Research Note THREE PHASE ON-LINE UPS BY IMPLEMENTING T-SOURCE INVERTER WITH MAXIMUM CONSTANT BOOST PWM CONTROL *

Size: px
Start display at page:

Download "Research Note THREE PHASE ON-LINE UPS BY IMPLEMENTING T-SOURCE INVERTER WITH MAXIMUM CONSTANT BOOST PWM CONTROL *"

Transcription

1 IJS, ransactions of Electrical Engineering, ol 39, No E2, pp Printed in he Islamic Republic of Iran, 215 Shiraz University Research Note HREE PHASE ON-LINE UPS BY IMPLEMENING -SOURE INERER WIH MAXIMUM ONSAN BOOS PWM ONROL * KHIRA ** AND A JEEANANDHAM Deptof EEE, Bannari Amman Institute of echnology, Sathyamangalam, amilnadu, India chitrak@bitsathyacin Abstract his paper presents the new topology of three phase on line Uninterruptible Power Supply (UPS) by employing -Source Inverter (SI) with maximum constant boost Pulse Width Modulation (PWM) control and the results are compared with the conventional Uninterruptible Power Supply (UPS) he conventional UPS consists of oltage Source Inverter (SI) with step up transformer or D-D booster which decreases the efficiency and increases energy conversion cost he proposed three phase UPS with SI has the voltage boost capability through through zero state which is not present in the conventional SI his proposed UPS increases the efficiency due to single stage conversion, reduces the harmonics, increases the voltage gain and reduces the voltage stress he performance of the three phase on-line UPS with SI is simulated in MALAB / SIMULINK software and the results are compared with conventional UPS he simulation and the theoretical analysis are validated with experimental results Keywords On-line UPS, -Source Inverter, maximum constant boost, boost factor 1 INRODUION he purpose of implementing uninterruptible power supply (UPS) is to provide clean and uninterrupted high quality power to sensitive loads like life supporting systems, medical instruments, communication systems, data centers, industrial control units and computers [1-3] Regardless of quality of the A input, UPS system provides uninterrupted, reliable, distortion free, high quality power [4] here are two types of conventional UPS he first type of UPS consists of rectifier, battery, inverter and step up transformer [5] he second type of UPS consists of rectifier, battery, D-D booster and inverter [6-8] he control of switches in the booster circuit is complicated, efficiency is decreased and cost is increased due to the equipment used for increasing the voltage onventional SI can only buck the input voltage In SI, the switches in the same lag are not switched on simultaneously, hence to avoid through the dead time is introduced which leads to waveform distortion [9] Professor Zhi Jian Zhou in 28 [1] proposed Z-source inverter for the single phase UPS his method offers the following advantages: 1) buck- boost operation 2) step up transformer and dc-dc booster is not required 3) output voltage distortion is less But in ZSI the voltage stress in the switches is high and more L& components are used hese drawbacks are eliminated in SI In this paper a new topology of UPS is proposed using -Source inverter with maximum constant boost PWM control he proposed UPS offers the following advantages: 1) Buck and boost operation 2) Less HD 3) oltage stress is minimized 4) Fewer omponents 5) High efficiency he overall circuit diagram for the three phase on-line UPS with -Source inverter is shown in Fig 1 Received by the editors February 11, 214; Accepted August 4, 215 orresponding author

2 21 K hitra and A Jeevanandham D 3 Phase A Supply A A D1 D3 D5 Battery S1 S3 S5 IIR Rl Ll R ILR input D IIY Rl Ll Y ILY 3 Phase Load IIB Rl Ll B ILB A IB D4 D6 D2 S4 S6 S2 IY IR l l l S1 S2 S3 S4 S5 S6 Maximum onstant Boost PWM Pulse Generation AB / dq AB / dq dq / AB P P PI PI qref dref Fig 1 -source inverter for the proposed UPS 2 MODELING OF SI IRUI D-D input stage in boost type voltage source inverter is replaced by X shape L network in ZSI [11-12] o reduce the number of L components, the coupled inductors are designed on a common magnetic core [13] In SI high frequency low leakage inductance transformer and one capacitor is used instead of L lattice in ZSI, which is shown in Fig 1 a) Operating modes of SI -Source inverter utilizes the through zero state to boost the output voltage During through state, switches in the same leg are turned on simultaneously SI can be operated in two operating modes, namely active mode and through mode [13] Active mode is also called non through mode During active mode the input voltage appears across the capacitor and the diode is forward biased and conducts During through mode the output voltage is boosted and the inductor limits the current ripple and the voltage across the load is zero he SI equivalent circuits during through mode and active mode are shown in Fig 2a and 2b D L I in I in N c out= D c - input L ( c - input )/n out = D I out input I out input c c (a) (b) Fig 2 -Source inverter in (a) Shoot through ( ) state (b) active ( active ) state b) Boost factor and voltage stress of SI Switching period s = active (1) IJS, ransactions of Electrical Engineering, olume 39, Number E2 December 215

3 hree phase on-line ups by implementing -source inverter 211 : Shoot through time period active : Active time period For the switching period s the average voltage across the transformer inductances is zero [13] L active input - n he capacitor voltage and output voltage are functions of through duty ratio d d s (3) 1 input active active n 1 d 1 n 1 d ; d n 1 he maximum value of d for SI with n > 1 is smaller than the ZSI Hence the same output voltage can be obtained with smaller through time period [13] Using (5), D during non through state can be obtained By substituting (4) into (5) where D input n input / 1 n 1 d (5) B s D input input active B active he output peak voltage of the inverter is given by, s s M = MB (8) ac dc input From (8), the voltage gain of the -Source inverter can be expressed as G ac MB (9) hus, any desired output voltage can be obtained by properly selecting the boost factor (B) and the modulation index (M) regardless of the battery bank voltage he voltage stress stress across the switches in SI can be expressed as [14-16] input stress input (2) (4) (6) (7) B (1) 3 MAXIMUM ONSAN BOOS PWM ONROL In this paper maximum constant boost control method is used for the SI, which gives the maximum voltage gain by keeping the through duty ratio constant he through duty ratio is maintained as constant in order to reduce the cost and volume [17-18] o reduce the voltage stress across the switches a great voltage boost is desired for any modulation index he reference signals R, Y, B which are obtained from the closed loop controller are compared with carrier signal tri and the through is December 215 IJS, ransactions of Electrical Engineering, olume 39, Number E2

4 212 K hitra and A Jeevanandham produced by two through envelope signals pos and neg he inverter is in through state when the carrier wave is greater than the upper through envelope pos ( tri > pos ) or the carrier wave is lower than the lower through envelope neg ( tri < neg ) [17] he signals pos and neg are periodical curves and the frequency is three times the output frequency he through duty ratio should be the same for the switching cycle in order to maintain a constant boost, because the boost factor depends on through duty ratio (d) his proposed control method provides the maximum constant boost and minimizes the voltage stress 4 LOSED LOOP ONROLLER FOR PROPOSED UPS losed loop controller is designed to achieve distortion free output voltage, voltage tracking and disturbance rejection [19-2] In the proposed UPS system shown in Fig 1, the output ac voltage is controlled by varying the modulation index M he voltage and current equations for inverter ac side is obtained using Kirchoff s voltage law and current law for each phase here are two control loops in the proposed UPS hey are inner current control loop and outer voltage control loop [2] apacitor current measurement is taken as the feedback current and load current is taken as disturbance current he proportional controller is included to obtain the desired bandwidth he outer voltage control loop is used to achieve proper voltage tracking PI controller which is connected in series is to remove the steady state error and to get good reference tracking and disturbance rejection [21] 5 RESULS AND DISUSSION he proposed SI for 3 phase on line UPS with maximum constant boost control technique was simulated using MALAB/simulink software wenty 12 lead acid batteries are connected in series in this UPS, so the input battery bank voltage is 24 he operating parameters given in able 1 were chosen for the simulation of the proposed UPS able 1 Operating Parameters of the proposed UPS Input D voltage Parameter -Source inductance -Source capacitance Switching frequency 24 1 mh 48 μf 5 khz Power factor 8 Load 5 kw Boost factor 18 Modulation index 8 alue Figure 3 shows the maximum constant boost PWM control and the switching pulses for the switches in SI Figures 4a and 4b show the output phase voltage (peak-peak) and the output phase current (peakpeak) with filter he peak value of output phase voltage of the proposed UPS is 33 and the output frequency is 5 HZ he peak value of output phase current of the proposed UPS is 14 A he output voltage HD and current HD is less than 1% IJS, ransactions of Electrical Engineering, olume 39, Number E2 December 215

5 oltage Magnitude hree phase on-line ups by implementing -source inverter Maximum onstant Boost Pulse Generation R Y B pos arrier Signal tri 2-2 neg -4 1 ime (Sec) 2 Fig 3 Maximum constant boost control and Switching Pulses 5 Output Phase oltage with Filter 2 Output Phase urrent with Filter (A) -5 5 a (olts) -5 5 b (olts) -5 5 c (olts) ime (Sec) 2 (a) -2 2 Ia (A) -2 2 Ib (A) ime (Sec) Fig 4 (a) Output Phase oltage (Peak-Peak) (b) Output Phase urrent (Peak-Peak) Experiment was conducted to verify the theoretical and simulation analysis and confirm the proposed UPS Figure 5a shows the experimental setup of the proposed UPS Figure 6a shows the experimental waveform of output RMS phase voltage of the proposed UPS From the figure it is evident that the output voltage of the proposed UPS follows pure sine wave and harmonics are reduced Figure 6b shows the output RMS phase current of the proposed UPS Ic (A) (b) December 215 IJS, ransactions of Electrical Engineering, olume 39, Number E2

6 214 K hitra and A Jeevanandham Fig 5 (a) Experimental setup of the proposed UPS (b) Output voltage HD comparison (a) (b) Fig 6 Experimental waveforms of (a) output RMS phase voltage (b) Output RMS phase current he proposed UPS is efficient when compared to the traditional UPS because of its single stage conversion and fewer components From the Fig 5b it is evident that the output voltage HD of proposed UPS with SI is less than the traditional UPS his increases the power quality of the proposed UPS 6 ONLUSION In this paper, a new topology of three phase on-line UPS with SI has been presented he simulation of the proposed UPS is carried out for different loading conditions and the results are validated with experimental results he comparison of proposed UPS with SI is done based on power quality, efficiency and cost efficiency with the traditional UPS based on step up transformer, dc-dc booster and ZSI he output voltage HD and current HD of the proposed UPS are less than the traditional UPS he conduction losses in the switches and also the voltage stress are reduced in this proposed UPS he efficiency of the proposed UPS with -Source inverter based on maximum constant boost control is higher than the traditional UPS REFERENES 1 Emadi, A, Nasiri, A & Bekiarov, S B (25) Uninterruptible power supplies and active filters R Press 2 Racine, M S, Parham, J D & Rashid, M H (25) An overview of uninterruptible power supplies Annual North American 25 Power Symposium; 23 25, pp Guerrero, J M, Garcia de icuna, L & Uceda, J (27) Uninterruptible power supply systems provide protection IEEE Industrial Electronics, ol 1, pp Ashrafi, B, Niroomand, M & Ashrafi Nia, B (212) Novel reduced parts on-line uninterruptible power supply IEEE 212 International Power Engineering and Optimization onference, pp IJS, ransactions of Electrical Engineering, olume 39, Number E2 December 215

7 hree phase on-line ups by implementing -source inverter Jain, P K, Espinoza, J R & Jin, H (1998) Performance of a single-stage UPS system for single-phase trapezoidal shaped A voltage supplies IEEE rans Power Electron, ol 13, pp Brancol, G, ruz, M, orrico Bascope, R P, Antunes, F L M & Barreto, L H S (26) A transformerless single phase on line UPS with 11/22 input output voltage IEEE 26 Applied Power Electronics onference, pp Park, J K, Kwon, J M, Kim, E H & Kwon, B H (28) High performance transformer less online UPS IEEE rans Ind Electron, ol 55, Lai, H & zou, Y Y (22) DSP embedded UPS controller for high performance single phase on line UPS systems IEEE 22 Industrial Electronics onference, pp Kawamura, R & huarayapratip Haneysoshi, (1988) Deadbeat control of PWM inverter with modified pulse patterns for uninterruptible power supply IEEE rans Ind Electron, ol 35, pp Zhou, Z J, Zhang, X, Xu, P & Shen, W X (28) Single-phase uninterruptible power supply based on Z- source inverter IEEE rans Ind Electron, ol 55, pp Peng, F Z (23) Z-source inverter IEEE rans Ind Appl, ol 39, pp Peng, F Z (28) Z-source networks for power conversion IEEE Applied Power Electronics onference, pp Strzelecki, R, Adamowicz, M, Strzelecka, N & Bury, B (29) New type -Source inverter IEEE Power Electronics onference, pp Qian, W & Peng, F Z (211) rans-z-source Inverters IEEE rans Power Electronics, ol 26, pp Ding, L I, hiang Loh, P, Zhu, M (213) ascaded multicell rans-z-source inverters IEEE rans Power Electronics, ol 28, pp Shen, M, Joseph, A, Peng, F Z, Leon, M & Adams, D J (26) onstant boost control of the Z-source inverter to minimize current ripple and voltage stress IEEE rans Ind Appl, ol 42, pp Peng, F Z, Shen, M & Qian, Z (25) Maximum boost control of the Z-source inverter IEEE rans Power Electron, ol 2, pp Loh, P H, ilathgamuwa, D M, Lai, Y S, hua, G & Li, Y W (25) Pulse width modulation of Z- source inverters IEEE rans Power Electron, ol 2, pp ran, Q & hun, W (27) Algorithms for controlling both the D boost and A output voltage of Z- source inverter IEEE rans Ind Electron, ol 54, pp Gajanayake, J, ilathgamuwa, D M & Loh, P (26) Modeling and design of multi-loop closed loop controller for Z-source inverter for distributed generation IEEE Power Electronics onference, pp Hasanzadeh, A & Mokhtari, H (29) A simplified droop method implementation in parallel UPS inverters with proportional-resonant controller Iranian Journal of Science and echnology, ransactions of Electrical Engineering 29; 33: December 215 IJS, ransactions of Electrical Engineering, olume 39, Number E2

THREE PHASE UNINTERRUPTIBLE POWER SUPPLY BASED ON TRANS Z SOURCE INVERTER

THREE PHASE UNINTERRUPTIBLE POWER SUPPLY BASED ON TRANS Z SOURCE INVERTER THREE PHASE UNINTERRUPTIBLE POWER SUPPLY BASED ON TRANS Z SOURCE INVERTER Radhika A., Sivakumar L. and Anamika P. Department of Electrical & Electronics Engineering, SKCET, Coimbatore, India E-Mail: radhikamathan@gmail.com

More information

Z-SOURCE INVERTER WITH A NEW SPACE VECTOR PWM ALGORITHM FOR HIGH VOLTAGE GAIN

Z-SOURCE INVERTER WITH A NEW SPACE VECTOR PWM ALGORITHM FOR HIGH VOLTAGE GAIN Z-SOURCE INVERTER WITH A NEW SPACE VECTOR PWM ALGORITHM FOR HIGH VOLTAGE GAIN U. Shajith Ali and V. Kamaraj Department of Electrical and Electronics Engineering, SSN College of Engineering, Chennai, Tamilnadu,

More information

I. INTRODUCTION A. GENERAL INTRODUCTION

I. INTRODUCTION A. GENERAL INTRODUCTION Single Phase Based on UPS Applied to Voltage Source Inverter and Z- Source Inverter by Using Matlab/Simulink V. Ramesh 1, P. Anjappa 2, P.Dhanamjaya 3 K. Reddy Swathi 4, R.Lokeswar Reddy 5,E.Venkatachalapathi

More information

A Modified Single-Phase Quasi z source converter

A Modified Single-Phase Quasi z source converter International Journal of Engineering Trends and Technology (IJETT) Volume 27 Number 5 - September 205 A Modified Single-Phase Quasi z source converter N.Subhashini #, N.Praveen Kumar #2 # PG Student[PE],

More information

Design of Chopper Fed Z Source PWM Inverter

Design of Chopper Fed Z Source PWM Inverter Volume 119 No. 12 2018, 15165-15175 ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Design of Chopper Fed Z Source PWM Inverter 1 K. Vibha and 2 K. Sudha 1 Department of Electronics

More information

An Improved T-Z Source Inverter for the Renewable Energy Application

An Improved T-Z Source Inverter for the Renewable Energy Application IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 9, Issue 2 Ver. I (Mar Apr. 2014), PP 33-40 An Improved T-Z Source Inverter for the Renewable

More information

An Effective Method over Z-Source Inverter to Reduce Voltage Stress through T-Source Inverter

An Effective Method over Z-Source Inverter to Reduce Voltage Stress through T-Source Inverter Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 4, Issue. 3, March 2015,

More information

Design and Implementation of Three Phase Γ-Z Source Inverter for Asynchronous Motor

Design and Implementation of Three Phase Γ-Z Source Inverter for Asynchronous Motor International Journal of Electrical Engineering. ISSN 0974-158 Volume 7, Number (014), pp. 345-35 International Research Publication House http://www.irphouse.com Design and Implementation of Three Phase

More information

Z-SOURCE INVERTER BASED DVR FOR VOLTAGE SAG/SWELL MITIGATION

Z-SOURCE INVERTER BASED DVR FOR VOLTAGE SAG/SWELL MITIGATION Z-SOURCE INVERTER BASED DVR FOR VOLTAGE SAG/SWELL MITIGATION 1 Arsha.S.Chandran, 2 Priya Lenin 1 PG Scholar, 2 Assistant Professor 1 Electrical & Electronics Engineering 1 Mohandas College of Engineering

More information

CHAPTER 2 DESIGN AND MODELING OF POSITIVE BUCK BOOST CONVERTER WITH CASCADED BUCK BOOST CONVERTER

CHAPTER 2 DESIGN AND MODELING OF POSITIVE BUCK BOOST CONVERTER WITH CASCADED BUCK BOOST CONVERTER 17 CHAPTER 2 DESIGN AND MODELING OF POSITIVE BUCK BOOST CONVERTER WITH CASCADED BUCK BOOST CONVERTER 2.1 GENERAL Designing an efficient DC to DC buck-boost converter is very much important for many real-time

More information

ANALYSIS AND SIMULATION OF Z-SOURCE INVERTER

ANALYSIS AND SIMULATION OF Z-SOURCE INVERTER International Journal of Advanced echnology in Engineering and Science www.ijates.com ANALYSIS AND SIMULAION OF ZSOURCE INVERER Saloni Mishra, Dr. Bharti Dwivedi, Dr. Anurag ripathi 3 Research Scholar,

More information

Modified Diode Assisted Extended Boost Quasi Z-Source Inverter for PV Applications

Modified Diode Assisted Extended Boost Quasi Z-Source Inverter for PV Applications Circuits and Systems, 016, 7, 371-384 Published Online August 016 in SciRes. http://www.scirp.org/journal/cs http://dx.doi.org/10.436/cs.016.71079 Modified Diode Assisted Extended Boost Quasi Z-Source

More information

A Three-Phase AC-AC Buck-Boost Converter using Impedance Network

A Three-Phase AC-AC Buck-Boost Converter using Impedance Network A Three-Phase AC-AC Buck-Boost Converter using Impedance Network Punit Kumar PG Student Electrical and Instrumentation Engineering Department Thapar University, Patiala Santosh Sonar Assistant Professor

More information

MODIFIED PWM CONTROL METHODS OF Z SOURCE INVERTER FOR DRIVE APPLICATIONS

MODIFIED PWM CONTROL METHODS OF Z SOURCE INVERTER FOR DRIVE APPLICATIONS VOL. 0, NO. 6, SEPEMBER 05 ISSN 89-6608 006-05 Asian Research Publishing Network (ARPN). All rights reserved. MODIFIED PWM CONROL MEHODS OF Z SOURCE INVERER FOR DRIVE APPLICAIONS P. Sriramalakshmi and

More information

Current Rebuilding Concept Applied to Boost CCM for PF Correction

Current Rebuilding Concept Applied to Boost CCM for PF Correction Current Rebuilding Concept Applied to Boost CCM for PF Correction Sindhu.K.S 1, B. Devi Vighneshwari 2 1, 2 Department of Electrical & Electronics Engineering, The Oxford College of Engineering, Bangalore-560068,

More information

A SPWM CONTROLLED THREE-PHASE UPS FOR NONLINEAR LOADS

A SPWM CONTROLLED THREE-PHASE UPS FOR NONLINEAR LOADS http:// A SPWM CONTROLLED THREE-PHASE UPS FOR NONLINEAR LOADS Abdul Wahab 1, Md. Feroz Ali 2, Dr. Abdul Ahad 3 1 Student, 2 Associate Professor, 3 Professor, Dept.of EEE, Nimra College of Engineering &

More information

CHAPTER 3 MODELLING, SIMULATION AND ANALYSIS OF T-SOURCE INVERTER FED GRID CONNECTED PV SYSTEM

CHAPTER 3 MODELLING, SIMULATION AND ANALYSIS OF T-SOURCE INVERTER FED GRID CONNECTED PV SYSTEM 42 CHAPER 3 MODELLING, SIMULAION AND ANALYSIS OF -SOURCE INERER FED GRID CONNECED P SYSEM 3.1 INRODUCION -Source Inverter is a single stage power converter; it consists of a coupled inductor and a capacitor

More information

ANALYSIS OF PWM STRATEGIES FOR Z-SOURCE CASCADED MULTILEVEL INVERTER FOR PHOTOVOLTAIC APPLICATIONS

ANALYSIS OF PWM STRATEGIES FOR Z-SOURCE CASCADED MULTILEVEL INVERTER FOR PHOTOVOLTAIC APPLICATIONS U.P.B. Sci. Bull., Series C, Vol. 77, Iss. 2, 215 ISSN 2286-354 ANALYSIS OF PWM STRATEGIES FOR Z-SOURCE CASCADED MULTILEVEL INVERTER FOR PHOTOVOLTAIC APPLICATIONS Ramalingam SEYEZHAI* 1 MultiLevel Inverters

More information

Maximum Constant Boost Control of the Z-Source Inverter

Maximum Constant Boost Control of the Z-Source Inverter Maximum Constant Boost Control of the Z-Source Inverter Miaosen Shen 1, Jin Wang 1,Alan Joseph 1, Fang Z. Peng 1, Leon M. Tolbert, and Donald J. Adams 1 Michigan State University Department of Electrical

More information

SIMULATION AND FABRICATION OF SINGLE PHASE Z-SOURCE INVERTER FOR RESISTIVE LOAD

SIMULATION AND FABRICATION OF SINGLE PHASE Z-SOURCE INVERTER FOR RESISTIVE LOAD U.P.B. Sci. Bull., Series C, Vol. 78, Iss. 1, 2016 ISSN 2286-3540 SIMULATION AND FABRICATION OF SINGLE PHASE Z-SOURCE INVERTER FOR RESISTIVE LOAD Meera MURALI 1, Prathamesh DESHPANDE 2, Burhanuddin VIRPURWALA

More information

The Feedback PI controller for Buck-Boost converter combining KY and Buck converter

The Feedback PI controller for Buck-Boost converter combining KY and Buck converter olume 2, Issue 2 July 2013 114 RESEARCH ARTICLE ISSN: 2278-5213 The Feedback PI controller for Buck-Boost converter combining KY and Buck converter K. Sreedevi* and E. David Dept. of electrical and electronics

More information

Performance Analysis of Modified Z- Source Inverter for Renewable Energy System Using Modified Space Vector Pulse Width Modulation

Performance Analysis of Modified Z- Source Inverter for Renewable Energy System Using Modified Space Vector Pulse Width Modulation Performance Analysis of Modified Z- Source Inverter for Renewable Energy System Using Modified Space Vector Pulse Width Modulation K. Mahendran Department of Electrical and Electronics Engineering, Vivekananda

More information

A Novel Bidirectional DC-DC Converter with high Step-up and Step-down Voltage Gains

A Novel Bidirectional DC-DC Converter with high Step-up and Step-down Voltage Gains International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 9, Issue 11 (February 2014), PP. 63-71 A Novel Bidirectional DC-DC Converter with

More information

ISSN: ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 3, May 2013

ISSN: ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 3, May 2013 Power Quality Enhancement Using Hybrid Active Filter D.Jasmine Susila, R.Rajathy Department of Electrical and electronics Engineering, Pondicherry Engineering College, Pondicherry Abstract This paper presents

More information

Input Voltage Modulated High Voltage DC Power Supply Topology for Pulsed Load Applications

Input Voltage Modulated High Voltage DC Power Supply Topology for Pulsed Load Applications Input oltage Modulated High oltage DC Power Supply Topology for Pulsed Load Applications N.ishwanathan, Dr..Ramanarayanan Power Electronics Group, Dept. of Electrical Engineering, IISc., Bangalore -- 560

More information

Investigation of Sst Pwm in qzsi

Investigation of Sst Pwm in qzsi 2018 IJSRST Volume 4 Issue 3 Print ISSN : 2395-6011 Online ISSN: 2395-602X National Conference on Advances in Engineering and Applied Science (NCAEAS) 29 th January 2018 Organized by : Anjuman College

More information

A Novel Bidirectional DC-DC Converter with Battery Protection

A Novel Bidirectional DC-DC Converter with Battery Protection Vol.2, Issue.6, Nov-Dec. 12 pp-4261-426 ISSN: 2249-664 A Novel Bidirectional DC-DC Converter with Battery Protection Srinivas Reddy Gurrala 1, K.Vara Lakshmi 2 1(PG Scholar Department of EEE, Teegala Krishna

More information

International Journal of Advance Engineering and Research Development

International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor (SJIF): 4.72 International Journal of Advance Engineering and Research Development Volume 4, Issue 8, August -2017 e-issn (O): 2348-4470 p-issn (P): 2348-6406 Analysis

More information

ANALYSIS OF SINGLE-PHASE Z-SOURCE INVERTER 1

ANALYSIS OF SINGLE-PHASE Z-SOURCE INVERTER 1 ANALYSIS OF SINGLE-PHASE Z-SOURCE INVERTER 1 K. N. Madakwar, 2 Dr. M. R. Ramteke VNIT-Nagpur Email: 1 kapil.madakwar@gmail.com, 2 mrr_vrce@rediffmail.com Abstract: This paper deals with the analysis of

More information

Current Mode Integrated Control Technique for Z-Source Inverter Fed Induction Motor Drives

Current Mode Integrated Control Technique for Z-Source Inverter Fed Induction Motor Drives Current Mode Integrated Control Technique for Z-Source Inverter Fed Induction Motor Drives 285 JPE 10-3-9 Current Mode Integrated Control Technique for Z-Source Inverter Fed Induction Motor Drives Sengodan

More information

Design and Implementation of Quasi-Z-Source Inverter for Off-grid Photovoltaic Systems

Design and Implementation of Quasi-Z-Source Inverter for Off-grid Photovoltaic Systems Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 4, Issue. 3, March 2015,

More information

This paper deals with a new family of high boostvoltage inverters, called switched-inductor quasi-z-source inverters.

This paper deals with a new family of high boostvoltage inverters, called switched-inductor quasi-z-source inverters. ISSN: 0975-766X CODEN: IJPTFI Available Online through Research Article www.ijptonline.com IMPLEMENTATION OF SWITCHED INDUCTOR QUASI - Z - SOURCE INVERTER S.Einstien Jackson* Research Scholar, Department

More information

Quasi Z-Source DC-DC Converter With Switched Capacitor

Quasi Z-Source DC-DC Converter With Switched Capacitor Quasi Z-Source DC-DC Converter With Switched Capacitor Anu Raveendran, Elizabeth Paul, Annie P. Ommen M.Tech Student, Mar Athanasius College of Engineering, Kothamangalam, Kerala anuraveendran2015@gmail.com

More information

ABSTRACT INTRODUCTION IRAN IRAN ISSN: OPEN ACCESS ARTICLE.

ABSTRACT INTRODUCTION IRAN IRAN ISSN: OPEN ACCESS ARTICLE. ISSN: 0976-3104 Nazar and Vahidi ARTICLE OPEN ACCESS ANALYSIS OF A SPEED CONTROL SYSTEM OF INDUCTION MOTOR FED BY A Z-SOURCE INVERTER BASED ON V/F SCALAR CONTROL M. S. Mohebi Nazar 1, BEHROOZ VAHIDI 2,3

More information

Hybrid Full-Bridge Half-Bridge Converter with Stability Network and Dual Outputs in Series

Hybrid Full-Bridge Half-Bridge Converter with Stability Network and Dual Outputs in Series Hybrid Full-Bridge Half-Bridge Converter with Stability Network and Dual Outputs in Series 1 Sowmya S, 2 Vanmathi K 1. PG Scholar, Department of EEE, Hindusthan College of Engineering and Technology, Coimbatore,

More information

A Predictive Control Strategy for Power Factor Correction

A Predictive Control Strategy for Power Factor Correction IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 8, Issue 6 (Nov. - Dec. 2013), PP 07-13 A Predictive Control Strategy for Power Factor Correction

More information

Transformerless Buck-Boost Converter with Positive Output Voltage and Feedback

Transformerless Buck-Boost Converter with Positive Output Voltage and Feedback Transformerless Buck-Boost Converter with Positive Output Voltage and Feedback Aleena Paul K PG Student Electrical and Electronics Engineering Mar Athanasius College of Engineering Kerala, India Babu Paul

More information

A Pv Fed Buck Boost Converter Combining Ky And Buck Converter With Feedback

A Pv Fed Buck Boost Converter Combining Ky And Buck Converter With Feedback International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 10, Issue 2 (February 2014), PP.84-88 A Pv Fed Buck Boost Converter Combining Ky

More information

ISSN Vol.03,Issue.07, August-2015, Pages:

ISSN Vol.03,Issue.07, August-2015, Pages: WWW.IJITECH.ORG ISSN 2321-8665 Vol.03,Issue.07, August-2015, Pages:1276-1281 Comparison of an Active and Hybrid Power Filter Devices THAKKALAPELLI JEEVITHA 1, A. SURESH KUMAR 2 1 PG Scholar, Dept of EEE,

More information

Modified SEPIC PFC Converter for Improved Power Factor and Low Harmonic Distortion

Modified SEPIC PFC Converter for Improved Power Factor and Low Harmonic Distortion Modified SEPIC PFC Converter for Improved Power Factor and Low Harmonic Distortion Amrutha M P 1, Priya G Das 2 1, 2 Department of EEE, Abdul Kalam Technological University, Palakkad, Kerala, India-678008

More information

Scientific Journal Impact Factor: (ISRA), Impact Factor: 1.852

Scientific Journal Impact Factor: (ISRA), Impact Factor: 1.852 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Average Current-Mode Control with Leading Phase Admittance Cancellation Principle for Single Phase AC-DC Boost converter Mukeshkumar

More information

Design and Analysis for Various Controlling Methods of a Z-Source Inverter

Design and Analysis for Various Controlling Methods of a Z-Source Inverter International Journal of Electrical Engineering. ISSN 0974-2158 olume 10, Number 2 (2017), pp. 271-288 International Research Publication House http://www.irphouse.com Design and Analysis for arious Controlling

More information

II. L-Z SOURCE INVERTER

II. L-Z SOURCE INVERTER V/F Speed Control of Induction Motor by using L- Z Source Inverter Priyanka A. Jadhav 1, Amruta A. Patil 2, Punam P. Patil 3, Supriya S. Yadav 4, Rupali S. Patil 5, Renu C. Lohana 6 1,2,3,4,5,6 Electrical

More information

CHAPTER 6 BRIDGELESS PFC CUK CONVERTER FED PMBLDC MOTOR

CHAPTER 6 BRIDGELESS PFC CUK CONVERTER FED PMBLDC MOTOR 105 CHAPTER 6 BRIDGELESS PFC CUK CONVERTER FED PMBLDC MOTOR 6.1 GENERAL The line current drawn by the conventional diode rectifier filter capacitor is peaked pulse current. This results in utility line

More information

A New ZVS Bidirectional DC-DC Converter With Phase-Shift Plus PWM Control Scheme

A New ZVS Bidirectional DC-DC Converter With Phase-Shift Plus PWM Control Scheme A New ZVS Bidirectional DC-DC Converter With Phase-Shift Plus PWM Control Scheme Huafeng Xiao, Liang Guo, Shaojun Xie College of Automation Engineering,Nanjing University of Aeronautics and Astronautics

More information

Simulation of Z-Source Inverter Fed Induction Motor

Simulation of Z-Source Inverter Fed Induction Motor Simulation of Z-Source Inverter Fed Induction Motor Adarsh J Mehta 1, Dr. Ashwini A Godbole 2 1 Solapur University, Nagesh Karajagi Orchid College of Engineering & Technology, Solapur 2 Savitribai Phule

More information

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 01, 2016 ISSN (online):

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 01, 2016 ISSN (online): IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 01, 2016 ISSN (online): 2321-0613 Study of Bidirectional AC/DC Converter with Feedforward Scheme using Neural Network Control

More information

A Study on Staggered Parallel DC/DC Converter Applied to Energy Storage System

A Study on Staggered Parallel DC/DC Converter Applied to Energy Storage System International Core Journal of Engineering Vol.3 No.11 017 ISSN: 414-1895 A Study on Staggered Parallel DC/DC Converter Applied to Energy Storage System Jianchang Luo a, Feng He b Chongqing University of

More information

CHAPTER 6 ANALYSIS OF THREE PHASE HYBRID SCHEME WITH VIENNA RECTIFIER USING PV ARRAY AND WIND DRIVEN INDUCTION GENERATORS

CHAPTER 6 ANALYSIS OF THREE PHASE HYBRID SCHEME WITH VIENNA RECTIFIER USING PV ARRAY AND WIND DRIVEN INDUCTION GENERATORS 73 CHAPTER 6 ANALYSIS OF THREE PHASE HYBRID SCHEME WITH VIENNA RECTIFIER USING PV ARRAY AND WIND DRIVEN INDUCTION GENERATORS 6.1 INTRODUCTION Hybrid distributed generators are gaining prominence over the

More information

TYPICALLY, a two-stage microinverter includes (a) the

TYPICALLY, a two-stage microinverter includes (a) the 3688 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 33, NO. 5, MAY 2018 Letters Reconfigurable LLC Topology With Squeezed Frequency Span for High-Voltage Bus-Based Photovoltaic Systems Ming Shang, Haoyu

More information

Dynamic Performance Investigation of Transformer less High Gain Converter with PI Controller

Dynamic Performance Investigation of Transformer less High Gain Converter with PI Controller International Journal for Modern Trends in Science and Technology Volume: 03, Issue No: 06, June 2017 ISSN: 2455-3778 http://www.ijmtst.com Dynamic Performance Investigation of Transformer Kommesetti R

More information

Photovoltaic Grid-Connected System Based On Cascaded Quasi-Z-Source Network

Photovoltaic Grid-Connected System Based On Cascaded Quasi-Z-Source Network Photovoltaic Grid-Connected System Based On Cascaded Quasi-Z-Source Network T. Hari Hara Kumar 1, P. Aravind 2 Final Year B.Tech, Dept. of EEE, K L University, Guntur, AP, India 1 Final Year B.Tech, Dept.

More information

Narasimharaju. Balaraju *1, B.Venkateswarlu *2

Narasimharaju. Balaraju *1, B.Venkateswarlu *2 Narasimharaju.Balaraju*, et al, [IJRSAE]TM Volume 2, Issue 8, pp:, OCTOBER 2014. A New Design and Development of Step-Down Transformerless Single Stage Single Switch AC/DC Converter Narasimharaju. Balaraju

More information

Design of a Wide Input Range DC-DC Converter Suitable for Lead-Acid Battery Charging

Design of a Wide Input Range DC-DC Converter Suitable for Lead-Acid Battery Charging ENGINEER - Vol. XXXXIV, No. 04, pp, [47-53], 2011 The Institution of Engineers, Sri Lanka Design of a Wide Input Range DC-DC Converter Suitable for Lead-Acid Battery Charging M.W.D.R. Nayanasiri and J.A.K.S.Jayasinghe,

More information

DYNAMIC VOLTAGE RESTORER USING THREE PHASE AC-AC CONVERTER

DYNAMIC VOLTAGE RESTORER USING THREE PHASE AC-AC CONVERTER DYNAMIC VOLTAGE RESTORER USING THREE PHASE AC-AC CONVERTER 1 V.JAYALAKSHMI, 2 DR.N.O.GUNASEKHAR 1 Research Scholar, Bharath University, Chennai, Tamil Nadu, India. 2 Professor, Eswari Engineering College,

More information

Design of step-up converter for a constant output in a high power design

Design of step-up converter for a constant output in a high power design 2015; 1(6): 125-129 ISSN Print: 2394-7500 ISSN Online: 2394-5869 Impact Factor: 3.4 IJAR 2015; 1(6): 125-129 www.allresearchjournal.com Received: 25-03-2015 Accepted: 27-04-2015 M. Tech, (VLSI Design and

More information

IN recent years, the development of high power isolated bidirectional

IN recent years, the development of high power isolated bidirectional IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 23, NO. 2, MARCH 2008 813 A ZVS Bidirectional DC DC Converter With Phase-Shift Plus PWM Control Scheme Huafeng Xiao and Shaojun Xie, Member, IEEE Abstract The

More information

Comparison of the Traditional VSI & CSI with Novel ZSI for Study the Pre-Dominate Harmonics Effect

Comparison of the Traditional VSI & CSI with Novel ZSI for Study the Pre-Dominate Harmonics Effect Comparison of the Traditional VSI & CSI with Novel ZSI for Study the Pre-Dominate Harmonics Effect Mohammad Abdul Hakeem 1, Hazeera Sulthana 2 1 MIzan-Tepi University, Electrical and Computer Engineering,

More information

Generalized Multilevel Current-Source PWM Inverter with No-Isolated Switching Devices

Generalized Multilevel Current-Source PWM Inverter with No-Isolated Switching Devices Generalized Multilevel Current-Source PWM Inverter with No-Isolated Switching Devices Suroso* (Nagaoka University of Technology), and Toshihiko Noguchi (Shizuoka University) Abstract The paper proposes

More information

Simple Boost Control Method Optimized with Genetic Algorithm for Z-Source Inverter

Simple Boost Control Method Optimized with Genetic Algorithm for Z-Source Inverter JOURNAL OF ELECTRIC POWER AND ENERGY CONVERSION SYSTEMS (JEPECS) JEPECS VOL. 1, NO. 1, PP. 32-36, SPRING 2016 ISSN: 2345-4830 print/2345-4733 online Simple Boost Control Method Optimized with Genetic Algorithm

More information

Research Article Modified Embedded Switched Inductor Z Source Inverter

Research Article Modified Embedded Switched Inductor Z Source Inverter Research Journal of Applied Sciences, Engineering and Technology 7(17): 3544-3552, 2014 DOI:10.19026/rjaset.7.707 ISSN: 2040-7459; e-issn: 2040-7467 2014 Maxwell Scientific Publication Corp. Submitted:

More information

UNITY POWER FACTOR CONTROL BY PWM RECTIFIER

UNITY POWER FACTOR CONTROL BY PWM RECTIFIER UNITY POWER FACTOR CONTROL BY PWM RECTIFIER Imran syed 1, M. Bala Subba Reddy 2, K. Hari Babu 3 1 M.Tech Scholar (P.E), 2 Professor & H.O.D, 3 Professor&Vice Principal, Department of EEE Prakasam Engineering

More information

THE FEEDBACK PI CONTROLLER FOR BUCK-BOOST CONVERTER COMBINING KY AND BUCK CONVERTER

THE FEEDBACK PI CONTROLLER FOR BUCK-BOOST CONVERTER COMBINING KY AND BUCK CONVERTER THE FEEDBACK PI CONTROLLER FOR BUCK-BOOST CONERTER COMBINING KY AND BUCK CONERTER K. Sreedevi* E. David Dept. of Electrical and Electronics Engineering, Nehru College of Engineering and Research Centre,

More information

Energetic PV Cell Based Power Supply Management Using Modified Quasi-Z-Source Inverter

Energetic PV Cell Based Power Supply Management Using Modified Quasi-Z-Source Inverter Energetic PV Cell Based Power Supply Management Using Modified Quasi-Z-Source Inverter SREEKANTH C 1, VASANTHI V 2 1 MTech student, 2 Professor Department of Electrical and Electronics NSS College of Engineering,

More information

Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org) A High Power Density Single Phase Pwm Rectifier with Active Ripple Energy Storage A. Guruvendrakumar 1 and Y. Chiranjeevi 2 1 Student (Power Electronics), EEE Department, Sathyabama University, Chennai,

More information

@IJMTER-2016, All rights Reserved 241

@IJMTER-2016, All rights Reserved 241 Design of Active Buck Boost Inverter for AC applications Vijaya Kumar.C 1,Shasikala.G 2 PG Student 1, Assistant Professor 2 Department of Electrical and Electronics Engineering, Er.Perumal Manimekalai

More information

A Double ZVS-PWM Active-Clamping Forward Converter: Analysis, Design, and Experimentation

A Double ZVS-PWM Active-Clamping Forward Converter: Analysis, Design, and Experimentation IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 16, NO. 6, NOVEMBER 2001 745 A Double ZVS-PWM Active-Clamping Forward Converter: Analysis, Design, and Experimentation René Torrico-Bascopé, Member, IEEE, and

More information

Design of Shunt Active Power Filter by using An Advanced Current Control Strategy

Design of Shunt Active Power Filter by using An Advanced Current Control Strategy Design of Shunt Active Power Filter by using An Advanced Current Control Strategy K.Sailaja 1, M.Jyosthna Bai 2 1 PG Scholar, Department of EEE, JNTU Anantapur, Andhra Pradesh, India 2 PG Scholar, Department

More information

A Bi-directional Z-source Inverter for Electric Vehicles

A Bi-directional Z-source Inverter for Electric Vehicles A Bi-directional Z-source Inverter for Electric Vehicles Makoto Yamanaka and Hirotaka Koizumi Tokyo University of Science 1-14-6 Kudankita, Chiyoda-ku Tokyo 102-0073 Japan Email: hosukenigou@ieee.org littlespring@ieee.org

More information

SHUNT ACTIVE POWER FILTER

SHUNT ACTIVE POWER FILTER 75 CHAPTER 4 SHUNT ACTIVE POWER FILTER Abstract A synchronous logic based Phase angle control method pulse width modulation (PWM) algorithm is proposed for three phase Shunt Active Power Filter (SAPF)

More information

Switched Coupled Quasi Z Source Inverter for Photovoltaic Power Generation System

Switched Coupled Quasi Z Source Inverter for Photovoltaic Power Generation System IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 PP 14-19 www.iosrjen.org Switched Coupled Quasi Z Source Inverter for Photovoltaic Power Generation System D.Priyanka 1, A.Margret

More information

FPGA Implementation of Predictive Control Strategy for Power Factor Correction

FPGA Implementation of Predictive Control Strategy for Power Factor Correction FPGA Implementation of Predictive Control Strategy for Power Factor Correction Yeshwenth Jayaraman, and Udhayaprakash Ravindran Abstract The basic idea of the proposed digital control PFC algorithm is

More information

CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL

CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL 14 CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL 2.1 INTRODUCTION Power electronics devices have many advantages over the traditional power devices in many aspects such as converting

More information

PERFORMANCE EVALUATION OF THREE PHASE SCALAR CONTROLLED PWM RECTIFIER USING DIFFERENT CARRIER AND MODULATING SIGNAL

PERFORMANCE EVALUATION OF THREE PHASE SCALAR CONTROLLED PWM RECTIFIER USING DIFFERENT CARRIER AND MODULATING SIGNAL Journal of Engineering Science and Technology Vol. 10, No. 4 (2015) 420-433 School of Engineering, Taylor s University PERFORMANCE EVALUATION OF THREE PHASE SCALAR CONTROLLED PWM RECTIFIER USING DIFFERENT

More information

A Novel Single-Stage Push Pull Electronic Ballast With High Input Power Factor

A Novel Single-Stage Push Pull Electronic Ballast With High Input Power Factor 770 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 48, NO. 4, AUGUST 2001 A Novel Single-Stage Push Pull Electronic Ballast With High Input Power Factor Chang-Shiarn Lin, Member, IEEE, and Chern-Lin

More information

Bidirectional Ac/Dc Converter with Reduced Switching Losses using Feed Forward Control

Bidirectional Ac/Dc Converter with Reduced Switching Losses using Feed Forward Control Bidirectional Ac/Dc Converter with Reduced Switching Losses using Feed Forward Control Lakkireddy Sirisha Student (power electronics), Department of EEE, The Oxford College of Engineering, Abstract: The

More information

Multilevel Inverter Based on Resonant Switched Capacitor Converter

Multilevel Inverter Based on Resonant Switched Capacitor Converter Multilevel Inverter Based on Resonant Switched Capacitor Converter K. Sheshu Kumar, V. Bharath *, Shankar.B Department of Electronics & Communication, Vignan Institute of Technology and Science, Deshmukhi,

More information

LLC Resonant Converter for Battery Charging Application

LLC Resonant Converter for Battery Charging Application International Journal of Electrical Engineering. ISSN 0974-2158 Volume 8, Number 4 (2015), pp. 379-388 International Research Publication House http://www.irphouse.com LLC Resonant Converter for Battery

More information

Linear Transformer based Sepic Converter with Ripple Free Output for Wide Input Range Applications

Linear Transformer based Sepic Converter with Ripple Free Output for Wide Input Range Applications Linear Transformer based Sepic Converter with Ripple Free Output for Wide Input Range Applications Karthik Sitapati Professor, EEE department Dayananda Sagar college of Engineering Bangalore, India Kirthi.C.S

More information

Multilevel Current Source Inverter Based on Inductor Cell Topology

Multilevel Current Source Inverter Based on Inductor Cell Topology Multilevel Current Source Inverter Based on Inductor Cell Topology A.Haribasker 1, A.Shyam 2, P.Sathyanathan 3, Dr. P.Usharani 4 UG Student, Dept. of EEE, Magna College of Engineering, Chennai, Tamilnadu,

More information

Voltage Controlled Non Isolated Bidirectional DC-DC Converter with High Voltage Gain

Voltage Controlled Non Isolated Bidirectional DC-DC Converter with High Voltage Gain Voltage Controlled Non Isolated Bidirectional DC-DC Converter with High Voltage Gain Fathima Anooda M P PG Student Electrical and Electronics Engineering Mar Athanasius College of Engineering Kerala, India

More information

CHAPTER 5 MODIFIED SINUSOIDAL PULSE WIDTH MODULATION (SPWM) TECHNIQUE BASED CONTROLLER

CHAPTER 5 MODIFIED SINUSOIDAL PULSE WIDTH MODULATION (SPWM) TECHNIQUE BASED CONTROLLER 74 CHAPTER 5 MODIFIED SINUSOIDAL PULSE WIDTH MODULATION (SPWM) TECHNIQUE BASED CONTROLLER 5.1 INTRODUCTION Pulse Width Modulation method is a fixed dc input voltage is given to the inverters and a controlled

More information

Australian Journal of Basic and Applied Sciences. Simulation and Analysis of Closed loop Control of Multilevel Inverter fed AC Drives

Australian Journal of Basic and Applied Sciences. Simulation and Analysis of Closed loop Control of Multilevel Inverter fed AC Drives AENSI Journals Australian Journal of Basic and Applied Sciences ISSN:1991-8178 Journal home page: www.ajbasweb.com Simulation and Analysis of Closed loop Control of Multilevel Inverter fed AC Drives 1

More information

FUZZY CONTROL OF SHOOT THROUGH TIME OF SINGLE STAGE BOOST INVERTER WITH COUPLED INDUCTOR FED BY A FUEL CELL

FUZZY CONTROL OF SHOOT THROUGH TIME OF SINGLE STAGE BOOST INVERTER WITH COUPLED INDUCTOR FED BY A FUEL CELL INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET) Proceedings of the International Conference on Emerging Trends in Engineering and Management (ICETEM14) ISSN 0976 6545(Print) ISSN 0976

More information

IN THE high power isolated dc/dc applications, full bridge

IN THE high power isolated dc/dc applications, full bridge 354 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 21, NO. 2, MARCH 2006 A Novel Zero-Current-Transition Full Bridge DC/DC Converter Junming Zhang, Xiaogao Xie, Xinke Wu, Guoliang Wu, and Zhaoming Qian,

More information

Impedance Source Inverter for Wind Energy Conversion System

Impedance Source Inverter for Wind Energy Conversion System Impedance Source Inverter for Wind Energy Conversion System Patel Uday 1, Parekh Zenifer 2 P.G. Student, Department of Electrical Engineering, L.D. College Engineering College, Ahmedabad, Gujarat, India

More information

A THREE-PHASE HIGH POWER FACTOR TWO-SWITCH BUCK- TYPE CONVERTER

A THREE-PHASE HIGH POWER FACTOR TWO-SWITCH BUCK- TYPE CONVERTER A THREE-PHASE HIGH POWER FACTOR TWO-SWITCH BUCK- TYPE CONVERTER SEEMA.V. 1 & PRADEEP RAO. J 2 1,2 Electrical and Electronics, The Oxford College of Engineering, Bangalore-68, India Email:Seema.aish1@gmail.com

More information

IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: ,p-ISSN: , PP

IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: ,p-ISSN: , PP A Single Switch Integrated Dual Output Converter with PFM+PWM Control Tinu kurian 1, Smitha N.P 2 Ajith K.A 3 PG Scholar [PE], Dept. of EEE, Sree Narayana Gurukulam College Of Engineering And Technology,

More information

Five-Level Full-Bridge Zero Voltage and Zero Current Switching DC-DC Converter Topology

Five-Level Full-Bridge Zero Voltage and Zero Current Switching DC-DC Converter Topology IJIRST International Journal for Innovative Research in Science & Technology Volume 1 Issue 11 April 2015 ISSN (online): 2349-6010 Five-Level Full-Bridge Zero Voltage and Zero Current Switching DC-DC Converter

More information

Modified Buck-Boost Converter with High Step-up and Step-Down Voltage Ratio

Modified Buck-Boost Converter with High Step-up and Step-Down Voltage Ratio ISSN (Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology An ISO 3297: 2007 Certified Organization Volume 6, Special Issue 5,

More information

A Fuzzy Controlled PWM Current Source Inverter for Wind Energy Conversion System

A Fuzzy Controlled PWM Current Source Inverter for Wind Energy Conversion System 7 International Journal of Smart Electrical Engineering, Vol.3, No.2, Spring 24 ISSN: 225-9246 pp.7:2 A Fuzzy Controlled PWM Current Source Inverter for Wind Energy Conversion System Mehrnaz Fardamiri,

More information

ANALYSIS AND IMPLEMENTATION OF A BIDIRECTIONAL DC-DC CONVERTER WITH COUPLED INDUCTOR

ANALYSIS AND IMPLEMENTATION OF A BIDIRECTIONAL DC-DC CONVERTER WITH COUPLED INDUCTOR ANALYSIS AND IMPLEMENTATION OF A BIDIRECTIONAL DC-DC CONVERTER WITH COUPLED INDUCTOR Mr.M.J.Murali 1, Mrs.K.Presilla Vasanthini 2 and Mrs.G.Kalapriya dharshini 3 1,2,3 Assistant Professor, Department of

More information

REDUCED SWITCHING LOSS AC/DC/AC CONVERTER WITH FEED FORWARD CONTROL

REDUCED SWITCHING LOSS AC/DC/AC CONVERTER WITH FEED FORWARD CONTROL REDUCED SWITCHING LOSS AC/DC/AC CONVERTER WITH FEED FORWARD CONTROL Avuluri.Sarithareddy 1,T. Naga durga 2 1 M.Tech scholar,lbr college of engineering, 2 Assistant professor,lbr college of engineering.

More information

Application of Compensators for Non-Periodic Currents

Application of Compensators for Non-Periodic Currents Application of ompensators for Non-Periodic urrents Leon M. olbert 1 tolbert@utk.edu Yan Xu 1 yxu3@utk.edu Jianqing hen 1 jchen5@utk.edu Fang Z. Peng 2 fzpeng@msu.edu John N. hiasson 1 chiasson@utk.edu

More information

Performance Analysis of Z-Source Cascaded H-Bridge Multilevel Inverter Based on Multi Carrier PWM Techniques

Performance Analysis of Z-Source Cascaded H-Bridge Multilevel Inverter Based on Multi Carrier PWM Techniques Vol. 3, Issue. 6, Nov - Dec. 2013 pp-3544-3551 ISSN: 2249-6645 Performance Analysis of Z-Source Cascaded H-Bridge Multilevel Inverter Based on Multi Carrier PWM Techniques F.X.Edwin Deepak 1 1. Assistant

More information

A Switched Boost Inverter Fed Three Phase Induction Motor Drive

A Switched Boost Inverter Fed Three Phase Induction Motor Drive A Switched Boost Inverter Fed Three Phase Induction Motor Drive 1 Riya Elizabeth Jose, 2 Maheswaran K. 1 P.G. student, 2 Assistant Professor 1 Department of Electrical and Electronics engineering, 1 Nehru

More information

Hardware Implementation of SPWM Based Diode Clamped Multilevel Invertr

Hardware Implementation of SPWM Based Diode Clamped Multilevel Invertr Hardware Implementation of SPWM Based Diode Clamped Multilevel Invertr Darshni M. Shukla Electrical Engineering Department Government Engineering College Valsad, India darshnishukla@yahoo.com Abstract:

More information

Integration of Two Flyback Converters at Input PFC Stage for Lighting Applications

Integration of Two Flyback Converters at Input PFC Stage for Lighting Applications Integration of Two Flyback Converters at Input PFC Stage for Lighting Applications Anjali.R.N 1, K. Shanmukha Sundar 2 PG student [Power Electronics], Dept. of EEE, Dayananda Sagar College of Engineering,

More information

International Journal of Research in Computer and Communication Technology, Vol 4, Issue 1, January

International Journal of Research in Computer and Communication Technology, Vol 4, Issue 1, January Reduction of Common Mode Leakage Current in Three Phase Transformer less Photovoltaic Grid Connected System 1 Prameela Pragada, 2 M. Sridhar 1 PG Scholar, 2 Professor& HOD, Dept. of EEE,GIET College, Rajahmundry

More information

IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 27, NO. 11, NOVEMBER

IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 27, NO. 11, NOVEMBER IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 27, NO. 11, NOVEMBER 2012 4391 A Novel DC-Side Zero-Voltage Switching (ZVS) Three-Phase Boost PWM Rectifier Controlled by an Improved SVM Method Zhiyuan Ma,

More information