SOA based Phase Conjugators. by Incorporating Noise-Suppressing Fibre Gratings

Optimisation of DSF and SOA based Phase Conjugators. by Incorporating Noise-Suppressing Fibre Gratings Optimisation of DSF and SOA based Phase Conjugators by Incorporating Noise-Suppressing Fibre Gratings Paper no: 1471 S. Y. Set, H. Geiger, R. I. Laming, M. J. Cole and L. Reekie Optoelectronics Research

More information

Photonics and Optical Communication Spring 2005

Photonics and Optical Communication Spring 2005 Photonics and Optical Communication Spring 2005 Final Exam Instructor: Dr. Dietmar Knipp, Assistant Professor of Electrical Engineering Name: Mat. -Nr.: Guidelines: Duration of the Final Exam: 2 hour You

More information

International Journal of Computational Intelligence and Informatics, Vol. 2: No. 4, January - March Bandwidth of 13GHz

International Journal of Computational Intelligence and Informatics, Vol. 2: No. 4, January - March Bandwidth of 13GHz Simulation and Analysis of GFF at WDM Mux Bandwidth of 13GHz Warsha Balani Department of ECE, BIST Bhopal, India balani.warsha@gmail.com Manish Saxena Department of ECE,BIST Bhopal, India manish.saxena2008@gmail.com

More information

Performance of Digital Optical Communication Link: Effect of In-Line EDFA Parameters

Performance of Digital Optical Communication Link: Effect of In-Line EDFA Parameters PCS-7 766 CSDSP 00 Performance of Digital Optical Communication Link: Effect of n-line EDFA Parameters Ahmed A. Elkomy, Moustafa H. Aly, Member of SOA, W. P. g 3, Senior Member, EEE, Z. Ghassemlooy 3,

More information

Investigation of Performance Analysis of EDFA Amplifier. Using Different Pump Wavelengths and Powers

Investigation of Performance Analysis of EDFA Amplifier. Using Different Pump Wavelengths and Powers Investigation of Performance Analysis of EDFA Amplifier Using Different Pump Wavelengths and Powers Ramandeep Kaur, Parkirti, Rajandeep Singh ABSTRACT In this paper, an investigation of the performance

More information

Performance of A Multicast DWDM Network Applied to the Yemen Universities Network using Quality Check Algorithm

Performance of A Multicast DWDM Network Applied to the Yemen Universities Network using Quality Check Algorithm Performance of A Multicast DWDM Network Applied to the Yemen Universities Network using Quality Check Algorithm Khaled O. Basulaim, Samah Ali Al-Azani Dept. of Information Technology Faculty of Engineering,

More information

Performance analysis of Erbium Doped Fiber Amplifier at different pumping configurations

Performance analysis of Erbium Doped Fiber Amplifier at different pumping configurations Performance analysis of Erbium Doped Fiber Amplifier at different pumping configurations Mayur Date M.E. Scholar Department of Electronics and Communication Ujjain Engineering College, Ujjain (M.P.) datemayur3@gmail.com

More information

Performance Analysis of Designing a Hybrid Optical Amplifier (HOA) for 32 DWDM Channels in L-band by using EDFA and Raman Amplifier

Performance Analysis of Designing a Hybrid Optical Amplifier (HOA) for 32 DWDM Channels in L-band by using EDFA and Raman Amplifier Performance Analysis of Designing a Hybrid Optical Amplifier (HOA) for 32 DWDM Channels in L-band by using EDFA and Raman Amplifier Aied K. Mohammed, PhD Department of Electrical Engineering, University

More information

Lecture 15 Semiconductor Optical Amplifiers and OTDR

Lecture 15 Semiconductor Optical Amplifiers and OTDR Lecture 15 Semiconductor Optical Amplifiers and OTDR Introduction Where are we? Using semiconductors as amplifiers. Amplifier geometry Cross talk Polarisation dependence Gain clamping Real amplifier performance

More information

SOA-PIN performance. Rene Bonk, Dora van Veen, Vincent Houtsma, Bell Labs Ed Harstead, member Fixed Networks CTO. January 2017

SOA-PIN performance. Rene Bonk, Dora van Veen, Vincent Houtsma, Bell Labs Ed Harstead, member Fixed Networks CTO. January 2017 SOA-PIN performance Rene Bonk, Dora van Veen, Vincent Houtsma, Bell Labs Ed Harstead, member Fixed Networks CTO January 2017 1 Receiver Model for SOA+Filter+PIN / APD Analytical Rx model for SOA+filter+PIN

More information

Study of Multiwavelength Fiber Laser in a Highly Nonlinear Fiber

Study of Multiwavelength Fiber Laser in a Highly Nonlinear Fiber Study of Multiwavelength Fiber Laser in a Highly Nonlinear Fiber I. H. M. Nadzar 1 and N. A.Awang 1* 1 Faculty of Science, Technology and Human Development, Universiti Tun Hussein Onn Malaysia, Johor,

More information

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING. FINAL EXAMINATION, April 2017 DURATION: 2.5 hours

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING. FINAL EXAMINATION, April 2017 DURATION: 2.5 hours UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING ECE4691-111 S - FINAL EXAMINATION, April 2017 DURATION: 2.5 hours Optical Communication and Networks Calculator Type: 2 Exam Type: X Examiner:

More information

Optical Amplifiers (Chapter 6)

Optical Amplifiers (Chapter 6) Optical Amplifiers (Chapter 6) General optical amplifier theory Semiconductor Optical Amplifier (SOA) Raman Amplifiers Erbium-doped Fiber Amplifiers (EDFA) Read Chapter 6, pp. 226-266 Loss & dispersion

More information

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 26

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 26 FIBER OPTICS Prof. R.K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture: 26 Wavelength Division Multiplexed (WDM) Systems Fiber Optics, Prof. R.K. Shevgaonkar,

More information

Downstream Transmission in a WDM-PON System Using a Multiwavelength SOA-Based Fiber Ring Laser Source

Downstream Transmission in a WDM-PON System Using a Multiwavelength SOA-Based Fiber Ring Laser Source JOURNAL OF L A TEX CLASS FILES, VOL. X, NO. XX, XXXX XXX 1 Downstream Transmission in a WDM-PON System Using a Multiwavelength SOA-Based Fiber Ring Laser Source Jérôme Vasseur, Jianjun Yu Senior Member,

More information

The Report of Gain Performance Characteristics of the Erbium Doped Fiber Amplifier (EDFA)

The Report of Gain Performance Characteristics of the Erbium Doped Fiber Amplifier (EDFA) The Report of Gain Performance Characteristics of the Erbium Doped Fiber Amplifier (EDFA) Masruri Masruri (186520) 22/05/2008 1 Laboratory Setup The laboratory setup using in this laboratory experiment

More information

Dispersion Pre-Compensation for a Multi-wavelength Erbium Doped Fiber Laser Using Cascaded Fiber Bragg Gratings

Dispersion Pre-Compensation for a Multi-wavelength Erbium Doped Fiber Laser Using Cascaded Fiber Bragg Gratings Journal of Applied Sciences Research, 5(10): 1744749, 009 009, INSInet Publication Dispersion Pre-Compensation for a Multi-wavelength Erbium Doped Fiber Laser Using Cascaded Fiber Bragg Gratings 1 1 1

More information

DESIGN AND CHARACTERIZATION OF HIGH PERFORMANCE C AND L BAND ERBIUM DOPED FIBER AMPLIFIERS (C,L-EDFAs)

DESIGN AND CHARACTERIZATION OF HIGH PERFORMANCE C AND L BAND ERBIUM DOPED FIBER AMPLIFIERS (C,L-EDFAs) DESIGN AND CHARACTERIZATION OF HIGH PERFORMANCE C AND L BAND ERBIUM DOPED FIBER AMPLIFIERS (C,L-EDFAs) Ahmet Altuncu Arif Başgümüş Burçin Uzunca Ekim Haznedaroğlu e-mail: altuncu@dumlupinar.edu.tr e-mail:

More information

An Amplified WDM-PON Using Broadband Light Source Seeded Optical Sources and a Novel Bidirectional Reach Extender

An Amplified WDM-PON Using Broadband Light Source Seeded Optical Sources and a Novel Bidirectional Reach Extender Journal of the Optical Society of Korea Vol. 15, No. 3, September 2011, pp. 222-226 DOI: http://dx.doi.org/10.3807/josk.2011.15.3.222 An Amplified WDM-PON Using Broadband Light Source Seeded Optical Sources

More information

FIBER OPTIC COMMUNICATION LINK LOSS, OSNR AND FEC PERFORMANCE

FIBER OPTIC COMMUNICATION LINK LOSS, OSNR AND FEC PERFORMANCE Tallinn University of Technology Laboratory exercise 2 of Fiber Optical Communication course FIBER OPTIC COMMUNICATION LINK LOSS, OSNR AND FEC PERFORMANCE Tallinn 2016 Please note that the OSA (Optical

More information

Advanced Optical Communications Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay

Advanced Optical Communications Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Advanced Optical Communications Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture No. # 27 EDFA In the last lecture, we talked about wavelength

More information

Performance Comparison of Pre-, Post-, and Symmetrical Dispersion Compensation for 96 x 40 Gb/s DWDM System using DCF

Performance Comparison of Pre-, Post-, and Symmetrical Dispersion Compensation for 96 x 40 Gb/s DWDM System using DCF Performance Comparison of Pre-, Post-, and Symmetrical Dispersion Compensation for 96 x 40 Gb/s DWDM System using Sabina #1, Manpreet Kaur *2 # M.Tech(Scholar) & Department of Electronics & Communication

More information

A HIGH SPEED WDM PON FOR DOWNSTREAM DPSK ASK SIGNALS AND UPSTREAM OOK SIGNAL WITH BROADCAST CAPABILTY

A HIGH SPEED WDM PON FOR DOWNSTREAM DPSK ASK SIGNALS AND UPSTREAM OOK SIGNAL WITH BROADCAST CAPABILTY A HIGH SPEED WDM PON FOR DOWNSTREAM DPSK ASK SIGNALS AND UPSTREAM OOK SIGNAL WITH BROADCAST CAPABILTY 1 AAMIR KHAN, 2 ANITA CHOPRA 1 Department of Information Technology, Suresh Gyan Vihar University,

More information

To investigate effects of extinction ratio on SOA based wavelength Converters for all Optical Networks

To investigate effects of extinction ratio on SOA based wavelength Converters for all Optical Networks 289 To investigate effects of extinction ratio on SOA based wavelength Converters for all Optical Networks Areet Aulakh 1, Kulwinder Singh Malhi 2 1 Student, M.Tech, ECE department, Punjabi University,

More information

Analysis of Self Phase Modulation Fiber nonlinearity in Optical Transmission System with Dispersion

Analysis of Self Phase Modulation Fiber nonlinearity in Optical Transmission System with Dispersion 36 Analysis of Self Phase Modulation Fiber nonlinearity in Optical Transmission System with Dispersion Supreet Singh 1, Kulwinder Singh 2 1 Department of Electronics and Communication Engineering, Punjabi

More information

Performance Limitations of WDM Optical Transmission System Due to Cross-Phase Modulation in Presence of Chromatic Dispersion

Performance Limitations of WDM Optical Transmission System Due to Cross-Phase Modulation in Presence of Chromatic Dispersion Performance Limitations of WDM Optical Transmission System Due to Cross-Phase Modulation in Presence of Chromatic Dispersion M. A. Khayer Azad and M. S. Islam Institute of Information and Communication

More information

Optical Fiber Technology

Optical Fiber Technology Optical Fiber Technology 18 (2012) 29 33 Contents lists available at SciVerse ScienceDirect Optical Fiber Technology www.elsevier.com/locate/yofte A novel WDM passive optical network architecture supporting

More information

SOA preamp performance: theoretical modeling

SOA preamp performance: theoretical modeling SOA preamp performance: theoretical modeling ene Bonk, Dora van Veen, Vincent Houtsma, Bell Labs Ed Harstead, member Fixed Networks CTO January 2017 1 eceiver Model for SOA+Filter+PIN / APD Analytical

More information

Design Coordination of Pre-amp EDFAs and PIN Photon Detectors For Use in Telecommunications Optical Receivers

Design Coordination of Pre-amp EDFAs and PIN Photon Detectors For Use in Telecommunications Optical Receivers Paper 010, ENT 201 Design Coordination of Pre-amp EDFAs and PIN Photon Detectors For Use in Telecommunications Optical Receivers Akram Abu-aisheh, Hisham Alnajjar University of Hartford abuaisheh@hartford.edu,

More information

Study of All-Optical Wavelength Conversion and Regeneration Subsystems for use in Wavelength Division Multiplexing (WDM) Telecommunication Networks.

Study of All-Optical Wavelength Conversion and Regeneration Subsystems for use in Wavelength Division Multiplexing (WDM) Telecommunication Networks. Study of All-Optical Wavelength Conversion and Regeneration Subsystems for use in Wavelength Division Multiplexing (WDM) Telecommunication Networks. Hercules Simos * National and Kapodistrian University

More information

Chapter 3 Metro Network Simulation

Chapter 3 Metro Network Simulation Chapter 3 Metro Network Simulation 3.1 Photonic Simulation Tools Simulation of photonic system has become a necessity due to the complex interactions within and between components. Tools have evolved from

More information

ANALYSIS OF THE CROSSTALK IN OPTICAL AMPLIFIERS

ANALYSIS OF THE CROSSTALK IN OPTICAL AMPLIFIERS MANDEEP SINGH AND S K RAGHUWANSHI: ANALYSIS OF THE CROSSTALK IN OPTICAL AMPLIFIERS DOI: 10.1917/ijct.013.0106 ANALYSIS OF THE CROSSTALK IN OPTICAL AMPLIFIERS Mandeep Singh 1 and S. K. Raghuwanshi 1 Department

More information

Lecture 8 Fiber Optical Communication Lecture 8, Slide 1

Lecture 8 Fiber Optical Communication Lecture 8, Slide 1 Lecture 8 Bit error rate The Q value Receiver sensitivity Sensitivity degradation Extinction ratio RIN Timing jitter Chirp Forward error correction Fiber Optical Communication Lecture 8, Slide Bit error

More information

Public Progress Report 2

Public Progress Report 2 Embedded Resonant and ModulablE Self- Tuning Laser Cavity for Next Generation Access Network Transmitter ERMES Public Progress Report 2 Project Project acronym: ERMES Project full title: Embedded Resonant

More information

Comparative Analysis of Various Optimization Methodologies for WDM System using OptiSystem

Comparative Analysis of Various Optimization Methodologies for WDM System using OptiSystem Comparative Analysis of Various Optimization Methodologies for WDM System using OptiSystem Koushik Mukherjee * Department of Electronics and Communication, Dublin Institute of Technology, Ireland E-mail:

More information

Analysis of four channel CWDM Transceiver Modules based on Extinction Ratio and with the use of EDFA

Analysis of four channel CWDM Transceiver Modules based on Extinction Ratio and with the use of EDFA Analysis of four channel CWDM Transceiver Modules based on Extinction Ratio and with the use of EDFA P.P. Hema [1], Prof. A.Sangeetha [2] School of Electronics Engineering [SENSE], VIT University, Vellore

More information

CSO/CTB PERFORMANCE IMPROVEMENT BY USING FABRY-PEROT ETALON AT THE RECEIVING SITE

CSO/CTB PERFORMANCE IMPROVEMENT BY USING FABRY-PEROT ETALON AT THE RECEIVING SITE Progress In Electromagnetics Research Letters, Vol. 6, 107 113, 2009 CSO/CTB PERFORMANCE IMPROVEMENT BY USING FABRY-PEROT ETALON AT THE RECEIVING SITE S.-J. Tzeng, H.-H. Lu, C.-Y. Li, K.-H. Chang,and C.-H.

More information

Optical Fiber Amplifiers

Optical Fiber Amplifiers Optical Fiber Amplifiers Yousif Ahmed Omer 1 and Dr. Hala Eldaw Idris 2 1,2 Department of communication Faculty of Engineering, AL-Neelain University, Khartoum, Sudan Publishing Date: June 15, 2016 Abstract

More information

Optical fiber-fault surveillance for passive optical networks in S-band operation window

Optical fiber-fault surveillance for passive optical networks in S-band operation window Optical fiber-fault surveillance for passive optical networks in S-band operation window Chien-Hung Yeh 1 and Sien Chi 2,3 1 Transmission System Department, Computer and Communications Research Laboratories,

More information

Gain Flattened L-Band EDFA -Raman Hybrid Amplifier by Bidirectional Pumping technique

Gain Flattened L-Band EDFA -Raman Hybrid Amplifier by Bidirectional Pumping technique Gain Flattened L-Band EDFA -Raman Hybrid Amplifier by Bidirectional Pumping technique Avneet Kour 1, Neena Gupta 2 1,2 Electronics and Communication Department, PEC University of Technology, Chandigarh

More information

Simultaneous Four-Wave Mixing and Cross-Gain Modulation for Implementing All Optical Full Adder without Assist Light

Simultaneous Four-Wave Mixing and Cross-Gain Modulation for Implementing All Optical Full Adder without Assist Light Simultaneous Four-Wave Mixing and Cross-Gain Modulation for Implementing All Optical Full Adder without Assist Light Jaspreet Kaur 1, Naveen Dhillon 2, Rupinder Kaur 3 1 Lecturer, ECE, LPU, Punjab, India

More information

Technical Feasibility of 4x25 Gb/s PMD for 40km at 1310nm using SOAs

Technical Feasibility of 4x25 Gb/s PMD for 40km at 1310nm using SOAs Technical Feasibility of 4x25 Gb/s PMD for 40km at 1310nm using SOAs Ramón Gutiérrez-Castrejón RGutierrezC@ii.unam.mx Tel. +52 55 5623 3600 x8824 Universidad Nacional Autonoma de Mexico Introduction A

More information

Effect of ASE on Performance of EDFA for 1479nm-1555nm Wavelength Range

Effect of ASE on Performance of EDFA for 1479nm-1555nm Wavelength Range Effect of ASE on Performance of EDFA for 1479nm-1555nm Wavelength Range Inderpreet Kaur, Neena Gupta Deptt. of Electrical & Electronics Engg. Chandigarh University Gharuan, India Dept. of Electronics &

More information

Dynamic gain-tilt compensation using electronic variable optical attenuators and a thin film filter spectral tilt monitor

Dynamic gain-tilt compensation using electronic variable optical attenuators and a thin film filter spectral tilt monitor Dynamic gain-tilt compensation using electronic variable optical attenuators and a thin film filter spectral tilt monitor P. S. Chan, C. Y. Chow, and H. K. Tsang Department of Electronic Engineering, The

More information

Chapter 12: Optical Amplifiers: Erbium Doped Fiber Amplifiers (EDFAs)

Chapter 12: Optical Amplifiers: Erbium Doped Fiber Amplifiers (EDFAs) Chapter 12: Optical Amplifiers: Erbium Doped Fiber Amplifiers (EDFAs) Prof. Dr. Yaocheng SHI ( 时尧成 ) yaocheng@zju.edu.cn http://mypage.zju.edu.cn/yaocheng 1 Traditional Optical Communication System Loss

More information

Optical Transport Tutorial

Optical Transport Tutorial Optical Transport Tutorial 4 February 2015 2015 OpticalCloudInfra Proprietary 1 Content Optical Transport Basics Assessment of Optical Communication Quality Bit Error Rate and Q Factor Wavelength Division

More information

Evolution from TDM-PONs to Next-Generation PONs

Evolution from TDM-PONs to Next-Generation PONs Evolution from TDM-PONs to Next-Generation PONs Ki-Man Choi, Jong-Hoon Lee, and Chang-Hee Lee Department of Electrical Engineering and Computer Science, Korea Advanced Institute of Science and Technology,

More information

S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique

S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique Chien-Hung Yeh 1, *, Ming-Ching Lin 3, Ting-Tsan Huang 2, Kuei-Chu Hsu 2 Cheng-Hao Ko 2, and Sien Chi

More information

Life Science Journal 2013;10(4)

Life Science Journal 2013;10(4) Life Science Journal 213;1(4) http://www.lifesciencesite.com All Optical Packet Routing using SOA and AWG to Support Multi Rate 2. Gbps and 1 Gbps in TWDM PON System M.S. Salleh 1, A.S.M. Supa at 2, S.M.

More information

Colorless Amplified WDM-PON Employing Broadband Light Source Seeded Optical Sources and Channel-by-Channel Dispersion Compensators for >100 km Reach

Colorless Amplified WDM-PON Employing Broadband Light Source Seeded Optical Sources and Channel-by-Channel Dispersion Compensators for >100 km Reach Journal of the Optical Society of Korea Vol. 18, No. 5, October 014, pp. 46-441 ISSN: 16-4776(Print) / ISSN: 09-6885(Online) DOI: http://dx.doi.org/10.807/josk.014.18.5.46 Colorless Amplified WDM-PON Employing

More information

Stable dual-wavelength oscillation of an erbium-doped fiber ring laser at room temperature

Stable dual-wavelength oscillation of an erbium-doped fiber ring laser at room temperature Stable dual-wavelength oscillation of an erbium-doped fiber ring laser at room temperature Donghui Zhao.a, Xuewen Shu b, Wei Zhang b, Yicheng Lai a, Lin Zhang a, Ian Bennion a a Photonics Research Group,

More information

Erbium-Doper Fiber Amplifiers

Erbium-Doper Fiber Amplifiers Seminar presentation Erbium-Doper Fiber Amplifiers 27.11.2009 Ville Pale Presentation Outline History of EDFA EDFA operating principle Stimulated Emission Stark Splitting Gain Gain flatness Gain Saturation

More information

Long Haul Communication using Hybrid Optical Amplifiers.

Long Haul Communication using Hybrid Optical Amplifiers. Long Haul Communication using Hybrid Optical Amplifiers. Kakumani Lakshmi Venkatesh, Sana Karthik, Sannithi Hitesh Kumar Vellore Institute of Technology Vellore, India Abstract In this paper the authors

More information

Implementation of Dense Wavelength Division Multiplexing FBG

Implementation of Dense Wavelength Division Multiplexing FBG AUSTRALIAN JOURNAL OF BASIC AND APPLIED SCIENCES ISSN:1991-8178 EISSN: 2309-8414 Journal home page: www.ajbasweb.com Implementation of Dense Wavelength Division Multiplexing Network with FBG 1 J. Sharmila

More information

TRANSMISSION OF NG-PON FOR LONG HAUL NETWORKS USING HYBRID AMPLIFIER

TRANSMISSION OF NG-PON FOR LONG HAUL NETWORKS USING HYBRID AMPLIFIER RESEARCH ARTICLE OPEN ACCESS TRANSMISSION OF NG-PON FOR LONG HAUL NETWORKS USING HYBRID AMPLIFIER Karthick.J Sanjai.V Sivakumar.K Syed Feroze hussain.s UG Scholar UG Scholar UG Scholar Assistant Professor

More information

Compensation of Dispersion in 10 Gbps WDM System by Using Fiber Bragg Grating

Compensation of Dispersion in 10 Gbps WDM System by Using Fiber Bragg Grating International Journal of Computational Engineering & Management, Vol. 15 Issue 5, September 2012 www..org 16 Compensation of Dispersion in 10 Gbps WDM System by Using Fiber Bragg Grating P. K. Raghav 1,

More information

WDM-PON Delivering 5-Gbps Downstream/2.5-Gbps Upstream Data

WDM-PON Delivering 5-Gbps Downstream/2.5-Gbps Upstream Data WDM-PON Delivering 5-Gbps Downstream/2.5-Gbps Upstream Data Balaji Raobawale P. G. Department M.B.E.S. College of Engineering, Ambajogai, India S. K. Sudhansu P. G. Department M.B.E.S. College of Engineering,

More information

Vol. 6, No. 9 / September 2007 / JOURNAL OF OPTICAL NETWORKING 1105

Vol. 6, No. 9 / September 2007 / JOURNAL OF OPTICAL NETWORKING 1105 Vol. 6, No. 9 / September 2007 / JOURNAL OF OPTICAL NETWORKING 1105 Electronic equalization of 10 Gbit/ s upstream signals for asynchronous-modulation and chromatic-dispersion compensation in a high-speed

More information

Wavelength-Enhanced Passive Optical Networks with Extended Reach

Wavelength-Enhanced Passive Optical Networks with Extended Reach Wavelength-Enhanced Passive Optical Networks with Extended Reach Ken Reichmann and Pat Iannone Optical Systems Research AT&T Labs, Middletown NJ Thanks to Han Hyub Lee, Xiang Zhou, and Pete Magill Wavelength-Enhanced

More information

EDFA Applications in Test & Measurement

EDFA Applications in Test & Measurement EDFA Applications in Test & Measurement White Paper PN 200-0600-00 Revision 1.1 September 2003 Calmar Optcom, Inc www.calamropt.com Overview Erbium doped fiber amplifiers (EDFAs) amplify optical pulses

More information

EDFA-WDM Optical Network Analysis

EDFA-WDM Optical Network Analysis EDFA-WDM Optical Network Analysis Narruvala Lokesh, kranthi Kumar Katam,Prof. Jabeena A Vellore Institute of Technology VIT University, Vellore, India Abstract : Optical network that apply wavelength division

More information

Spectrally Compact Optical Subcarrier Multiplexing with 42.6 Gbit/s AM-PSK Payload and 2.5Gbit/s NRZ Labels

Spectrally Compact Optical Subcarrier Multiplexing with 42.6 Gbit/s AM-PSK Payload and 2.5Gbit/s NRZ Labels Spectrally Compact Optical Subcarrier Multiplexing with 42.6 Gbit/s AM-PSK Payload and 2.5Gbit/s NRZ Labels A.K. Mishra (1), A.D. Ellis (1), D. Cotter (1),F. Smyth (2), E. Connolly (2), L.P. Barry (2)

More information

8 10 Gbps optical system with DCF and EDFA for different channel spacing

8 10 Gbps optical system with DCF and EDFA for different channel spacing Research Article International Journal of Advanced Computer Research, Vol 6(24) ISSN (Print): 2249-7277 ISSN (Online): 2277-7970 http://dx.doi.org/10.19101/ijacr.2016.624002 8 10 Gbps optical system with

More information

LABORATORY INSTRUCTION NOTES ERBIUM-DOPED FIBER AMPLIFIER

LABORATORY INSTRUCTION NOTES ERBIUM-DOPED FIBER AMPLIFIER ECE1640H Advanced Labs for Special Topics in Photonics LABORATORY INSTRUCTION NOTES ERBIUM-DOPED FIBER AMPLIFIER Fictitious moving pill box in a fiber amplifier Faculty of Applied Science and Engineering

More information

Spectrum Sliced WDM-PON System as Energy Efficient Solution for Optical Access Systems

Spectrum Sliced WDM-PON System as Energy Efficient Solution for Optical Access Systems Spectrum Sliced WDM-PON System as Energy Efficient Solution for Optical Access Systems Vjaceslavs Bobrovs, Sandis Spolitis, Ilja Trifonovs, Girts Ivanovs Institute of Telecommunications Riga Technical

More information

Mahendra Kumar1 Navneet Agrawal2

Mahendra Kumar1 Navneet Agrawal2 International Journal of Scientific & Engineering Research, Volume 6, Issue 9, September-2015 1202 Performance Enhancement of DCF Based Wavelength Division Multiplexed Passive Optical Network (WDM-PON)

More information

Simulative Analysis of 40 Gbps DWDM System Using Combination of Hybrid Modulators and Optical Filters for Suppression of Four-Wave Mixing

Simulative Analysis of 40 Gbps DWDM System Using Combination of Hybrid Modulators and Optical Filters for Suppression of Four-Wave Mixing Vol.9, No.7 (2016), pp.213-220 http://dx.doi.org/10.14257/ijsip.2016.9.7.18 Simulative Analysis of 40 Gbps DWDM System Using Combination of Hybrid Modulators and Optical Filters for Suppression of Four-Wave

More information

Performance Analysis Of An Ultra High Capacity 1 Tbps DWDM-RoF System For Very Narrow Channel Spacing

Performance Analysis Of An Ultra High Capacity 1 Tbps DWDM-RoF System For Very Narrow Channel Spacing Performance Analysis Of An Ultra High Capacity 1 Tbps DWDM-RoF System For Very Narrow Channel Spacing Viyoma Sarup* and Amit Gupta Chandigarh University Punjab, India *viyoma123@gmail.com Abstract A RoF

More information

CONTROLLABLE WAVELENGTH CHANNELS FOR MULTIWAVELENGTH BRILLOUIN BISMUTH/ERBIUM BAS-ED FIBER LASER

CONTROLLABLE WAVELENGTH CHANNELS FOR MULTIWAVELENGTH BRILLOUIN BISMUTH/ERBIUM BAS-ED FIBER LASER Progress In Electromagnetics Research Letters, Vol. 9, 9 18, 29 CONTROLLABLE WAVELENGTH CHANNELS FOR MULTIWAVELENGTH BRILLOUIN BISMUTH/ERBIUM BAS-ED FIBER LASER H. Ahmad, M. Z. Zulkifli, S. F. Norizan,

More information

International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research)

International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) International Journal of Emerging Technologies in Computational

More information

22-Channel Capacity of 2.5Gbit/s DWDM-PON ONU Transmitter by Direct-Modularly Side-Mode Injection Locked FPLD

22-Channel Capacity of 2.5Gbit/s DWDM-PON ONU Transmitter by Direct-Modularly Side-Mode Injection Locked FPLD 22-Channel Capacity of 2.5Gbit/s DWDM-PON ONU Transmitter by Direct-Modularly Side-Mode Injection Locked FPLD Yu-Sheng Liao a, Yung-Jui Chen b, and Gong-Ru Lin c* a Department of Photonics & Institute

More information

ESTIMATION OF NOISE FIGURE USING GFF WITH HYBRID QUAD PUMPING

ESTIMATION OF NOISE FIGURE USING GFF WITH HYBRID QUAD PUMPING IJCRR Vol 05 issue 13 Section: Technology Category: Research Received on: 19/12/12 Revised on: 16/01/13 Accepted on: 09/02/13 ESTIMATION OF NOISE FIGURE USING GFF WITH HYBRID QUAD PUMPING V.R. Prakash,

More information

Design of an Optical Submarine Network With Longer Range And Higher Bandwidth

Design of an Optical Submarine Network With Longer Range And Higher Bandwidth Design of an Optical Submarine Network With Longer Range And Higher Bandwidth Yashas Joshi 1, Smridh Malhotra 2 1,2School of Electronics Engineering (SENSE) Vellore Institute of Technology Vellore, India

More information

Performance of OCDMA Systems Using Random Diagonal Code for Different Decoders Architecture Schemes

Performance of OCDMA Systems Using Random Diagonal Code for Different Decoders Architecture Schemes The International Arab Journal of Information Technology, Vol. 7, No. 1, January 010 1 Performance of OCDMA Systems Using Random Diagonal Code for Different Decoders Architecture Schemes Hilal Fadhil,

More information

International Journal of Advanced Research in Computer Science and Software Engineering

International Journal of Advanced Research in Computer Science and Software Engineering ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: Performance Analysis of WDM/SCM System Using EDFA Mukesh Kumar

More information

Utilizing Self-Seeding RSOA with Faraday Rotator Mirror for Colorless Access Network

Utilizing Self-Seeding RSOA with Faraday Rotator Mirror for Colorless Access Network Utilizing Self-Seeding RSOA with Faraday Rotator Mirror for Colorless Access Network Yu-Fu Wu a, Jinu-Yu Sung a, and Chi-Wai Chow a, and Chien-Hung Yeh* b,c a Department of Photonics and Institute of Electro-Optical

More information

Introduction Fundamental of optical amplifiers Types of optical amplifiers

Introduction Fundamental of optical amplifiers Types of optical amplifiers ECE 6323 Introduction Fundamental of optical amplifiers Types of optical amplifiers Erbium-doped fiber amplifiers Semiconductor optical amplifier Others: stimulated Raman, optical parametric Advanced application:

More information

PERFORMANCE ANALYSIS OF WDM PONS BASED ON FP-LD USING RZ-OOK AND NRZ-OOK

PERFORMANCE ANALYSIS OF WDM PONS BASED ON FP-LD USING RZ-OOK AND NRZ-OOK PERFORMANCE ANALYSIS OF WDM PONS BASED ON FP-LD USING RZ-OOK AND NRZ-OOK Mukesh Kumar 1, Dr. Ajay Pal Singh 2 Department of Electronics and Communication Engineering, Sant Longowal Institute of Engineering

More information

Optical Fiber Amplifiers. Scott Freese. Physics May 2008

Optical Fiber Amplifiers. Scott Freese. Physics May 2008 Optical Fiber Amplifiers Scott Freese Physics 262 2 May 2008 Partner: Jared Maxson Abstract The primary goal of this experiment was to gain an understanding of the basic components of an Erbium doped fiber

More information

RZ BASED DISPERSION COMPENSATION TECHNIQUE IN DWDM SYSTEM FOR BROADBAND SPECTRUM

RZ BASED DISPERSION COMPENSATION TECHNIQUE IN DWDM SYSTEM FOR BROADBAND SPECTRUM RZ BASED DISPERSION COMPENSATION TECHNIQUE IN DWDM SYSTEM FOR BROADBAND SPECTRUM Prof. Muthumani 1, Mr. Ayyanar 2 1 Professor and HOD, 2 UG Student, Department of Electronics and Communication Engineering,

More information

EDFA-WDM Optical Network Design System

EDFA-WDM Optical Network Design System Available online at www.sciencedirect.com Procedia Engineering 53 ( 2013 ) 294 302 Malaysian Technical Universities Conference on Engineering & Technology 2012, MUCET 2012 Part -1 Electronic and Electrical

More information

Four-wave mixing in O-band for 100G EPON John Johnson

Four-wave mixing in O-band for 100G EPON John Johnson Four-wave mixing in O-band for 100G EPON John Johnson IEEE 802.3ca Conference Call July 6, 2016 Four-wave mixing in O-band Broadcom proposed keeping all upstream and downstream wavelengths in O-band in

More information

Opto-VLSI-based reconfigurable photonic RF filter

Opto-VLSI-based reconfigurable photonic RF filter Research Online ECU Publications 29 Opto-VLSI-based reconfigurable photonic RF filter Feng Xiao Mingya Shen Budi Juswardy Kamal Alameh This article was originally published as: Xiao, F., Shen, M., Juswardy,

More information

Performance Analysis of SOA-MZI based All-Optical AND & XOR Gate

Performance Analysis of SOA-MZI based All-Optical AND & XOR Gate International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2016 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Utkarsh

More information

Performance Investigation of RAMAN-EDFA HOA for DWDM System (Received 17 September, 2016 Accepted 02 October, 2016)

Performance Investigation of RAMAN-EDFA HOA for DWDM System (Received 17 September, 2016 Accepted 02 October, 2016) Performance Investigation of RAMAN-EDFA HOA for DWDM System (Received 17 September, 2016 Accepted 02 October, 2016) ABSTRACT Neha Thakral Research Scholar, DAVIET, Jalandhar nthakral9@gmail.com Earlier

More information

Channel wavelength selectable singleõdualwavelength erbium-doped fiber ring laser

Channel wavelength selectable singleõdualwavelength erbium-doped fiber ring laser Channel wavelength selectable singleõdualwavelength erbium-doped fiber ring laser Tong Liu Yeng Chai Soh Qijie Wang Nanyang Technological University School of Electrical and Electronic Engineering Nanyang

More information

Performance Analysis of dispersion compensation using Fiber Bragg Grating (FBG) in Optical Communication

Performance Analysis of dispersion compensation using Fiber Bragg Grating (FBG) in Optical Communication Research Article International Journal of Current Engineering and Technology E-ISSN 2277 416, P-ISSN 2347-5161 214 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Performance

More information

All-VCSEL based digital coherent detection link for multi Gbit/s WDM passive optical networks

All-VCSEL based digital coherent detection link for multi Gbit/s WDM passive optical networks All-VCSEL based digital coherent detection link for multi Gbit/s WDM passive optical networks Roberto Rodes, 1,* Jesper Bevensee Jensen, 1 Darko Zibar, 1 Christian Neumeyr, 2 Enno Roenneberg, 2 Juergen

More information

Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber

Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber H. Ahmad 1, S. Shahi 1 and S. W. Harun 1,2* 1 Photonics Research Center, University of Malaya, 50603 Kuala Lumpur, Malaysia 2 Department

More information

NG-PON2 Optical Components Update. Hal Roberts System Architect

NG-PON2 Optical Components Update. Hal Roberts System Architect NG-PON2 Optical Components Update Hal Roberts System Architect Agenda NG-PON2 Optical Challenges ONU Optics Challenges OLT Optics Challenges NG-PON2 Solutions for Optics ONU Optics OLT Optics Discrete

More information

Long-distance fiber grating sensor system using a fiber ring laser with EDWA and SOA

Long-distance fiber grating sensor system using a fiber ring laser with EDWA and SOA Optics Communications 252 (2005) 127 131 www.elsevier.com/locate/optcom Long-distance fiber grating sensor system using a fiber ring laser with EDWA and SOA Peng-Chun Peng a, *, Kai-Ming Feng b, Wei-Ren

More information

Analysis of Tolerance and Sleep Time in Sleep Mode Scheduling Energy Saving Technique in Time Division Multiplexing Passive Optical Networks

Analysis of Tolerance and Sleep Time in Sleep Mode Scheduling Energy Saving Technique in Time Division Multiplexing Passive Optical Networks Analysis of Tolerance and Sleep Time in Sleep Mode Scheduling Energy Saving Technique in Time Division Multiplexing Passive Optical Networks Himank Nargotra M tech. Student Deparment of Electronics and

More information

Ultra High Capacity Wavelength Division Multiplexed Optical Wireless Communication System

Ultra High Capacity Wavelength Division Multiplexed Optical Wireless Communication System Ultra High Capacity Wavelength Division Multiplexed Optical Wireless Communication System 1 Meenakshi, 2 Gurinder Singh 1 Student, 2 Assistant Professor 1 Electronics and communication, 1 Ludhiana College

More information

1 kw, 15!J linearly polarized fiber laser operating at 977 nm

1 kw, 15!J linearly polarized fiber laser operating at 977 nm 1 kw, 15!J linearly polarized fiber laser operating at 977 nm V. Khitrov, D. Machewirth, B. Samson, K. Tankala Nufern, 7 Airport Park Road, East Granby, CT 06026 phone: (860) 408-5000; fax: (860)408-5080;

More information

Designing a Real Time Monitoring System for Passive Optical Networks using Fiber Bragg Gratings

Designing a Real Time Monitoring System for Passive Optical Networks using Fiber Bragg Gratings Designing a Real Time Monitoring System for Passive Optical Networks using Fiber Bragg Gratings a Abdulaziz H. Daw, a Issa Eldbib, b P. Ramesh Babu and a Abdosllam M. Abobaker a Department of Communications

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements HW #5 is assigned (due April 9) April 9 th class will be in

More information

Signal Conditioning Parameters for OOFDM System

Signal Conditioning Parameters for OOFDM System Chapter 4 Signal Conditioning Parameters for OOFDM System 4.1 Introduction The idea of SDR has been proposed for wireless transmission in 1980. Instead of relying on dedicated hardware, the network has

More information

UNIT - 7 WDM CONCEPTS AND COMPONENTS

UNIT - 7 WDM CONCEPTS AND COMPONENTS UNIT - 7 LECTURE-1 WDM CONCEPTS AND COMPONENTS WDM concepts, overview of WDM operation principles, WDM standards, Mach-Zehender interferometer, multiplexer, Isolators and circulators, direct thin film

More information