Load Cells, LVDTs and Thermocouples

Size: px
Start display at page:

Download "Load Cells, LVDTs and Thermocouples"

Transcription

1 Load Cells, LVDTs and Thermocouples Introduction Load cells are utilized in nearly every electronic weighing system while LVDTs are used to measure the displacement of a moving object. Thermocouples have a wide variety of applications both in the laboratory and commercial environment. Understanding how these sensors operate, you will better be able to comprehend the systems in which they are used. Objective Learn to calibrate and use load cells, LVDT s and thermocouples To use load cells, LVDTs and thermocouples to acquire data To process and interpret recorded data Theory Load Cell In contemporary control applications, weighing systems are used in both static and dynamic applications. Some systems are technologically advanced, interfacing with computers for database integration and using micro-processor based techniques to proportion material inputs and feed rates. To send the weight information to computers, signal conditioners are utilized to permit direct communication from the load cell via conversion of the load cell s analog signal to a digital signal. A load cell is classified as a transducer. This device converts force or weight into an electrical signal. The most common type of load cell in use today is the strain based electronic load cell. This type of sensor uses a strain gauge to measure the strain on a known member within the cell. The strain is then used to calculate the applied load. A strain gauge is a thin wire mounted on a piece of film. The gauge is cemented to the surface of the strain element. The type of strain gauge, mounting procedure, and materials used all have a measurable effect on overall performance of the load cell. As the surface to which the gage is attached becomes strained, the wires stretch or compress changing their resistance proportional to the applied load. One or more strain gauges are used in the making of a load cell. Figure 1 shows an image of a strain gauge. Typically, these types of sensors use many strain gauges wired together into a Wheatstone bridge. The Wheatstone bridge was developed by English physicist Sir Charles Wheatstone in The bridge measures the change in resistance of the strain gages and converts it into a voltage. The change in resistance is linearly proportional to the change in strain. The schematic of the Wheatstone bridge can be seen in Figure 2. Figure 1: Strain gauge

2 R1 R3 Vs ΔV R2 R4 Figure 2: Wheatstone Bridge The Wheatstone bridge can be used to eliminate unwanted effects such as thermal, bending, and torsion. The layout of the Wheatstone bridge depends on the type of load cell. The load cell can measure force in many ways including bending beam and shear beam methods. Load cells can also be classified by their shape such as canister, S-type, beam, shear and button. Each type of load cell has different advantages and disadvantages as well as varying ranges and accuracies. Choosing a load cell depends on the application and the environment that the load cell will be performing in. Figure 3 shows different types of load cell designs. Figure 3: Various types of load cells LVDT s A Linear Variable Differential Transformer (LVDT) is a type of displacement transducer. It measures the displacement of a mechanical moving object in actual applications ranging from jet engines to robotics. For example, hydraulics and mechanical assemblies utilize LVDT s.

3 Figure 4: Schematics of an LVDT Figure 4 depicts a transformer with a primary winding and two secondary windings connected in opposition with a moveable core. The dots at each transformer winding indicate the polarity of the induced voltage. The movable core of an LVDT is part of a shaft that extends out of the LVDT and attaches to any moveable object. As the object moves, causing the shaft or core to move within the LVDT, the LVDT accurately measures the displacement of the object. The excitation provided to an LVDT is usually a sine wave measuring several volts RMS and is typically between 1 khz and 20 khz. The output of an LVDT is based upon the relative displacement of the magnetic core. When the magnetic core is centered, with respect to the two secondary windings, the output summation of both secondary windings is zero. As the core moves toward one of the secondary windings, the net summation output increases in amplitude and produces a non-zero differential AC voltage output. The phase of the summation signal will be in phase with primary or 180 degrees out of phase with the primary, depending on which secondary winding the core moves towards. LVDT s have a given range. This range is given as a plus or minus displacement that corresponds to a plus or minus excitation voltage. This means that for every increment of displacement is a given increment of voltage. Each LVDT comes with a calibration certificate that shows how linear the LVDT is and what range it is capable of operating at. Thermocouples German physicist Thomas Seebeck discovered that if two ends of metal were at different temperatures an electric current would flow through it. This is known as the Seebeck effect or thermoelectric effect. Seebeck also discovered that if two different metals were connected in a loop and each junction was at a different temperature, an electric current would flow. This is the theory behind thermocouples. One junction (cold junction) of a thermocouple is held at a known temperature while the other end is the measuring junction (hot junction). The thermocouple measures the difference in the two temperatures which can be converted into the actual temperature of the hot junction based on the known temperature of the cold junction.

4 There are various types of thermocouples based on the two metals used. Table 1 shows some common types of thermocouples and their corresponding temperature ranges. Different thermocouples can be used depending on the environment and cost considerations. This lab will be using a type J thermocouple. The cold junction is connected to a National Instruments module designed specifically for thermocouples. This module has a built in thermistor to measure the cold junction of the thermocouple. The module then can convert the volts measured by the module into a hot junction temperature. The type of thermocouple used must be configured into the module in order to read temperature. This lab will be reading the millivolt output. The thermocouple will then be calibrated using a probe thermometer for calibration. Figure 5 is an image of a thermocouple. It is simply two wires connected together and incased in insulation. Figure 5: Thermocouple Table 1: Thermocouple types and temperature ranges Type Material Normal Range, C J Iron-constantan -190 to 760 T Copper-constantan -200 to 37 K Chromel-alumel -190 to 1260 E Chromel-constantan -100 to 1260 S 90% platinum + 10% rhodium-platinum 0 to 1482 R 87% platinum + 13% rhodium-platinum 0 to 1482 Procedure Thermocouple 1. Open and run the Thermocouple.vi 2. Fill one Styrofoam cup with hot water and add ice cubes and the probe thermometer 3. Enter the temperature measured by the thermometer into the Actual Temperature control and press the Record Data button. This will record the output voltage and the actual temperature to a text file. 4. Wait one minute and record another data point. Repeat this for a total of 5 data points. 5. Empty the Styrofoam cup and fill it with room temperature water. Add ice cubes and the probe thermometer.

5 6. Repeat steps 3 and 4 until 5 more data points have been recorded. The program will close and ask for a name and location to save the data file. LVDT 1. Open and run the LVDT.vi 2. Set the micrometer to 0 inches 3. Enter a value of 0 for the actual displacement. The actual displacement is a control used to record the actual displacement of the LVDT tip relative to its 0 displacement. This corresponds to the magnetic core centered between the two secondary coils. 4. Make sure the Offset Null control is set to zero 5. Enter a value of zero in the Actual Displacement control. Press the Record Data button to record the current displacement along with the LVDT displacement. 6. Move the micrometer 0.1 inches. Enter the current displacement of the micrometer into the Actual Displacement control. Press the Record Data button. 7. Repeat step 6 until the micrometer reads 1 inch. Once the micrometer reaches 1 inch repeat the step 6 moving backwards from 1 inch to 0 at 0.1 inch increments. 8. Press the Save and Quit button to save the data file. The program will close and ask for a name and location to save the data file. 9. Check to make sure the data file is correct. There should be a text file with two columns. The first column is the actual displacement recorded from the micrometer and the second is the LVDT displacement readout.

6 10. Repeat the previous procedure but apply an offset to zero the displacement readout of the LVDT. This means that the Displacement indicator should read zero when the micrometer is at zero. This will in effect give a 1 inch compressive range. Record and save the data to a file using the previous procedure. Load Cell 1. Open and run the LoadCell.vi 2. Make sure the Actual Force reads zero 3. Press the Record Data button to take the first data point. 4. Apply one 2.5 lb weight to the load cell 5. Enter the value for the actual weight in the Actual Force control. Press the Record Data to take the next data point. 6. Repeat steps 4 and 5 until all the weights have been applied to the load cell. Then repeat the procedure moving backwards from the maximum weight. 7. Once all data points have been recorded press the Save and Quit button. The program will close and ask for a name and location to save the data file.

7 Pre-Lab Preparation Read through the theory section for this experiment to understand the principles of load cells, LVDT s and thermocouples. Read through the procedures section for each sensor. Workstation Details A laptop computer with National Instruments LabVIEW software NI cdaq-9174 chassis NI 9237 load cell module with load cell lb weights NI 9215 with BNC LVDT module with LVDT, micrometer and stand NI 9211 thermocouple module with J type thermocouple Control company probe thermometer Styrofoam cup and ice ± 15 volt DC power supply Lab Report You should submit a lab report. Your lab report should include but is not limited to the following information:

8 Thermocouple Use Excel to create a table and plot of the calibration data. How many millivolts per degree does your thermocouple read? What are thermocouple tables? How does the slope of your calibration compare to that shown for a J type thermocouple in a thermocouple table? Are they different and if so what might be the reason for this? What are the advantages of using a thermocouple over other types of measurement devices? What are the materials used in the J type thermocouple? What is the range? LVDT Use Excel to create a table and plot for each set of data. What is the range of the LVDT? What is the purpose of having an offset for the LVDT? An experiment requires you to record a displacement that could be 0.2 inches in compression and up to 0.8 inches in tension. How can the offset of the front panel be used to change the output reading of the LVDT to correspond to this range? In what types of situations might an offset want to be used in an experiment? Load Cell Use Excel to create a table and plot of the data How linear is your data? Is there a good correlation between the load cell readout and the actual weight applied? Is there a hysteresis? What could cause this? The current load cell is able to measure 2.5 lb increments with relatively good accuracy. This means the sensitivity of the load cell is good enough to recognize a change in weight of 2.5 lb with little error. Could this be done with a load cell with a lb rating? Why should the range of the load cell be considered when performing a test? Can the same load be used to measure the weight of a car and the weight of a role of coins?

1. A transducer converts

1. A transducer converts 1. A transducer converts a. temperature to resistance b. force into current c. position into voltage d. one form of energy to another 2. Whose of the following transducers the output is a change in resistance?

More information

Page 1 of 6 A Historical Perspective From Aristotle to Hawking Force & Its Effects Measurement Limitations The Strain Gage Sensor Designs Measuring Circuits Application & Installation Process Pressure

More information

DSC Lab 2: Force and Displacement Measurement Page 1

DSC Lab 2: Force and Displacement Measurement Page 1 DSC Lab 2: Force and Displacement Measurement Page 1 Overview of Laboratory on Force and Displacement Measurement This lab course introduces concepts in force and motion measurement using strain-gauge

More information

MECE 3320 Measurements & Instrumentation. Data Acquisition

MECE 3320 Measurements & Instrumentation. Data Acquisition MECE 3320 Measurements & Instrumentation Data Acquisition Dr. Isaac Choutapalli Department of Mechanical Engineering University of Texas Pan American Sampling Concepts 1 f s t Sampling Rate f s 2 f m or

More information

ni.com Sensor Measurement Fundamentals Series

ni.com Sensor Measurement Fundamentals Series Sensor Measurement Fundamentals Series How to Design an Accurate Temperature Measurement System Jackie Byrne Product Marketing Engineer National Instruments Sensor Measurements 101 Sensor Signal Conditioning

More information

An Instrumentation System

An Instrumentation System Transducer As Input Elements to Instrumentation System An Instrumentation System Input signal (measurand) electrical or non-electrical Input Device Signal Conditioning Circuit Output Device? -amplifier

More information

Biomedical Electrodes, Sensors, and Transducers. Definition of Biomedical Electrodes, Sensors, and Transducers. Electrode: Sensor: Transducer:

Biomedical Electrodes, Sensors, and Transducers. Definition of Biomedical Electrodes, Sensors, and Transducers. Electrode: Sensor: Transducer: Biomedical Electrodes, Sensors, and Transducers from: Chaterjee, Biomedical Instrumentation, chapter 6 Key Points Electrodes, Sensors, and Transducers: - types of electrodes - voltaic - electrolytic -

More information

Chapter 8. Digital and Analog Interfacing Methods

Chapter 8. Digital and Analog Interfacing Methods Chapter 8 Digital and Analog Interfacing Methods Lesson 16 MCU Based Instrumentation Outline Resistance and Capacitance based Sensor Interface Inductance based Sensor (LVDT) Interface Current based (Light

More information

Signal Conditioning Fundamentals for PC-Based Data Acquisition Systems

Signal Conditioning Fundamentals for PC-Based Data Acquisition Systems Application Note 048 Signal Conditioning Fundamentals for PC-Based Data Acquisition Systems Introduction PC-based data acquisition (DAQ) systems and plugin boards are used in a very wide range of applications

More information

Length and Position Measurement

Length and Position Measurement Length and Position Measurement Primary standards were once based on the length of a bar of metal at a given temperature. The present standard is: 1 meter = distance traveled by light in a vacuum in 3.335641

More information

LAB ASSIGNMENT No. 1 Characteristics of IC Temperature Sensor (LM 335)

LAB ASSIGNMENT No. 1 Characteristics of IC Temperature Sensor (LM 335) LAB ASSIGNMENT No. 1 Characteristics of IC Temperature Sensor (LM 335) Equipment Required: ST2302with power supply cord Multi Meter Connecting cords Connection diagram: Temperature Transducers: The most

More information

Course of Instrumentation. and Measurement. National School of Engineers of Tunis ENIT. Karim Bourouni. Dipl.Dr-Ing.

Course of Instrumentation. and Measurement. National School of Engineers of Tunis ENIT. Karim Bourouni. Dipl.Dr-Ing. 1 Course of Instrumentation and Measurement Karim Bourouni National School of Engineers of Tunis ENIT Dipl.Dr-Ing. (R.U. Energetic of Buildings and Solar Systems) Industrial Engineering Department 2 Plan

More information

Position Sensors. The Potentiometer.

Position Sensors. The Potentiometer. Position Sensors In this tutorial we will look at a variety of devices which are classed as Input Devices and are therefore called "Sensors" and in particular those sensors which are Positional in nature

More information

IT.MLD900 SENSORS AND TRANSDUCERS TRAINER. Signal Conditioning

IT.MLD900 SENSORS AND TRANSDUCERS TRAINER. Signal Conditioning SENSORS AND TRANSDUCERS TRAINER IT.MLD900 The s and Instrumentation Trainer introduces students to input sensors, output actuators, signal conditioning circuits, and display devices through a wide range

More information

LabVIEW Based Instrumentation and Experimental Methods Course

LabVIEW Based Instrumentation and Experimental Methods Course Session 2259 LabVIEW Based Instrumentation and Experimental Methods Course Chi-Wook Lee Department of Mechanical Engineering University of the Pacific Stockton, CA 95211 Abstract Instrumentation and Experimental

More information

5. Transducers Definition and General Concept of Transducer Classification of Transducers

5. Transducers Definition and General Concept of Transducer Classification of Transducers 5.1. Definition and General Concept of Definition The transducer is a device which converts one form of energy into another form. Examples: Mechanical transducer and Electrical transducer Electrical A

More information

SENSOR AND MEASUREMENT EXPERIMENTS

SENSOR AND MEASUREMENT EXPERIMENTS SENSOR AND MEASUREMENT EXPERIMENTS Page: 1 Contents 1. Capacitive sensors 2. Temperature measurements 3. Signal processing and data analysis using LabVIEW 4. Load measurements 5. Noise and noise reduction

More information

Ultrasonic. Advantages

Ultrasonic. Advantages Ultrasonic Advantages Non-Contact: Nothing touches the target object Measures Distance: The distance to the target is measured, not just its presence Long and Short Range: Objects can be sensed from 2

More information

1. Explain in detail the constructional details and working of DC motor.

1. Explain in detail the constructional details and working of DC motor. DHANALAKSHMI SRINIVASAN INSTITUTE OF RESEARCH AND TECHNOLOGY, PERAMBALUR DEPT OF ECE EC6352-ELECTRICAL ENGINEERING AND INSTRUMENTATION UNIT 1 PART B 1. Explain in detail the constructional details and

More information

AD596/AD597 SPECIFICATIONS +60 C and V S = 10 V, Type J (AD596), Type K (AD597) Thermocouple,

AD596/AD597 SPECIFICATIONS +60 C and V S = 10 V, Type J (AD596), Type K (AD597) Thermocouple, AD597 SPECIFICATIONS (@ +60 C and V S = 10 V, Type J (AD596), Type K (AD597) Thermocouple, unless otherwise noted) Model AD596AH AD597AH AD597AR Min Typ Max Min Typ Max Min Typ Max Units ABSOLUTE MAXIMUM

More information

Thermocouple Conditioner and Setpoint Controller AD596*/AD597*

Thermocouple Conditioner and Setpoint Controller AD596*/AD597* a FEATURES Low Cost Operates with Type J (AD596) or Type K (AD597) Thermocouples Built-In Ice Point Compensation Temperature Proportional Operation 10 mv/ C Temperature Setpoint Operation ON/OFF Programmable

More information

Principles of operation 5

Principles of operation 5 Principles of operation 5 The following section explains the fundamental principles upon which Solartron Metrology s linear measurement products are based. > Inductive technology (gauging and displacement)

More information

Experiment 3 Topic: Dynamic System Response Week A Procedure

Experiment 3 Topic: Dynamic System Response Week A Procedure Experiment 3 Topic: Dynamic System Response Week A Procedure Laboratory Assistant: Email: Office Hours: LEX-3 Website: Brock Hedlund bhedlund@nd.edu 11/05 11/08 5 pm to 6 pm in B14 http://www.nd.edu/~jott/measurements/measurements_lab/e3

More information

Webinar Organizers. Ryan Shea. Don Miller. Joe Ryan. Support Specialist. Applications Specialist. Product Manager. Precision Digital Corporation

Webinar Organizers. Ryan Shea. Don Miller. Joe Ryan. Support Specialist. Applications Specialist. Product Manager. Precision Digital Corporation Webinar Organizers Joe Ryan Product Manager Precision Digital Corporation Ryan Shea Applications Specialist Precision Digital Corporation Don Miller Support Specialist Precision Digital Corporation Agenda,

More information

ni.com Sensor Measurement Fundamentals Series

ni.com Sensor Measurement Fundamentals Series Sensor Measurement Fundamentals Series Introduction to Data Acquisition Basics and Terminology Litkei Márton District Sales Manager National Instruments What Is Data Acquisition (DAQ)? 3 Why Measure? Engineers

More information

Introduction. ELCT903, Sensor Technology Electronics and Electrical Engineering Department 1. Dr.-Eng. Hisham El-Sherif

Introduction. ELCT903, Sensor Technology Electronics and Electrical Engineering Department 1. Dr.-Eng. Hisham El-Sherif Introduction In automation industry every mechatronic system has some sensors to measure the status of the process variables. The analogy between the human controlled system and a computer controlled system

More information

Part 10: Transducers

Part 10: Transducers Part 10: Transducers 10.1: Classification of Transducers An instrument may be defined as a device or a system which is designed to maintain a functional relationship between prescribed properties of physical

More information

DRG-SC Series Signal Conditioners

DRG-SC Series Signal Conditioners DRG-SC Series Signal Conditioners DRG-SC Series 245 Basic unit Models Available for Thermocouples, RTDs, DC Voltage and Current, Frequency, Strain Gage Bridge, AC Voltage and Current Field Configurable

More information

VIDYARTHIPLUS - ANNA UNIVERSITY ONLINE STUDENTS COMMUNITY UNIT 1 DC MACHINES PART A 1. State Faraday s law of Electro magnetic induction and Lenz law. 2. Mention the following functions in DC Machine (i)

More information

MAE334 - Introduction to Instrumentation and Computers. Final Exam. December 11, 2006

MAE334 - Introduction to Instrumentation and Computers. Final Exam. December 11, 2006 MAE334 - Introduction to Instrumentation and Computers Final Exam December 11, 2006 o Closed Book and Notes o No Calculators 1. Fill in your name on side 2 of the scoring sheet (Last name first!) 2. Fill

More information

Strain Gauge Measurement A Tutorial

Strain Gauge Measurement A Tutorial Application Note 078 Strain Gauge Measurement A Tutorial What is Strain? Strain is the amount of deformation of a body due to an applied force. More specifically, strain (ε) is defined as the fractional

More information

Electronic Systems - B1 23/04/ /04/ SisElnB DDC. Chapter 2

Electronic Systems - B1 23/04/ /04/ SisElnB DDC. Chapter 2 Politecnico di Torino - ICT school Goup B - goals ELECTRONIC SYSTEMS B INFORMATION PROCESSING B.1 Systems, sensors, and actuators» System block diagram» Analog and digital signals» Examples of sensors»

More information

ELECTRONIC SYSTEMS. Introduction. B1 - Sensors and actuators. Introduction

ELECTRONIC SYSTEMS. Introduction. B1 - Sensors and actuators. Introduction Politecnico di Torino - ICT school Goup B - goals ELECTRONIC SYSTEMS B INFORMATION PROCESSING B.1 Systems, sensors, and actuators» System block diagram» Analog and digital signals» Examples of sensors»

More information

Sensors and Actuators Introduction to sensors

Sensors and Actuators Introduction to sensors Sensors and Actuators Introduction to sensors Sander Stuijk (s.stuijk@tue.nl) Department of Electrical Engineering Electronic Systems INDUCTIVE SENSORS (Chapter 3.4, 7.3) 3 Inductive sensors 4 Inductive

More information

Measurements & Instrumentation

Measurements & Instrumentation 1 1 INTRODUCTION Measurements & Instrumentation Measurement defined as branch of engineering that deals with measuring devices that used to determine various parameters of a system or a process. It is

More information

VARIABLE INDUCTANCE TRANSDUCER

VARIABLE INDUCTANCE TRANSDUCER VARIABLE INDUCTANCE TRANSDUCER These are based on a change in the magnetic characteristic of an electrical circuit in response to a measurand which may be displacement, velocity, acceleration, etc. 1.

More information

PVA Sensor Specifications

PVA Sensor Specifications Position, Velocity, and Acceleration Sensors 24.1 Sections 8.2-8.5 Position, Velocity, and Acceleration (PVA) Sensors PVA Sensor Specifications Good website to start your search for sensor specifications:

More information

PART A. 1. List the types of DC Motors. Give any difference between them. BTL 1 Remembering

PART A. 1. List the types of DC Motors. Give any difference between them. BTL 1 Remembering UNIT I DC MACHINES Three phase circuits, a review. Construction of DC machines Theory of operation of DC generators Characteristics of DC generators Operating principle of DC motors Types of DC motors

More information

Inductive Sensors. Fig. 1: Geophone

Inductive Sensors. Fig. 1: Geophone Inductive Sensors A voltage is induced in the loop whenever it moves laterally. In this case, we assume it is confined to motion left and right in the figure, and that the flux at any moment is given by

More information

Torque Sensor Accessories and Services

Torque Sensor Accessories and Services ------------------- Torque Sensor Accessories and Services Highlights Strain gage signal conditioners Cable assemblies Speed sensors Shunt calibration modules and thermocouples Calibration services PCB

More information

Sensors (Transducer) Introduction By Sintayehu Challa

Sensors (Transducer) Introduction By Sintayehu Challa Sensors (Transducer) Introduction What are Sensors? Basically the quantities to be measured are Non-Electrical quantities such as temperature, pressure,displacement,humidity, fluid flow, speed etc, but

More information

EE T55 MEASUREMENTS AND INSTRUMENTATION

EE T55 MEASUREMENTS AND INSTRUMENTATION EE T55 MEASUREMENTS AND INSTRUMENTATION UNIT V: TRANSDUCERS Temperature transducers-rtd, thermistor, Thermocouple-Displacement transducer-inductive, capacitive, LVDT, Pressure transducer Bourdon tube,

More information

STRAIN, FORCE, PRESSURE, AND FLOW MEASUREMENTS

STRAIN, FORCE, PRESSURE, AND FLOW MEASUREMENTS SECTION 4 STRAIN,, PRESSURE, AND FLOW MEASUREMENTS Walt Kester STRAIN GAGES The most popular electrical elements used in force measurements include the resistance strain gage, the semiconductor strain

More information

Industrial Instrumentation Prof. Alok Barua Department of Electrical Engineering Indian Institute of Technology - Kharagpur

Industrial Instrumentation Prof. Alok Barua Department of Electrical Engineering Indian Institute of Technology - Kharagpur Industrial Instrumentation Prof. Alok Barua Department of Electrical Engineering Indian Institute of Technology - Kharagpur Lecture - 6 Torque Measurement Good afternoon! This is lesson 6 of Industrial

More information

Resistance Temperature Detectors (RTDs)

Resistance Temperature Detectors (RTDs) Exercise 2-1 Resistance Temperature Detectors (RTDs) EXERCISE OBJECTIVES To explain how resistance temperature detectors (RTDs) operate; To describe the relationship between the temperature and the electrical

More information

Electronic Measurements & Instrumentation. 1. Draw the Maxwell s Bridge Circuit and derives the expression for the unknown element at balance?

Electronic Measurements & Instrumentation. 1. Draw the Maxwell s Bridge Circuit and derives the expression for the unknown element at balance? UNIT -6 1. Draw the Maxwell s Bridge Circuit and derives the expression for the unknown element at balance? Ans: Maxwell's bridge, shown in Fig. 1.1, measures an unknown inductance in of standard arm offers

More information

Introduction to Measurement Systems

Introduction to Measurement Systems MFE 3004 Mechatronics I Measurement Systems Dr Conrad Pace Page 4.1 Introduction to Measurement Systems Role of Measurement Systems Detection receive an external stimulus (ex. Displacement) Selection measurement

More information

Developer Techniques Sessions

Developer Techniques Sessions 1 Developer Techniques Sessions Physical Measurements and Signal Processing Control Systems Logging and Networking 2 Abstract This session covers the technologies and configuration of a physical measurement

More information

Sensors. Chapter 3. Storey: Electrical & Electronic Systems Pearson Education Limited 2004 OHT 3.1

Sensors. Chapter 3. Storey: Electrical & Electronic Systems Pearson Education Limited 2004 OHT 3.1 Sensors Chapter 3 Introduction Describing Sensor Performance Temperature Sensors Light Sensors Force Sensors Displacement Sensors Motion Sensors Sound Sensors Sensor Interfacing Storey: Electrical & Electronic

More information

WebSeminar: Signal Chain Overview

WebSeminar: Signal Chain Overview WebSeminar: December, 2005 Hello, and welcome to the Microchip Technology Web Seminar overview of signal chains. My name is Kevin Tretter and I am a Product Marketing Engineer within Microchip Technology

More information

Single- or Multi-Channel Digital Process Indicators

Single- or Multi-Channel Digital Process Indicators Single- or Multi-Channel Digital Process Indicators For Panel or Benchtop Use DP81 Series Starts at $ 599 DP81T, $599, shown smaller than actual size. High Accuracy 14 Thermocouple Input Types 6 RTD Inputs:

More information

Semester project sensors and data acquisition

Semester project sensors and data acquisition Semester project sensors and data acquisition 1 Sensors... 2 2 Data acquisition... 3 2.1 Labview software... 3 2.2 Labview programming skills... 3 2.3 CompactDAQ hardware... 4 3 Required reading material:...

More information

Experiment 3 Topic: Dynamic System Response Week A Procedure

Experiment 3 Topic: Dynamic System Response Week A Procedure Experiment 3 Topic: Dynamic System Response Week A Procedure Laboratory Assistant: Email: Office Hours: LEX-3 Website: Caitlyn Clark and Brock Hedlund cclark20@nd.edu, bhedlund@nd.edu 04/03 04/06 from

More information

Making Basic Strain Measurements

Making Basic Strain Measurements IOtech Product Marketing Specialist steve.radecky@iotech.com Making Basic Strain Measurements using 24-Bit IOtech Hardware INTRODUCTION Strain gages are sensing devices used in a variety of physical test

More information

INDEX IEC:

INDEX IEC: 60050-300 IEC:2001 173 INDEX A absolute absolute error... 311-01-05 (absolute) frequency deviation... 314-08-07 accessory accessory (of a measuring instrument)... 312-03-01 accessory of limited interchangeability...

More information

Department of Energy Fundamentals Handbook. INSTRUMENTATION AND CONTROL Module 1 Temperature Detectors

Department of Energy Fundamentals Handbook. INSTRUMENTATION AND CONTROL Module 1 Temperature Detectors Department of Energy Fundamentals Handbook INSTRUMENTATION AND CONTROL Module 1 Temperature Detectors Temperature Detectors TABLE OF CONTENTS TABLE OF CONTENTS LIST OF FIGURES... ii LIST OF TABLES... iii

More information

DC SOURCES. 1.1 LIST the four ways to produce a DC voltage. 1.2 STATE the purpose of a rectifier.

DC SOURCES. 1.1 LIST the four ways to produce a DC voltage. 1.2 STATE the purpose of a rectifier. When most people think of DC, they usually think of batteries. In addition to batteries, however, there are other devices that produce DC which are frequently used in modern technology. 1.1 LIST the four

More information

Thermocouple scanner: RUTHLESS SURVIVOR

Thermocouple scanner: RUTHLESS SURVIVOR Search 1 March 2002 BUSINESS BY THE NUMBERS CALENDAR OF EVENTS CAREER FRONT CCST QUESTIONS CONTROL FUNDAMENTALS INDUSTRY VIEW LETTERS NASA NEWS NETWORKING AND COMMUNICATIONS PRODUCTS SAFETY SENSORS STANDARDS

More information

Bridge Measurement Systems

Bridge Measurement Systems Section 5 Outline Introduction to Bridge Sensors Circuits for Bridge Sensors A real design: the ADS1232REF The ADS1232REF Firmware This presentation gives an overview of data acquisition for bridge sensors.

More information

FC-33, DC SELECTABLE SIGNAL CONDITIONER

FC-33, DC SELECTABLE SIGNAL CONDITIONER FC-33, DC SELECTABLE SIGNAL CONDITIONER Description. The FC-33 is a DIN rail or side mount, selectable input/output signal conditioner with 1500VDC isolation between input and output, and 1500VDC isolation

More information

Digital Panel Meter Glossary

Digital Panel Meter Glossary Glossary RS-232C (Recommended Standard 232C) RS-232C is a modem interface standard for serial communications defined by the Electronic Industries Alliance (EIA). It defines the electrical specifications,

More information

Load Cell Accessories and Services

Load Cell Accessories and Services Load Cell Accessories and Services Highlights Strain gage signal conditioners Cable assemblies Mounting accessories Calibration services PCB Piezotronics, Inc. Toll-Free in USA 888-684-0004 716-684-0001

More information

9/28/2010. Chapter , The McGraw-Hill Companies, Inc.

9/28/2010. Chapter , The McGraw-Hill Companies, Inc. Chapter 4 Sensors are are used to detect, and often to measure, the magnitude of something. They basically operate by converting mechanical, magnetic, thermal, optical, and chemical variations into electric

More information

Accelerometer Sensors

Accelerometer Sensors Accelerometer Sensors Presented by: Mohammad Zand Seyed Mohammad Javad Moghimi K.N.T. University of Technology Outline: Accelerometer Introduction Background Device market Types Theory Capacitive sensor

More information

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) MODEL ANSWER

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) MODEL ANSWER Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model answer and the answer written by candidate

More information

MEASUREMENT AND INSTRUMENTATION QUESTION BANK UNIT I INTRODUCTION. Part A

MEASUREMENT AND INSTRUMENTATION QUESTION BANK UNIT I INTRODUCTION. Part A MEASUREMENT AND INSTRUMENTATION QUESTION BANK UNIT I INTRODUCTION Part A 1. Define Standard deviation. 2. Why calibration of instrument is important? 3. What are the different calibration methodologies?

More information

(Approved by AICTE & Affiliated to Calicut University) DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING : ELECTRICAL MEASUREMENTS AND

(Approved by AICTE & Affiliated to Calicut University) DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING : ELECTRICAL MEASUREMENTS AND (Approved by AICTE & Affiliated to Calicut University) DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING ELECTRICAL MEASUREMENTS AND INSTRUMENTATION LAB CLASS SEMESTER SUBJECT CODE SUBJECT : II YEAR (EEE)

More information

Strength of Material-I (CE-207)

Strength of Material-I (CE-207) Strength of Material-I (CE-207) Course Contents: Types of stresses and strains Statically indeterminate problems Mechanical Properties of materials Thermal stresses Advanced cases of shearing forces and

More information

3-Axis Magnetic Sensor HMC1043

3-Axis Magnetic Sensor HMC1043 3-Axis Magnetic Sensor HMC1043 Advanced Information The Honeywell HMC1043 is a miniature three-axis surface mount sensor array designed for low field magnetic sensing. By adding the HMC1043 with supporting

More information

ISOLATED 4-20 ma TRANSMITTERS

ISOLATED 4-20 ma TRANSMITTERS 500 SERIES FOR DEMANDING APPLICATIONS Isolated to 1500 V rms Two-Wire 4-20 ma Operation 9-50 V Compliance Turndown Ratio to 10:1 NMV Protection to 120 Vac -40 to +85 C (-40 to 185 F) Operation Shock Resistance

More information

MECHANICAL ENGINEERING SYSTEMS LABORATORY

MECHANICAL ENGINEERING SYSTEMS LABORATORY MECHANICAL ENGINEERING SYSTEMS LABORATORY Group 02 Asst. Prof. Dr. E. İlhan KONUKSEVEN FUNDAMENTAL CONCEPTS IN MEASUREMENT AND EXPERIMENTATION HOW TO MEASURE? BY MEANS OF SENSING DEVICES OFTEN CALLED:

More information

CHEMICAL ENGINEERING 2I03

CHEMICAL ENGINEERING 2I03 Student Name: Student ID: CHEMICAL ENGINEERING 2I03 DAY CLASS Duration 2 hours McMaster University Practice Exam Dr. M. Thompson The final test includes 60 questions on 12 pages. This test paper must be

More information

MEASUREMENT OF STRAIN AND POLARIZATION IN PIEZOELECTRIC AND ELECTROSTRICTIVE ACTUATORS

MEASUREMENT OF STRAIN AND POLARIZATION IN PIEZOELECTRIC AND ELECTROSTRICTIVE ACTUATORS 2 nd Canada-US CanSmart Workshop 1-11 October 22, Montreal, Quebec, Canada. MEASUREMENT OF STRAIN AND POLARIZATION IN PIEZOELECTRIC AND ELECTROSTRICTIVE ACTUATORS B. Yan, D. Waechter R. Blacow and S. E.

More information

Synchronous Machines Study Material

Synchronous Machines Study Material Synchronous machines: The machines generating alternating emf from the mechanical input are called alternators or synchronous generators. They are also known as AC generators. All modern power stations

More information

Analog Vs. Digital Weighing Systems

Analog Vs. Digital Weighing Systems Analog Vs. Digital Weighing Systems When sizing up a weighing application there are many options to choose from. With modern technology and the advancements in A/D converter technology the performance

More information

Pressure Transducer Handbook

Pressure Transducer Handbook 123 Pressure Transducer Handbook Date: February 2004 TABLE OF CONTENTS SECTION 1 - Introduction 1.1 Introduction 1.2 Product Overview SECTION 2 - Kulite Sensing Technology 2.1 Pressure Transducers 2.2

More information

Remote Laboratory Operation: Web Technology Successes

Remote Laboratory Operation: Web Technology Successes Remote Laboratory Operation: Web Technology Successes Masoud Naghedolfeizi 1, Jim Henry 2, Sanjeev Arora 3 Abstract National Aeronautics and Space Administration (NASA) has awarded Fort Valley State University

More information

Figure 2 shows the actual schematic for the power supply and one channel.

Figure 2 shows the actual schematic for the power supply and one channel. Pass Laboratories Aleph 3 Service Manual rev 0 2/1/96 Aleph 3 Service Manual. The Aleph 3 is a stereo 30 watt per channel audio power amplifier which operates in single-ended class A mode. The Aleph 3

More information

Thermocouples. Table of Contents. Industrial (A-2) Smart Model 1100 (A-26) Smart with Leads Model 1200 (A-27) Wire (A-32)...

Thermocouples. Table of Contents. Industrial (A-2) Smart Model 1100 (A-26) Smart with Leads Model 1200 (A-27) Wire (A-32)... Thermocouples Table of Contents page Industrial (A-2)... 2 Smart Model 1100 (A-26)... 3 Smart with Leads Model 1200 (A-27)... 4 Wire (A-32)... 5 sorinc.com 913-888-2630 Industrial Thermocouples M.I. Cable

More information

Driving Strain-Gauge Bridge Sensors with Signal- Conditioning ICs

Driving Strain-Gauge Bridge Sensors with Signal- Conditioning ICs SENSOR SIGNAL CONDITIONERS Nov 11, 2004 Driving Strain-Gauge Bridge Sensors with Signal- Conditioning ICs Strain-gauge sensors - reliable, repeatable, and precise - are used extensively in manufacturing,

More information

Continuous Sensors Accuracy Resolution Repeatability Linearity Precision Range

Continuous Sensors Accuracy Resolution Repeatability Linearity Precision Range Continuous Sensors A sensor element measures a process variable: flow rate, temperature, pressure, level, ph, density, composition, etc. Much of the time, the measurement is inferred from a second variable:

More information

EECS 145L Final Examination Solutions (Fall 2013)

EECS 145L Final Examination Solutions (Fall 2013) UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering, Electrical Engineering and Computer Sciences Department 1.1 Instrumentation amplifier (1) differential amplification (2) very high input impedance

More information

The Aleph 2 is a monoblock 100 watt audio power amplifier which operates in single-ended class A mode.

The Aleph 2 is a monoblock 100 watt audio power amplifier which operates in single-ended class A mode. Pass Laboratories Aleph 2 Service Manual Rev 0 2/1/96 Aleph 2 Service Manual. The Aleph 2 is a monoblock 100 watt audio power amplifier which operates in single-ended class A mode. The Aleph 2 has only

More information

DESIGN, CONSTRUCTION, AND THE TESTING OF AN ELECTRIC MONOCHORD WITH A TWO-DIMENSIONAL MAGNETIC PICKUP. Michael Dickerson

DESIGN, CONSTRUCTION, AND THE TESTING OF AN ELECTRIC MONOCHORD WITH A TWO-DIMENSIONAL MAGNETIC PICKUP. Michael Dickerson DESIGN, CONSTRUCTION, AND THE TESTING OF AN ELECTRIC MONOCHORD WITH A TWO-DIMENSIONAL MAGNETIC PICKUP by Michael Dickerson Submitted to the Department of Physics and Astronomy in partial fulfillment of

More information

Measurement and Instrumentation

Measurement and Instrumentation Measurement and Instrumentation Theory and Application Alan S. Morris Reza Langari ELSEVIER AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO Academic

More information

Design of LVDT Based Digital Weighing System

Design of LVDT Based Digital Weighing System International Journal of Electronics and Computer Science Engineering 2100 Available Online at www.ijecse.org ISSN- 2277-1956 Pratiksha Sarma 1, P. K. Bordoloi 2 1,2 Department of Applied Electronics and

More information

Inductive sensors. The operating principle is based on the following relationship: L=f(x) M=g(x)

Inductive sensors. The operating principle is based on the following relationship: L=f(x) M=g(x) Inductive sensors The operating principle is based on the following relationship: L=f(x) M=g(x) High robusteness against influencing quantities (environmental) 1 L variation based Inductive Sensors Basics

More information

INDUSTRIAL THERMOCOUPLE ELEMENTS

INDUSTRIAL THERMOCOUPLE ELEMENTS INDUSTRIAL THERMOCOUPLE ELEMENTS This Section Contains Noble Metal Thermocouple Elements Ceramic Insulators Thermocouple Reference Data Accuracy of IPS Thermocouple Wire If you can t find what you need

More information

ET1210: Module 5 Inductance and Resonance

ET1210: Module 5 Inductance and Resonance Part 1 Inductors Theory: When current flows through a coil of wire, a magnetic field is created around the wire. This electromagnetic field accompanies any moving electric charge and is proportional to

More information

The Aleph 5 is a stereo 60 watt audio power amplifier which operates in single-ended class A mode.

The Aleph 5 is a stereo 60 watt audio power amplifier which operates in single-ended class A mode. Pass Laboratories Aleph 5 Service Manual Rev 0 9/20/96 Aleph 5 Service Manual. The Aleph 5 is a stereo 60 watt audio power amplifier which operates in single-ended class A mode. The Aleph 5 has only two

More information

Department of Mechanical and Aerospace Engineering. MAE334 - Introduction to Instrumentation and Computers. Final Examination.

Department of Mechanical and Aerospace Engineering. MAE334 - Introduction to Instrumentation and Computers. Final Examination. Name: Number: Department of Mechanical and Aerospace Engineering MAE334 - Introduction to Instrumentation and Computers Final Examination December 12, 2003 Closed Book and Notes 1. Be sure to fill in your

More information

Inductive sensors. The operating principle is based on the following relationship: L=f(x) M=g(x)

Inductive sensors. The operating principle is based on the following relationship: L=f(x) M=g(x) Inductive sensors The operating principle is based on the following relationship: L=f(x) M=g(x) High robusteness against influencing quantities (environmental) 1 L variation based Inductive Sensors Basics

More information

Table of Contents...2. About the Tutorial...6. Audience...6. Prerequisites...6. Copyright & Disclaimer EMI INTRODUCTION Voltmeter...

Table of Contents...2. About the Tutorial...6. Audience...6. Prerequisites...6. Copyright & Disclaimer EMI INTRODUCTION Voltmeter... 1 Table of Contents Table of Contents...2 About the Tutorial...6 Audience...6 Prerequisites...6 Copyright & Disclaimer...6 1. EMI INTRODUCTION... 7 Voltmeter...7 Ammeter...8 Ohmmeter...8 Multimeter...9

More information

Section 6 - Electronics

Section 6 - Electronics Section 6 - Electronics 6.1. Power for Excitation Piezoresistive transducers are passive devices and require an external power supply to provide the necessary current (I x ) or voltage excitation (E x

More information

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017 & ANSI/NCSL Z

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017 & ANSI/NCSL Z SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017 & ANSI/NCSL Z540-1-1994 MTS METROLOGY AND CALIBRATION LABORATORY 14000 Technology Drive Eden Prairie, MN 55344 Kevin Rust Phone: 952 937 4790 www.mts.com CALIBRATION

More information

LAB #5: Measurement of Strain

LAB #5: Measurement of Strain LAB #5: Measurement of Strain Equipment: Multimeter & DC Power Supply Balance Unit & Calibration Resistor Strain Indicator (Measurements Group, Model P-3500) Aluminum (Cantilever) Beam with Two Gages Aluminum

More information

MEP 382: Design of Applied Measurement Systems Lecture 5: Signal Conditioning

MEP 382: Design of Applied Measurement Systems Lecture 5: Signal Conditioning Faculty of Engineering MEP 382: Design of Applied Measurement Systems Lecture 5: Signal Conditioning Transducer Last Week - Sensors Bridge Completion Excitation Amplification Signal Conditioner Low Pass

More information

Temperature References for Highest Accuracy Industrial Thermocouple Measurements

Temperature References for Highest Accuracy Industrial Thermocouple Measurements Publication #531 Temperature References for Highest Accuracy Industrial Thermocouple Measurements Obtaining high-accuracy thermocouple temperature measurements requires instrumentation designed to minimize

More information

Differential Amplifier : input. resistance. Differential amplifiers are widely used in engineering instrumentation

Differential Amplifier : input. resistance. Differential amplifiers are widely used in engineering instrumentation Differential Amplifier : input resistance Differential amplifiers are widely used in engineering instrumentation Differential Amplifier : input resistance v 2 v 1 ir 1 ir 1 2iR 1 R in v 2 i v 1 2R 1 Differential

More information

Electronic Instrumentation and Measurements

Electronic Instrumentation and Measurements Electronic Instrumentation and Measurements A fundamental part of many electromechanical systems is a measurement system that composed of four basic parts: Sensors Signal Conditioning Analog-to-Digital-Conversion

More information