Gennady Gildenblat. Editor. Compact Modeling. Principles, Techniques and Applications. Springer

Size: px
Start display at page:

Download "Gennady Gildenblat. Editor. Compact Modeling. Principles, Techniques and Applications. Springer"

Transcription

1 Gennady Gildenblat Editor Compact Modeling Principles, Techniques and Applications Springer

2 Contents Part I Compact Models of MOS Transistors 1 Surface-Potential-Based Compact Model of Bulk MOSFET 3 Gennady Gildenblat, Weimin Wu, Xin Li, Ronald van Langevelde, Andries J. Schölten, Geert D.J. Smit, and Dirk B.M. Klaassen 1.1 Introduction Surface Potential Equation Symmetric Linearization Method The Effective Channel Mobility Velocity Saturation Lateral Doping Non-uniformity Punch-Through Effect and Vertical Doping Non-uniformity The Extrinsic Model Overlap Region Charges Parasitic Resistances Impact Ionization Current Gate Tunneling Current Gate-Induced Drain Leakage Current Surface-Potential-Based Noise Model Flicker Noise Thermal Noise Other Noise Sources Conclusions 35 References 36 2 PSP-SOI: A Surface-Potential-Based Compact Model of SOI MOSFETs 41 Weimin Wu, Wei Yao, and Gennady Gildenblat 2.1 Introduction PD-SOI Floating Body Effect Modeling Impact Ionization 45 ix

3 x Contents Junction Diode Parasitic Bipolar Current Gate-to-Body Tunneling Current Gate-Induced Drain Leakage Current Self-Heating Effect Body Contact Model Noise Modeling PD-SOIMOSFET Model Verification Modeling of Dynamically Depleted SOI MOSFETs Surface Potential and Coupling Equations Symmetrically Linearized Charge-Sheet Model for DD-SOI DD-SOI Model Verification and Discussion Conclusions 70 References 70 3 Benchmark Tests for MOSFET Compact Models 75 Xin Li, Weimin Wu, Gennady Gildenblat, Colin С McAndrew, and Andries J. Schölten 3.1 Introduction Benchmark Tests Weak and Moderate Inversion Regions Capacitances Symmetry and Non-Singularity at Zero Drain-Source Bias Non-Quasi-Static (NQS) and Noise Model Tests Self-Heating Effect Test (SHE) Conclusion 98 Appendix 1 Derivation of (3.49) and (3.50) 98 Appendix 2 Correlation Coefficient Between Gate and Drain Thermal Noise at V ds =0 101 References High-Voltage MOSFET Modeling 105 E. Seebacher, К. Molnar, W. Posch, В. Senapati, A. Steinmair, and W. Pflanzl 4.1 Introduction HV LDMOS Modeling with Sub-Circuits HV MOSFET Sub-Circuit Using a Drain Resistor HV MOSFET Sub-Circuit Using a JFET HV MOSFET Sub-Circuit Using Three JFETs HV MOSFET Sub-Circuit Using JFETs, Resistors and Controlled Sources Symmetrical HV MOSFET Sub-Circuit with Bulk Current Modeling EKV High-Voltage MOSFET Model EKV-HV DC Model EKV-HV Charge Model 118

4 Contents xi 4.4 MM20 High-Voltage MOSFET Model MM20 DC Model MM20 Charge Model HiSIM_HV High-Voltage MOSFET Model HiSIM_HV Model Features Resistance Modeling with HiSIM_HV Capacitance Modeling with HiSIM_HV Modeling of HV MOSFET Parasitics in HV CMOS Technology Substrate Based Devices Isolated Devices Measurement Requirements for HV MOS Modeling DC Measurements for HV MOS Modeling AC Measurements for HV MOS Modeling Pulsed Measurements for HV MOS Modeling 132 References Physics of Noise Performance of Nanoscale Bulk MOS Transistors 137 R.P. Jindal 5.1 Introduction Preliminary Considerations Intrinsic Fluctuations Channel Thermal Noise Induced Gate Noise Induced Substrate Noise Equilibrium Noise Bulk Charge Effects Extrinsic Fluctuations Gate Resistance Noise Substrate Resistance Noise Substrate Current Super-Shot Noise Gate Current Noise Short-Channel Effects Physical Origin Effect On Channel Noise No Excess Noise School of Thought Shot Noise School Of Thought Hot Carrier School of Thought //Noise Number versus Mobility Fluctuations Debate Current Status Noise Capabilities of Compact MOS Models Conclusions 158 References 159

5 xii Contents Part II Compact Models of Bipolar Junction Transistors 6 Introduction to Bipolar Transistor Modeling 167 Colin C. McAndrew and Marcel Tutt 6.1 Introduction Basic Bipolar Transistor Operation and Modeling Base Current Gummel Integral Charge Control Relation SPICE Gummel-Poon Model Small-Signal Model Kull-Nagel Model III-V HBTs: Device Physics and Modeling Challenges Conclusions 195 References Mextram 199 R. van der Toorn, J.C.J. Paasschens, W.J. Kloosterman, and H.C. de Graaff 7.1 Introduction History Lumped-Element Modeling Modeling Time-Dependence, Non-Linearity, Large Signals Temperature Dependence and Heating Noise Model Geometric Scaling and Statistical Modeling Model Structure and Components Outline Relevance of Model Structure to Modeling Results Mextram Philosophy Introduction Main Transistor Current Model Conclusion 226 References The HiCuM Bipolar Transistor Model 231 Michael Schröter and Bertrand Ardouin 8.1 Introduction Model Fundamentals Charges Transfer Current Base Current Components Series Resistances NQS Effects Substrate Effects Temperature Effects Noise 241

6 Contents xiii Geometry Dependence Statistical and Predictive Modelling Parameter Extraction Parameter Extraction Methods Application Examples Conclusions 260 References 263 Part Ш Compact Models of Passive Devices 9 Integrated Resistor Modeling 271 Colin С McAndrew 9.1 Introduction Semiconductor Resistors Effective Resistor Geometry and Total Resistance Resistor Temperature Dependence Terminal Resistor Models Physical 3-Terminal Resistor Model Diffused Resistor (JFET) Depletion Effect Model Poly Resistor Depletion Effect Model Unified Depletion Effect Model Velocity Saturation Self-Heating Complete 3-Terminal Resistor and JFET Model Parasitics, Noise and Statistical Modeling Parameter Extraction Details of Model Implementation Conclusions 295 References The JUNCAP2 Model for Junction Diodes 299 A.J. Schölten, G.D.J. Smit, R. van Langevelde, and D.B.M. Klaassen 10.1 Introduction Model Derivation Capacitance Ideal Current Shockley-Read-Hall Current Trap-Assisted Tunneling Current Band-to-Band Tunneling Current Avalanche Breakdown Current Noise Geometrical Scaling Parameter Extraction Test Structures Extraction of CV Parameters Extraction of IV Parameters 311

7 xiv Contents 10.4 Model Verification Capacitances Currents JUNCAP2 Express Model Implementation and Availability Conclusion 318 Appendix 1 Built-in Voltage 318 Appendix 2 Evaluation of WSRH 320 Appendix 3 Evaluation of Wr 320 Appendix 4 Evaluation of Гщдх, 321 Appendix 5 Approximation of the erfc-function 322 Appendix 6 JUNCAP2 Express 323 References Surface-Potential-Based MOS Varactor Model 327 Zeqin Zhu, Gennady Gildenblat, James Victory, and Colin С McAndrew 11.1 Introduction Device Technology Intrinsic Device Model Inversion Layer Inertia Relaxation Time Approximation Analytical Solution for the Small-Signal Case The Effects of Finite Polysilicon Doping and Quantum Mechanical Corrections Gate Tunneling Current Parasitic Elements Parasitic Capacitance C/ r Gate Tunnel Current in the Overlap Region Parasitic Resistances Silicon Data Validation of RF Model Circuit Applications Examples Conclusions 352 References Modeling of On-chip RF Passive Components 357 Zhiping Yu 12.1 Introduction Circuit Requirement and Applications for On-chip RF Passive Components R and С Realization in RF CMOS С Resistors Capacitors in 1С Process Inductors and Transformers Non-planar Inductors: Solenoid Spiral Inductors from Current Sheet 362

8 XV CMOS Spiral Inductors Planar Transformers Monolithic Spiral Transformers: Structures Modeling of Spiral Inductors and Transformers Characterization of Spiral Inductors Г Model for Spiral Inductors jr Model for Spiral Inductors Improved l-тг Models for Spiral Inductors Models for Transformers and Baluns Parameter Extraction for Transformer Model Summary 388 References 390 IV Modeling of Multiple Gate MOSFETs Multi-Gate MOSFET Compact Model BSIM-MG 395 Darsen Lu, Chung-Hsun Lin, Ali Niknejad, and Chenming Hu 13.1 Introduction Various Flavors of Multi-gate MOSFET BSIM-MG and BSDVI-CMG Core Model for the Independent Double-gate MOSFET Basic Modeling Framework Surface Potential Calculation Drain Current Model Capacitance Model Core Model for the Common Multi-gate MOSFET Basic Modeling Framework Surface Potential Calculation Drain Current Model Capacitance Model Real Device Effects Quantum Mechanical Effects Short-Channel Effects Effective Width Model Bulk and SOI Substrate Models Other Real Device Effect Models Experimental Verification Computational Efficiency Simulation Examples V t h Tuning Simulation for Independent Double-gate MOSFETs FinFET SRAM Technology and Simulation Examples Statistical Simulation of FinFET SRAM Cells 425 References 426

9 xvi Contents 14 Compact Modeling of Double-Gate and Nanowire MOSFETs Yuan Taur 14.1 Introduction Analytic Potential Models for Double-Gate and Nanowire MOSFETs Analytic Solutions to Double-Gate MOSFETs Analytic Solutions to Nanowire MOSFETs Explicit, Continuous Solutions to the Implicit Equations Short-Channel Models Short-Channel Model for Double-Gate MOSFETs Short-Channel Model for Nanowire MOSFETs Charge and Capacitance Models Discussion of Surface-Potential Based Current Expression Conclusion 447 References 448 Part V Statistical Modeling 15 Modeling of MOS Matching 453 Marcel Pelgrom, Hans Tuinhout, and Maarten Veitregt 15.1 Introduction Variability: An Overview Deterministic Offsets Offset Caused by Electrical Differences Offset Caused by Lithography Proximity Effects Temperature Gradients Offset Caused by Stress Offset Mitigation Random Matching Random Fluctuations in Devices MOS Threshold Mismatch Current Factor Mismatch Current Mismatch in Strong and Weak Inversion Mismatch for Various Processes Application to Other Components Modeling Remarks Measuring Offset and Mismatch Matched Pair Test Structures Mismatch Measurement Precision Considerations Statistics for Mismatch Characterizations Consequences for Design Analog Design Digital Design 484

10 Contents xvii 15.7 Conclusion 485 Appendix: Derivation of Spatial Behavior 485 References Statistical Modeling Using Backward Propagation of Variance (BPV) 491 Colin С. МсAndrew 16.1 Introduction Sources of Statistical Variability Statistical Modeling Basis Statistical Modeling Requires Engineering Judgment Modeling Parameter Correlations Using Uncorrelated Parameters Theoretical Formulation of BPV BPV Requirements BPV Application Examples Corner Models Why Modeling Correlations is Important Conclusions 519 References 519 Index 521

Contents. Compact Models of MOS Transistors

Contents. Compact Models of MOS Transistors Part I Compact Models of MOS Transistors 1 Surface-Potential-Based Compact Model of Bulk MOSFET... 3 Gennady Gildenblat, Weimin Wu, Xin Li, Ronald van Langevelde, Andries J. Scholten, Geert D.J. Smit,

More information

Contents. Contents... v. Preface... xiii. Chapter 1 Introduction...1. Chapter 2 Significant Physical Effects In Modern MOSFETs...

Contents. Contents... v. Preface... xiii. Chapter 1 Introduction...1. Chapter 2 Significant Physical Effects In Modern MOSFETs... Contents Contents... v Preface... xiii Chapter 1 Introduction...1 1.1 Compact MOSFET Modeling for Circuit Simulation...1 1.2 The Trends of Compact MOSFET Modeling...5 1.2.1 Modeling new physical effects...5

More information

FUNDAMENTALS OF MODERN VLSI DEVICES

FUNDAMENTALS OF MODERN VLSI DEVICES 19-13- FUNDAMENTALS OF MODERN VLSI DEVICES YUAN TAUR TAK H. MING CAMBRIDGE UNIVERSITY PRESS Physical Constants and Unit Conversions List of Symbols Preface page xi xiii xxi 1 INTRODUCTION I 1.1 Evolution

More information

Index. 1-π model, 370 1/f noise, 57, π model, 373 β-ratio, 425

Index. 1-π model, 370 1/f noise, 57, π model, 373 β-ratio, 425 Index 1-π model, 370 1/f noise, 57, 155 2-π model, 373 β-ratio, 425 A Ac symmetry test, 93 Acoustic phonons, 18 Admittance parameters, 209 All-around gate, 397, 410 Analytic potential model, 432, 447 Analytical

More information

a leap ahead in analog

a leap ahead in analog Analog modeling requirements for HV CMOS technology Ehrenfried Seebacher 2011-12-15 a leap ahead in analog Presentation Overview Design perspective on High Performance Analog HV CMOS Analog modeling requirements

More information

Tradeoffs and Optimization in Analog CMOS Design

Tradeoffs and Optimization in Analog CMOS Design Tradeoffs and Optimization in Analog CMOS Design David M. Binkley University of North Carolina at Charlotte, USA A John Wiley & Sons, Ltd., Publication Contents Foreword Preface Acknowledgmerits List of

More information

PHYSICS OF SEMICONDUCTOR DEVICES

PHYSICS OF SEMICONDUCTOR DEVICES PHYSICS OF SEMICONDUCTOR DEVICES PHYSICS OF SEMICONDUCTOR DEVICES by J. P. Colinge Department of Electrical and Computer Engineering University of California, Davis C. A. Colinge Department of Electrical

More information

Semiconductor Devices

Semiconductor Devices Semiconductor Devices Modelling and Technology Source Electrons Gate Holes Drain Insulator Nandita DasGupta Amitava DasGupta SEMICONDUCTOR DEVICES Modelling and Technology NANDITA DASGUPTA Professor Department

More information

ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS

ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS Fourth Edition PAUL R. GRAY University of California, Berkeley PAUL J. HURST University of California, Davis STEPHEN H. LEWIS University of California,

More information

Conduction Characteristics of MOS Transistors (for fixed Vds)! Topic 2. Basic MOS theory & SPICE simulation. MOS Transistor

Conduction Characteristics of MOS Transistors (for fixed Vds)! Topic 2. Basic MOS theory & SPICE simulation. MOS Transistor Conduction Characteristics of MOS Transistors (for fixed Vds)! Topic 2 Basic MOS theory & SPICE simulation Peter Cheung Department of Electrical & Electronic Engineering Imperial College London (Weste&Harris,

More information

Topic 2. Basic MOS theory & SPICE simulation

Topic 2. Basic MOS theory & SPICE simulation Topic 2 Basic MOS theory & SPICE simulation Peter Cheung Department of Electrical & Electronic Engineering Imperial College London (Weste&Harris, Ch 2 & 5.1-5.3 Rabaey, Ch 3) URL: www.ee.ic.ac.uk/pcheung/

More information

Conduction Characteristics of MOS Transistors (for fixed Vds) Topic 2. Basic MOS theory & SPICE simulation. MOS Transistor

Conduction Characteristics of MOS Transistors (for fixed Vds) Topic 2. Basic MOS theory & SPICE simulation. MOS Transistor Conduction Characteristics of MOS Transistors (for fixed Vds) Topic 2 Basic MOS theory & SPICE simulation Peter Cheung Department of Electrical & Electronic Engineering Imperial College London (Weste&Harris,

More information

1286 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 52, NO. 7, JULY MOSFET Modeling for RF IC Design

1286 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 52, NO. 7, JULY MOSFET Modeling for RF IC Design 1286 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 52, NO. 7, JULY 2005 MOSFET Modeling for RF IC Design Yuhua Cheng, Senior Member, IEEE, M. Jamal Deen, Fellow, IEEE, and Chih-Hung Chen, Member, IEEE Invited

More information

PSP model update. Gert-Jan Smit, Andries Scholten, D.B.M. Klaassen (NXP Semiconductors) Ramses van der Toorn (Delft University of Technology)

PSP model update. Gert-Jan Smit, Andries Scholten, D.B.M. Klaassen (NXP Semiconductors) Ramses van der Toorn (Delft University of Technology) PSP model update Gert-Jan Smit, Andries Scholten, D.B.M. Klaassen (NXP Semiconductors) Ramses van der Toorn (Delft University of Technology) MOS-AK, San Francisco 12 December 2012 outline some history

More information

CONTENTS. 2.2 Schrodinger's Wave Equation 31. PART I Semiconductor Material Properties. 2.3 Applications of Schrodinger's Wave Equation 34

CONTENTS. 2.2 Schrodinger's Wave Equation 31. PART I Semiconductor Material Properties. 2.3 Applications of Schrodinger's Wave Equation 34 CONTENTS Preface x Prologue Semiconductors and the Integrated Circuit xvii PART I Semiconductor Material Properties CHAPTER 1 The Crystal Structure of Solids 1 1.0 Preview 1 1.1 Semiconductor Materials

More information

ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS

ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS Fourth Edition PAUL R. GRAY University of California, Berkeley PAUL J. HURST University of California, Davis STEPHEN H. LEWIS University of California,

More information

Semiconductor Detector Systems

Semiconductor Detector Systems Semiconductor Detector Systems Helmuth Spieler Physics Division, Lawrence Berkeley National Laboratory OXFORD UNIVERSITY PRESS ix CONTENTS 1 Detector systems overview 1 1.1 Sensor 2 1.2 Preamplifier 3

More information

Fundamentals of Power Semiconductor Devices

Fundamentals of Power Semiconductor Devices В. Jayant Baliga Fundamentals of Power Semiconductor Devices 4y Spri ringer Contents Preface vii Chapter 1 Introduction 1 1.1 Ideal and Typical Power Switching Waveforms 3 1.2 Ideal and Typical Power Device

More information

Accuracy and Speed Performance of HiSIM Versions 231 and 240

Accuracy and Speed Performance of HiSIM Versions 231 and 240 Accuracy and Speed Performance of HiSIM Versions 231 and 240 H.J. Mattausch, M. Miura-Mattausch, N. Sadachika, M. Miyake Graduate School of Advanced Sciences of Matter, Hiroshima University T. Iizuka NEC

More information

CHAPTER 3 TWO DIMENSIONAL ANALYTICAL MODELING FOR THRESHOLD VOLTAGE

CHAPTER 3 TWO DIMENSIONAL ANALYTICAL MODELING FOR THRESHOLD VOLTAGE 49 CHAPTER 3 TWO DIMENSIONAL ANALYTICAL MODELING FOR THRESHOLD VOLTAGE 3.1 INTRODUCTION A qualitative notion of threshold voltage V th is the gate-source voltage at which an inversion channel forms, which

More information

A New Model for Thermal Channel Noise of Deep-Submicron MOSFETS and its Application in RF-CMOS Design

A New Model for Thermal Channel Noise of Deep-Submicron MOSFETS and its Application in RF-CMOS Design IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 36, NO. 5, MAY 2001 831 A New Model for Thermal Channel Noise of Deep-Submicron MOSFETS and its Application in RF-CMOS Design Gerhard Knoblinger, Member, IEEE,

More information

444 Index. F Fermi potential, 146 FGMOS transistor, 20 23, 57, 83, 84, 98, 205, 208, 213, 215, 216, 241, 242, 251, 280, 311, 318, 332, 354, 407

444 Index. F Fermi potential, 146 FGMOS transistor, 20 23, 57, 83, 84, 98, 205, 208, 213, 215, 216, 241, 242, 251, 280, 311, 318, 332, 354, 407 Index A Accuracy active resistor structures, 46, 323, 328, 329, 341, 344, 360 computational circuits, 171 differential amplifiers, 30, 31 exponential circuits, 285, 291, 292 multifunctional structures,

More information

MOSFET MODELING & BSIM3 USER S GUIDE

MOSFET MODELING & BSIM3 USER S GUIDE MOSFET MODELING & BSIM3 USER S GUIDE MOSFET MODELING & BSIM3 USER S GUIDE by Yuhua Cheng Conexant Systems, Inc. and Chenming Hu University of California, Berkeley KLUWER ACADEMIC PUBLISHERS NEW YORK, BOSTON,

More information

Davinci. Semiconductor Device Simulaion in 3D SYSTEMS PRODUCTS LOGICAL PRODUCTS PHYSICAL IMPLEMENTATION SIMULATION AND ANALYSIS LIBRARIES TCAD

Davinci. Semiconductor Device Simulaion in 3D SYSTEMS PRODUCTS LOGICAL PRODUCTS PHYSICAL IMPLEMENTATION SIMULATION AND ANALYSIS LIBRARIES TCAD SYSTEMS PRODUCTS LOGICAL PRODUCTS PHYSICAL IMPLEMENTATION SIMULATION AND ANALYSIS LIBRARIES TCAD Aurora DFM WorkBench Davinci Medici Raphael Raphael-NES Silicon Early Access TSUPREM-4 Taurus-Device Taurus-Lithography

More information

Solid State Devices- Part- II. Module- IV

Solid State Devices- Part- II. Module- IV Solid State Devices- Part- II Module- IV MOS Capacitor Two terminal MOS device MOS = Metal- Oxide- Semiconductor MOS capacitor - the heart of the MOSFET The MOS capacitor is used to induce charge at the

More information

Physics of Semiconductor Devices

Physics of Semiconductor Devices Physics of Semiconductor Devices S. M. SZE Member of the Technical Staff Bell Telephone Laboratories, Incorporated Murray Hill, New Jersey WILEY-INTERSCIENCE A Division of John Wiley & Sons New York London

More information

1 FUNDAMENTAL CONCEPTS What is Noise Coupling 1

1 FUNDAMENTAL CONCEPTS What is Noise Coupling 1 Contents 1 FUNDAMENTAL CONCEPTS 1 1.1 What is Noise Coupling 1 1.2 Resistance 3 1.2.1 Resistivity and Resistance 3 1.2.2 Wire Resistance 4 1.2.3 Sheet Resistance 5 1.2.4 Skin Effect 6 1.2.5 Resistance

More information

Noise Modeling for RF CMOS Circuit Simulation

Noise Modeling for RF CMOS Circuit Simulation 618 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 50, NO. 3, MARCH 2003 Noise Modeling for RF CMOS Circuit Simulation Andries J. Scholten, Luuk F. Tiemeijer, Ronald van Langevelde, Member, IEEE, Ramon J.

More information

ECE520 VLSI Design. Lecture 2: Basic MOS Physics. Payman Zarkesh-Ha

ECE520 VLSI Design. Lecture 2: Basic MOS Physics. Payman Zarkesh-Ha ECE520 VLSI Design Lecture 2: Basic MOS Physics Payman Zarkesh-Ha Office: ECE Bldg. 230B Office hours: Wednesday 2:00-3:00PM or by appointment E-mail: pzarkesh@unm.edu Slide: 1 Review of Last Lecture Semiconductor

More information

cost and reliability; power considerations were of secondary importance. In recent years. however, this has begun to change and increasingly power is

cost and reliability; power considerations were of secondary importance. In recent years. however, this has begun to change and increasingly power is CHAPTER-1 INTRODUCTION AND SCOPE OF WORK 1.0 MOTIVATION In the past, the major concern of the VLSI designer was area, performance, cost and reliability; power considerations were of secondary importance.

More information

Session 3: Solid State Devices. Silicon on Insulator

Session 3: Solid State Devices. Silicon on Insulator Session 3: Solid State Devices Silicon on Insulator 1 Outline A B C D E F G H I J 2 Outline Ref: Taurand Ning 3 SOI Technology SOl materials: SIMOX, BESOl, and Smart Cut SIMOX : Synthesis by IMplanted

More information

A Review of Analytical Modelling Of Thermal Noise in MOSFET

A Review of Analytical Modelling Of Thermal Noise in MOSFET A Review of Analytical Modelling Of Thermal Noise in MOSFET Seemadevi B. Patil, Kureshi Abdul Kadir AP, Jayawantrao Sawant College of Engineering, Pune, Maharashtra, India Principal, Vishwabharati Academy

More information

How is a CMC Standard Model Implemented And Verified in a Simulator?

How is a CMC Standard Model Implemented And Verified in a Simulator? How is a CMC Standard Model Implemented And Verified in a Simulator? MOS-AK Workshop, Jushan Xie Vice Chairman of the CMC Senior Architect, Cadence Design Systems, Inc. 1 Content Benefit of CMC standard

More information

Device Modeling for Analog and RF CMOS Circuit Design

Device Modeling for Analog and RF CMOS Circuit Design Device Modeling for Analog and RF CMOS Circuit Design Trond Ytterdal Norwegian University of Science and Technology Yuhua Cheng Skyworks Solutions Inc., USA Tor A. Fjeldly Norwegian University of Science

More information

Active Technology for Communication Circuits

Active Technology for Communication Circuits EECS 242: Active Technology for Communication Circuits UC Berkeley EECS 242 Copyright Prof. Ali M Niknejad Outline Comparison of technology choices for communication circuits Si npn, Si NMOS, SiGe HBT,

More information

Semiconductor Physics and Devices

Semiconductor Physics and Devices Metal-Semiconductor and Semiconductor Heterojunctions The Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) is one of two major types of transistors. The MOSFET is used in digital circuit, because

More information

Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination

Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination Current Transport: Diffusion, Thermionic Emission & Tunneling For Diffusion current, the depletion layer is

More information

TSMC Property. The Impacts of BSIM. Sally Liu TSMC. S. Liu TSMC, Ltd Dec 13, 2012P TSMC, Ltd

TSMC Property. The Impacts of BSIM. Sally Liu TSMC. S. Liu TSMC, Ltd Dec 13, 2012P TSMC, Ltd The Impacts of BSIM Sally Liu TSMC 1 The Impacts of BSIM Outline What is BSIM Industry standard Breadth and depth Moving forward 2 What s in a name of BSIM The making of BSIM 631 papers in IEEE Explore

More information

RF Noise Simulation for Submicron MOSFET s Based on Hydrodynamic Model

RF Noise Simulation for Submicron MOSFET s Based on Hydrodynamic Model RF Noise Simulation for Submicron MOSFET s Based on Hydrodynamic Model Jung-Suk Goo, Chang-Hoon Choi, Eiji Morifuji, Hisayo Sasaki Momose, Zhiping Yu, Hiroshi Iwai, Thomas H. Lee, and Robert W. Dutton,

More information

The Art of ANALOG LAYOUT Second Edition

The Art of ANALOG LAYOUT Second Edition The Art of ANALOG LAYOUT Second Edition Alan Hastings 3 EARSON Pearson Education International Contents Preface to the Second Edition xvii Preface to the First Edition xix Acknowledgments xxi 1 Device

More information

MOSFET short channel effects

MOSFET short channel effects MOSFET short channel effects overview Five different short channel effects can be distinguished: velocity saturation drain induced barrier lowering (DIBL) impact ionization surface scattering hot electrons

More information

NAME: Last First Signature

NAME: Last First Signature UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE 130: IC Devices Spring 2003 FINAL EXAMINATION NAME: Last First Signature STUDENT

More information

SmartSpice Analog Circuit Simulator. Device Models

SmartSpice Analog Circuit Simulator. Device Models SmartSpice Analog Circuit Simulator Device Models SmartSpice Background Development started in 1986 with 3A1; incorporated major changes and standardized software development on coding rules of 3C.1 and

More information

COMON De-Briefing. Prof. Benjamin Iñiguez

COMON De-Briefing. Prof. Benjamin Iñiguez COMON De-Briefing Prof. Benjamin Iñiguez Department of Electronic, Electrical and Automatic Control Engineering, Universitat Rovira i Virgili (URV) Tarragona, Spain benjamin.iniguez@urv.cat MOS-AK, Munich,

More information

UNIT 3: FIELD EFFECT TRANSISTORS

UNIT 3: FIELD EFFECT TRANSISTORS FIELD EFFECT TRANSISTOR: UNIT 3: FIELD EFFECT TRANSISTORS The field effect transistor is a semiconductor device, which depends for its operation on the control of current by an electric field. There are

More information

Fabrication, Corner, Layout, Matching, & etc.

Fabrication, Corner, Layout, Matching, & etc. Advanced Analog Building Blocks Fabrication, Corner, Layout, Matching, & etc. Wei SHEN (KIP) 1 Fabrication Steps for MOS Wei SHEN, Universität Heidelberg 2 Fabrication Steps for MOS Wei SHEN, Universität

More information

RF-CMOS Performance Trends

RF-CMOS Performance Trends 1776 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 48, NO. 8, AUGUST 2001 RF-CMOS Performance Trends Pierre H. Woerlee, Mathijs J. Knitel, Ronald van Langevelde, Member, IEEE, Dirk B. M. Klaassen, Luuk F.

More information

EE241 - Spring 2013 Advanced Digital Integrated Circuits. Projects. Groups of 3 Proposals in two weeks (2/20) Topics: Lecture 5: Transistor Models

EE241 - Spring 2013 Advanced Digital Integrated Circuits. Projects. Groups of 3 Proposals in two weeks (2/20) Topics: Lecture 5: Transistor Models EE241 - Spring 2013 Advanced Digital Integrated Circuits Lecture 5: Transistor Models Projects Groups of 3 Proposals in two weeks (2/20) Topics: Soft errors in datapaths Soft errors in memory Integration

More information

Design of Analog CMOS Integrated Circuits

Design of Analog CMOS Integrated Circuits Design of Analog CMOS Integrated Circuits Behzad Razavi Professor of Electrical Engineering University of California, Los Angeles H Boston Burr Ridge, IL Dubuque, IA Madison, WI New York San Francisco

More information

Advanced PDK and Technologies accessible through ASCENT

Advanced PDK and Technologies accessible through ASCENT Advanced PDK and Technologies accessible through ASCENT MOS-AK Dresden, Sept. 3, 2018 L. Perniola*, O. Rozeau*, O. Faynot*, T. Poiroux*, P. Roseingrave^ olivier.faynot@cea.fr *Cea-Leti, Grenoble France;

More information

UOTFT: Universal Organic TFT Model for Circuit Design

UOTFT: Universal Organic TFT Model for Circuit Design UOTFT: Universal Organic TFT Model for Circuit Design S. Mijalković, D. Green, A. Nejim Silvaco Europe, St Ives, Cambridgeshire, UK A. Rankov, E. Smith, T. Kugler, C. Newsome, J. Halls Cambridge Display

More information

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY (DEEMED UNIVERSITY)

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY (DEEMED UNIVERSITY) SRM INSTITUTE OF SCIENCE AND TECHNOLOGY (DEEMED UNIVERSITY) QUESTION BANK I YEAR B.Tech (II Semester) ELECTRONIC DEVICES (COMMON FOR EC102, EE104, IC108, BM106) UNIT-I PART-A 1. What are intrinsic and

More information

Power MOSFET Zheng Yang (ERF 3017,

Power MOSFET Zheng Yang (ERF 3017, ECE442 Power Semiconductor Devices and Integrated Circuits Power MOSFET Zheng Yang (ERF 3017, email: yangzhen@uic.edu) Evolution of low-voltage (

More information

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203. DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING SUBJECT QUESTION BANK : EC6201 ELECTRONIC DEVICES SEM / YEAR: II / I year B.E.ECE

More information

Design and Performance Analysis of SOI and Conventional MOSFET based CMOS Inverter

Design and Performance Analysis of SOI and Conventional MOSFET based CMOS Inverter I J E E E C International Journal of Electrical, Electronics ISSN No. (Online): 2277-2626 and Computer Engineering 3(2): 138-143(2014) Design and Performance Analysis of SOI and Conventional MOSFET based

More information

Simucad Model Library Development Environment

Simucad Model Library Development Environment SPICE MODELS Simucad Model Library Development Environment Example: Model Source Files: BSIM3 BSIM4 BSIMSOI HiSIM Gummel-Poon ModelLib Model Development Environment Compiler Model Object Files Linker Documentation

More information

FET(Field Effect Transistor)

FET(Field Effect Transistor) Field Effect Transistor: Construction and Characteristic of JFETs. Transfer Characteristic. CS,CD,CG amplifier and analysis of CS amplifier MOSFET (Depletion and Enhancement) Type, Transfer Characteristic,

More information

Advanced Power MOSFET Concepts

Advanced Power MOSFET Concepts В. Jayant Baliga Advanced Power MOSFET Concepts Springer Contents 1 Introduction 1 1.1 Ideal Power Switching Waveforms 2 1.2 Ideal and Typical Power MOSFET Characteristics 3 1.3 Typical Power MOSFET Structures

More information

INTRODUCTION: Basic operating principle of a MOSFET:

INTRODUCTION: Basic operating principle of a MOSFET: INTRODUCTION: Along with the Junction Field Effect Transistor (JFET), there is another type of Field Effect Transistor available whose Gate input is electrically insulated from the main current carrying

More information

EFFECT OF THRESHOLD VOLTAGE AND CHANNEL LENGTH ON DRAIN CURRENT OF SILICON N-MOSFET

EFFECT OF THRESHOLD VOLTAGE AND CHANNEL LENGTH ON DRAIN CURRENT OF SILICON N-MOSFET EFFECT OF THRESHOLD VOLTAGE AND CHANNEL LENGTH ON DRAIN CURRENT OF SILICON N-MOSFET A.S.M. Bakibillah Nazibur Rahman Dept. of Electrical & Electronic Engineering, American International University Bangladesh

More information

Jack Keil Wolf Lecture. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. MOSFET N-Type, P-Type.

Jack Keil Wolf Lecture. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. MOSFET N-Type, P-Type. ESE 570: Digital Integrated Circuits and VLSI Fundamentals Jack Keil Wolf Lecture Lec 3: January 24, 2019 MOS Fabrication pt. 2: Design Rules and Layout http://www.ese.upenn.edu/about-ese/events/wolf.php

More information

Analog and Telecommunication Electronics

Analog and Telecommunication Electronics Politecnico di Torino - ICT School Analog and Telecommunication Electronics F2 Active power devices»mos»bjt» IGBT, TRIAC» Safe Operating Area» Thermal analysis 30/05/2012-1 ATLCE - F2-2011 DDC Lesson F2:

More information

Drive performance of an asymmetric MOSFET structure: the peak device

Drive performance of an asymmetric MOSFET structure: the peak device MEJ 499 Microelectronics Journal Microelectronics Journal 30 (1999) 229 233 Drive performance of an asymmetric MOSFET structure: the peak device M. Stockinger a, *, A. Wild b, S. Selberherr c a Institute

More information

Prepared by Dr. Ulkuhan Guler GT-Bionics Lab Georgia Institute of Technology

Prepared by Dr. Ulkuhan Guler GT-Bionics Lab Georgia Institute of Technology Prepared by Dr. Ulkuhan Guler GT-Bionics Lab Georgia Institute of Technology OUTLINE Understanding Fabrication Imperfections Layout of MOS Transistor Matching Theory and Mismatches Device Matching, Interdigitation

More information

Contents. 1.1 Brief of Power Device Design Current Status of Power Semiconductor Devices Power MOSFETs... 3

Contents. 1.1 Brief of Power Device Design Current Status of Power Semiconductor Devices Power MOSFETs... 3 Contents Abstract (in Chinese) Abstract (in English) Acknowledgments (in Chinese) Contents Table Lists Figure Captions i iv viii ix xv xvii Chapter 1 Introduction..1 1.1 Brief of Power Device Design. 1

More information

! Review: MOS IV Curves and Switch Model. ! MOS Device Layout. ! Inverter Layout. ! Gate Layout and Stick Diagrams. ! Design Rules. !

! Review: MOS IV Curves and Switch Model. ! MOS Device Layout. ! Inverter Layout. ! Gate Layout and Stick Diagrams. ! Design Rules. ! ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 3: January 21, 2016 MOS Fabrication pt. 2: Design Rules and Layout Lecture Outline! Review: MOS IV Curves and Switch Model! MOS Device Layout!

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 3: January 21, 2016 MOS Fabrication pt. 2: Design Rules and Layout Penn ESE 570 Spring 2016 Khanna Adapted from GATech ESE3060 Slides Lecture

More information

Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism;

Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism; Chapter 3 Field-Effect Transistors (FETs) 3.1 Introduction Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism; The concept has been known

More information

EE70 - Intro. Electronics

EE70 - Intro. Electronics EE70 - Intro. Electronics Course website: ~/classes/ee70/fall05 Today s class agenda (November 28, 2005) review Serial/parallel resonant circuits Diode Field Effect Transistor (FET) f 0 = Qs = Qs = 1 2π

More information

Alternatives to standard MOSFETs. What problems are we really trying to solve?

Alternatives to standard MOSFETs. What problems are we really trying to solve? Alternatives to standard MOSFETs A number of alternative FET schemes have been proposed, with an eye toward scaling up to the 10 nm node. Modifications to the standard MOSFET include: Silicon-in-insulator

More information

Analysis and Design of a Low Voltage Si LDMOS Transistor

Analysis and Design of a Low Voltage Si LDMOS Transistor International Journal of Latest Research in Engineering and Technology (IJLRET) ISSN: 2454-5031(Online) ǁ Volume 1 Issue 3ǁAugust 2015 ǁ PP 65-69 Analysis and Design of a Low Voltage Si LDMOS Transistor

More information

Design cycle for MEMS

Design cycle for MEMS Design cycle for MEMS Design cycle for ICs IC Process Selection nmos CMOS BiCMOS ECL for logic for I/O and driver circuit for critical high speed parts of the system The Real Estate of a Wafer MOS Transistor

More information

Sub-Threshold Region Behavior of Long Channel MOSFET

Sub-Threshold Region Behavior of Long Channel MOSFET Sub-threshold Region - So far, we have discussed the MOSFET behavior in linear region and saturation region - Sub-threshold region is refer to region where Vt is less than Vt - Sub-threshold region reflects

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 3: January 24, 2019 MOS Fabrication pt. 2: Design Rules and Layout Penn ESE 570 Spring 2019 Khanna Jack Keil Wolf Lecture http://www.ese.upenn.edu/about-ese/events/wolf.php

More information

Lecture 4 -- Tuesday, Sept. 19: Non-uniform injection and/or doping. Diffusion. Continuity/conservation. The five basic equations.

Lecture 4 -- Tuesday, Sept. 19: Non-uniform injection and/or doping. Diffusion. Continuity/conservation. The five basic equations. 6.012 ELECTRONIC DEVICES AND CIRCUITS Schedule -- Fall 1995 (8/31/95 version) Recitation 1 -- Wednesday, Sept. 6: Review of 6.002 models for BJT. Discussion of models and modeling; motivate need to go

More information

An Analytical model of the Bulk-DTMOS transistor

An Analytical model of the Bulk-DTMOS transistor Journal of Electron Devices, Vol. 8, 2010, pp. 329-338 JED [ISSN: 1682-3427 ] Journal of Electron Devices www.jeldev.org An Analytical model of the Bulk-DTMOS transistor Vandana Niranjan Indira Gandhi

More information

Session 10: Solid State Physics MOSFET

Session 10: Solid State Physics MOSFET Session 10: Solid State Physics MOSFET 1 Outline A B C D E F G H I J 2 MOSCap MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor: Al (metal) SiO2 (oxide) High k ~0.1 ~5 A SiO2 A n+ n+ p-type Si (bulk)

More information

Assessing the MVS Model for Nanotransistors (August 2013)

Assessing the MVS Model for Nanotransistors (August 2013) 1 Assessing the MVS Model for Nanotransistors (August 2013) Siyang Liu, Xingshu Sun and Prof. Mark Lundstrom Abstract A simple semi-empirical compact MOSFET model has been developed, which is called MIT

More information

L MOSFETS, IDENTIFICATION, CURVES. PAGE 1. I. Review of JFET (DRAW symbol for n-channel type, with grounded source)

L MOSFETS, IDENTIFICATION, CURVES. PAGE 1. I. Review of JFET (DRAW symbol for n-channel type, with grounded source) L.107.4 MOSFETS, IDENTIFICATION, CURVES. PAGE 1 I. Review of JFET (DRAW symbol for n-channel type, with grounded source) 1. "normally on" device A. current from source to drain when V G = 0 no need to

More information

45nm Bulk CMOS Within-Die Variations. Courtesy of C. Spanos (UC Berkeley) Lecture 11. Process-induced Variability I: Random

45nm Bulk CMOS Within-Die Variations. Courtesy of C. Spanos (UC Berkeley) Lecture 11. Process-induced Variability I: Random 45nm Bulk CMOS Within-Die Variations. Courtesy of C. Spanos (UC Berkeley) Lecture 11 Process-induced Variability I: Random Random Variability Sources and Characterization Comparisons of Different MOSFET

More information

EFFECT OF STRUCTURAL AND DOPING PARAMETER VARIATIONS ON NQS DELAY, INTRINSIC GAIN AND NF IN JUNCTIONLESS FETS

EFFECT OF STRUCTURAL AND DOPING PARAMETER VARIATIONS ON NQS DELAY, INTRINSIC GAIN AND NF IN JUNCTIONLESS FETS EFFECT OF STRUCTURAL AND DOPING PARAMETER VARIATIONS ON NQS DELAY, INTRINSIC GAIN AND NF IN JUNCTIONLESS FETS B. Lakshmi 1 and R. Srinivasan 2 1 School of Electronics Engineering, VIT University, Chennai,

More information

problem grade total

problem grade total Fall 2005 6.012 Microelectronic Devices and Circuits Prof. J. A. del Alamo Name: Recitation: November 16, 2005 Quiz #2 problem grade 1 2 3 4 total General guidelines (please read carefully before starting):

More information

I E I C since I B is very small

I E I C since I B is very small Figure 2: Symbols and nomenclature of a (a) npn and (b) pnp transistor. The BJT consists of three regions, emitter, base, and collector. The emitter and collector are usually of one type of doping, while

More information

Technology-Independent CMOS Op Amp in Minimum Channel Length

Technology-Independent CMOS Op Amp in Minimum Channel Length Technology-Independent CMOS Op Amp in Minimum Channel Length A Thesis Presented to The Academic Faculty by Susanta Sengupta In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

More information

! Review: MOS IV Curves and Switch Model. ! MOS Device Layout. ! Inverter Layout. ! Gate Layout and Stick Diagrams. ! Design Rules. !

! Review: MOS IV Curves and Switch Model. ! MOS Device Layout. ! Inverter Layout. ! Gate Layout and Stick Diagrams. ! Design Rules. ! ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 3: January 21, 2017 MOS Fabrication pt. 2: Design Rules and Layout Lecture Outline! Review: MOS IV Curves and Switch Model! MOS Device Layout!

More information

Index. Cambridge University Press Fundamentals of Modern VLSI Devices: Second Edition Yuan Taur and Tak H. Ning.

Index. Cambridge University Press Fundamentals of Modern VLSI Devices: Second Edition Yuan Taur and Tak H. Ning. abrupt junction, 38 acceptor, 17 acceptor level, 18 9 access transistor, 477 8, 496 accumulation, 76 7 accumulation layer, 250 charge density, 250 resistance, 274 5 sheet resistivity, 251 ac equivalent

More information

Device Technologies. Yau - 1

Device Technologies. Yau - 1 Device Technologies Yau - 1 Objectives After studying the material in this chapter, you will be able to: 1. Identify differences between analog and digital devices and passive and active components. Explain

More information

Contents 1 Introduction 2 MOS Fabrication Technology

Contents 1 Introduction 2 MOS Fabrication Technology Contents 1 Introduction... 1 1.1 Introduction... 1 1.2 Historical Background [1]... 2 1.3 Why Low Power? [2]... 7 1.4 Sources of Power Dissipations [3]... 9 1.4.1 Dynamic Power... 10 1.4.2 Static Power...

More information

EE 5611 Introduction to Microelectronic Technologies Fall Thursday, September 04, 2014 Lecture 02

EE 5611 Introduction to Microelectronic Technologies Fall Thursday, September 04, 2014 Lecture 02 EE 5611 Introduction to Microelectronic Technologies Fall 2014 Thursday, September 04, 2014 Lecture 02 1 Lecture Outline Review on semiconductor materials Review on microelectronic devices Example of microelectronic

More information

Variation-Aware Design for Nanometer Generation LSI

Variation-Aware Design for Nanometer Generation LSI HIRATA Morihisa, SHIMIZU Takashi, YAMADA Kenta Abstract Advancement in the microfabrication of semiconductor chips has made the variations and layout-dependent fluctuations of transistor characteristics

More information

In this lecture we will begin a new topic namely the Metal-Oxide-Semiconductor Field Effect Transistor.

In this lecture we will begin a new topic namely the Metal-Oxide-Semiconductor Field Effect Transistor. Solid State Devices Dr. S. Karmalkar Department of Electronics and Communication Engineering Indian Institute of Technology, Madras Lecture - 38 MOS Field Effect Transistor In this lecture we will begin

More information

Lecture 19 Real Semiconductor Switches and the Evolution of Power MOSFETS A.. Real Switches: I(D) through the switch and V(D) across the switch

Lecture 19 Real Semiconductor Switches and the Evolution of Power MOSFETS A.. Real Switches: I(D) through the switch and V(D) across the switch Lecture 19 Real Semiconductor Switches and the Evolution of Power MOSFETS 1 A.. Real Switches: I(D) through the switch and V(D) across the switch 1. Two quadrant switch implementation and device choice

More information

Chapter 2 : Semiconductor Materials & Devices (II) Feb

Chapter 2 : Semiconductor Materials & Devices (II) Feb Chapter 2 : Semiconductor Materials & Devices (II) 1 Reference 1. SemiconductorManufacturing Technology: Michael Quirk and Julian Serda (2001) 3. Microelectronic Circuits (5/e): Sedra & Smith (2004) 4.

More information

6. Field-Effect Transistor

6. Field-Effect Transistor 6. Outline: Introduction to three types of FET: JFET MOSFET & CMOS MESFET Constructions, Characteristics & Transfer curves of: JFET & MOSFET Introduction The field-effect transistor (FET) is a threeterminal

More information

E3 237 Integrated Circuits for Wireless Communication

E3 237 Integrated Circuits for Wireless Communication E3 237 Integrated Circuits for Wireless Communication Lecture 8: Noise in Components Gaurab Banerjee Department of Electrical Communication Engineering, Indian Institute of Science, Bangalore banerjee@ece.iisc.ernet.in

More information

IMPROVED CURRENT MIRROR OUTPUT PERFORMANCE BY USING GRADED-CHANNEL SOI NMOSFETS

IMPROVED CURRENT MIRROR OUTPUT PERFORMANCE BY USING GRADED-CHANNEL SOI NMOSFETS IMPROVED CURRENT MIRROR OUTPUT PERFORMANCE BY USING GRADED-CHANNEL SOI NMOSFETS Marcelo Antonio Pavanello *, João Antonio Martino and Denis Flandre 1 Laboratório de Sistemas Integráveis Escola Politécnica

More information

EE301 Electronics I , Fall

EE301 Electronics I , Fall EE301 Electronics I 2018-2019, Fall 1. Introduction to Microelectronics (1 Week/3 Hrs.) Introduction, Historical Background, Basic Consepts 2. Rewiev of Semiconductors (1 Week/3 Hrs.) Semiconductor materials

More information

Basic Fabrication Steps

Basic Fabrication Steps Basic Fabrication Steps and Layout Somayyeh Koohi Department of Computer Engineering Adapted with modifications from lecture notes prepared by author Outline Fabrication steps Transistor structures Transistor

More information

Appendix: Power Loss Calculation

Appendix: Power Loss Calculation Appendix: Power Loss Calculation Current flow paths in a synchronous buck converter during on and off phases are illustrated in Fig. 1. It has to be noticed that following parameters are interrelated:

More information

Introducing Technology Computer-Aided Design (TCAD)

Introducing Technology Computer-Aided Design (TCAD) Chinmay K. Maiti Introducing Technology Computer-Aided Design (TCAD) Fundamentals, Simulations, and Applications Introducing Technology Computer-Aided Design (TCAD) Introducing Technology Computer-Aided

More information