Concepts for High Power Laser Diode Systems

Size: px
Start display at page:

Download "Concepts for High Power Laser Diode Systems"

Transcription

1 Concepts for High Power Laser Diode Systems 1. Introduction High power laser diode systems is a new development within the field of laser diode systems. Pioneer of such laser systems was SDL, Inc. which discontinued their product line in This technical document provides a summary of the different concepts and is designed to support customers in finding the best solution for their experimental requirements. The compared concepts include Master Laser Power Amplifier (MOPA) systems as well as tapered lasers with external cavity. Contents 1. Introduction Master Laser Power Amplifier (MOPA) Systems, DBR or DFB Master Laser Master Laser Power Amplifier (MOPA) Systems, Littrow Design Master Laser Power Amplifier (MOPA) Systems, Littrow Redesign Master Laser Power Amplifier (MOPA) Systems, Littman/Metcalf Design Master Laser Power Amplifier (MOPA) Systems, Littman/Metcalf Redesign Tapered Laser with External Cavity in Littrow Configuration Tapered Laser with External Cavity in Littman/Metcalf Configuration Summary and Comparison of the Different Concepts Literature Document: Page 1

2 2. Master Laser Power Amplifier (MOPA) Systems, DBR or DFB Master Laser The Master Laser Power Amplifier (MOPA) system is well known from literature since several years. It is able to achieve optical powers up to 2.5 Watt at 780nm. Tapered Amplifier Grating Laser 60dB OI Figure 2: Schematic setup of a MOPA system with a master Figure 2 shows the setup of a MOPA system with a master laser. As master laser DFB, DBR as external cavity laser are suitable. The beam of the master laser is coupled out via back facet of the laser diode. Master laser and the tapered amplifier are decoupled via a 60dB optical isolator. The alignment of the beam relative to the 3µm x 1µm aperture of the tapered amplifier is performed via two alignment mirrors. The tapered amplifier performs an optical amplification of typically 15mW 30mW up to the nominal output power of the MOPA system. The output beam of the tapered amplifier is collimated via two stage collimation optics. The tapered amplifier itself is protected via a 35dB optical isolator. 60dB isolators are available upon request. Spectral properties of the complete MOPA system are mainly determined by the spectral properties of the master laser. This results in typical linewidth of 1MHz (50ms), 5MHz (20s). The side-mode suppression is in the order of 55dB. between 500mW and 1500mW. Mechanical stability is determined by the stability of the adjustment mirrors. Advantage of this configuration is that there are no moving parts within the alignment sensitive beam path between master laser and power amplifier. Document: Page 2

3 3. Master Laser Power Amplifier (MOPA) Systems, Littrow Design The Master Laser Power Amplifier (MOPA) system is well known from literature since several years. It is able to achieve optical powers up to 2.5 Watt at 780nm. Tapered Amplifier Beam Steering Mirror 60dB OI Laser Grating Figure 1: Schematic setup of a MOPA system with a master laser in Littrow design Figure 1 shows the most common setup of a MOPA system with a master laser in Littrow configuration. The beam of the Littrow master laser is coupled out via the 0 th order of the diffraction grating. The beam steering is corrected via a beam steering mirror, c/f Master laser and the tapered amplifier are decoupled via a 60dB optical isolator. The alignment of the beam relative to the 3µm x 1µm aperture of the tapered amplifier is performed via two alignment mirrors. The tapered amplifier performs an optical amplification of typically 15mW 30mW up to nominal output power of the MOPA system. The output beam of the tapered amplifier is collimated via two stage collimation optics. The tapered amplifier itself is protected via a 35dB optical isolator. 60dB isolators are available upon request. Spectral properties of the complete MOPA system are mainly determined by the spectral properties of the master laser. This results in typical linewidth of 1MHz (50ms), 5MHz (20s). The side-mode suppression is in the order of 40dB. between 500mW and 1500mW. Mechanical stability is determined by the stability of the adjustment mirrors as well as by the beam steering mirror. The beam steering mirror causes a parallel shift of the master laser beam during the wavelength scan. The absolute values of this beam shift is approximately ½ of the length change of the piezo actuator (up to 1-2µm) which results in a 0.5-1µm parallel shift of the laser beam. This value relates to the 1.5µm x 0.5µm adjustment tolerance for best coupling into the tapered amplifier. Document: Page 3

4 4. Master Laser Power Amplifier (MOPA) Systems, Littrow Redesign The Master Laser Power Amplifier (MOPA) system is well known from literature since several years. has realized this design with using their redesigned Littrow laser system as master laser. Tapered Amplifier Grating Laser 60dB OI Figure 2: Schematic setup of a MOPA system with a master laser in Littrow design Figure 2 shows the setup of a MOPA system with a master laser in Littrow configuration without the need for the beam steering mirror. The beam of the Littrow master laser is coupled out via back facet of the laser diode. Master laser and the tapered amplifier are decoupled via a 60dB optical isolator. The alignment of the beam relative to the 3µm x 1µm aperture of the tapered amplifier is performed via two alignment mirrors. The tapered amplifier performs an optical amplification of typically 15mW 30mW up to the nominal output power of the MOPA system. The output beam of the tapered amplifier is collimated via two stage collimation optics. The tapered amplifier itself is protected via a 35dB optical isolator. 60dB isolators are available upon request. Spectral properties of the complete MOPA system are mainly determined by the spectral properties of the master laser. This results in typical linewidth of 1MHz (50ms), 5MHz (20s). The side-mode suppression is in the order of 55dB. between 500mW and 1500mW. Mechanical stability is determined by the stability of the adjustment mirrors. Advantage of this configuration is that there are no moving parts within the alignment sensitive beam path between master laser and power amplifier. Document: Page 4

5 5. Master Laser Power Amplifier (MOPA) Systems, Littman/Metcalf Design The Master Laser Power Amplifier (MOPA) system is well known from literature since several years. has realized this design with using a Littman/Metcalf laser system as master laser. Tapered Amplifier Tuning Mirror Laser Grating 60dB OI Figure 3: Schematic setup of a MOPA system with a master laser in Littrow design Figure 3 shows the setup of a MOPA system with a master laser in Littman/Metcalf configuration. The beam of the Littman/Metcalf master laser is coupled out via back facet of the laser diode. Master laser and the tapered amplifier are decoupled via a 60dB optical isolator. The alignment of the beam relative to the 3µm x 1µm aperture of the tapered amplifier is performed via two alignment mirrors. The tapered amplifier performs an optical amplification of typically 15mW 30mW up to the nominal power values of the MOPA system. The output beam of the tapered amplifier is collimated via two stage collimation optics. The tapered amplifier itself is protected via a 35dB optical isolator. 60dB isolators are available upon request. Spectral properties of the complete MOPA system are mainly determined by the spectral properties of the master laser. This results in typical linewidth of 500kHz (50ms), 2MHz (20s). The side-mode suppression is in the order of 40dB. between 500mW and 1500mW. Mechanical stability is determined by the stability of the adjustment mirrors. Advantage of this configuration is that there are no moving parts within the alignment sensitive beam path between master laser and power amplifier. The patented alignment insensitive Littman/Metcalf cavity design results in a turn-key system. Mode-hop free tuning range is improved in comparison to the Littrow configuration due to our patented Littman/Metcalf cavity design. This results in a much easier handling of the MOPA system. Document: Page 5

6 6. Master Laser Power Amplifier (MOPA) Systems, Littman/Metcalf Redesign The Master Laser Power Amplifier (MOPA) system is well known from literature since several years. has modified this design with using their redesigned Littman/Metcalf laser system as master laser. Tapered Amplifier Laser 60dB OI Figure 4: Schematic setup of a MOPA system with a master laser in Littrow design Figure 4 shows the setup of a MOPA system with a master laser in Littman/Metcalf configuration. The beam of the Littman/Metcalf master laser is coupled out via back facet of the laser diode. Master laser and the tapered amplifier are decoupled via a 60dB optical isolator. The alignment of the beam relative to the 3µm x 1µm aperture of the tapered amplifier is performed via two alignment mirrors. The tapered amplifier performs an optical amplification of typically 15mW 30mW up to the nominal power values of the MOPA system. The output beam of the tapered amplifier is collimated via two stage collimation optics. The tapered amplifier itself is protected via a 35dB optical isolator. 60dB isolators are available upon request. Spectral properties of the complete MOPA system are mainly determined by the spectral properties of the master laser. This results in typical linewidth of 500kHz (50ms), 2MHz (20s). The side-mode suppression is in the order of 55dB. between 500mW and 1500mW. Mechanical stability is determined by the stability of the adjustment mirrors. Advantage of this configuration is that there are no moving parts within the alignment sensitive beam path between master laser and power amplifier. The patented alignment insensitive Littman/Metcalf cavity design results in a turn-key system. Mode-hop free tuning range is improved in comparison to the Littrow configuration due to our patented Littman/Metcalf cavity design. This results in a much easier handling of the MOPA system. Document: Page 6

7 7. Tapered Laser with External Cavity in Littrow Configuration This concept is an alternative to the well known Master Laser Power Amplifier (MOPA) concept. developed this concept since in It was commercialized since late Since then, more than three international conference contributions, publications and patent applications have been published on the properties and the performance of this system in MOT applications. Please find downloadable copies at from our website. Tapered Laser Grating Figure 5: Schematic setup of a tapered laser system in Littrow design Figure 5 shows the setup of a tapered laser in Littrow configuration. The frequency generation as well as the power amplification are unified in one single stage device. Available power values are in the order of 500mW 1000mW, depending on the wavelength. The output beam of the tapered laser is collimated via two stage collimation optics. The tapered laser itself is protected via a 35dB optical isolator. 60dB isolators are available upon request. Spectral properties of the complete tapered laser system are determined by the performance of the external cavity. This results in typical linewidth of 1MHz (50ms), 10MHz (20s). The sidemode suppression is in the order of 55dB. between 500mW and 1000mW. Mechanical stability is determined by the stability of the external cavity. It is determined by the robust flex design without any moving parts. This concept has been proven to fully replace expensive MOPA systems. Document: Page 7

8 8. Tapered Laser with External Cavity in Littman/Metcalf Configuration This concept is an alternative to the well known Master Laser Power Amplifier (MOPA) concept. developed and commercialized this concept since It benefits from more than 10 years of experience of in manufacturing tunable diode laser systems in Littman/Metcalf configuration. Tapered Laser Grating Figure 6: Schematic setup of a tapered laser system in Littman/Metcalf design Figure 6 shows the setup of a tapered laser in Littman/Metcalf configuration. The frequency generation as well as the power amplification are unified in one single stage device. Available power values are in the order of 500mW 1000mW, depending on the wavelength. The output beam of the tapered laser is collimated via two stage collimation optics. The tapered laser itself is protected via a 35dB optical isolator. 60dB isolators are available upon request. Spectral properties of the complete tapered laser system are determined by the performance of the external cavity. This results in typical linewidth of 500kHz (50ms), 5MHz (20s). The side-mode suppression is in the order of 55dB. between 500mW and 1000mW. Mechanical stability is determined by the stability of the external cavity. It is determined by the patented alignment insensitive Littman/Metcalf cavity design. Mode-hop free tuning range is improved in comparison to the Littrow configuration due to our patented Littman/Metcalf cavity design. This results in a much easier handling of the tapered laser system.. Document: Page 8

9 9. Summary and Comparison of the Different Concepts This document provides a brief description of different concepts for high power laser diode system. In total, we presented 6 different concepts with different physical properties and different physical behavior. The following concepts have been presented and discussed: MOPA System with Master Laser in Littrow Configuration: This configuration is well known from literature. Most of the current work is still performed with this concept. It is a robust laboratory instrument which requires technically skilled scientists for operation. MOPA System with Master Laser in New Littrow Configuration: This concept is a modification of the original Littrow-MOPA. It results in an easier handling of the complete system and requires less time for getting started up. It is a robust laboratory instrument for scientists. MOPA System with Master Laser in Littman/Metcalf Configuration: This concept is a development which avoids the drawbacks of the original Littrow-MOPA. It results in a turn-key laser system which is easy to be handled. It is a robust laboratory instrument for scientists. MOPA System with Master Laser in New Littman/Metcalf Configuration: This concept is a development which avoids the drawbacks of the original Littrow-MOPA. It results in a turn-key laser system which is easy to be handled. It is a robust laboratory instrument for scientists and has the option for being motorized. Tapered Laser in Littrow Configuration: This concept was started for providing a cost effective solution for high power diode laser systems. Most current high power tunable diode laser systems in the 780nm regime are currently sold with this concept. It is a turn-key laser system. Tapered Laser in Littman/Metcalf Configuration: This concept bases in the Tapered Laser in Littrow Configuration. Advantages are the higher modehop free tuning range and the option for motorizing this laser system for automated measuring setups. It is a turn-key laser system. Document: Page 9

10 10. Literature [1] S. Stry, R. Knispel, L. Hildebrandt, J. Sacher, Compact Tuneable Diode Laser with Diffraction Limited 500 mw and their application in BEC and CDRS, TDLS, Zermatt, July 2003 [2] S. Stry, L. Hildebrandt, J. Sacher, C. Buggle, M. Kemmann, W. von Klitzing, Compact tunable diode laser with diffraction limited 1W for atom cooling and trapping, Photonics West 2004 [3] S. Stry, L. Hildebrandt, J. Sacher, Compact Tunable External Cavity Diode Laser with Diffraction Limited 1Watt optical power, and their application in BEC and CRDS, Photonics Europe 2004 [4] (to be continued) Document: Page 10

High-frequency tuning of high-powered DFB MOPA system with diffraction limited power up to 1.5W

High-frequency tuning of high-powered DFB MOPA system with diffraction limited power up to 1.5W High-frequency tuning of high-powered DFB MOPA system with diffraction limited power up to 1.5W Joachim Sacher, Richard Knispel, Sandra Stry Sacher Lasertechnik GmbH, Hannah Arendt Str. 3-7, D-3537 Marburg,

More information

US-Patent 5,867,512 US-Patent 6,297,066 Power and Stability High Powered Littman / Metcalf External Cavity Diode Laser http://www.sacher-laser.com How does our Laser achieve high stability? Initial State

More information

Compact tunable diode laser with diffraction limited 1 Watt for atom cooling and trapping

Compact tunable diode laser with diffraction limited 1 Watt for atom cooling and trapping Compact tunable diode laser with diffraction limited 1 Watt for atom cooling and trapping Sandra Stry a, Lars Hildebrandt a, Joachim Sacher a Christian Buggle b, Mark Kemmann b, Wolf von Klitzing b a Sacher

More information

Tapered Amplifiers. For Amplification of Seed Sources or for External Cavity Laser Setups. 750 nm to 1070 nm COHERENT.COM DILAS.

Tapered Amplifiers. For Amplification of Seed Sources or for External Cavity Laser Setups. 750 nm to 1070 nm COHERENT.COM DILAS. Tapered Amplifiers For Amplification of Seed Sources or for External Cavity Laser Setups 750 nm to 1070 nm COHERENT.COM DILAS.COM Welcome DILAS Semiconductor is now part of Coherent Inc. With operations

More information

High brightness semiconductor lasers M.L. Osowski, W. Hu, R.M. Lammert, T. Liu, Y. Ma, S.W. Oh, C. Panja, P.T. Rudy, T. Stakelon and J.E.

High brightness semiconductor lasers M.L. Osowski, W. Hu, R.M. Lammert, T. Liu, Y. Ma, S.W. Oh, C. Panja, P.T. Rudy, T. Stakelon and J.E. QPC Lasers, Inc. 2007 SPIE Photonics West Paper: Mon Jan 22, 2007, 1:20 pm, LASE Conference 6456, Session 3 High brightness semiconductor lasers M.L. Osowski, W. Hu, R.M. Lammert, T. Liu, Y. Ma, S.W. Oh,

More information

Compact Tunable Diode Laser with Diffraction Limited 1000 mw in Littman/Metcalf configuration for Cavity Ring Down Spectroscopy

Compact Tunable Diode Laser with Diffraction Limited 1000 mw in Littman/Metcalf configuration for Cavity Ring Down Spectroscopy Compact Tunable Diode Laser with Diffraction Limited 1000 mw in Littman/Metcalf configuration for Cavity Ring Down Spectroscopy Sandra Stry a and Joachim Sacher a Swen Thelen b Peter Hering b, Manfred

More information

CHAPTER 5 FINE-TUNING OF AN ECDL WITH AN INTRACAVITY LIQUID CRYSTAL ELEMENT

CHAPTER 5 FINE-TUNING OF AN ECDL WITH AN INTRACAVITY LIQUID CRYSTAL ELEMENT CHAPTER 5 FINE-TUNING OF AN ECDL WITH AN INTRACAVITY LIQUID CRYSTAL ELEMENT In this chapter, the experimental results for fine-tuning of the laser wavelength with an intracavity liquid crystal element

More information

A novel tunable diode laser using volume holographic gratings

A novel tunable diode laser using volume holographic gratings A novel tunable diode laser using volume holographic gratings Christophe Moser *, Lawrence Ho and Frank Havermeyer Ondax, Inc. 85 E. Duarte Road, Monrovia, CA 9116, USA ABSTRACT We have developed a self-aligned

More information

THE TUNABLE LASER LIGHT SOURCE C-WAVE. HÜBNER Photonics Coherence Matters.

THE TUNABLE LASER LIGHT SOURCE C-WAVE. HÜBNER Photonics Coherence Matters. THE TUNABLE LASER LIGHT SOURCE HÜBNER Photonics Coherence Matters. FLEXIBILITY WITH PRECISION is the tunable laser light source for continuous-wave (cw) emission in the visible and near-infrared wavelength

More information

R. J. Jones Optical Sciences OPTI 511L Fall 2017

R. J. Jones Optical Sciences OPTI 511L Fall 2017 R. J. Jones Optical Sciences OPTI 511L Fall 2017 Semiconductor Lasers (2 weeks) Semiconductor (diode) lasers are by far the most widely used lasers today. Their small size and properties of the light output

More information

HIGH POWER LASERS FOR 3 RD GENERATION GRAVITATIONAL WAVE DETECTORS

HIGH POWER LASERS FOR 3 RD GENERATION GRAVITATIONAL WAVE DETECTORS HIGH POWER LASERS FOR 3 RD GENERATION GRAVITATIONAL WAVE DETECTORS P. Weßels for the LZH high power laser development team Laser Zentrum Hannover, Germany 23.05.2011 OUTLINE Requirements on lasers for

More information

Ph 77 ADVANCED PHYSICS LABORATORY ATOMIC AND OPTICAL PHYSICS

Ph 77 ADVANCED PHYSICS LABORATORY ATOMIC AND OPTICAL PHYSICS Ph 77 ADVANCED PHYSICS LABORATORY ATOMIC AND OPTICAL PHYSICS Diode Laser Characteristics I. BACKGROUND Beginning in the mid 1960 s, before the development of semiconductor diode lasers, physicists mostly

More information

UNMATCHED OUTPUT POWER AND TUNING RANGE

UNMATCHED OUTPUT POWER AND TUNING RANGE ARGOS MODEL 2400 SF SERIES TUNABLE SINGLE-FREQUENCY MID-INFRARED SPECTROSCOPIC SOURCE UNMATCHED OUTPUT POWER AND TUNING RANGE One of Lockheed Martin s innovative laser solutions, Argos TM Model 2400 is

More information

Wavelength Control and Locking with Sub-MHz Precision

Wavelength Control and Locking with Sub-MHz Precision Wavelength Control and Locking with Sub-MHz Precision A PZT actuator on one of the resonator mirrors enables the Verdi output wavelength to be rapidly tuned over a range of several GHz or tightly locked

More information

External-Cavity Tapered Semiconductor Ring Lasers

External-Cavity Tapered Semiconductor Ring Lasers External-Cavity Tapered Semiconductor Ring Lasers Frank Demaria Laser operation of a tapered semiconductor amplifier in a ring-oscillator configuration is presented. In first experiments, 1.75 W time-average

More information

Tunable Laser Kits. Features

Tunable Laser Kits. Features Thorlabs' Tunable Laser Kits are designed for superior cavity construction flexibility and high-stability performance. Available in either a Littrow or Littman configuration, these external cavity laser

More information

IST IP NOBEL "Next generation Optical network for Broadband European Leadership"

IST IP NOBEL Next generation Optical network for Broadband European Leadership DBR Tunable Lasers A variation of the DFB laser is the distributed Bragg reflector (DBR) laser. It operates in a similar manner except that the grating, instead of being etched into the gain medium, is

More information

Designing for Femtosecond Pulses

Designing for Femtosecond Pulses Designing for Femtosecond Pulses White Paper PN 200-1100-00 Revision 1.1 July 2013 Calmar Laser, Inc www.calmarlaser.com Overview Calmar s femtosecond laser sources are passively mode-locked fiber lasers.

More information

Pound-Drever-Hall Locking of a Chip External Cavity Laser to a High-Finesse Cavity Using Vescent Photonics Lasers & Locking Electronics

Pound-Drever-Hall Locking of a Chip External Cavity Laser to a High-Finesse Cavity Using Vescent Photonics Lasers & Locking Electronics of a Chip External Cavity Laser to a High-Finesse Cavity Using Vescent Photonics Lasers & Locking Electronics 1. Introduction A Pound-Drever-Hall (PDH) lock 1 of a laser was performed as a precursor to

More information

High power single frequency 780nm laser source generated from frequency doubling of a seeded fiber amplifier in a cascade of PPLN crystals

High power single frequency 780nm laser source generated from frequency doubling of a seeded fiber amplifier in a cascade of PPLN crystals High power single frequency 780nm laser source generated from frequency doubling of a seeded fiber amplifier in a cascade of PPLN crystals R. J. Thompson, M. Tu, D. C. Aveline, N. Lundblad, L. Maleki Jet

More information

A Narrow-Band Tunable Diode Laser System with Grating Feedback

A Narrow-Band Tunable Diode Laser System with Grating Feedback A Narrow-Band Tunable Diode Laser System with Grating Feedback S.P. Spirydovich Draft Abstract The description of diode laser was presented. The tuning laser system was built and aligned. The free run

More information

cw, 325nm, 100mW semiconductor laser system as potential substitute for HeCd gas lasers

cw, 325nm, 100mW semiconductor laser system as potential substitute for HeCd gas lasers cw, 35nm, 1mW semiconductor laser system as potential substitute for HeCd gas lasers T. Schmitt 1, A. Able 1,, R. Häring 1, B. Sumpf, G. Erbert, G. Tränkle, F. Lison 1, W. G. Kaenders 1 1) TOPTICA Photonics

More information

External Cavity Diode Laser Tuned with Silicon MEMS

External Cavity Diode Laser Tuned with Silicon MEMS External Cavity Diode Laser Tuned with Silicon MEMS MEMS-Tunable External Cavity Diode Laser Lenses Laser Output Diffraction Grating AR-coated FP Diode Silicon Mirror 3 mm Balanced MEMS Actuator iolon

More information

Frequency Noise Reduction of Integrated Laser Source with On-Chip Optical Feedback

Frequency Noise Reduction of Integrated Laser Source with On-Chip Optical Feedback MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Frequency Noise Reduction of Integrated Laser Source with On-Chip Optical Feedback Song, B.; Kojima, K.; Pina, S.; Koike-Akino, T.; Wang, B.;

More information

Fast, Two-Dimensional Optical Beamscanning by Wavelength Switching T. K. Chan, E. Myslivets, J. E. Ford

Fast, Two-Dimensional Optical Beamscanning by Wavelength Switching T. K. Chan, E. Myslivets, J. E. Ford Photonics Systems Integration Lab University of California San Diego Jacobs School of Engineering Fast, Two-Dimensional Optical Beamscanning by Wavelength Switching T. K. Chan, E. Myslivets, J. E. Ford

More information

Self-organizing laser diode cavities with photorefractive nonlinear crystals

Self-organizing laser diode cavities with photorefractive nonlinear crystals Institut d'optique http://www.iota.u-psud.fr/~roosen/ Self-organizing laser diode cavities with photorefractive nonlinear crystals Nicolas Dubreuil, Gilles Pauliat, Gérald Roosen Nicolas Huot, Laurent

More information

High-power semiconductor lasers for applications requiring GHz linewidth source

High-power semiconductor lasers for applications requiring GHz linewidth source High-power semiconductor lasers for applications requiring GHz linewidth source Ivan Divliansky* a, Vadim Smirnov b, George Venus a, Alex Gourevitch a, Leonid Glebov a a CREOL/The College of Optics and

More information

Increasing the output of a Littman-type laser by use of an intracavity Faraday rotator

Increasing the output of a Littman-type laser by use of an intracavity Faraday rotator Increasing the output of a Littman-type laser by use of an intracavity Faraday rotator Rebecca Merrill, Rebecca Olson, Scott Bergeson, and Dallin S. Durfee We present a method of external-cavity diode-laser

More information

Keysight Technologies Using a Wide-band Tunable Laser for Optical Filter Measurements

Keysight Technologies Using a Wide-band Tunable Laser for Optical Filter Measurements Keysight Technologies Using a Wide-band Tunable Laser for Optical Filter Measurements Article Reprint NASA grants Keysight Technologies permission to distribute the article Using a Wide-band Tunable Laser

More information

GaSb based high power single spatial mode and distributed feedback lasers at 2.0 μm

GaSb based high power single spatial mode and distributed feedback lasers at 2.0 μm GaSb based high power single spatial mode and distributed feedback lasers at 2.0 μm Clifford Frez 1, Kale J. Franz 1, Alexander Ksendzov, 1 Jianfeng Chen 2, Leon Sterengas 2, Gregory L. Belenky 2, Siamak

More information

High-Coherence Wavelength Swept Light Source

High-Coherence Wavelength Swept Light Source Kenichi Nakamura, Masaru Koshihara, Takanori Saitoh, Koji Kawakita [Summary] Optical technologies that have so far been restricted to the field of optical communications are now starting to be applied

More information

Stability and Tuning with -S models

Stability and Tuning with -S models Stability and Tuning with -S models where innovation never stops Achieving Stability without Breaking Your Budget Stabilized lasers from Access Laser Company are made from Invar or other materials with

More information

Development of Nano Second Pulsed Lasers Using Polarization Maintaining Fibers

Development of Nano Second Pulsed Lasers Using Polarization Maintaining Fibers Development of Nano Second Pulsed Lasers Using Polarization Maintaining Fibers Shun-ichi Matsushita*, * 2, Taizo Miyato*, * 2, Hiroshi Hashimoto*, * 2, Eisuke Otani* 2, Tatsuji Uchino* 2, Akira Fujisaki*,

More information

Progress on High Power Single Frequency Fiber Amplifiers at 1mm, 1.5mm and 2mm

Progress on High Power Single Frequency Fiber Amplifiers at 1mm, 1.5mm and 2mm Nufern, East Granby, CT, USA Progress on High Power Single Frequency Fiber Amplifiers at 1mm, 1.5mm and 2mm www.nufern.com Examples of Single Frequency Platforms at 1mm and 1.5mm and Applications 2 Back-reflection

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction 1-1 Preface Telecommunication lasers have evolved substantially since the introduction of the early AlGaAs-based semiconductor lasers in the late 1970s suitable for transmitting

More information

DBR based passively mode-locked 1.5m semiconductor laser with 9 nm tuning range Moskalenko, V.; Williams, K.A.; Bente, E.A.J.M.

DBR based passively mode-locked 1.5m semiconductor laser with 9 nm tuning range Moskalenko, V.; Williams, K.A.; Bente, E.A.J.M. DBR based passively mode-locked 1.5m semiconductor laser with 9 nm tuning range Moskalenko, V.; Williams, K.A.; Bente, E.A.J.M. Published in: Proceedings of the 20th Annual Symposium of the IEEE Photonics

More information

Continuum White Light Generation. WhiteLase: High Power Ultrabroadband

Continuum White Light Generation. WhiteLase: High Power Ultrabroadband Continuum White Light Generation WhiteLase: High Power Ultrabroadband Light Sources Technology Ultrafast Pulses + Fiber Laser + Non-linear PCF = Spectral broadening from 400nm to 2500nm Ultrafast Fiber

More information

Operating longitudinal mode Several Polarization ratio > 100:1. Power. Warranty. 30 <1.5 <5% Near TEM ~4.0 one year

Operating longitudinal mode Several Polarization ratio > 100:1. Power. Warranty. 30 <1.5 <5% Near TEM ~4.0 one year DL CW Blue Violet Laser, 405nm 405 nm Operating longitudinal mode Several Applications: DNA Sequencing Spectrum analysis Optical Instrument Flow Cytometry Interference Measurements Laser lighting show

More information

University of Washington INT REU Final Report. Construction of a Lithium Photoassociation Laser

University of Washington INT REU Final Report. Construction of a Lithium Photoassociation Laser University of Washington INT REU Final Report Construction of a Lithium Photoassociation Laser Ryne T. Saxe The University of Alabama, Tuscaloosa, AL Since the advent of laser cooling and the demonstration

More information

taccor Optional features Overview Turn-key GHz femtosecond laser

taccor Optional features Overview Turn-key GHz femtosecond laser taccor Turn-key GHz femtosecond laser Self-locking and maintaining Stable and robust True hands off turn-key system Wavelength tunable Integrated pump laser Overview The taccor is a unique turn-key femtosecond

More information

High peak power pulsed single-mode linearly polarized LMA fiber amplifier and Q-switch laser

High peak power pulsed single-mode linearly polarized LMA fiber amplifier and Q-switch laser High peak power pulsed single-mode linearly polarized LMA fiber amplifier and Q-switch laser V. Khitrov*, B. Samson, D. Machewirth, D. Yan, K. Tankala, A. Held Nufern, 7 Airport Park Road, East Granby,

More information

According to this the work in the BRIDLE project was structured in the following work packages:

According to this the work in the BRIDLE project was structured in the following work packages: The BRIDLE project: Publishable Summary (www.bridle.eu) The BRIDLE project sought to deliver a technological breakthrough in cost effective, high-brilliance diode lasers for industrial applications. Advantages

More information

Fast Widely-Tunable CW Single Frequency 2-micron Laser

Fast Widely-Tunable CW Single Frequency 2-micron Laser Fast Widely-Tunable CW Single Frequency 2-micron Laser Charley P. Hale and Sammy W. Henderson Beyond Photonics LLC 1650 Coal Creek Avenue, Ste. B Lafayette, CO 80026 Presented at: 18 th Coherent Laser

More information

EYP-DFB BFY02-0x0x

EYP-DFB BFY02-0x0x 102 26.06.2014 DATA SHEET Revision 1.02 26.06.2014 page 1 from 5 General Product Information Product Application 760 nm DFB Laser with hermetic Butterfly Housing Spectroscopy Monitor Diode, Thermoelectric

More information

Ring cavity tunable fiber laser with external transversely chirped Bragg grating

Ring cavity tunable fiber laser with external transversely chirped Bragg grating Ring cavity tunable fiber laser with external transversely chirped Bragg grating A. Ryasnyanskiy, V. Smirnov, L. Glebova, O. Mokhun, E. Rotari, A. Glebov and L. Glebov 2 OptiGrate, 562 South Econ Circle,

More information

Wavelength Stabilization of HPDL Array Fast-Axis Collimation Optic with integrated VHG

Wavelength Stabilization of HPDL Array Fast-Axis Collimation Optic with integrated VHG Wavelength Stabilization of HPDL Array Fast-Axis Collimation Optic with integrated VHG C. Schnitzler a, S. Hambuecker a, O. Ruebenach a, V. Sinhoff a, G. Steckman b, L. West b, C. Wessling c, D. Hoffmann

More information

High-Power Semiconductor Laser Amplifier for Free-Space Communication Systems

High-Power Semiconductor Laser Amplifier for Free-Space Communication Systems 64 Annual report 1998, Dept. of Optoelectronics, University of Ulm High-Power Semiconductor Laser Amplifier for Free-Space Communication Systems G. Jost High-power semiconductor laser amplifiers are interesting

More information

WP 1 Integrated Laser System

WP 1 Integrated Laser System WORKPACKAGE REPORT WP 1 Integrated Laser System Grant Agreement number: 250072 Project acronym: ISENSE Project title: Integrated Quantum Sensors Funding Scheme: STREP (ICT-FET-Open) Date of latest version

More information

External cavities for controling spatial and spectral properties of SC lasers. J.P. Huignard TH-TRT

External cavities for controling spatial and spectral properties of SC lasers. J.P. Huignard TH-TRT External cavities for controling spatial and spectral properties of SC lasers. J.P. Huignard TH-TRT Bright Er - Partners. WP 3 : External cavities approaches for high brightness. - RISOE TUD Dk - Institut

More information

56:/)'2 :+9: 3+'9;8+3+4:

56:/)'2 :+9: 3+'9;8+3+4: Experts in next generation test equipment 56:/)'2 :+9: 3+'9;8+3+4: Optical Spectrum Analyzer Optical Complex Spectrum Analyzer Optical MultiTest Platform & Modules AP2040 series - OSA 4 AP2050 series -

More information

Tutorial. Various Types of Laser Diodes. Low-Power Laser Diodes

Tutorial. Various Types of Laser Diodes. Low-Power Laser Diodes 371 Introduction In the past fifteen years, the commercial and industrial use of laser diodes has dramatically increased with some common applications such as barcode scanning and fiber optic communications.

More information

Semiconductor Optical Communication Components and Devices Lecture 18: Introduction to Diode Lasers - I

Semiconductor Optical Communication Components and Devices Lecture 18: Introduction to Diode Lasers - I Semiconductor Optical Communication Components and Devices Lecture 18: Introduction to Diode Lasers - I Prof. Utpal Das Professor, Department of lectrical ngineering, Laser Technology Program, Indian Institute

More information

3 General Principles of Operation of the S7500 Laser

3 General Principles of Operation of the S7500 Laser Application Note AN-2095 Controlling the S7500 CW Tunable Laser 1 Introduction This document explains the general principles of operation of Finisar s S7500 tunable laser. It provides a high-level description

More information

Single-/multi-mode tunable lasers using MEMS mirror and grating

Single-/multi-mode tunable lasers using MEMS mirror and grating Sensors and Actuators A 108 (2003) 49 54 Single-/multi-mode tunable lasers using MEMS mirror and grating A.Q. Liu a,, X.M. Zhang a,j.li a,c.lu b a School of Electrical & Electronic Engineering, Nanyang

More information

Optical generation of frequency stable mm-wave radiation using diode laser pumped Nd:YAG lasers

Optical generation of frequency stable mm-wave radiation using diode laser pumped Nd:YAG lasers Optical generation of frequency stable mm-wave radiation using diode laser pumped Nd:YAG lasers T. Day and R. A. Marsland New Focus Inc. 340 Pioneer Way Mountain View CA 94041 (415) 961-2108 R. L. Byer

More information

3550 Aberdeen Ave SE, Kirtland AFB, NM 87117, USA ABSTRACT 1. INTRODUCTION

3550 Aberdeen Ave SE, Kirtland AFB, NM 87117, USA ABSTRACT 1. INTRODUCTION Beam Combination of Multiple Vertical External Cavity Surface Emitting Lasers via Volume Bragg Gratings Chunte A. Lu* a, William P. Roach a, Genesh Balakrishnan b, Alexander R. Albrecht b, Jerome V. Moloney

More information

arxiv:physics/ v1 [physics.optics] 30 Sep 2005

arxiv:physics/ v1 [physics.optics] 30 Sep 2005 Increasing the output of a Littman-type laser by use of an intracavity Faraday rotator Rebecca Merrill, Rebecca Olson, Scott Bergeson, and Dallin S. Durfee Department of Physics and Astronomy, Brigham

More information

It s Our Business to be EXACT

It s Our Business to be EXACT 671 LASER WAVELENGTH METER It s Our Business to be EXACT For laser applications such as high-resolution laser spectroscopy, photo-chemistry, cooling/trapping, and optical remote sensing, wavelength information

More information

Optical Local Area Networking

Optical Local Area Networking Optical Local Area Networking Richard Penty and Ian White Cambridge University Engineering Department Trumpington Street, Cambridge, CB2 1PZ, UK Tel: +44 1223 767029, Fax: +44 1223 767032, e-mail:rvp11@eng.cam.ac.uk

More information

Micromachining with tailored Nanosecond Pulses

Micromachining with tailored Nanosecond Pulses Micromachining with tailored Nanosecond Pulses Hans Herfurth a, Rahul Patwa a, Tim Lauterborn a, Stefan Heinemann a, Henrikki Pantsar b a )Fraunhofer USA, Center for Laser Technology (CLT), 46025 Port

More information

1550 nm Programmable Picosecond Laser, PM

1550 nm Programmable Picosecond Laser, PM 1550 nm Programmable Picosecond Laser, PM The Optilab is a programmable laser that produces picosecond pulses with electrical input pulses. It functions as a seed pulse generator for Master Oscillator

More information

Diode lasers for sensor applications. Bernd Sumpf Ferdinand-Braun-Institut Lichtenwalde, October 18, 2012

Diode lasers for sensor applications. Bernd Sumpf Ferdinand-Braun-Institut Lichtenwalde, October 18, 2012 Diode lasers for sensor applications Bernd Sumpf Ferdinand-Braun-Institut Lichtenwalde, October 18, 2012 Outline 1. Diode Lasers Basic Properties 2. Diode Lasers for Sensor Applications Diode lasers with

More information

Tunable Diode Lasers. Simply Better Photonics

Tunable Diode Lasers. Simply Better Photonics Simply Better Photonics New Focus: Simply Better Photonics Founded in 199 with the mission of providing Simply Better Photonics Tools, New Focus has built a portfolio of high-performance products that

More information

Compact EDFA. HIGH Power Fiber Technology.

Compact EDFA. HIGH Power Fiber Technology. HIGH Power Compact EDFA Features: - Output Power up to +20 dbm - Industry Standard Form Factor (70x90x12mm) - Gain-Flattened Version for Wideband Amplification - Uncooled Pump Option - Telcordia Qualified

More information

R. J. Jones College of Optical Sciences OPTI 511L Fall 2017

R. J. Jones College of Optical Sciences OPTI 511L Fall 2017 R. J. Jones College of Optical Sciences OPTI 511L Fall 2017 Active Modelocking of a Helium-Neon Laser The generation of short optical pulses is important for a wide variety of applications, from time-resolved

More information

Photoassociative Spectroscopy of Strontium Along the 1 S 0-3 P 1. Transition using a Littman/Metcalf Laser. Andrew Traverso. T.C.

Photoassociative Spectroscopy of Strontium Along the 1 S 0-3 P 1. Transition using a Littman/Metcalf Laser. Andrew Traverso. T.C. Photoassociative Spectroscopy of Strontium Along the 1 S 0-3 P 1 Transition using a Littman/Metcalf Laser By Andrew Traverso Advisor: T.C. Killian Abstract We present the design and implementation of an

More information

The Development of a High Quality and a High Peak Power Pulsed Fiber Laser With a Flexible Tunability of the Pulse Width

The Development of a High Quality and a High Peak Power Pulsed Fiber Laser With a Flexible Tunability of the Pulse Width The Development of a High Quality and a High Peak Power Pulsed Fiber Laser With a Flexible Tunability of the Pulse Width Ryo Kawahara *1, Hiroshi Hashimoto *1, Jeffrey W. Nicholson *2, Eisuke Otani *1,

More information

EYP-DFB BFY02-0x0x

EYP-DFB BFY02-0x0x DATA SHEET 102 page 1 of 5 General Product Information Product Application 1064 nm DFB Laser with hermetic Butterfly Housing Spectroscopy Monitor Diode, Thermoelectric Cooler and Thermistor Metrology PM

More information

FPPO 1000 Fiber Laser Pumped Optical Parametric Oscillator: FPPO 1000 Product Manual

FPPO 1000 Fiber Laser Pumped Optical Parametric Oscillator: FPPO 1000 Product Manual Fiber Laser Pumped Optical Parametric Oscillator: FPPO 1000 Product Manual 2012 858 West Park Street, Eugene, OR 97401 www.mtinstruments.com Table of Contents Specifications and Overview... 1 General Layout...

More information

Power. Warranty. 30 <1.5 <3% Near TEM ~4.0 one year. 50 <1.5 <5% Near TEM ~4.0 one year

Power. Warranty. 30 <1.5 <3% Near TEM ~4.0 one year. 50 <1.5 <5% Near TEM ~4.0 one year DL CW Blue Violet Laser, 405nm 405 nm Operating longitudinal mode Several Applications: DNA Sequencing Spectrum analysis Optical Instrument Flow Cytometry Interference Measurements Laser lighting show

More information

A continuous-wave Raman silicon laser

A continuous-wave Raman silicon laser A continuous-wave Raman silicon laser Haisheng Rong, Richard Jones,.. - Intel Corporation Ultrafast Terahertz nanoelectronics Lab Jae-seok Kim 1 Contents 1. Abstract 2. Background I. Raman scattering II.

More information

Highly Reliable 40-mW 25-GHz 20-ch Thermally Tunable DFB Laser Module, Integrated with Wavelength Monitor

Highly Reliable 40-mW 25-GHz 20-ch Thermally Tunable DFB Laser Module, Integrated with Wavelength Monitor Highly Reliable 4-mW 2-GHz 2-ch Thermally Tunable DFB Laser Module, Integrated with Wavelength Monitor by Tatsuya Kimoto *, Tatsushi Shinagawa *, Toshikazu Mukaihara *, Hideyuki Nasu *, Shuichi Tamura

More information

Vixar High Power Array Technology

Vixar High Power Array Technology Vixar High Power Array Technology I. Introduction VCSELs arrays emitting power ranging from 50mW to 10W have emerged as an important technology for applications within the consumer, industrial, automotive

More information

1 W tunable near diffraction limited light from a broad area laser diode in an external cavity with a line width of 1.7 MHz

1 W tunable near diffraction limited light from a broad area laser diode in an external cavity with a line width of 1.7 MHz Optics Communications 277 (27) 161 165 www.elsevier.com/locate/optcom 1 W tunable near diffraction limited light from a broad area laser diode in an external cavity with a line width of 1.7 MHz Andreas

More information

Jordan Camp. NASA Goddard Space Flight Center. LISA X Symposium May 20, 2014

Jordan Camp. NASA Goddard Space Flight Center. LISA X Symposium May 20, 2014 elisa Laser Development in the US Jordan Camp Kenji Numata NASA Goddard Space Flight Center LISA X Symposium May 20, 2014 elisalaser poga program at GSFC Provide TRL 5 laser system by 2016 Modern, fiber-based

More information

photolithographic techniques (1). Molybdenum electrodes (50 nm thick) are deposited by

photolithographic techniques (1). Molybdenum electrodes (50 nm thick) are deposited by Supporting online material Materials and Methods Single-walled carbon nanotube (SWNT) devices are fabricated using standard photolithographic techniques (1). Molybdenum electrodes (50 nm thick) are deposited

More information

Photonic Crystal Fiber Interfacing. In partnership with

Photonic Crystal Fiber Interfacing. In partnership with Photonic Crystal Fiber Interfacing In partnership with Contents 4 Photonics Crystal Fibers 6 End-capping 8 PCF connectors With strong expertise in designing fiber lasers and fused fiber components, ALPhANOV,

More information

Actively Stabilized Scanning Single-Frequency. Ti:Sa /Dye Ring Laser External Doubling Ring Ti:Sa /Dye Standing Wave Laser

Actively Stabilized Scanning Single-Frequency. Ti:Sa /Dye Ring Laser External Doubling Ring Ti:Sa /Dye Standing Wave Laser Actively Stabilized Scanning Single-Frequency Ti:Sa /Dye Ring Laser External Doubling Ring Ti:Sa /Dye Standing Wave Laser Ring Laser with the following options Broadband Ring Laser Passively Stabilized

More information

Wavelength LDH - P / D - _ / C / F / FA / TA - N - XXX - _ / B / M / L / XL. Narrow linewidth (on request) Tappered amplified

Wavelength LDH - P / D - _ / C / F / FA / TA - N - XXX - _ / B / M / L / XL. Narrow linewidth (on request) Tappered amplified LDH Series Picosecond Laser Diode Heads for PDL 800-D / PDL 828 Wavelengths between 375 nm and 1990 nm Pulse widths as short as 40 ps (FWHM) Adjustable (average) power up to 50 mw Repetition rate from

More information

TLK-L1050M 1050 nm 60 nm 8 mw Fiber Coupled c. TLK-L1220R 1220 nm 90 nm 40 mw Fiber Coupled c. TLK-L1300M 1310 nm 100 nm 45 mw Fiber Coupled c

TLK-L1050M 1050 nm 60 nm 8 mw Fiber Coupled c. TLK-L1220R 1220 nm 90 nm 40 mw Fiber Coupled c. TLK-L1300M 1310 nm 100 nm 45 mw Fiber Coupled c TUNABLE LASERS: PREALIGNED LITTROW AND LITTMAN KITS Modular External Cavity Laser Kits Offer Highly Customizable Solutions Littrow and Littman Cavity Configurations Design Great for Education, Research,

More information

Fabry Perot Resonator (CA-1140)

Fabry Perot Resonator (CA-1140) Fabry Perot Resonator (CA-1140) The open frame Fabry Perot kit CA-1140 was designed for demonstration and investigation of characteristics like resonance, free spectral range and finesse of a resonator.

More information

Recent advances in high-performance 2.X µm Vertical External Cavity Surface Emitting Laser (VECSEL)

Recent advances in high-performance 2.X µm Vertical External Cavity Surface Emitting Laser (VECSEL) Recent advances in high-performance 2.X µm Vertical External Cavity Surface Emitting Laser (VECSEL) Joachim Wagner*, M. Rattunde, S. Kaspar, C. Manz, A. Bächle Fraunhofer-Institut für Angewandte Festkörperphysik

More information

25 W CW Raman-fiber-amplifier-based 589 nm source for laser guide star

25 W CW Raman-fiber-amplifier-based 589 nm source for laser guide star 25 W CW Raman-fiber-amplifier-based 589 nm source for laser guide star Yan Feng*, Luke Taylor, Domenico Bonaccini Calia, Ronald Holzlöhner and Wolfgang Hackenberg European Southern Observatory (ESO), 85748

More information

SUPPLEMENTARY INFORMATION DOI: /NPHOTON

SUPPLEMENTARY INFORMATION DOI: /NPHOTON Supplementary Methods and Data 1. Apparatus Design The time-of-flight measurement apparatus built in this study is shown in Supplementary Figure 1. An erbium-doped femtosecond fibre oscillator (C-Fiber,

More information

Holography Transmitter Design Bill Shillue 2000-Oct-03

Holography Transmitter Design Bill Shillue 2000-Oct-03 Holography Transmitter Design Bill Shillue 2000-Oct-03 Planned Photonic Reference Distribution for Test Interferometer The transmitter for the holography receiver is made up mostly of parts that are already

More information

Tailored bar concepts for 10 mm-mrad fiber coupled modules scalable to kw-class direct diode lasers

Tailored bar concepts for 10 mm-mrad fiber coupled modules scalable to kw-class direct diode lasers Tailored bar concepts for 1 mm-mrad fiber coupled modules scalable to kw-class direct diode lasers Andreas Unger*, Ross Uthoff, Michael Stoiber, Thomas Brand, Heiko Kissel, Bernd Köhler, Jens Biesenbach

More information

Powerful Single-Frequency Laser System based on a Cu-laser pumped Dye Laser

Powerful Single-Frequency Laser System based on a Cu-laser pumped Dye Laser Powerful Single-Frequency Laser System based on a Cu-laser pumped Dye Laser V.I.Baraulya, S.M.Kobtsev, S.V.Kukarin, V.B.Sorokin Novosibirsk State University Pirogova 2, Novosibirsk, 630090, Russia ABSTRACT

More information

Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers

Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers Keisuke Kasai a), Jumpei Hongo, Masato Yoshida, and Masataka Nakazawa Research Institute of

More information

Lecture 6 Fiber Optical Communication Lecture 6, Slide 1

Lecture 6 Fiber Optical Communication Lecture 6, Slide 1 Lecture 6 Optical transmitters Photon processes in light matter interaction Lasers Lasing conditions The rate equations CW operation Modulation response Noise Light emitting diodes (LED) Power Modulation

More information

High-power All-Fiber components: The missing link for high power fiber lasers

High-power All-Fiber components: The missing link for high power fiber lasers High- All-Fiber components: The missing link for high lasers François Gonthier, Lilian Martineau, Nawfel Azami, Mathieu Faucher, François Séguin, Damien Stryckman, Alain Villeneuve ITF Optical Technologies

More information

Wavelength stabilized multi-kw diode laser systems

Wavelength stabilized multi-kw diode laser systems Wavelength stabilized multi-kw diode laser systems Bernd Köhler *, Andreas Unger, Tobias Kindervater, Simon Drovs, Paul Wolf, Ralf Hubrich, Anna Beczkowiak, Stefan Auch, Holger Müntz, Jens Biesenbach DILAS

More information

Simultaneous Measurements for Tunable Laser Source Linewidth with Homodyne Detection

Simultaneous Measurements for Tunable Laser Source Linewidth with Homodyne Detection Simultaneous Measurements for Tunable Laser Source Linewidth with Homodyne Detection Adnan H. Ali Technical college / Baghdad- Iraq Tel: 96-4-770-794-8995 E-mail: Adnan_h_ali@yahoo.com Received: April

More information

Final Year Projects 2016/7 Integrated Photonics Group

Final Year Projects 2016/7 Integrated Photonics Group Final Year Projects 2016/7 Integrated Photonics Group Overview: This year, a number of projects have been created where the student will work with researchers in the Integrated Photonics Group. The projects

More information

Universal and compact laser stabilization electronics

Universal and compact laser stabilization electronics top-of-fringe LaseLock LaseLock Universal and compact laser stabilization electronics Compact, stand-alone locking electronics for diode lasers, dye lasers, Ti:Sa lasers, or optical resonators Side-of-fringe

More information

PERFORMANCE OF PHOTODIGM S DBR SEMICONDUCTOR LASERS FOR PICOSECOND AND NANOSECOND PULSING APPLICATIONS

PERFORMANCE OF PHOTODIGM S DBR SEMICONDUCTOR LASERS FOR PICOSECOND AND NANOSECOND PULSING APPLICATIONS PERFORMANCE OF PHOTODIGM S DBR SEMICONDUCTOR LASERS FOR PICOSECOND AND NANOSECOND PULSING APPLICATIONS By Jason O Daniel, Ph.D. TABLE OF CONTENTS 1. Introduction...1 2. Pulse Measurements for Pulse Widths

More information

Scalable high-power and high-brightness fiber coupled diode laser devices

Scalable high-power and high-brightness fiber coupled diode laser devices Scalable high-power and high-brightness fiber coupled diode laser devices Bernd Köhler *, Sandra Ahlert, Andreas Bayer, Heiko Kissel, Holger Müntz, Axel Noeske, Karsten Rotter, Armin Segref, Michael Stoiber,

More information

Continuous-Wave (CW) Single-Frequency IR Laser. NPRO 125/126 Series

Continuous-Wave (CW) Single-Frequency IR Laser. NPRO 125/126 Series Continuous-Wave (CW) Single-Frequency IR Laser NPRO 125/126 Series www.lumentum.com Data Sheet The Lumentum NPRO 125/126 diode-pumped lasers produce continuous-wave (CW), singlefrequency output at either

More information

Model Number Guide. M= Material. S= Apperture Size. P= Options

Model Number Guide. M= Material. S= Apperture Size. P= Options Model Number Guide Brimrose Corporation of America manufactures both standard (from the specification sheet) and custom (to customer specifications) Acousto-Optic Tunable Filters. The following Model Number

More information

A new picosecond Laser pulse generation method.

A new picosecond Laser pulse generation method. PULSE GATING : A new picosecond Laser pulse generation method. Picosecond lasers can be found in many fields of applications from research to industry. These lasers are very common in bio-photonics, non-linear

More information

Diode Laser Control Electronics. Diode Laser Locking and Linewidth Narrowing. Rudolf Neuhaus, Ph.D. TOPTICA Photonics AG

Diode Laser Control Electronics. Diode Laser Locking and Linewidth Narrowing. Rudolf Neuhaus, Ph.D. TOPTICA Photonics AG Appl-1012 Diode Laser Control Electronics Diode Laser Locking and Linewidth Narrowing Rudolf Neuhaus, Ph.D. TOPTICA Photonics AG Introduction Stabilized diode lasers are well established tools for many

More information