Mode selective fiber Bragg gratings

Size: px
Start display at page:

Download "Mode selective fiber Bragg gratings"

Transcription

1 Mode selective fiber Bragg gratings Jens U. Thomas a, Christian Voigtländer a, Stefan Nolte a, Andreas Tünnermann a,b, Nemanja Jovanovic c,grahamd.marshall c, Michael J. Withford c, Michael Steel c a Friedrich-Schiller-University, Institute of Applied Physics, Max-Wien-Platz 1, 7743 Jena, Germany; b Fraunhofer Institute for Applied Optics and Precision Engineering, Albert-Einstein-Str. 7, 7745 Jena, Germany; c Macquarie University, MQ Photonics Research Centre, North Ryde, New South Wales 219, Australia ABSTRACT Focussing ultrashort laser pulses allows for inscribing fiber Bragg gratings (FBGs) directly into rare earth doped fiber cores - without prior photosensitivity treatment. High reflective FBGs can be written into active Large Mode Area (LMA) Fibers with 2 micron core diameter using a phase mask scanning technique. Here, we demonstrate fiber Bragg gratings (FBGs), which cover only a fraction of the core. With this additional degree of freedom it is possible to taylor the reflectivity of individual modes. We show for example how those FBGs can be used in few mode LMA fibers to suppress reflections into higher order modes. Keywords: fiber Bragg gratings, fiber laser, ultrafast applications 1. INTRODUCTION High power fiber lasers have conquered a large market share within solid state lasers, because of their compactness and high brilliance. 1 For improved cost and stability monolithic setups become more and more important. Therefore one strives to replace as many bulk components with fiber integrated devices. Most prominently, fiber Bragg gratings (FBGs) compete with dielectric mirrors and volume Bragg gratings as resonator mirrors. However, many high power fiber laser systems rely on large mode area (LMA) fibers. FBG inscription by conventional means is challenging here, because for large, actively doped fiber cores, the necessary prior photo sensitivity treatment comes to its limits. Additionally, fibers with larger core diameter often support more than one transversal mode. For FBG based laser setups this results in modal instabilities, thus power scaling is hampered. More sophisticated FBGs could filter or convert higher order modes. However, since the transversal cross section of conventional fabricated FBG cannot be controlled, efficient elements could only be realized with slanted gratings. 2 6 These limits can be overcome by using an ultrashort laser for FBG inscription: Because of the nonlinear absorbtion of ultrashort pulses within the femtosecond (fs) range, refractive index changes can be obtained in non photosensitive fiber cores. FBGs have been successfully inscribed by fs pulses in standard Ge-doped fiber cores 7, 8 as well as in Er-doped 9 and Yb-doped 1, 11 fibers. In all cases, the rare-earth doped fibers could be operated as one-piece-laser In a Yb-doped, single mode LMA fiber with 1 micron diameter, 1 W could be obtained in cw operation. 11 Moreover, with a point-by-point (PbP) approach, 12 it is possible to target small subsections of the fiber core. In the first part of this paper we apply the coupled mode theory to show, how multi mode reflections of FBGs can be tailored by partially modified core cross sections. In the second part, we use the PbP technique (Figure 1a)) to show the impact of partial core modification on core-cladding mode coupling. We also demonstrate cross coupling in such FBGs, which results in mode conversion. Finally, with a phase mask scanning (Figure 1b)) written FBG we obtain a cross coupling free spectrum that enables stable few mode operation. Further author information: thomas@iap.uni-jena.de Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications X, edited by Alexander Heisterkamp, Joseph Neev, Stefan Nolte, Rick P. Trebino, Proc. of SPIE Vol. 7589, 7589J 21 SPIE CCC code: X/1/$18 doi: / Proc. of SPIE Vol J-1

2 Proc. of SPIE Vol J-2

3 of their transversal field components E t i with the dielectric pertubation Δɛ(x, y). When the coupling constants κ ij are known, reflection and transmission spectra can be computed by numerically solving the coupled mode equations w h Λ y a 1 z x Figure 2. Simplified model of the fs induced modification within the fiber core In case of a FBG in a single mode fiber, evaluation of equation (3) leads to the well known Bragg reflection at λ =2n eff Λ/m, (5) where the effective refractive index n eff of the mode is computed from its propagation constant β =2πn eff /λ. In a fiber that supports N modes however, a single period FBG exhibits not only N reflection peaks but also N(N 1)/2 cross coupling peaks at λ i =2n eff,i Λ/m, (6) λ i,j =(n eff,i + n eff,j )Λ/m. (7) Thus, a FBG in a N mode fiber has up to N(N +1)/2 reflection peaks. The magnitude of such peaks heavily depends on the cross section Δn mod (x, y), since it governs the coupling constant (equation 4). Proc. of SPIE Vol J-3

4 3. EXPERIMENTAL In this paper we use two different techniques for FBG inscription with ultrashort pulses (Figure 1): while the phase mask scanning technique is efficient for structuring large cross sections, 19 the strength of the PbP method 12, 2 lies in the ability to probe selected parts of the core. 3.1 Cladding mode coupling of PbP-FBG in single mode fiber For the grating inscription we used a femtosecond laser (Spectra Hurrican) that delivers pulses of 11 fs length at 8 nm with a repetion rate f of 1kHz. A 2 oil immersion objective (NA =.8) is used for focusing the ultrashort pulses as well as for imaging the fiber core before and after inscription of the grating. This allows for positioning the modification of the FBG within the fiber core with an error of less than one micron. Pulse energies between 2 and 275 nj cause a micro explosion within the focal volume, that leaves a micro void after one pulse. Micro void chains of period Λ = v/f are written by pulling the fiber under the microscope objective 2, 21 with a velocity v. All gratings were written in second order m = 2 with the polymer coating stripped into SMF-28e fibers (a 1 =4.5μm). The length of the gratings was 2 mm. The inscribed FBGs were probed in transmission: The light of a swept wavelength laser system (SWS) with a range of λ = nm was launched into the fiber. Then, the signal at the end of the fiber was measured with a photo diode that was synchronized with the SWS. The resulting cladding spectra are plotted in Figure 3 and 5. The domiant peak on the long wavelength side of the picture results from the expected core-core mode coupling (see equation 5). The comb of transmissions dips on the short wavelength side of the Bragg peak is caused by coupling of the core mode to cladding modes. Two envelope functions classify the cladding mode reflections (Figure 3). While the stronger peaks result from coupling into cladding modes of azimuthal order l = 1, the less stronger resonances in between result from coupling into cladding modes of higher azimuthal order. Transmission [db] wavelength λ [nm] Figure 3. Transmission spectrum of a point by point written FBG, where the modification is located approximately 1-2 microns off the center of the fiber core. By evalutation of equations 3 and 4 and subsequent solving of the coupled mode equation, we could compute the transmission spectra of the micro void FBGs. 17 In Figure 4 the spectra are plotted for different transversal displacements of the micro void. The more the micro void is off center, the lower is the overall reflectivity and the stronger the coupling to higher order modes. For a complete suppression of higher order modes, the micro void has to be inscribed exactly in the center of the fiber core. Even small deviations cause the higher azimuthal order comb to rise. Therefore, in order to suppress higher order cladding modes, the modification has to be centered in the fiber core as good as possible. The spectrum of such a grating is shown in Figure 5. Here, reflection to the higher azimuthal cladding modes could be avoided in a range of over 1nm. Only below 153nm, a small contribution of the light couples into higher azimuthal order modes. Proc. of SPIE Vol J-4

5 Transmission (db) displacement (μm) wavelength λ (nm) Figure 4. Location dependent evolution of the Transmission spectrum Transmission [db] wavelength λ [nm] Figure 5. Transmission spectrum of a point by point written FBG, where the modification is centered at the core within the experimental error. Proc. of SPIE Vol J-5

6 3.2 Coupling of PbP FBGs in multi mode fiber In order to investigate for multi mode reflection, we wrote second order PbP FBGs in a two mode LMA fiber with 15μm core diameter (Nufern LMA GSF 15/123). In order to favor higher order reflections, two parallel lines of micro voids were written, each placed 2μm off the core center. The gratings were written for a reflection wavelength of 179nm. For probing we used a broad band home built Amplified Spontaneous Emission (ASE) source, that delivered 97mW, with a center wavelength at 16nm. This time, the transmission spectrum was taken with a free beam grating-spectrograph (Oriel 772). The spectrum of the grating is shown in Figure 6. The top picture shows the spectrally decomposed mode. The spatial information of the beam is maintained vertically. With integrating different areas of the raw spectra, mode selective transmission spectra can be obtained: While the top area (I) shows the transmission spectra of the fundamental mode, the bottom area (II) shows contributions of both the fundamental and the higher order mode. We identify the reflection peaks as follows: 1) is the reflection of the higher order mode into itself, 3) the fundamental Bragg peak and 2) the cross coupling peak. At the cross coupling wavelength, mode conversion from the fundamental to the higher order mode and backward occurs. Since the micro voids cover only a fraction of the core, the overall reflectivity is only 2 percent. I II T T I Wavelength (nm) II Wavelength (nm) Figure 6. Spectrum of a multi mode FBG: before integration (top) the spatial information of the modes is vertically maintained. Mode selective spectra are obtained by integrating over area I (middle) and area II (bottom) 3.3 Cross coupling suppressed LMA FBG written via phase mask scanning Since cross coupling of the fiber mode hampers laser stability it has to be suppressed in LMA fibers for high power lasers. One way would be to center the PbP FBG as good as possible. However, experimentally this is not easy feasible. To overcome these limits, we chose to write a transversally homogeneous FBG. Thus, one has to integrate over the whole core area, when computing coupling coefficients (equation 4). Cross coupling coefficients are zero, because their integral kernel exhibits an azimuthal dependence. Proc. of SPIE Vol J-6

7 For the experimental realization we used a commercial amplified Ti Sapphire laser (Spectra physics Spitfire) with pulse energies of up to 7μJ, a central wavelength of 8nm and a repetition rate of 1kHz. For phase mask scanning, a phase mask of period 1.485μm is placed above the fiber. Hence, phase mask and fiber are illuminated with the line focus of a cylindrical lens (focal length 2mm). Due to order walkoff of the diffracted 19, 22 ultrashort pulses, a pure two beam interference pattern modifies the core. In order to elongate and widen the area of modification, both fiber and phase mask are translated with respect to the beam with a velocity of v =.5 mm/min. 19 The FBG was inscribed into a Yb-doped LMA fiber with 2μm core diameter (Nufern LMA-YDF-2/4); it is 1mm long and 4μm wide, thus covering the core and parts of the cladding. For inscription, we used a pulse energy of 25μJ. The transmission spectrum is shown in Figure 7. More than 8 percent of the fundamental mode (peak 3) are reflected. The cross coupling peak 2 is much weaker in contrast to Figure 6, thus the FBG can be used for obtaining stable laser operation. transmission (db) wavelength λ (nm) Figure 7. Transmission spectra of a FBG written with the phase mask scanning technique. 4. CONCLUSION By using an ultrashort laser and the PbP inscription method, we investigated the coupling behavior of transversally inhomogeneous FBG. We described in experiment and theory, how coupling into higher order modes can be steered with a partial modification of the core. Furthermore we accurately rendered the transmission spectra by applying the coupled mode theory. In a few mode fiber, we demonstrated how the FBG causes mode conversion. Since this is usually undesirable for FBGs used in a laser, we finally wrote a transversally homogeneous FBG using a phase mask scanning technique directly into an Yb-doped LMA fiber. A monolithic fiber laser based on this fiber delivered up to 215W of output power and is also presented at Photonic West Ongoing work is on the realization of a Fabry-Perot cavity in order to also damp reflection of the higher order modes. Proc. of SPIE Vol J-7

8 ACKNOWLEDGMENTS The authors would like to thank Ed Grace for help in probing the fiber. This work was produced with funding from the German Federal Ministry of Education and Research (BMBF) and the Australian Research Council under the ARC Centres of Excellence and LIEF programs. Jens Thomas acknowledges funding by the DAAD, grant D/ REFERENCES [1] Tünnermann, A., Schreiber, T., Röser, F., Liem, A., Höfer, S., Zellmer, H., Nolte, S., and Limpert, J., The renaissance and bright future of fibre lasers, Journal of Physics B: Atomic 38, 681 (May 25). [2] Zhang, J., Yu, H., Xu, C.-Q., and Huang, W.-P., Multimode optical fiber bragg gratings: modeling, simulation, and experiments, Photonics North 24: Photonic Applications in Telecommunications 5579, 435 (Nov 24). [3] Yu, H.-G., Wang, Y., Yang, C., Xu, Q.-Y., Yang, X.-L., and Xu, C.-Q., Effects of the asymmetric refractive index change profile on the reflection spectra of multimode fiber bragg gratings, Photonic Applications in Biosensing and Imaging. Edited by Chan 597, 6 (Sep 25). [4] Yu, H.-G., Yang, C., Wang, Y., Zhang, J.-S., Yang, J., Farkas, R., and Xu, C.-Q., Bragg gratings in multimode fiber, Photonics North 24: Optical Components and Devices. Edited by Armitage 5577, 354 (Oct 24). [5] Mizunami, T., Djambova, T., Niiho, T., and Gupta, S., Bragg gratings in multimode and few-mode optical fibers, Journal of Lightwave Technology 18(2), 23 (2). [6] Erdogan, T. and Sipe, J. E., Tilted fiber phase gratings, Journal of the Optical Society of America A: Optics 13, 296 (Feb 1996). [7] Mihailov, S. J., Smelser, C. W., Grobnic, D., Walker, R. B., Lu, P., Ding, H., and Unruh, J., Bragg gratings written in all-sio2 and ge-doped core fibers with 8-nm femtosecond radiation and a phase mask, Journal of Lightwave Technology 22, 94 (Jan 24). [8] Martinez, A., Dubov, M., Khrushchev, I., and Bennion, I., Direct writing of fibre bragg gratings by femtosecond laser, Electron. Lett. (Jan 24). [9] Wikszak, E., Thomas, J., Burghoff, J., Ortaç, B., Limpert, J., Nolte, S., Fuchs, U., andtünnermann, A., Erbium fiber laser based on intracore femtosecond-written fiber bragg grating, Optics Letters 31, 239 (Aug 26). [1] Wikszak, E., Thomas, J., Klingebiel, S., Ortaç, B., Limpert, J., Nolte, S., andtünnermann, A., Linearly polarized ytterbium fiber laser based on intracore femtosecond-written fiber bragg gratings, Optics Letters 32, 2756 (Jan 27). [11] Jovanovic, N., Åslund, M., Fuerbach, A., and Jackson, S., Narrow linewidth, 1 w cw yb-doped silica fiber laser with a point-by-point bragg grating..., Optics Letters (Jan 27). [12] Martinez, A., Lai, Y., Dubov, M., and Khrushchev, I., Vector bending sensors based on fibre bragg gratings inscribed by infrared femtosecond laser, Electron. Lett. (Jan 25). [13] Snyder, A. and Young, W., Modes of optical waveguides, Journal of the Optical Society of America 68(3), (1978). [14] Saleh, B. E. A., Teich, M. C., and Goodman, J. W., Fundamentals of photonics, Book, i xix (Aug 1991). [15] Tsao, C., Payne, D., and Gambling, W., Modal characteristics of three-layered optical fiber waveguides: a modified approach, Journal of the Optical Society of America A 6(4), (1989). [16] Erdogan, T., Fiber grating spectra, Journal of Lightwave Technology 15, 1277 (Aug 1997). [17] Erdogan, T., Cladding-mode resonances in short- and long-period fiber grating filters, Journal of the Optical Society of America A: Optics 14, 176 (Aug 1997). [18] Kogelnik, H., [Theory of Dielectric Waveguides], vol. 7 (1979). [19] Thomas, J., Wikszak, E., Clausnitzer, T., and Fuchs, U., Inscription of fiber bragg gratings with femtosecond pulses using a phase mask scanning technique, Applied Physics A: Materials Science & Processing (Jan 27). Proc. of SPIE Vol J-8

9 [2] Marshall, G., Ams, M., and Withford, J., Point by point femtosecond laser inscription of fibre and waveguide bragg gratings for photonic device fabrication, 2nd Pacific International Conference on Appl. Of Lasers and Optics 26 (26). [21] Jovanovic, N., Thomas, J., Williams, R. J., Steel, M. J., Marshall, G. D., Fuerbach, A., Nolte, S., Tünnermann, A., and Withford, M. J., Polarization-dependent effects in point-by-point fiber bragg gratings enable simple, linearly polarized fiber lasers, Optics Express 17, 682 (Mar 29). [22] Smelser, C. W., Grobnic, D., and Mihailov, S. J., Generation of pure two-beam interference grating structures in an optical fiber with a femtosecond infrared source and a phase mask, Optics Letters 29, 173 (Aug 24). [23] Stutzki, F., Jauregui, C., Voigtländer, C., Thomas, J. U., Limpert, J., Nolte, S., and Tünnermann, A., Passively stabilized 215-w monolithic cw lma-fiber laser with innovative transversal mode filter, Photonics West 21, Paper (21). Proc. of SPIE Vol J-9

Optical RI sensor based on an in-fiber Bragg grating. Fabry-Perot cavity embedded with a micro-channel

Optical RI sensor based on an in-fiber Bragg grating. Fabry-Perot cavity embedded with a micro-channel Optical RI sensor based on an in-fiber Bragg grating Fabry-Perot cavity embedded with a micro-channel Zhijun Yan *, Pouneh Saffari, Kaiming Zhou, Adedotun Adebay, Lin Zhang Photonic Research Group, Aston

More information

Modification of the Optical Performance of Fiber Bragg Gratings Using Femtosecond Laser Micromachining

Modification of the Optical Performance of Fiber Bragg Gratings Using Femtosecond Laser Micromachining Modification of the Optical Performance of Fiber Bragg Gratings Using Femtosecond Laser Micromachining Hamidreza Alemohammad *, Ehsan Toyserkani * * Rapid Prototyping Laboratory, Department of Mechanical

More information

Optically switched erbium fibre laser using a tunable fibre-bragg grating

Optically switched erbium fibre laser using a tunable fibre-bragg grating Optically switched erbium fibre laser using a tunable fibre-bragg grating Robert J. Williams, * Nemanja Jovanovic, Graham D. Marshall and Michael J. Withford. Centre for Ultrahigh bandwidth Devices for

More information

CHIRPED FIBER BRAGG GRATING (CFBG) BY ETCHING TECHNIQUE FOR SIMULTANEOUS TEMPERATURE AND REFRACTIVE INDEX SENSING

CHIRPED FIBER BRAGG GRATING (CFBG) BY ETCHING TECHNIQUE FOR SIMULTANEOUS TEMPERATURE AND REFRACTIVE INDEX SENSING CHIRPED FIBER BRAGG GRATING (CFBG) BY ETCHING TECHNIQUE FOR SIMULTANEOUS TEMPERATURE AND REFRACTIVE INDEX SENSING Siti Aisyah bt. Ibrahim and Chong Wu Yi Photonics Research Center Department of Physics,

More information

High peak power pulsed single-mode linearly polarized LMA fiber amplifier and Q-switch laser

High peak power pulsed single-mode linearly polarized LMA fiber amplifier and Q-switch laser High peak power pulsed single-mode linearly polarized LMA fiber amplifier and Q-switch laser V. Khitrov*, B. Samson, D. Machewirth, D. Yan, K. Tankala, A. Held Nufern, 7 Airport Park Road, East Granby,

More information

Progress on High Power Single Frequency Fiber Amplifiers at 1mm, 1.5mm and 2mm

Progress on High Power Single Frequency Fiber Amplifiers at 1mm, 1.5mm and 2mm Nufern, East Granby, CT, USA Progress on High Power Single Frequency Fiber Amplifiers at 1mm, 1.5mm and 2mm www.nufern.com Examples of Single Frequency Platforms at 1mm and 1.5mm and Applications 2 Back-reflection

More information

High-power All-Fiber components: The missing link for high power fiber lasers

High-power All-Fiber components: The missing link for high power fiber lasers High- All-Fiber components: The missing link for high lasers François Gonthier, Lilian Martineau, Nawfel Azami, Mathieu Faucher, François Séguin, Damien Stryckman, Alain Villeneuve ITF Optical Technologies

More information

Ring cavity tunable fiber laser with external transversely chirped Bragg grating

Ring cavity tunable fiber laser with external transversely chirped Bragg grating Ring cavity tunable fiber laser with external transversely chirped Bragg grating A. Ryasnyanskiy, V. Smirnov, L. Glebova, O. Mokhun, E. Rotari, A. Glebov and L. Glebov 2 OptiGrate, 562 South Econ Circle,

More information

Ultra-short distributed Bragg reflector fiber laser for sensing applications

Ultra-short distributed Bragg reflector fiber laser for sensing applications Ultra-short distributed Bragg reflector fiber laser for sensing applications Yang Zhang 2, Bai-Ou Guan 1,2,*, and Hwa-Yaw Tam 3 1 Institute of Photonics Technology, Jinan University, Guangzhou 510632,

More information

High brightness semiconductor lasers M.L. Osowski, W. Hu, R.M. Lammert, T. Liu, Y. Ma, S.W. Oh, C. Panja, P.T. Rudy, T. Stakelon and J.E.

High brightness semiconductor lasers M.L. Osowski, W. Hu, R.M. Lammert, T. Liu, Y. Ma, S.W. Oh, C. Panja, P.T. Rudy, T. Stakelon and J.E. QPC Lasers, Inc. 2007 SPIE Photonics West Paper: Mon Jan 22, 2007, 1:20 pm, LASE Conference 6456, Session 3 High brightness semiconductor lasers M.L. Osowski, W. Hu, R.M. Lammert, T. Liu, Y. Ma, S.W. Oh,

More information

Single-mode lasing in PT-symmetric microring resonators

Single-mode lasing in PT-symmetric microring resonators CREOL The College of Optics & Photonics Single-mode lasing in PT-symmetric microring resonators Matthias Heinrich 1, Hossein Hodaei 2, Mohammad-Ali Miri 2, Demetrios N. Christodoulides 2 & Mercedeh Khajavikhan

More information

High-power semiconductor lasers for applications requiring GHz linewidth source

High-power semiconductor lasers for applications requiring GHz linewidth source High-power semiconductor lasers for applications requiring GHz linewidth source Ivan Divliansky* a, Vadim Smirnov b, George Venus a, Alex Gourevitch a, Leonid Glebov a a CREOL/The College of Optics and

More information

1 kw, 15!J linearly polarized fiber laser operating at 977 nm

1 kw, 15!J linearly polarized fiber laser operating at 977 nm 1 kw, 15!J linearly polarized fiber laser operating at 977 nm V. Khitrov, D. Machewirth, B. Samson, K. Tankala Nufern, 7 Airport Park Road, East Granby, CT 06026 phone: (860) 408-5000; fax: (860)408-5080;

More information

Bragg gratings in multimode optical fibres and their applications

Bragg gratings in multimode optical fibres and their applications JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS Vol. 8, No. 4, August 006, p. 1616-161 Bragg gratings in multimode optical fibres and their applications Xinzhu Sang, Chongxiu Yu, Binbin Yan Key Laboratory

More information

Spectral Characteristics of Mechanically Induced of Ultralong Period Fiber Gratings (UPFG) as a Pressure Sensor.

Spectral Characteristics of Mechanically Induced of Ultralong Period Fiber Gratings (UPFG) as a Pressure Sensor. Spectral Characteristics of Mechanically Induced of Ultralong Period Fiber Gratings (UPFG) as a Pressure Sensor. V. Mishra, V V Dwivedi C.U shah University, Surendranagar, Gujrat Abstract. We report here

More information

Stable dual-wavelength oscillation of an erbium-doped fiber ring laser at room temperature

Stable dual-wavelength oscillation of an erbium-doped fiber ring laser at room temperature Stable dual-wavelength oscillation of an erbium-doped fiber ring laser at room temperature Donghui Zhao.a, Xuewen Shu b, Wei Zhang b, Yicheng Lai a, Lin Zhang a, Ian Bennion a a Photonics Research Group,

More information

A novel tunable diode laser using volume holographic gratings

A novel tunable diode laser using volume holographic gratings A novel tunable diode laser using volume holographic gratings Christophe Moser *, Lawrence Ho and Frank Havermeyer Ondax, Inc. 85 E. Duarte Road, Monrovia, CA 9116, USA ABSTRACT We have developed a self-aligned

More information

Thin-Core-Fiber-Based Long-Period Fiber Grating for High-Sensitivity Refractive Index Measurement

Thin-Core-Fiber-Based Long-Period Fiber Grating for High-Sensitivity Refractive Index Measurement Thin-Core-Fiber-Based Long-Period Fiber Grating for High-Sensitivity Refractive Index Measurement Volume 7, Number 6, December 2015 Cailing Fu Xiaoyong Zhong Changrui Liao Yiping Wang Ying Wang Jian Tang

More information

R. J. Jones Optical Sciences OPTI 511L Fall 2017

R. J. Jones Optical Sciences OPTI 511L Fall 2017 R. J. Jones Optical Sciences OPTI 511L Fall 2017 Semiconductor Lasers (2 weeks) Semiconductor (diode) lasers are by far the most widely used lasers today. Their small size and properties of the light output

More information

Single-photon excitation of morphology dependent resonance

Single-photon excitation of morphology dependent resonance Single-photon excitation of morphology dependent resonance 3.1 Introduction The examination of morphology dependent resonance (MDR) has been of considerable importance to many fields in optical science.

More information

Bragg and fiber gratings. Mikko Saarinen

Bragg and fiber gratings. Mikko Saarinen Bragg and fiber gratings Mikko Saarinen 27.10.2009 Bragg grating - Bragg gratings are periodic perturbations in the propagating medium, usually periodic variation of the refractive index - like diffraction

More information

Wavelength stabilized multi-kw diode laser systems

Wavelength stabilized multi-kw diode laser systems Wavelength stabilized multi-kw diode laser systems Bernd Köhler *, Andreas Unger, Tobias Kindervater, Simon Drovs, Paul Wolf, Ralf Hubrich, Anna Beczkowiak, Stefan Auch, Holger Müntz, Jens Biesenbach DILAS

More information

Stabilisation of Linear-cavity Fibre Laser Using a Saturable Absorber

Stabilisation of Linear-cavity Fibre Laser Using a Saturable Absorber Edith Cowan University Research Online ECU Publications 2011 2011 Stabilisation of Linear-cavity Fibre Laser Using a Saturable Absorber David Michel Edith Cowan University Feng Xiao Edith Cowan University

More information

Development of Nano Second Pulsed Lasers Using Polarization Maintaining Fibers

Development of Nano Second Pulsed Lasers Using Polarization Maintaining Fibers Development of Nano Second Pulsed Lasers Using Polarization Maintaining Fibers Shun-ichi Matsushita*, * 2, Taizo Miyato*, * 2, Hiroshi Hashimoto*, * 2, Eisuke Otani* 2, Tatsuji Uchino* 2, Akira Fujisaki*,

More information

Nd:YSO resonator array Transmission spectrum (a. u.) Supplementary Figure 1. An array of nano-beam resonators fabricated in Nd:YSO.

Nd:YSO resonator array Transmission spectrum (a. u.) Supplementary Figure 1. An array of nano-beam resonators fabricated in Nd:YSO. a Nd:YSO resonator array µm Transmission spectrum (a. u.) b 4 F3/2-4I9/2 25 2 5 5 875 88 λ(nm) 885 Supplementary Figure. An array of nano-beam resonators fabricated in Nd:YSO. (a) Scanning electron microscope

More information

A 100 W all-fiber linearly-polarized Yb-doped single-mode fiber laser at 1120 nm

A 100 W all-fiber linearly-polarized Yb-doped single-mode fiber laser at 1120 nm A 1 W all-fiber linearly-polarized Yb-doped single-mode fiber laser at 112 nm Jianhua Wang, 1,2 Jinmeng Hu, 1 Lei Zhang, 1 Xijia Gu, 3 Jinbao Chen, 2 and Yan Feng 1,* 1 Shanghai Key Laboratory of Solid

More information

Fiber Laser and Amplifier Simulations in FETI

Fiber Laser and Amplifier Simulations in FETI Fiber Laser and Amplifier Simulations in FETI Zoltán Várallyay* 1, Gábor Gajdátsy* 1, András Cserteg* 1, Gábor Varga* 2 and Gyula Besztercey* 3 Fiber lasers are displaying an increasing demand and a presence

More information

Multiwavelength Single-Longitudinal-Mode Ytterbium-Doped Fiber Laser. Citation IEEE Photon. Technol. Lett., 2013, v. 25, p.

Multiwavelength Single-Longitudinal-Mode Ytterbium-Doped Fiber Laser. Citation IEEE Photon. Technol. Lett., 2013, v. 25, p. Title Multiwavelength Single-Longitudinal-Mode Ytterbium-Doped Fiber Laser Author(s) ZHOU, Y; Chui, PC; Wong, KKY Citation IEEE Photon. Technol. Lett., 2013, v. 25, p. 385-388 Issued Date 2013 URL http://hdl.handle.net/10722/189009

More information

Optical Amplifiers Photonics and Integrated Optics (ELEC-E3240) Zhipei Sun Photonics Group Department of Micro- and Nanosciences Aalto University

Optical Amplifiers Photonics and Integrated Optics (ELEC-E3240) Zhipei Sun Photonics Group Department of Micro- and Nanosciences Aalto University Photonics Group Department of Micro- and Nanosciences Aalto University Optical Amplifiers Photonics and Integrated Optics (ELEC-E3240) Zhipei Sun Last Lecture Topics Course introduction Ray optics & optical

More information

Review Article Induced Bragg Gratings in Optical Fibers and Waveguides Using an Ultrafast Infrared Laser and a Phase Mask

Review Article Induced Bragg Gratings in Optical Fibers and Waveguides Using an Ultrafast Infrared Laser and a Phase Mask Hindawi Publishing Corporation Laser Chemistry Volume 8, Article ID 41651, pages doi:1.1155/8/41651 Review Article Induced Bragg Gratings in Optical Fibers and Waveguides Using an Ultrafast Infrared Laser

More information

Dr. Rüdiger Paschotta RP Photonics Consulting GmbH. Competence Area: Fiber Devices

Dr. Rüdiger Paschotta RP Photonics Consulting GmbH. Competence Area: Fiber Devices Dr. Rüdiger Paschotta RP Photonics Consulting GmbH Competence Area: Fiber Devices Topics in this Area Fiber lasers, including exotic types Fiber amplifiers, including telecom-type devices and high power

More information

Multi-mode to single-mode conversion in a 61 port photonic lantern

Multi-mode to single-mode conversion in a 61 port photonic lantern Downloaded from orbit.dtu.dk on: Sep 13, 2018 Multi-mode to single-mode conversion in a 61 port photonic lantern Noordegraaf, Danny; Skovgaard, Peter M.W.; Maack, Martin D.; Bland-Hawthorn, Joss; Lægsgaard,

More information

HIGH POWER LASERS FOR 3 RD GENERATION GRAVITATIONAL WAVE DETECTORS

HIGH POWER LASERS FOR 3 RD GENERATION GRAVITATIONAL WAVE DETECTORS HIGH POWER LASERS FOR 3 RD GENERATION GRAVITATIONAL WAVE DETECTORS P. Weßels for the LZH high power laser development team Laser Zentrum Hannover, Germany 23.05.2011 OUTLINE Requirements on lasers for

More information

Divided-pulse amplification for terawatt-class fiber lasers

Divided-pulse amplification for terawatt-class fiber lasers Eur. Phys. J. Special Topics 224, 2567 2571 (2015) EDP Sciences, Springer-Verlag 2015 DOI: 10.1140/epjst/e2015-02566-8 THE EUROPEAN PHYSICAL JOURNAL SPECIAL TOPICS Review Divided-pulse amplification for

More information

Optical signal processing for fiber Bragg grating based wear sensors

Optical signal processing for fiber Bragg grating based wear sensors University of Wollongong Research Online Faculty of Informatics - Papers (Archive) Faculty of Engineering and Information Sciences 2005 Optical signal processing for fiber Bragg grating based wear sensors

More information

Fiber lasers: The next generation

Fiber lasers: The next generation Fiber lasers: The next generation David N Payne Optoelectronics Research Centre and SPI Lasers kw fibre laser No connection! After the telecoms EDFA The fibre laser another fibre revolution? Fibre laser

More information

Wavelength Stabilization of HPDL Array Fast-Axis Collimation Optic with integrated VHG

Wavelength Stabilization of HPDL Array Fast-Axis Collimation Optic with integrated VHG Wavelength Stabilization of HPDL Array Fast-Axis Collimation Optic with integrated VHG C. Schnitzler a, S. Hambuecker a, O. Ruebenach a, V. Sinhoff a, G. Steckman b, L. West b, C. Wessling c, D. Hoffmann

More information

Study of Multiwavelength Fiber Laser in a Highly Nonlinear Fiber

Study of Multiwavelength Fiber Laser in a Highly Nonlinear Fiber Study of Multiwavelength Fiber Laser in a Highly Nonlinear Fiber I. H. M. Nadzar 1 and N. A.Awang 1* 1 Faculty of Science, Technology and Human Development, Universiti Tun Hussein Onn Malaysia, Johor,

More information

Elements of Optical Networking

Elements of Optical Networking Bruckner Elements of Optical Networking Basics and practice of optical data communication With 217 Figures, 13 Tables and 93 Exercises Translated by Patricia Joliet VIEWEG+ TEUBNER VII Content Preface

More information

S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique

S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique Chien-Hung Yeh 1, *, Ming-Ching Lin 3, Ting-Tsan Huang 2, Kuei-Chu Hsu 2 Cheng-Hao Ko 2, and Sien Chi

More information

C. J. S. de Matos and J. R. Taylor. Femtosecond Optics Group, Imperial College, Prince Consort Road, London SW7 2BW, UK

C. J. S. de Matos and J. R. Taylor. Femtosecond Optics Group, Imperial College, Prince Consort Road, London SW7 2BW, UK Multi-kilowatt, all-fiber integrated chirped-pulse amplification system yielding 4 pulse compression using air-core fiber and conventional erbium-doped fiber amplifier C. J. S. de Matos and J. R. Taylor

More information

Photonic Crystal Fiber Interfacing. In partnership with

Photonic Crystal Fiber Interfacing. In partnership with Photonic Crystal Fiber Interfacing In partnership with Contents 4 Photonics Crystal Fibers 6 End-capping 8 PCF connectors With strong expertise in designing fiber lasers and fused fiber components, ALPhANOV,

More information

RECENTLY, using near-field scanning optical

RECENTLY, using near-field scanning optical 1 2 1 2 Theoretical and Experimental Study of Near-Field Beam Properties of High Power Laser Diodes W. D. Herzog, G. Ulu, B. B. Goldberg, and G. H. Vander Rhodes, M. S. Ünlü L. Brovelli, C. Harder Abstract

More information

High Power Femtosecond Fiber Chirped Pulse Amplification System for High Speed Micromachining

High Power Femtosecond Fiber Chirped Pulse Amplification System for High Speed Micromachining High Power Femtosecond Fiber Chirped Pulse Amplification System for High Speed Micromachining Lawrence SHAH and Martin E. FERMANN IMRA America, Inc., 1044 Woodridge Avenue, Ann Arbor, Michigan, USA, 48105

More information

A new picosecond Laser pulse generation method.

A new picosecond Laser pulse generation method. PULSE GATING : A new picosecond Laser pulse generation method. Picosecond lasers can be found in many fields of applications from research to industry. These lasers are very common in bio-photonics, non-linear

More information

Ph 77 ADVANCED PHYSICS LABORATORY ATOMIC AND OPTICAL PHYSICS

Ph 77 ADVANCED PHYSICS LABORATORY ATOMIC AND OPTICAL PHYSICS Ph 77 ADVANCED PHYSICS LABORATORY ATOMIC AND OPTICAL PHYSICS Diode Laser Characteristics I. BACKGROUND Beginning in the mid 1960 s, before the development of semiconductor diode lasers, physicists mostly

More information

Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers

Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers 1.0 Modulation depth 0.8 0.6 0.4 0.2 0.0 Laser 3 Laser 2 Laser 4 2 3 4 5 6 7 8 Absorbed pump power (W) Laser 1 W. Guan and J. R.

More information

AN EXPERIMENT RESEARCH ON EXTEND THE RANGE OF FIBER BRAGG GRATING SENSOR FOR STRAIN MEASUREMENT BASED ON CWDM

AN EXPERIMENT RESEARCH ON EXTEND THE RANGE OF FIBER BRAGG GRATING SENSOR FOR STRAIN MEASUREMENT BASED ON CWDM Progress In Electromagnetics Research Letters, Vol. 6, 115 121, 2009 AN EXPERIMENT RESEARCH ON EXTEND THE RANGE OF FIBER BRAGG GRATING SENSOR FOR STRAIN MEASUREMENT BASED ON CWDM M. He, J. Jiang, J. Han,

More information

LOPUT Laser: A novel concept to realize single longitudinal mode laser

LOPUT Laser: A novel concept to realize single longitudinal mode laser PRAMANA c Indian Academy of Sciences Vol. 82, No. 2 journal of February 2014 physics pp. 185 190 LOPUT Laser: A novel concept to realize single longitudinal mode laser JGEORGE, KSBINDRAand SMOAK Solid

More information

High order cascaded Raman random fiber laser with high spectral purity

High order cascaded Raman random fiber laser with high spectral purity Vol. 6, No. 5 5 Mar 18 OPTICS EXPRESS 575 High order cascaded Raman random fiber laser with high spectral purity JINYAN DONG,1, LEI ZHANG,1, HUAWEI JIANG,1, XUEZONG YANG,1, WEIWEI PAN,1, SHUZHEN CUI,1

More information

Fiber lasers and their advanced optical technologies of Fujikura

Fiber lasers and their advanced optical technologies of Fujikura Fiber lasers and their advanced optical technologies of Fujikura Kuniharu Himeno 1 Fiber lasers have attracted much attention in recent years. Fujikura has compiled all of the optical technologies required

More information

Survey Report: Laser R&D

Survey Report: Laser R&D Survey Report: Laser R&D Peter Moulton VP/CTO, Q-Peak, Inc. DLA-2011 ICFA Mini-Workshop on Dielectric Laser Accelerators September 15, 2011 SLAC, Menlo Park, CA Outline DLA laser requirements (one version)

More information

Multiwatts narrow linewidth fiber Raman amplifiers

Multiwatts narrow linewidth fiber Raman amplifiers Multiwatts narrow linewidth fiber Raman amplifiers Yan Feng *, Luke Taylor, and Domenico Bonaccini Calia European Southern Observatory, Karl-Schwarzschildstr., D-878 Garching, Germany * Corresponding author:

More information

A miniature all-optical photoacoustic imaging probe

A miniature all-optical photoacoustic imaging probe A miniature all-optical photoacoustic imaging probe Edward Z. Zhang * and Paul C. Beard Department of Medical Physics and Bioengineering, University College London, Gower Street, London WC1E 6BT, UK http://www.medphys.ucl.ac.uk/research/mle/index.htm

More information

Multi-MW peak power, single transverse mode operation of a 100 micron core diameter, Yb-doped photonic crystal rod amplifier

Multi-MW peak power, single transverse mode operation of a 100 micron core diameter, Yb-doped photonic crystal rod amplifier Multi-MW peak power, single transverse mode operation of a 1 micron core diameter, Yb-doped photonic crystal rod amplifier Fabio Di Teodoro and Christopher D. Brooks Aculight Corporation, 22121 2th Ave.

More information

High Power Compact Fiber Chirped Pulse Amplifiers at 1558-nm using Er/Yb LMA Fibers and Chirped Volume Bragg Grating Compressors

High Power Compact Fiber Chirped Pulse Amplifiers at 1558-nm using Er/Yb LMA Fibers and Chirped Volume Bragg Grating Compressors High Power Compact Fiber Chirped Pulse Amplifiers at 1558-nm using Er/Yb LMA Fibers and Chirped Volume Bragg Grating Compressors Ming-Yuan Cheng, Almantas Galvanauskas University of Michigan Vadim Smirnov,

More information

Mitigation of Self-Pulsing in High Power Pulsed Fiber Lasers

Mitigation of Self-Pulsing in High Power Pulsed Fiber Lasers Mitigation of Self-Pulsing in High Power Pulsed Fiber Lasers Yusuf Panbiharwala, Deepa Venkitesh, Balaji Srinivasan* Department of Electrical Engineering, Indian Institute of Technology Madras. *Email

More information

A continuous-wave Raman silicon laser

A continuous-wave Raman silicon laser A continuous-wave Raman silicon laser Haisheng Rong, Richard Jones,.. - Intel Corporation Ultrafast Terahertz nanoelectronics Lab Jae-seok Kim 1 Contents 1. Abstract 2. Background I. Raman scattering II.

More information

High power VCSEL array pumped Q-switched Nd:YAG lasers

High power VCSEL array pumped Q-switched Nd:YAG lasers High power array pumped Q-switched Nd:YAG lasers Yihan Xiong, Robert Van Leeuwen, Laurence S. Watkins, Jean-Francois Seurin, Guoyang Xu, Alexander Miglo, Qing Wang, and Chuni Ghosh Princeton Optronics,

More information

SUPPRESSION OF THE CLADDING MODE INTERFERENCE IN CASCADED LONG PERIOD FIBER GRATINGS WITH LIQUID CRYSTAL CLADDINGS

SUPPRESSION OF THE CLADDING MODE INTERFERENCE IN CASCADED LONG PERIOD FIBER GRATINGS WITH LIQUID CRYSTAL CLADDINGS Mol. Cryst. Liq. Cryst., Vol. 413, pp. 399=[2535] 406=[2542], 2004 Copyright # Taylor & Francis Inc. ISSN: 1542-1406 print=1563-5287 online DOI: 10.1080=15421400490438898 SUPPRESSION OF THE CLADDING MODE

More information

Design and Analysis of Resonant Leaky-mode Broadband Reflectors

Design and Analysis of Resonant Leaky-mode Broadband Reflectors 846 PIERS Proceedings, Cambridge, USA, July 6, 8 Design and Analysis of Resonant Leaky-mode Broadband Reflectors M. Shokooh-Saremi and R. Magnusson Department of Electrical and Computer Engineering, University

More information

3550 Aberdeen Ave SE, Kirtland AFB, NM 87117, USA ABSTRACT 1. INTRODUCTION

3550 Aberdeen Ave SE, Kirtland AFB, NM 87117, USA ABSTRACT 1. INTRODUCTION Beam Combination of Multiple Vertical External Cavity Surface Emitting Lasers via Volume Bragg Gratings Chunte A. Lu* a, William P. Roach a, Genesh Balakrishnan b, Alexander R. Albrecht b, Jerome V. Moloney

More information

FABRICATION OF FIBER BRAGG GRATINGS IN HIGH GERMANIA BORON CO-DOPED OPTICAL FIBER BY THE PHASE MASK METHOD

FABRICATION OF FIBER BRAGG GRATINGS IN HIGH GERMANIA BORON CO-DOPED OPTICAL FIBER BY THE PHASE MASK METHOD FABRICATION OF FIBER BRAGG GRATINGS IN HIGH GERMANIA BORON 11 Jurnal Teknologi, 37(D) Dis. 2002: 11 18 Universiti Teknologi Malaysia FABRICATION OF FIBER BRAGG GRATINGS IN HIGH GERMANIA BORON CO-DOPED

More information

High Power Fiber lasers and Amplifiers: A tutorial overview

High Power Fiber lasers and Amplifiers: A tutorial overview WSOF-2010 High Power Fiber lasers and Amplifiers: A tutorial overview William.Torruellas@JHUAPL.edu The views, opinions, and/or findings contained in this article/presentation are those of the author/presenter

More information

Longitudinal mode selection in laser cavity by moiré volume Bragg grating

Longitudinal mode selection in laser cavity by moiré volume Bragg grating Longitudinal mode selection in laser cavity by moiré volume Bragg grating Daniel Ott* a, Vasile Rotar a, Julien Lumeau a, Sergiy Mokhov a, Ivan Divliansky a, Aleksandr Ryasnyanskiy b, Nikolai Vorobiev

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1: Mach-Zehnder interferometer (MZI) phase stabilization. (a) DC output of the MZI with and without phase stabilization. (b) Performance of MZI stabilization

More information

Design & Analysis the parameters of strain based FBG sensors using Optigrating

Design & Analysis the parameters of strain based FBG sensors using Optigrating Design & Analysis the parameters of strain based FBG sensors using Optigrating Azhar Shadab, Nagma Jurel, Priya Sarswat, 1Assistant Professor, Department of ECE, Anand Engineering College-Agra,282007 2

More information

Optical Communications and Networking 朱祖勍. Sept. 25, 2017

Optical Communications and Networking 朱祖勍. Sept. 25, 2017 Optical Communications and Networking Sept. 25, 2017 Lecture 4: Signal Propagation in Fiber 1 Nonlinear Effects The assumption of linearity may not always be valid. Nonlinear effects are all related to

More information

Investigation of ultrasmall 1 x N AWG for SOI- Based AWG demodulation integration microsystem

Investigation of ultrasmall 1 x N AWG for SOI- Based AWG demodulation integration microsystem University of Wollongong Research Online Faculty of Engineering and Information Sciences - Papers: Part A Faculty of Engineering and Information Sciences 2015 Investigation of ultrasmall 1 x N AWG for

More information

Analysis of the Tunable Asymmetric Fiber F-P Cavity for Fiber Strain Sensor Edge-Filter Demodulation

Analysis of the Tunable Asymmetric Fiber F-P Cavity for Fiber Strain Sensor Edge-Filter Demodulation PHOTONIC SENSORS / Vol. 4, No. 4, 014: 338 343 Analysis of the Tunable Asymmetric Fiber F-P Cavity for Fiber Strain Sensor Edge-Filter Demodulation Haotao CHEN and Youcheng LIANG * Guangzhou Ivia Aviation

More information

Integrated disruptive components for 2µm fibre Lasers ISLA. 2 µm Sub-Picosecond Fiber Lasers

Integrated disruptive components for 2µm fibre Lasers ISLA. 2 µm Sub-Picosecond Fiber Lasers Integrated disruptive components for 2µm fibre Lasers ISLA 2 µm Sub-Picosecond Fiber Lasers Advantages: 2 - microns wavelength offers eye-safety potentially higher pulse energy and average power in single

More information

RADIO-OVER-FIBER TRANSPORT SYSTEMS BASED ON DFB LD WITH MAIN AND 1 SIDE MODES INJECTION-LOCKED TECHNIQUE

RADIO-OVER-FIBER TRANSPORT SYSTEMS BASED ON DFB LD WITH MAIN AND 1 SIDE MODES INJECTION-LOCKED TECHNIQUE Progress In Electromagnetics Research Letters, Vol. 7, 25 33, 2009 RADIO-OVER-FIBER TRANSPORT SYSTEMS BASED ON DFB LD WITH MAIN AND 1 SIDE MODES INJECTION-LOCKED TECHNIQUE H.-H. Lu, C.-Y. Li, C.-H. Lee,

More information

Opto-VLSI-based reconfigurable photonic RF filter

Opto-VLSI-based reconfigurable photonic RF filter Research Online ECU Publications 29 Opto-VLSI-based reconfigurable photonic RF filter Feng Xiao Mingya Shen Budi Juswardy Kamal Alameh This article was originally published as: Xiao, F., Shen, M., Juswardy,

More information

Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing

Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing C. R. Liao, T.Y. Hu, and D. N. Wang * The Hong Kong Polytechnic

More information

Spectral phase shaping for high resolution CARS spectroscopy around 3000 cm 1

Spectral phase shaping for high resolution CARS spectroscopy around 3000 cm 1 Spectral phase shaping for high resolution CARS spectroscopy around 3 cm A.C.W. van Rhijn, S. Postma, J.P. Korterik, J.L. Herek, and H.L. Offerhaus Mesa + Research Institute for Nanotechnology, University

More information

Chapter 8. Wavelength-Division Multiplexing (WDM) Part II: Amplifiers

Chapter 8. Wavelength-Division Multiplexing (WDM) Part II: Amplifiers Chapter 8 Wavelength-Division Multiplexing (WDM) Part II: Amplifiers Introduction Traditionally, when setting up an optical link, one formulates a power budget and adds repeaters when the path loss exceeds

More information

Measuring bend losses in large-mode-area fibers

Measuring bend losses in large-mode-area fibers Measuring bend losses in large-mode-area fibers Changgeng Ye,* Joona Koponen, Ville Aallos, Teemu Kokki, Laeticia Petit, Ossi Kimmelma nlght Corporation, Sorronrinne 9, 08500 Lohja, Finland ABSTRACT We

More information

Active mode-locking of miniature fiber Fabry-Perot laser (FFPL) in a ring cavity

Active mode-locking of miniature fiber Fabry-Perot laser (FFPL) in a ring cavity Active mode-locking of miniature fiber Fabry-Perot laser (FFPL) in a ring cavity Shinji Yamashita (1)(2) and Kevin Hsu (3) (1) Dept. of Frontier Informatics, Graduate School of Frontier Sciences The University

More information

ESTIMATION OF NOISE FIGURE USING GFF WITH HYBRID QUAD PUMPING

ESTIMATION OF NOISE FIGURE USING GFF WITH HYBRID QUAD PUMPING IJCRR Vol 05 issue 13 Section: Technology Category: Research Received on: 19/12/12 Revised on: 16/01/13 Accepted on: 09/02/13 ESTIMATION OF NOISE FIGURE USING GFF WITH HYBRID QUAD PUMPING V.R. Prakash,

More information

High-brightness and high-efficiency fiber-coupled module for fiber laser pump with advanced laser diode

High-brightness and high-efficiency fiber-coupled module for fiber laser pump with advanced laser diode High-brightness and high-efficiency fiber-coupled module for fiber laser pump with advanced laser diode Yohei Kasai* a, Yuji Yamagata b, Yoshikazu Kaifuchi a, Akira Sakamoto a, and Daiichiro Tanaka a a

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction 1-1 Preface Telecommunication lasers have evolved substantially since the introduction of the early AlGaAs-based semiconductor lasers in the late 1970s suitable for transmitting

More information

Optical fiber-fault surveillance for passive optical networks in S-band operation window

Optical fiber-fault surveillance for passive optical networks in S-band operation window Optical fiber-fault surveillance for passive optical networks in S-band operation window Chien-Hung Yeh 1 and Sien Chi 2,3 1 Transmission System Department, Computer and Communications Research Laboratories,

More information

Fiber-optic Michelson Interferometer Sensor Fabricated by Femtosecond Lasers

Fiber-optic Michelson Interferometer Sensor Fabricated by Femtosecond Lasers Sensors & ransducers 2013 by IFSA http://www.sensorsportal.com Fiber-optic Michelson Interferometer Sensor Fabricated by Femtosecond Lasers Dong LIU, Ying XIE, Gui XIN, Zheng-Ying LI School of Information

More information

The Effect of Radiation Coupling in Higher Order Fiber Bragg Gratings

The Effect of Radiation Coupling in Higher Order Fiber Bragg Gratings PIERS ONLINE, VOL. 3, NO. 4, 27 462 The Effect of Radiation Coupling in Higher Order Fiber Bragg Gratings Li Yang 1, Wei-Ping Huang 2, and Xi-Jia Gu 3 1 Department EEIS, University of Science and Technology

More information

Optical Fibers p. 1 Basic Concepts p. 1 Step-Index Fibers p. 2 Graded-Index Fibers p. 4 Design and Fabrication p. 6 Silica Fibers p.

Optical Fibers p. 1 Basic Concepts p. 1 Step-Index Fibers p. 2 Graded-Index Fibers p. 4 Design and Fabrication p. 6 Silica Fibers p. Preface p. xiii Optical Fibers p. 1 Basic Concepts p. 1 Step-Index Fibers p. 2 Graded-Index Fibers p. 4 Design and Fabrication p. 6 Silica Fibers p. 6 Plastic Optical Fibers p. 9 Microstructure Optical

More information

Active Q-switching in an erbium-doped fiber laser using an ultrafast silicon-based variable optical attenuator

Active Q-switching in an erbium-doped fiber laser using an ultrafast silicon-based variable optical attenuator Active Q-switching in an erbium-doped fiber laser using an ultrafast silicon-based variable optical attenuator You Min Chang, 1 Junsu Lee, 1 Young Min Jhon, and Ju Han Lee 1,* 1 School of Electrical and

More information

A CW seeded femtosecond optical parametric amplifier

A CW seeded femtosecond optical parametric amplifier Science in China Ser. G Physics, Mechanics & Astronomy 2004 Vol.47 No.6 767 772 767 A CW seeded femtosecond optical parametric amplifier ZHU Heyuan, XU Guang, WANG Tao, QIAN Liejia & FAN Dianyuan State

More information

Simultaneous pulse amplification and compression in all-fiber-integrated pre-chirped large-mode-area Er-doped fiber amplifier

Simultaneous pulse amplification and compression in all-fiber-integrated pre-chirped large-mode-area Er-doped fiber amplifier Simultaneous pulse amplification and compression in all-fiber-integrated pre-chirped large-mode-area Er-doped fiber amplifier Gong-Ru Lin 1 *, Ying-Tsung Lin, and Chao-Kuei Lee 2 1 Graduate Institute of

More information

Mechanism of intrinsic wavelength tuning and sideband asymmetry in a passively mode-locked soliton fiber ring laser

Mechanism of intrinsic wavelength tuning and sideband asymmetry in a passively mode-locked soliton fiber ring laser 28 J. Opt. Soc. Am. B/Vol. 17, No. 1/January 2000 Man et al. Mechanism of intrinsic wavelength tuning and sideband asymmetry in a passively mode-locked soliton fiber ring laser W. S. Man, H. Y. Tam, and

More information

Integrated Photonics based on Planar Holographic Bragg Reflectors

Integrated Photonics based on Planar Holographic Bragg Reflectors Integrated Photonics based on Planar Holographic Bragg Reflectors C. Greiner *, D. Iazikov and T. W. Mossberg LightSmyth Technologies, Inc., 86 W. Park St., Ste 25, Eugene, OR 9741 ABSTRACT Integrated

More information

Optimization of supercontinuum generation in photonic crystal fibers for pulse compression

Optimization of supercontinuum generation in photonic crystal fibers for pulse compression Optimization of supercontinuum generation in photonic crystal fibers for pulse compression Noah Chang Herbert Winful,Ted Norris Center for Ultrafast Optical Science University of Michigan What is Photonic

More information

CHAPTER 7. Waveguide writing in optimal conditions. 7.1 Introduction

CHAPTER 7. Waveguide writing in optimal conditions. 7.1 Introduction CHAPTER 7 7.1 Introduction In this chapter, we want to emphasize the technological interest of controlled laser-processing in dielectric materials. Since the first report of femtosecond laser induced refractive

More information

Keysight Technologies Using a Wide-band Tunable Laser for Optical Filter Measurements

Keysight Technologies Using a Wide-band Tunable Laser for Optical Filter Measurements Keysight Technologies Using a Wide-band Tunable Laser for Optical Filter Measurements Article Reprint NASA grants Keysight Technologies permission to distribute the article Using a Wide-band Tunable Laser

More information

International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research)

International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) International Journal of Emerging Technologies in Computational

More information

Scalable high-power and high-brightness fiber coupled diode laser devices

Scalable high-power and high-brightness fiber coupled diode laser devices Scalable high-power and high-brightness fiber coupled diode laser devices Bernd Köhler *, Sandra Ahlert, Andreas Bayer, Heiko Kissel, Holger Müntz, Axel Noeske, Karsten Rotter, Armin Segref, Michael Stoiber,

More information

High-brightness pumping has several

High-brightness pumping has several More Efficient and Less Complex ENHANCING THE SPECTRAL AND SPATIAL BRIGHTNESS OF DIODE LASERS Recent breakthroughs in semiconductor laser technology have improved the laser system compactness, efficiency,

More information

Optical Fiber Devices and Their Applications

Optical Fiber Devices and Their Applications Optical Fiber Devices and Their Applications Yutaka SASAKI Faculty of Engineering Ibaraki University --, Nakanarusawa-cho, Hitachi, Ibaraki 6-85, Japan ABSTRACT: - Recent progress in research on optical

More information

Add Drop Multiplexing By Dispersion Inverted Interference Coupling

Add Drop Multiplexing By Dispersion Inverted Interference Coupling JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 20, NO. 8, AUGUST 2002 1585 Add Drop Multiplexing By Dispersion Inverted Interference Coupling Mattias Åslund, Leon Poladian, John Canning, and C. Martijn de Sterke

More information

Spectral Characteristics of Uniform Fiber Bragg Grating With Different Grating Length and Refractive Index Variation

Spectral Characteristics of Uniform Fiber Bragg Grating With Different Grating Length and Refractive Index Variation Spectral Characteristics of Uniform Fiber Bragg Grating With Different Grating Length and efractive Index Variation Chiranjit Ghosh 1, Quazi Md. Alfred 2, Biswajit Ghosh 3 ME (EIE) Student, University

More information

Dispersion measurement in optical fibres over the entire spectral range from 1.1 mm to 1.7 mm

Dispersion measurement in optical fibres over the entire spectral range from 1.1 mm to 1.7 mm 15 February 2000 Ž. Optics Communications 175 2000 209 213 www.elsevier.comrlocateroptcom Dispersion measurement in optical fibres over the entire spectral range from 1.1 mm to 1.7 mm F. Koch ), S.V. Chernikov,

More information