Evaluation of high power laser diodes for space applications: effects of the gaseous environment

Size: px
Start display at page:

Download "Evaluation of high power laser diodes for space applications: effects of the gaseous environment"

Transcription

1 Evaluation of high power laser diodes for space applications: effects of the gaseous environment Jorge Piris, E. M. Murphy, B. Sarti European Space Agency, Optoelectronics section, ESTEC. M. Levi, G. Klumel, R. Diamant Semiconductor Devices (SCD), Israel. ICSO 2014, Tenerife

2 Opto-Electronics Laboratories at ESTEC

3 Opto-Electronics Laboratories at ESTEC Support ESA projects and industry Assessments and advice in emergency situations Proof-of-concept experiments Guarantee continuity and build knowledge for future SPACE-PHOTONICS missions

4 Environmental testing of laser diode arrays: Motivation Nowadays, the conventional baseline for the implementation of high energy lasers in space is for them to be contained in an oxygen-rich environment to minimize the effects of laser-induced contamination, which is most dramatic in the UV. Nevertheless the (IR) pump diodes are often tested in different atmospheric conditions we performed a study on the long term effect of the gaseous environment on diode lifetime. During previous qualification campaigns, the question was risen whether or not the effects of mechanical stress would appear immediately or after a burn-in period a group of devices from the long term endurance test was subjected to mechanical shock half way through the environmental long-term test period.

5 Environmental testing of laser diode arrays: The Laser Diode Laboratory at ESTEC Laser diode laboratory facility Appropriate environmental conditions to handle the devices - Clean Room ISO 6, class Molecular contamination control <5 ppb non-volatile hydrocarbons - Environmental stability temperature 21±2 C humidity 50±10% - Emergency power supply

6 Environmental testing of laser diode arrays: The Laser Diode Laboratory at ESTEC Endurance test benches Long term (operational) endurance in space representative conditions The endurance test bench is a rack comprising a series of test containers in which the devices will be operated for extended periods of time under vacuum or contaminant gases while monitoring their electrical and optical parameters.

7 Environmental testing of laser diode arrays: The Laser Diode Laboratory at ESTEC Laser diode carrier Electrical harness and temperature stability Inside each chamber, a carrier hosting 5 LDAs can be inserted. Each position is fitted with TECs to control the base plate temperature, a strip line for the driving current, voltage and temperature sensors.

8 Environmental testing of laser diode arrays: The Laser Diode Laboratory at ESTEC Monitoring Device characteristics and bench common parameters are monitored and recorded for extended periods of time Bench common parameters - Cooling water temperature and stability - Vacuum/gas pressure - Residual gas mass analysis Test position level - Drive current and voltage - Heat sink and diode case temperature - Emission spectrum - Output optical power

9 Environmental testing of laser diode arrays: Test sequence and samples SCD RUBY-9 Diode Type Output peak Power Threshold Current Drive Current Operating Voltage QCW >680 W < 20 A 80 A < 17 A Conversion Efficiency 52 % Center Wavelength Spectral Width (FWHM) 808 nm 4 nm Beam Divergence (FWHM) 35 X 10 Emitting Area Dimensions W-L-H 10 x 2.8 mm 14.4x10.6x.11.6 mm Number of Bars 9 Operating Temperature -24 C to 56 C

10 Environmental testing of laser diode arrays: Output power evolution Output power measured every hour for each device during the test (1000 MShot 50Hz, ca. 300 days) Output power displayed normalised to initial value. Mind different scale on upper plot!

11 Environmental testing of laser diode arrays: Cooling failure A chain of entangled soft and hardware failures left the devices in operation without cooling for 5 days. Reached temperatures ca. 90 instead of the nominal 50 C Output power dropped less than 3% power loss Post-failure power trends similar to those recorded before the interruption The elevated temperatures the devices experienced acted as an accelerated ageing mechanism without further catastrophic consequences. Evidence for robustness of devices Based on these positive observations, it was decided to continue with the test.

12 Environmental testing of laser diode arrays: First half of endurance test Remarkable differences in power loss between the different groups at the half way point of 500 MShots. More than 50% power loss for some devices of the nitrogen group 2-5% decrease in air (3% average) 3-7% in vacuum (6% average) The data suggests that the effects of laser-induced contamination are playing a significant role. A.K.A. Package-Induced Failure: Outgassing introduces carbon deposits on the facets that can yield to thermal runaway and losses of optical power. Proper selection of materials in the package and addition of oxygen reduces these effects. Chambers thoroughly cleaned, contaminants most likely from devices themselves

13 Environmental testing of laser diode arrays: White light interferometry images of bars Device 3 operated in Air Large areas where crystalline surface visible next to others that seem to be (partially) covered by a deposit.

14 Environmental testing of laser diode arrays: White light interferometry images of bars Device 3 operated in Vacuum Thin deposit more obvious than for devices in Air

15 Environmental testing of laser diode arrays: White light interferometry images of bars Device 4 operated in Nitrogen Bar mostly covered, bar surface hardly visible

16 Environmental testing of laser diode arrays: Shock test 2 devices from each group dismounted and subjected to shock on ringing table (2000g for frequencies >2kHz). No visible damage or decrease in power observed during characterization after test. One device from the air group showed increased degradation after 100 MShot, but it was not subjected to shock! We could not correlate the sudden increase in degradation with manipulation/shock as suggested in previous test campaign. Not enough statistics! No signs were found on any characterization technique to anticipate the increases degradation rate at late stage.

17 Environmental testing of laser diode arrays: Detailed characterization of device 1 air group We performed a number of detailed test to identify defects or presence of stress ask me for more info if interested! Near field images (failed amitter distribution) Individual emitter spectra (stress temperature homogenity) Degree of polarization (stress)

18 Environmental testing of laser diode arrays: Second half of endurance test The chambers were flushed and sealed again after the shock test and the long term run resumed. Much slower degradation rate was observed: Nitrogen avrg. 4% vs >50% Air avrg. 0.5% vs 3%(ecluding device 1) Vacuum avrg. 2% vs 6% The first phase acted as an efficient burnin and bake out, in which most contaminants were released: it is possible to condition the devices and reduce the impact of contamination in any atmosphere.

19 Environmental testing of laser diode arrays: Conclusions The data recorded indicate a strong influence of the gaseous environment on the lifetime of the (IR) lasers, suggesting that contamination and out-gassing plays a crucial role in their performance in confined environments. The presence of oxygen seems to palliate these effects, resulting on an extended lifetime even when compared with active vacuum pumping. Pre-conditioning of the devices (vacuum bake-out, oxygen burn in ) could aid palliating contamination effects and allow operation in any desired environment. Most high power laser diode qualification campaigns suffer of low statistics in the number of devices tested, making it difficult to establish causality from correlations. Most important, this reminds us once more the good old lesson: Test as you will fly and fly as you tested

20 Environmental testing of laser diode arrays Many thanks! Laser Lab Team and the Optoelectronics Section at ESTEC And to your for your kind attention!

21 HPLD test facility: Characterization bench Characterization bench Tools for in-depth characterization and analysis Periodically, the carrier containing the devices is extracted from the TeCo and placed without manipulating the devices on a bench where detailed characterization of each device is performed. Example: Initial, mid term and end-of-test extensive electrooptical characterization. Pag. 23

22 HPLD test facility: Characterization bench Monitoring Complete device and single emitter properties can be studied. Voltage and current Integrating sphere - Overall power and pulse energy - Overall spectrum Near field imaging system: emitter resolved images of bars and stacks - Intensity -> failed emitter - Spectrum -> temperature distribution, bar to bar dispersion - Degree of polarization -> presence of stress Pag. 24

23 HPLD test facility: Characterization bench Overall Monitoring Spectra and LIV characteristics Centre wavelength Temperature wavelength dependenc Spectral width Efficiency Threshold current Operating voltage etc. Pag. 25

24 HPLD test facility: Characterization bench Near field imaging system Assessing the contribution of each emitter to the stack overall properties

25 HPLD test facility: Characterization bench Near field imaging system Assessing the contribution of each emitter to the stack overall properties LD stack Beam splitter ND filters Telecentric lens

26 HPLD test facility: Characterization bench Near field imaging system Assessing the contribution of each emitter to the stack overall properties CCD camera 1 Image of intensity distribution Identification of failed emitters Intensity profiles

27 HPLD test facility: Characterization bench

28 HPLD test facility: Characterization bench Near field imaging system Assessing the contribution of each emitter to the stack overall properties Image of degree of polarisation (DoP) DoP Stress -> stress distribution Polariser

29 HPLD test facility: Characterization bench 5A 80A Tensile to compressive Pag. 31

30 HPLD test facility: Characterization bench Near field imaging system Assessing the contribution of each emitter to the stack overall properties CCD camera 2 Image of wavelength distribution Bar to bar wavelength dispersion Spectral shift Temperature -> temperature distribution

31 HPLD test facility: Characterization bench Near field imaging system Direct image Spectra l image

32 HPLD test facility: location, location, location The HPLD test facility is located at ESTEC: access to extensive test facilities and expertise. - Radiation testing - Vibration and shock - Direct access to space qualification experts Pag. 34

Status of Aeolus ESA s Wind Lidar Mission

Status of Aeolus ESA s Wind Lidar Mission Status of Aeolus ESA s Wind Lidar Mission Roland Meynart, Anders Elfving, Denny Wernham and Anne Grete Straume European Space Agency/ESTEC Coherent Laser Radar Conference, Boulder 26 June-01 July 2016

More information

Typical LED Characteristics

Typical LED Characteristics Typical LED Characteristics Characteristic Unit Value Light output 1 mw > 1 2 Peak wavelength 3 nm 255 nm to 28 nm 4 Viewing angle Degrees 11 5 Full width at half maximum 3 (@1 ma) nm 16 Forward voltage

More information

Features. Applications. Optional Features

Features. Applications. Optional Features Features Compact, Rugged Design TEM Beam with M 2 < 1.2 Pulse Rates from Single Shot to 15 khz IR, Green, UV, and Deep UV Wavelengths Available RS232 Computer Control Patented Harmonic Generation Technology

More information

High power VCSEL array pumped Q-switched Nd:YAG lasers

High power VCSEL array pumped Q-switched Nd:YAG lasers High power array pumped Q-switched Nd:YAG lasers Yihan Xiong, Robert Van Leeuwen, Laurence S. Watkins, Jean-Francois Seurin, Guoyang Xu, Alexander Miglo, Qing Wang, and Chuni Ghosh Princeton Optronics,

More information

SECOND HARMONIC GENERATION AND Q-SWITCHING

SECOND HARMONIC GENERATION AND Q-SWITCHING SECOND HARMONIC GENERATION AND Q-SWITCHING INTRODUCTION In this experiment, the following learning subjects will be worked out: 1) Characteristics of a semiconductor diode laser. 2) Optical pumping on

More information

680nm Quasi Single-Mode VCSEL Part number code: 680Q-0000-X002

680nm Quasi Single-Mode VCSEL Part number code: 680Q-0000-X002 68nm Quasi Single-Mode VCSEL Part number code: 68Q--X2 PRODUCT DESCRIPTION A Quasi (Gaussian beam shape; but multi spectral mode) 68nm VCSEL, with single linear polarized emission also designed for modulated

More information

Application Instruction 002. Superluminescent Light Emitting Diodes: Device Fundamentals and Reliability

Application Instruction 002. Superluminescent Light Emitting Diodes: Device Fundamentals and Reliability I. Introduction II. III. IV. SLED Fundamentals SLED Temperature Performance SLED and Optical Feedback V. Operation Stability, Reliability and Life VI. Summary InPhenix, Inc., 25 N. Mines Road, Livermore,

More information

High Rep-Rate KrF Laser Development and Intense Pulse Interaction Experiments for IFE*

High Rep-Rate KrF Laser Development and Intense Pulse Interaction Experiments for IFE* High Rep-Rate KrF Laser Development and Intense Pulse Interaction Experiments for IFE* Y. Owadano, E. Takahashi, I. Okuda, I. Matsushima, Y. Matsumoto, S. Kato, E. Miura and H.Yashiro 1), K. Kuwahara 2)

More information

DL Blue Laser Diode in TO38 ICut Package. PRELIMINARY Datasheet. Creative Technology Lasers (925) Tele.

DL Blue Laser Diode in TO38 ICut Package. PRELIMINARY Datasheet. Creative Technology Lasers (925) Tele. Blue Laser Diode in TO38 ICut Package Features Typ. emission wavelength 450nm Efficient radiation source for cw and pulsed operation Single transverse mode semiconductor laser High modulation bandwidth

More information

CU-LASP Test Facilities! and Instrument Calibration Capabilities"

CU-LASP Test Facilities! and Instrument Calibration Capabilities CU-LASP Test Facilities! and Instrument Calibration Capabilities" Ginger Drake Calibration Group Manager 303-492-5899 Ginger.Drake@lasp.colorado.edu Thermal Vacuum Test Facilities" 2 Multiple Optical Beam

More information

High Brightness kw QCW Diode Laser Stacks with Ultra-low Pitches

High Brightness kw QCW Diode Laser Stacks with Ultra-low Pitches High Brightness kw QCW Diode Laser Stacks with Ultra-low Pitches David Schleuning *, Rajiv Pathak, Calvin Luong, Eli Weiss, and Tom Hasenberg * Coherent Inc., 51 Patrick Henry Drive, Santa Clara, CA 9554

More information

Narrow line diode laser stacks for DPAL pumping

Narrow line diode laser stacks for DPAL pumping Narrow line diode laser stacks for DPAL pumping Tobias Koenning David Irwin, Dean Stapleton, Rajiv Pandey, Tina Guiney, Steve Patterson DILAS Diode Laser Inc. Joerg Neukum Outline Company overview Standard

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science Student Name Date MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.161 Modern Optics Project Laboratory Laboratory Exercise No. 6 Fall 2010 Solid-State

More information

Green Laser Diode in TO56 Package Version 0.2 PLT5 520B. ATTENTION Observe Precautions For Handling Electrostatic Sensitive Device

Green Laser Diode in TO56 Package Version 0.2 PLT5 520B. ATTENTION Observe Precautions For Handling Electrostatic Sensitive Device 2007-05-23 Green Laser Diode in TO56 Package Version 0.2 Features Optical output power (continuous wave): 80 mw (T case = 25 C) Typical emission wavelength: 520 nm Efficient radiation source for cw and

More information

The TSIS Spectral Irradiance Monitor: Prism Optical Degradation Studies

The TSIS Spectral Irradiance Monitor: Prism Optical Degradation Studies The TSIS Spectral Irradiance Monitor: Prism Optical Degradation Studies Lo Erik Richard, Dave Harber, Joel Rutkowski, Matt Triplett, Kasandra O Malia Laboratory for Atmospheric and Space Physics (LASP)

More information

High Brightness Laser Diode Bars

High Brightness Laser Diode Bars High Brightness Laser Diode Bars Norbert Lichtenstein *, Yvonne Manz, Jürgen Müller, Jörg Troger, Susanne Pawlik, Achim Thies, Stefan Weiß, Rainer Baettig, Christoph Harder Bookham (Switzerland) AG, Binzstrasse

More information

Blue Laser Diode in TO38 ICut Package, 80mW CW DL PRELIMINARY

Blue Laser Diode in TO38 ICut Package, 80mW CW DL PRELIMINARY Creative Technology Lasers (925) 210.1330 www.laser66.com Blue Laser Diode in TO38 ICut Package, 80mW CW DL-450-80-1 PRELIMINARY Features Typ. emission wavelength 450nm Efficient radiation source for cw

More information

High Power and Energy Femtosecond Lasers

High Power and Energy Femtosecond Lasers High Power and Energy Femtosecond Lasers PHAROS is a single-unit integrated femtosecond laser system combining millijoule pulse energies and high average powers. PHAROS features a mechanical and optical

More information

SPL DS90A_3. Chip. Applications. Features: Ordering Information. Produktdatenblatt Version 1.1 SPL DS90A_3. Nanostack Pulsed Laser Diode

SPL DS90A_3. Chip. Applications. Features: Ordering Information. Produktdatenblatt Version 1.1 SPL DS90A_3. Nanostack Pulsed Laser Diode www.osram-os.com Produktdatenblatt Version 1.1 Chip Nanostack Pulsed Laser Diode Applications Industrial Automation (Machine Controls, Light Barriers, Vision Controls) LIDAR, Pre-Crash, ACC Pedestrian

More information

Green Laser Diode in TO38 ICut Package Version 1.1 PL 520. ATTENTION Observe Precautions For Handling Electrostatic Sensitive Device

Green Laser Diode in TO38 ICut Package Version 1.1 PL 520. ATTENTION Observe Precautions For Handling Electrostatic Sensitive Device Green Laser Diode in TO38 ICut Package Version 1.1 PL 520 Features Optical output power (continuous wave): 30 / 50 mw (T case = 25 C) Typical emission wavelength: 515 / 520 nm Efficient radiation source

More information

895nm Single-Mode VCSEL

895nm Single-Mode VCSEL 895nm Single-Mode VCSEL Part number code: 895S--X2 PRODUCT DESCRIPTION A true (both spectrally single mode and Gaussian beam shape) single transverse mode 895nm Infrared VCSEL, with single linear polarized

More information

Z-LASER Optoelektronik GmbH Stemmer 3d Technologietag Useful information on Z-Lasers for Vision

Z-LASER Optoelektronik GmbH Stemmer 3d Technologietag Useful information on Z-Lasers for Vision Z-LASER Optoelektronik GmbH Stemmer 3d Technologietag - 24.2.2011 Useful information on Z-Lasers for Vision The Company Core Competences How to Build a Z-LASER Electronics and Modulation Wavelength and

More information

Green Laser Diode in TO38 ICut Package Version 0.2

Green Laser Diode in TO38 ICut Package Version 0.2 2007-05-23 Green Laser Diode in TO38 ICut Package Features Optical output power (continuous wave): 80 mw ( = 25 C) Typical emission wavelength: 520 nm Efficient radiation source for cw and pulsed operation

More information

Novel laser power sensor improves process control

Novel laser power sensor improves process control Novel laser power sensor improves process control A dramatic technological advancement from Coherent has yielded a completely new type of fast response power detector. The high response speed is particularly

More information

Markus Rech, Hubert Becht Carl Zeiss Optronics GmbH, Carl-Zeiss-Straße 22, Oberkochen 73447, Germany

Markus Rech, Hubert Becht Carl Zeiss Optronics GmbH, Carl-Zeiss-Straße 22, Oberkochen 73447, Germany High Power Laser Diodes at SCD: Performance and reliability for defence and space applications Shlomo Risemberg, Yoram Karni, Genadi Klumel, Moshe Levy, Yuri Berk, SCD-Semiconductor Devices, P.O.Box 2250,

More information

1. INTRODUCTION 2. LASER ABSTRACT

1. INTRODUCTION 2. LASER ABSTRACT Compact solid-state laser to generate 5 mj at 532 nm Bhabana Pati*, James Burgess, Michael Rayno and Kenneth Stebbins Q-Peak, Inc., 135 South Road, Bedford, Massachusetts 01730 ABSTRACT A compact and simple

More information

SPL PL90_3. Nanostack Pulsed Laser Diode in Plastic Package 75 W Peak Power Version 1.5

SPL PL90_3. Nanostack Pulsed Laser Diode in Plastic Package 75 W Peak Power Version 1.5 215-11-2 Nanostack Pulsed Laser Diode in Plastic Package 75 W Peak Power Version 1.5 Features: Optical peak power up to 75 W Laser wavelength 95 nm Suited for short laser pulses from 1 to 1 ns Nanostack

More information

ESCC2006 European Supply Chain Convention

ESCC2006 European Supply Chain Convention ESCC2006 European Supply Chain Convention PCB Paper 20 Laser Technology for cutting FPC s and PCB s Mark Hüske, Innovation Manager, LPKF Laser & Electronics AG, Germany Laser Technology for cutting FPCs

More information

Application Note #15. High Density Pulsed Laser Diode Arrays for SSL Pumping

Application Note #15. High Density Pulsed Laser Diode Arrays for SSL Pumping Northrop Grumman Cutting Edge Optronics Application Note #15 High Density Pulsed Laser Diode Arrays for SSL Pumping Northrop Grumman Cutting Edge Optronics has developed a new laser diode array package

More information

280nm LED performance information

280nm LED performance information 280nm LED performance information Intensity & Wavelength vs Temperature 280nm LED Intensity, relative units 700 600 500 400 300 200 100 290 280 270 260 250 240 230 Center wavelength, nm 0 220-20 -10 0

More information

R. J. Jones Optical Sciences OPTI 511L Fall 2017

R. J. Jones Optical Sciences OPTI 511L Fall 2017 R. J. Jones Optical Sciences OPTI 511L Fall 2017 Semiconductor Lasers (2 weeks) Semiconductor (diode) lasers are by far the most widely used lasers today. Their small size and properties of the light output

More information

Wavelength Stabilization of HPDL Array Fast-Axis Collimation Optic with integrated VHG

Wavelength Stabilization of HPDL Array Fast-Axis Collimation Optic with integrated VHG Wavelength Stabilization of HPDL Array Fast-Axis Collimation Optic with integrated VHG C. Schnitzler a, S. Hambuecker a, O. Ruebenach a, V. Sinhoff a, G. Steckman b, L. West b, C. Wessling c, D. Hoffmann

More information

Thermo Scientific icap 7000 Plus Series ICP-OES: Innovative ICP-OES optical design

Thermo Scientific icap 7000 Plus Series ICP-OES: Innovative ICP-OES optical design TECHNICAL NOTE 43333 Thermo Scientific icap 7000 Plus Series ICP-OES: Innovative ICP-OES optical design Keywords Optical design, Polychromator, Spectrometer Key Benefits The Thermo Scientific icap 7000

More information

Vertical External Cavity Surface Emitting Laser

Vertical External Cavity Surface Emitting Laser Chapter 4 Optical-pumped Vertical External Cavity Surface Emitting Laser The booming laser techniques named VECSEL combine the flexibility of semiconductor band structure and advantages of solid-state

More information

940nm Single-Mode VCSEL Part number code: 940S-0000-X001

940nm Single-Mode VCSEL Part number code: 940S-0000-X001 940nm Single-Mode VCSEL Part number code: 940S-0000-X001 PRODUCT DESCRIPTION A single transverse mode 940nm VCSEL, with linear polarized emission. Features include low power consumption, linear polarization

More information

Micro-sensors - what happens when you make "classical" devices "small": MEMS devices and integrated bolometric IR detectors

Micro-sensors - what happens when you make classical devices small: MEMS devices and integrated bolometric IR detectors Micro-sensors - what happens when you make "classical" devices "small": MEMS devices and integrated bolometric IR detectors Dean P. Neikirk 1 MURI bio-ir sensors kick-off 6/16/98 Where are the targets

More information

940nm Single-Mode VCSEL Part number code: 940S-0000-X001

940nm Single-Mode VCSEL Part number code: 940S-0000-X001 Page 1 of 5 940nm Single-Mode VCSEL Part number code: 940S-0000-X001 PRODUCT DESCRIPTION A single transverse mode (Single mode both spectrally and spatially) 940nm VCSEL. Applications: Spectroscopic sensors

More information

R. Lebert 1, K. Bergmann 2, O. Rosier 3, W. Neff 2, R. Poprawe 2

R. Lebert 1, K. Bergmann 2, O. Rosier 3, W. Neff 2, R. Poprawe 2 R. Lebert 1, K. Bergmann 2, O. Rosier 3, W. Neff 2, R. Poprawe 2 1 AIXUV GmbH, Steinbachstrasse 15, D-52074 Aachen, Germany 2 Fraunhofer Institut für Lasertechnik 3 Lehrstuhl für Lasertechnik, RWTH Aachen

More information

Individually ventilated cages microclimate monitoring using photoacoustic spectroscopy

Individually ventilated cages microclimate monitoring using photoacoustic spectroscopy Individually ventilated cages microclimate monitoring using photoacoustic spectroscopy Jean-Philippe Besson*, Marcel Gyger**, Stéphane Schilt *, Luc Thévenaz *, * Nanophotonics and Metrology Laboratory

More information

Development of scalable laser technology for EUVL applications

Development of scalable laser technology for EUVL applications Development of scalable laser technology for EUVL applications Tomáš Mocek, Ph.D. Chief Scientist & Project Leader HiLASE Centre CZ.1.05/2.1.00/01.0027 Lasers for real-world applications Laser induced

More information

Bridgelux Autoflux Series 1x3 Top Contact. Product Data Sheet DS140

Bridgelux Autoflux Series 1x3 Top Contact. Product Data Sheet DS140 Bridgelux Autoflux Series 1x3 Top Contact Product Data Sheet DS140 1 Introduction Autoflux Series The Bridgelux Autoflux Series product offers superior lumen output, reliability, industry-leading optical

More information

taccor Optional features Overview Turn-key GHz femtosecond laser

taccor Optional features Overview Turn-key GHz femtosecond laser taccor Turn-key GHz femtosecond laser Self-locking and maintaining Stable and robust True hands off turn-key system Wavelength tunable Integrated pump laser Overview The taccor is a unique turn-key femtosecond

More information

Nd: YAG Laser Energy Levels 4 level laser Optical transitions from Ground to many upper levels Strong absorber in the yellow range None radiative to

Nd: YAG Laser Energy Levels 4 level laser Optical transitions from Ground to many upper levels Strong absorber in the yellow range None radiative to Nd: YAG Lasers Dope Neodynmium (Nd) into material (~1%) Most common Yttrium Aluminum Garnet - YAG: Y 3 Al 5 O 12 Hard brittle but good heat flow for cooling Next common is Yttrium Lithium Fluoride: YLF

More information

Optoelectronics Data Book

Optoelectronics Data Book Optoelectronics Data Book Innovators in Optoelectronics TABLE OF CONTENTS Alphanumeric Index...4 Eye Safety Issues...6 Introduction...7 Componets High-Power GaAlAs IR Emitters in TO-46 Packages... High-Temperature

More information

High Power Pulsed Laser Diodes 850-Series

High Power Pulsed Laser Diodes 850-Series High Power Pulsed Laser Diodes 850-Series FEATURES Single and stacked devices up to 100 Watts Proven AlGaAs high reliability structure 0.9 W/A efficiency Excellent temperature stability Hermetic and custom

More information

PL 520B. Metal Can TO38. Applications. Features: Ordering Information. Produktdatenblatt Version 1.1 PL 520B. Green Laser Diode in TO38 ICut Package

PL 520B. Metal Can TO38. Applications. Features: Ordering Information. Produktdatenblatt Version 1.1 PL 520B. Green Laser Diode in TO38 ICut Package www.osram-os.com Produktdatenblatt Version 1.1 Metal Can TO38 Green Laser Diode in TO38 ICut Package Applications Measurement Levelling Projection Home LED & Laser Projection Professional LED & Laser Stage

More information

TIME-PRESERVING MONOCHROMATORS FOR ULTRASHORT EXTREME-ULTRAVIOLET PULSES

TIME-PRESERVING MONOCHROMATORS FOR ULTRASHORT EXTREME-ULTRAVIOLET PULSES TIME-PRESERVING MONOCHROMATORS FOR ULTRASHORT EXTREME-ULTRAVIOLET PULSES Luca Poletto CNR - Institute of Photonics and Nanotechnologies Laboratory for UV and X-Ray Optical Research Padova, Italy e-mail:

More information

High-Power Femtosecond Lasers

High-Power Femtosecond Lasers High-Power Femtosecond Lasers PHAROS is a single-unit integrated femtosecond laser system combining millijoule pulse energies and high average power. PHAROS features a mechanical and optical design optimized

More information

Development of Mid-infrared Solid-State Lasers

Development of Mid-infrared Solid-State Lasers Development of Mid-infrared Solid-State Lasers M. J. Daniel Esser Team members: C. Jacobs, W. Koen, H. Strauss, D. Preussler, L. R. Botha O. J. P. Collett and C. Bollig Laser Sources Group CSIR National

More information

Generation of a Line Focus for Material Processing from an Array of High Power Diode Laser Bars R. Baettig, N. Lichtenstein, R. Brunner, J.

Generation of a Line Focus for Material Processing from an Array of High Power Diode Laser Bars R. Baettig, N. Lichtenstein, R. Brunner, J. Generation of a Line Focus for Material Processing from an Array of High Power Diode Laser Bars R. Baettig, N. Lichtenstein, R. Brunner, J. Müller, B. Valk, M. Kreijci, S. Weiss Overview This slidepack

More information

Vixar High Power Array Technology

Vixar High Power Array Technology Vixar High Power Array Technology I. Introduction VCSELs arrays emitting power ranging from 50mW to 10W have emerged as an important technology for applications within the consumer, industrial, automotive

More information

Lecture 6 Fiber Optical Communication Lecture 6, Slide 1

Lecture 6 Fiber Optical Communication Lecture 6, Slide 1 Lecture 6 Optical transmitters Photon processes in light matter interaction Lasers Lasing conditions The rate equations CW operation Modulation response Noise Light emitting diodes (LED) Power Modulation

More information

250W QCW Conduction Cooled High Power Semiconductor Laser

250W QCW Conduction Cooled High Power Semiconductor Laser 25W QCW Conduction Cooled High Power Semiconductor Laser Jingwei Wang 1, Zhenbang Yuan 2, Yanxin Zhang 1, Entao Zhang 1, Di Wu 2, Xingsheng Liu 1, 2 1 State Key Laboratory of Transient Optics and Photonics,

More information

Introduction Fundamentals of laser Types of lasers Semiconductor lasers

Introduction Fundamentals of laser Types of lasers Semiconductor lasers ECE 5368 Introduction Fundamentals of laser Types of lasers Semiconductor lasers Introduction Fundamentals of laser Types of lasers Semiconductor lasers How many types of lasers? Many many depending on

More information

High-brightness 800nm fiber-coupled laser diodes

High-brightness 800nm fiber-coupled laser diodes High-brightness 800nm fiber-coupled laser diodes Yuri Berk, Moshe Levy, Noam Rappaport, Renana Tessler, Ophir Peleg, Moshe Shamay, Dan Yanson, Genadi Klumel, Nir Dahan, Ilya Baskin, and Lior Shkedi SCD

More information

Atlantic. series. Industrial High Power Picosecond DPSS Lasers

Atlantic. series. Industrial High Power Picosecond DPSS Lasers Atlantic series Industrial High Power Picosecond DPSS Lasers Laser description Laser micromachining is rapidly becoming the material processing technology of choice for numerous small scale, real world

More information

Reliability and Performance of 808nm Single Emitter Multi- Mode Laser Diodes

Reliability and Performance of 808nm Single Emitter Multi- Mode Laser Diodes Reliability and Performance of nm Single Emitter Multi- Mode Laser Diodes J. Wang*, L. Bao, M. DeVito, D. Xu, D. Wise, M. Grimshaw, W. Dong, S. Zhang, C. Bai, P. Leisher, D. Li, H. Zhou, S. Patterson,

More information

Green Laser Diode in TO56 Package Version 0.3 PLT ATTENTION Observe Precautions For Handling Electrostatic Sensitive Device

Green Laser Diode in TO56 Package Version 0.3 PLT ATTENTION Observe Precautions For Handling Electrostatic Sensitive Device Green Laser Diode in TO56 Package Version 0.3 PLT5 520 Features Optical output power (continuous wave): 30 / 50 mw (T case = 25 C) Typical emission wavelength: 520 nm Efficient radiation source for cw

More information

Next, know your supply voltage. It should be a few volts above the LED forward voltage for reliable, stable LED operation

Next, know your supply voltage. It should be a few volts above the LED forward voltage for reliable, stable LED operation 4. handling 4.1. biasing LEDs The light generated by an LED is directly proportional to the forward current flowing through the device. Various biasing schemes can be used to set the value of the current.

More information

By emitter degradation analysis of high power diode laser bars. Outline Part I

By emitter degradation analysis of high power diode laser bars. Outline Part I By emitter degradation analysis of high power diode laser bars Eric Larkins and Jens W. Tomm Outline Part I I. 1. Introduction I. 2. Experimental Techniques I. 3. Case Study 1: Strain Threshold for Increased

More information

Klaran WD Series UVC LEDs

Klaran WD Series UVC LEDs Klaran WD Series UVC LEDs HIGH INTENSITY UNOBSTRUCTED LED DIE Achieves up to 10X more efficient UVC output per unit area than UV mercury lamps allowing compact and powerful water reactor chambers. MAINTENANCE-FREE

More information

"SIMPLE MEASUREMENT, ADVANCED RESULTS"

SIMPLE MEASUREMENT, ADVANCED RESULTS "SIMPLE MEASUREMENT, ADVANCED RESULTS" 1 Phasics offers the most innovative solutions for lens and objectives quality control in R&D and production. Relying on a unique wavefront technology, the quadriwave

More information

Fiber Coupled Semiconductor Laser

Fiber Coupled Semiconductor Laser Fiber Coupled Semiconductor Laser Features Plug & Play ESD Protection Power Adjustable LD Current Full Protection LD Temperature Stabilized Compact Size Applications Bio Technology Semiconductor Medical

More information

Status of MOLI development MOLI (Multi-footprint Observation Lidar and Imager)

Status of MOLI development MOLI (Multi-footprint Observation Lidar and Imager) Status of MOLI development MOLI (Multi-footprint Observation Lidar and Imager) Tadashi IMAI, Daisuke SAKAIZAWA, Jumpei MUROOKA and Toshiyoshi KIMURA JAXA 1 Outline of This Presentation 1. Overview of MOLI

More information

A Laser-Based Thin-Film Growth Monitor

A Laser-Based Thin-Film Growth Monitor TECHNOLOGY by Charles Taylor, Darryl Barlett, Eric Chason, and Jerry Floro A Laser-Based Thin-Film Growth Monitor The Multi-beam Optical Sensor (MOS) was developed jointly by k-space Associates (Ann Arbor,

More information

PLT Metal Can TO56. Applications. Features: Ordering Information. Produktdatenblatt Version 1.1. Blue-Cyan Laser Diode in TO56 Package

PLT Metal Can TO56. Applications. Features: Ordering Information. Produktdatenblatt Version 1.1. Blue-Cyan Laser Diode in TO56 Package www.osram-os.com Produktdatenblatt Version 1.1 Metal Can TO56 Blue-Cyan Laser Diode in TO56 Package Applications Health Monitoring (Heart Rate Monitoring, Pulse Oximetry) Measurement Levelling Features:

More information

Improved Radiometry for LED Arrays

Improved Radiometry for LED Arrays RadTech Europe 2017 Prague, Czech Republic Oct. 18, 2017 Improved Radiometry for LED Arrays Dr. Robin E. Wright 3M Corporate Research Process Laboratory, retired 3M 2017 All Rights Reserved. 1 Personal

More information

UVLED SMD. Description. Maximum Ratings (T CASE = 25 C) Electro-Optical Characteristics (T CASE = 25 C, I F = 500mA)

UVLED SMD. Description. Maximum Ratings (T CASE = 25 C) Electro-Optical Characteristics (T CASE = 25 C, I F = 500mA) UVLED-365-500-SMD v 3.0 02.02.2016 Description UVLED-365-500-SMD is a surface mount infrared High Power LED with a typical peak wavelength of 365 nm and radiant intensity of typ. 500 mw. It comes in ceramic

More information

NIST Agency Report May 2012 OUTLINE. The case for traceability NMI capabilities A view to the future the HIP Current/recent NIST activities

NIST Agency Report May 2012 OUTLINE. The case for traceability NMI capabilities A view to the future the HIP Current/recent NIST activities NIST Agency Report May 2012 OUTLINE The case for traceability NMI capabilities A view to the future the HIP Current/recent NIST activities The case for traceability Earth Radiation Budget: Solar irradiance

More information

From the start the main activity of our company was the development and production of infrared illuminators.

From the start the main activity of our company was the development and production of infrared illuminators. catalogue 2010 INFRA - RED ILLUMINATION The Tirex company, producer of the ELENEK illuminators, was founded in 1992 by specialists of the Physical and Technical Institute of Saint-Petersburg From the start

More information

An Introduction to Laser Diodes

An Introduction to Laser Diodes TRADEMARK OF INNOVATION An Introduction to Laser Diodes What's a Laser Diode? A laser diode is a semiconductor laser device that is very similar, in both form and operation, to a light-emitting diode (LED).

More information

PL TB450B. Metal Can TO56. Applications. Features: Ordering Information. Produktdatenblatt Version 1.1 PL TB450B. Blue Laser Diode in TO56 Package

PL TB450B. Metal Can TO56. Applications. Features: Ordering Information. Produktdatenblatt Version 1.1 PL TB450B. Blue Laser Diode in TO56 Package www.osram-os.com Produktdatenblatt Version 1.1 Metal Can TO56 Blue Laser Diode in TO56 Package Applications Equipment Illumination (e.g. Curing, Endoscope) Projection Home LED & Laser Projection Professional

More information

idonus UV-LED exposure system for photolithography

idonus UV-LED exposure system for photolithography idonus UV-LED exposure system for photolithography UV-LED technology is an attractive alternative to traditional arc lamp illumination. The benefits of UV-LEDs are manyfold and significant for photolithography.

More information

Photonic device package design, assembly and encapsulation.

Photonic device package design, assembly and encapsulation. Photonic device package design, assembly and encapsulation. Abstract. A.Bos, E. Boschman Advanced Packaging Center. Duiven, The Netherlands Photonic devices like Optical transceivers, Solar cells, LED

More information

Conduction-Cooled Bar Packages (CCPs), nm

Conduction-Cooled Bar Packages (CCPs), nm Conduction-Cooled Bar Packages (CCPs), 780-830 nm High Power Single-Bar Packages for Pumping and Direct-Diode Applications Based on Coherent s legendary Aluminum-free Active Area (AAA ) epitaxy, Coherent

More information

Semiconductor Optical Communication Components and Devices Lecture 18: Introduction to Diode Lasers - I

Semiconductor Optical Communication Components and Devices Lecture 18: Introduction to Diode Lasers - I Semiconductor Optical Communication Components and Devices Lecture 18: Introduction to Diode Lasers - I Prof. Utpal Das Professor, Department of lectrical ngineering, Laser Technology Program, Indian Institute

More information

NIST EUVL Metrology Programs

NIST EUVL Metrology Programs NIST EUVL Metrology Programs S.Grantham, C. Tarrio, R.E. Vest, Y. Barad, S. Kulin, K. Liu and T.B. Lucatorto National Institute of Standards and Technology (NIST) Gaithersburg, MD USA L. Klebanoff and

More information

Vision Lighting Seminar

Vision Lighting Seminar Creators of Evenlite Vision Lighting Seminar Daryl Martin Midwest Sales & Support Manager Advanced illumination 734-213 213-13121312 dmartin@advill.com www.advill.com 2005 1 Objectives Lighting Source

More information

SNP High Performances IR Microchip Series

SNP High Performances IR Microchip Series SNP High Performances IR Microchip Series Key features Repetition rate up to 130kHz Ultrashort pulses down to 600ps Multi-kW peak power Excellent beam quality, M²

More information

Semiconductor Lasers Semiconductors were originally pumped by lasers or e-beams First diode types developed in 1962: Create a pn junction in

Semiconductor Lasers Semiconductors were originally pumped by lasers or e-beams First diode types developed in 1962: Create a pn junction in Semiconductor Lasers Semiconductors were originally pumped by lasers or e-beams First diode types developed in 1962: Create a pn junction in semiconductor material Pumped now with high current density

More information

Luminous Equivalent of Radiation

Luminous Equivalent of Radiation Intensity vs λ Luminous Equivalent of Radiation When the spectral power (p(λ) for GaP-ZnO diode has a peak at 0.69µm) is combined with the eye-sensitivity curve a peak response at 0.65µm is obtained with

More information

905 nm Multi-Quantum Well Strained InGaAs Pulsed Laser Diodes PGA Series

905 nm Multi-Quantum Well Strained InGaAs Pulsed Laser Diodes PGA Series 905 nm Multi-Quantum Well Strained InGaAs Pulsed Laser Diodes PGA Series Overview This series of devices employs elements from 75 µm wide single sources to four stacks of 600 µm wide elements. Using standard

More information

Lecture 18: Photodetectors

Lecture 18: Photodetectors Lecture 18: Photodetectors Contents 1 Introduction 1 2 Photodetector principle 2 3 Photoconductor 4 4 Photodiodes 6 4.1 Heterojunction photodiode.................... 8 4.2 Metal-semiconductor photodiode................

More information

200W 500W, Air Cooled QUBE Fiber Lasers

200W 500W, Air Cooled QUBE Fiber Lasers Technical Specification 200W 500W, Air Cooled QUBE Fiber Lasers CONTENTS 1.1 SCOPE 2 1.2 OPTICAL SPECIFICATION 2 1.3 BEAM DELIVERY FIBER SPECIFICATION 3 1.4 ALIGNMENT LASER 4 1.5 POWER DISTRIBUTION 4 1.6

More information

A new picosecond Laser pulse generation method.

A new picosecond Laser pulse generation method. PULSE GATING : A new picosecond Laser pulse generation method. Picosecond lasers can be found in many fields of applications from research to industry. These lasers are very common in bio-photonics, non-linear

More information

LedEngin, Inc. High Luminous Efficacy Cool White LED Emitter LZC-00CW40. Key Features. Typical Applications. Description

LedEngin, Inc. High Luminous Efficacy Cool White LED Emitter LZC-00CW40. Key Features. Typical Applications. Description High Luminous Efficacy Cool White LED Emitter LZC-00CW40 Key Features High Luminous Efficacy 40W Cool White LED Small foot print 9.0mm x 9.0mm x 5.4mm Surface mount ceramic package with integrated glass

More information

UV GAS LASERS PREPARED BY: STUDENT NO: COURSE NO: EEE 6503 COURSE TITLE: LASER THEORY

UV GAS LASERS PREPARED BY: STUDENT NO: COURSE NO: EEE 6503 COURSE TITLE: LASER THEORY UV GAS LASERS PREPARED BY: ISMAIL HOSSAIN FARHAD STUDENT NO: 0411062241 COURSE NO: EEE 6503 COURSE TITLE: LASER THEORY Introduction The most important ultraviolet lasers are the nitrogen laser and the

More information

CBT-120-UV LEDs. CBT-120-UV Product Datasheet. Features: Table of Contents. Applications

CBT-120-UV LEDs. CBT-120-UV Product Datasheet. Features: Table of Contents. Applications CBT-20-UV LEDs Table of Contents Technology Overview...2 Optical & Electrical Characteristics...3 Features: W of optical power from 375 nm to 390 nm. High thermal conductivity package. Junction to heat

More information

ECE 340 Lecture 29 : LEDs and Lasers Class Outline:

ECE 340 Lecture 29 : LEDs and Lasers Class Outline: ECE 340 Lecture 29 : LEDs and Lasers Class Outline: Light Emitting Diodes Lasers Semiconductor Lasers Things you should know when you leave Key Questions What is an LED and how does it work? How does a

More information

Instructions for the Experiment

Instructions for the Experiment Instructions for the Experiment Excitonic States in Atomically Thin Semiconductors 1. Introduction Alongside with electrical measurements, optical measurements are an indispensable tool for the study of

More information

INNOVATIVE CAMERA CHARACTERIZATION BASED ON LED LIGHT SOURCE

INNOVATIVE CAMERA CHARACTERIZATION BASED ON LED LIGHT SOURCE Image Engineering imagequalitytools INNOVATIVE CAMERA CHARACTERIZATION BASED ON LED LIGHT SOURCE Image Engineering Relative Power ILLUMINATION DEVICES imagequalitytools The most flexible LED-based light

More information

Specifications subject to change Packaging

Specifications subject to change Packaging VCSEL Standard Product Packaging Options All standard products are represented in the table below. The Part Number for a standard product is determined by replacing the x in the column Generic Part Number

More information

SNV/U High Performances UV Microchip Series

SNV/U High Performances UV Microchip Series SNV/U High Performances UV Microchip Series Key features 355nm and 266nm Repetition rate up to 20kHz Ultrashort pulses down to 550ps Multi-kW peak power Excellent beam quality Efficient, air-cooled Sealed

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Electrically pumped continuous-wave III V quantum dot lasers on silicon Siming Chen 1 *, Wei Li 2, Jiang Wu 1, Qi Jiang 1, Mingchu Tang 1, Samuel Shutts 3, Stella N. Elliott 3, Angela Sobiesierski 3, Alwyn

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Photodetectors Introduction Most important characteristics Photodetector

More information

National Science Foundation Center for Lasers and Plasmas for Advanced Manufacturing. Mool C. Gupta Applied Research Center Old Dominion University

National Science Foundation Center for Lasers and Plasmas for Advanced Manufacturing. Mool C. Gupta Applied Research Center Old Dominion University National Science Foundation Center for Lasers and Plasmas for Advanced Manufacturing Mool C. Gupta Applied Research Center Old Dominion University National Science Foundation Center - Center Mission -

More information

Characterization of Common Electron Multipliers in Harsh Environments

Characterization of Common Electron Multipliers in Harsh Environments ELECTRO-OPTICS Characterization of Common Electron Multipliers in Harsh Environments The Pittsburgh Conference 2005 Poster Paper 1340-20 Bruce Laprade and Raymond Cochran BURLE Electro-Optics INC Introduction

More information

High Peak Power Fiber Seeds & Efficient Stabilized Pumps

High Peak Power Fiber Seeds & Efficient Stabilized Pumps High Peak Power Fiber Seeds & Efficient Stabilized Pumps Features Ultra Narrow Spectral Bandwidth (< 100kHz Instantaneous for single mode diodes) Ultra Track Linear Tracking Photodiode Temperature Stabilized

More information

gem TECHNICAL DATA SHEET CW 532nm laser Extremely low noise Power from 50mW - 750mW 532nm high spec OEM laser

gem TECHNICAL DATA SHEET CW 532nm laser Extremely low noise Power from 50mW - 750mW 532nm high spec OEM laser gem CW 532nm laser Extremely low noise Power from 50mW - 750mW TECHNICAL DATA SHEET gem The high specification CW 532nm laser Overview The gem is the jewel in the Laser Quantum collection. Its small and

More information

Key Questions. What is an LED and how does it work? How does a laser work? How does a semiconductor laser work? ECE 340 Lecture 29 : LEDs and Lasers

Key Questions. What is an LED and how does it work? How does a laser work? How does a semiconductor laser work? ECE 340 Lecture 29 : LEDs and Lasers Things you should know when you leave Key Questions ECE 340 Lecture 29 : LEDs and Class Outline: What is an LED and how does it How does a laser How does a semiconductor laser How do light emitting diodes

More information