Example Data for Electric Drives Experiment 6. Analysis and Control of a Permanent Magnet AC (PMAC) Motor

Size: px
Start display at page:

Download "Example Data for Electric Drives Experiment 6. Analysis and Control of a Permanent Magnet AC (PMAC) Motor"

Transcription

1 Example Data for Electric Drives Experiment 6 Analysis and Control of a Permanent Magnet AC (PMAC) Motor The intent of this document is to provide example data for instructors and TAs, to help them prepare for the electric drives laboratory activities. This document is informal and does not represent a laboratory report. Checklist of items requested in these lab procedures: Record the DC armature voltage applied to the drive motor while measuring the PMAC motor s induced EMF. Also record the PMAC motor s speed in this configuration. Va = -3.0, Wm = 29 rad/sec Save an image of the ControlDesk plotter showing a few cycles of the PMAC motor s encoder and induced EMF waveforms. Given the number of AC cycles observed in the EMF waveform for one complete rotation of the motor, determine how many magnets (poles) are mounted on the rotor of the PMAC motor. 4 sinusoidal cycles per rotation => 8 poles (magnets), or 4 pole-pairs

2 Save an image of the ControlDesk plotter showing the time difference between the rising EMF zero crossing and the encoder s zero position. Also record the time offset. The time offset, as shown at the top of the plotter window, is seconds. Calculate the value of index for your lab station s PMAC motor. Theta_index = seconds * 4 pole-pairs * 29 rad/sec = 5.12 radians. This value is different for each motor. Calculate the angular offsets between the encoder s zero position and the first maximum and minimum magnetic flux locations on the PMAC s rotor. Theta_da+ = Theta_index 7/6 pi = 1.45 radians Theta_da- = Theta_index pi/6 = 4.59 radians Use a cursor to measure the maximum value (i.e., amplitude) of the EMF waveform displayed on the ControlDesk plotter. Save an image of this cursor measurement, and also explicitly state the maximum EMF value in your report. The peak EMF is listed as V. A precision of 2.9 V is more appropriate.

3 Calculate the PMAC motor s voltage constant, k E. eˆab ke = 2.9/29 = 0.1 V-s/radian m Record the voltage constant listed on the PMAC motor s nameplate. Convert that value to units of V-sec/radian and compare it to the value you determined experimentally. Nameplate Ke = 9.5 V/Krpm x 60/(2*pi*1000) = Fairly close. Calculate the proportional and integral constants for the PMAC motor s current and speed controllers: k ii, k pi, k iω, and k pω. Show the relevant equations and your work in calculating these values. Given: R a L a Ω 0.45 mh J eq 5.0 x 10-4 kg m 2

4 Also know that K_pwm = 40 ω ci = 2πf ci = 2*pi*400 = 2513 τ e represents the electrical time constant, L a /R a = /.625 = ci Ra From lab 4, kii =2513*.625/40 = 39.3, close to stated value of 40 k k pi e ii PWM k = 0.028, close to the stated 0.03 ω cω = 2πf cω = 2*pi*10 = 62.8 k i k T J 2 2 eq c eq c 2 2kT 1 tan( 120 ) J =9.86, close to stated value of 10 k p kitan( 120 ) ki 3 =0.27, close to stated value of 0.3 c c Record your calculation for Theta_da_Initial. (Different for each motor.) /2 Theta _ da _ Initial da = pi/2 = 3.02 radians pole _ pairs Record the limits and center of the range of Theta_da_Initial values which produced positive rotation for your PMAC motor. How does this measured value compared to the Theta_da_Initial value that you calculated earlier? Range is 2.6 to 4.6 radians, center value is 3.6 radians. (Different for each motor.) Record the motor s average speed at the center Theta_da_Initial value. Speed approx. 73 rad/sec. Save an image showing a few periods of the I a, I b, and I c waveforms. Does phase a lead phase b by 120, as expected, and does phase b lead phase c by 120? Yes about the 120 offsets (although the waveforms are not ideal sinusoids!).

5 Reduce the desired quadrature current to 1.3 Amps, and record the motor s average speed. Does the change in the PMAC motor s speed after a decrease in I q make sense? Explain. Motor speed decreased to about 65 radians/second after decreasing the current. Yes, a lower current results in a smaller magnetic flux which will result in less torque applied to the rotors magnets. Record the limits and middle of the range of Theta_da_Initial values where the PMAC motor did not spin. Stopped between 4.8 and 5.4, center value of 5.1 radians. (Different for each motor.) How far, in radians, is this center value from the Theta_da_Initial value which produced the maximum speed? = 1.5 radians Theoretically, how far of a phase shift from the quadrature alignment would cause the rotor s magnets to be perfectly aligned with the magnetic field generated by the stator, resulting in no motion? 90 degrees, or pi/2 = 1.57 radians Is the theoretical expectation close to your measurement? 1.5 vs. 1.57, yes, close

6 Record the limits and center of the range of Theta_da_Initial values that produced a speed for the PMAC motor did not spin. Negative rotation for theta values from -0.6 to 1.0 => center value of 0.2 How does this center measurement compare to the value of Theta_da_Initial which is predicted to produce the maximum negative rotation (there may be a phase difference of 2π)? Predicted Theta _ da _ Initial / 2 = = pi = -0.12, a decent match to the range shown above da How does the measured center angle compare that which resulted in the maximum positive speed, and does that difference match the theoretical expectation? You may want to refer to Figure 6.6 in your explanation. The center of the negative speed range should be pi away from the center of the positive speed range = 3.34, reasonable comparison to the measured value of 3.6 Save an image of the plotter showing the desired and actual speeds when the speed controller was added to the model, and analyze the quality of the PMAC speed controller. Good response time and steady state error, although the speed varies quite a bit around the desired value. Note that each lab motor is different, but I made the students use the same motor parameters in creating their controllers. Therefore, the controllers performance will vary widely among the lab groups. Some students observed a surprisingly sluggish response time when the controllers were applied to their particular motors.

7 I created and then deleted the following content from this lab, as it seemed to just confuse the students too many concepts in the lab at that point. Others may find the material useful, however, so saving it here. In order to use the current controller design process that was developed for the PMDC motor and followed above, the currents for the a, b, and c phases need to be combined into one equivalent current. Engineers have found that it works well to combine the three current phases into a stator-current space vector, i s (t), which points in the direction of the total magnetic field produced by the three phase currents. Ideally, the stator s magnetic field vector would be located at quadrature or 90 degrees from a peak magnetic flux on the rotor (in terms of the rotor s magnetic field waveform, rather than a mechanical angle) to produce the maximum torque. If the three phase currents create a magnetic field component that aligns directly with the maximum magnetic flux on the rotor rather than at quadrature, which is undesirable but can happen, that component is called the direct component. The direct magnetic field component created by the stator works to hold the rotor magnets in place, rather than pull or push the rotor s magnets in a rotational direction. So, i s(t) would ideally equal i q (t) but it may have both i q (t) and i d (t) components. The following transformation is often used to convert from a-b-c to d-q current components: 2 4 cosda cos da cos da Ia Id I b I q sin da sin da sin da I c 3 3 This relationship assumes that the I a waveform leads I b by 120, and that I b leads I c by 120. In addition, the coils for I a, I b, and I c should be positioned 120 apart on the stator, with 120 representing the phase difference of the rotor s magnetic field rather than a mechanical angle. The d-q current components are converted back to a-b-c components as follows: cosda sin da Ia Id I b cosda sin da I q I c 4 4 cosda sin da 3 3 Note that these transformations are used before and after the current controller in the MATLAB Simulink model, so that the simple PMDC version of the current controller can be used. In your lab report, calculate the phase a, b, and c currents that would produce a direct current of 0 Amps and a quadrature current of 2.0 Amps when da 90 / 2. Show your work. For example,

8 2 I cos sin a Id Iq Amps 3 3 Double-check your calculations against the knowledge that for three-phase systems, Ia Ib Ic 0 at each point in time. Note, as shown in the MATLAB Simulink model, that da is equal to the encoder s radial position plus the da offset that you determined earlier.

Electric Drives Experiment 5 Four-Quadrant Operation of a PMDC Motor

Electric Drives Experiment 5 Four-Quadrant Operation of a PMDC Motor Electric Drives Experiment 5 Four-Quadrant Operation of a PMDC Motor 5.1 Objective The objective of this activity is to analyze the four-quadrant operation of a permanent-magnet DC (PMDC) motor. This activity

More information

3.1.Introduction. Synchronous Machines

3.1.Introduction. Synchronous Machines 3.1.Introduction Synchronous Machines A synchronous machine is an ac rotating machine whose speed under steady state condition is proportional to the frequency of the current in its armature. The magnetic

More information

ECE 5670/ Lab 6. Parameter Estimation of a Brushless DC Motor. Objectives

ECE 5670/ Lab 6. Parameter Estimation of a Brushless DC Motor. Objectives ECE 5670/6670 - Lab 6 Parameter Estimation of a Brushless DC Motor Objectives The objective of the lab is to determine the parameters of a brushless DC motor and to experiment with control strategies using

More information

MEM01: DC-Motor Servomechanism

MEM01: DC-Motor Servomechanism MEM01: DC-Motor Servomechanism Interdisciplinary Automatic Controls Laboratory - ME/ECE/CHE 389 February 5, 2016 Contents 1 Introduction and Goals 1 2 Description 2 3 Modeling 2 4 Lab Objective 5 5 Model

More information

EE 560 Electric Machines and Drives. Autumn 2014 Final Project. Contents

EE 560 Electric Machines and Drives. Autumn 2014 Final Project. Contents EE 560 Electric Machines and Drives. Autumn 2014 Final Project Page 1 of 53 Prof. N. Nagel December 8, 2014 Brian Howard Contents Introduction 2 Induction Motor Simulation 3 Current Regulated Induction

More information

Ac fundamentals and AC CIRCUITS. Q1. Explain and derive an expression for generation of AC quantity.

Ac fundamentals and AC CIRCUITS. Q1. Explain and derive an expression for generation of AC quantity. Ac fundamentals and AC CIRCUITS Q1. Explain and derive an expression for generation of AC quantity. According to Faradays law of electromagnetic induction when a conductor is moving within a magnetic field,

More information

PREDICTIVE CONTROL OF INDUCTION MOTOR DRIVE USING DSPACE

PREDICTIVE CONTROL OF INDUCTION MOTOR DRIVE USING DSPACE PREDICTIVE CONTROL OF INDUCTION MOTOR DRIVE USING DSPACE P. Karlovský, J. Lettl Department of electric drives and traction, Faculty of Electrical Engineering, Czech Technical University in Prague Abstract

More information

CURRENT FOLLOWER APPROACH BASED PI AND FUZZY LOGIC CONTROLLERS FOR BLDC MOTOR DRIVE SYSTEM FED FROM CUK CONVERTER

CURRENT FOLLOWER APPROACH BASED PI AND FUZZY LOGIC CONTROLLERS FOR BLDC MOTOR DRIVE SYSTEM FED FROM CUK CONVERTER CURRENT FOLLOWER APPROACH BASED PI AND FUZZY LOGIC CONTROLLERS FOR BLDC MOTOR DRIVE SYSTEM FED FROM CUK CONVERTER N. Mohanraj and R. Sankaran Shanmugha Arts, Science, Technology and Research Academy University,

More information

MATLAB/SIMULINK MODEL OF FIELD ORIENTED CONTROL OF PMSM DRIVE USING SPACE VECTORS

MATLAB/SIMULINK MODEL OF FIELD ORIENTED CONTROL OF PMSM DRIVE USING SPACE VECTORS MATLAB/SIMULINK MODEL OF FIELD ORIENTED CONTROL OF PMSM DRIVE USING SPACE VECTORS Remitha K Madhu 1 and Anna Mathew 2 1 Department of EE Engineering, Rajagiri Institute of Science and Technology, Kochi,

More information

THE SINUSOIDAL WAVEFORM

THE SINUSOIDAL WAVEFORM Chapter 11 THE SINUSOIDAL WAVEFORM The sinusoidal waveform or sine wave is the fundamental type of alternating current (ac) and alternating voltage. It is also referred to as a sinusoidal wave or, simply,

More information

Experiment 3. Performance of an induction motor drive under V/f and rotor flux oriented controllers.

Experiment 3. Performance of an induction motor drive under V/f and rotor flux oriented controllers. University of New South Wales School of Electrical Engineering & Telecommunications ELEC4613 - ELECTRIC DRIVE SYSTEMS Experiment 3. Performance of an induction motor drive under V/f and rotor flux oriented

More information

Volume 1, Number 1, 2015 Pages Jordan Journal of Electrical Engineering ISSN (Print): , ISSN (Online):

Volume 1, Number 1, 2015 Pages Jordan Journal of Electrical Engineering ISSN (Print): , ISSN (Online): JJEE Volume, Number, 2 Pages 3-24 Jordan Journal of Electrical Engineering ISSN (Print): 249-96, ISSN (Online): 249-969 Analysis of Brushless DC Motor with Trapezoidal Back EMF using MATLAB Taha A. Hussein

More information

Optimizing Performance Using Slotless Motors. Mark Holcomb, Celera Motion

Optimizing Performance Using Slotless Motors. Mark Holcomb, Celera Motion Optimizing Performance Using Slotless Motors Mark Holcomb, Celera Motion Agenda 1. How PWM drives interact with motor resistance and inductance 2. Ways to reduce motor heating 3. Locked rotor test vs.

More information

Robot Actuators. Motors and Control. Stepper Motor Basics. Increased Resolution. Stepper motors. DC motors AC motors. Physics review: Nature is lazy.

Robot Actuators. Motors and Control. Stepper Motor Basics. Increased Resolution. Stepper motors. DC motors AC motors. Physics review: Nature is lazy. obot Actuators tepper motors Motors and Control DC motors AC motors Physics review: ature is lazy. Things seek lowest energy states. iron core vs. magnet magnetic fields tend to line up Electric fields

More information

Efficiency Optimized Brushless DC Motor Drive. based on Input Current Harmonic Elimination

Efficiency Optimized Brushless DC Motor Drive. based on Input Current Harmonic Elimination Efficiency Optimized Brushless DC Motor Drive based on Input Current Harmonic Elimination International Journal of Power Electronics and Drive System (IJPEDS) Vol. 6, No. 4, December 2015, pp. 869~875

More information

Open Loop Frequency Response

Open Loop Frequency Response TAKE HOME LABS OKLAHOMA STATE UNIVERSITY Open Loop Frequency Response by Carion Pelton 1 OBJECTIVE This experiment will reinforce your understanding of the concept of frequency response. As part of the

More information

Reduction of Harmonics and Torque Ripples of BLDC Motor by Cascaded H-Bridge Multi Level Inverter Using Current and Speed Control Techniques

Reduction of Harmonics and Torque Ripples of BLDC Motor by Cascaded H-Bridge Multi Level Inverter Using Current and Speed Control Techniques Reduction of Harmonics and Torque Ripples of BLDC Motor by Cascaded H-Bridge Multi Level Inverter Using Current and Speed Control Techniques A. Sneha M.Tech. Student Scholar Department of Electrical &

More information

A Dynamic Modeling Permanent Magnet Synchronous Motor Drive System

A Dynamic Modeling Permanent Magnet Synchronous Motor Drive System A Dynamic Modeling Permanent Magnet Synchronous Motor Drive System MISS. KINJAL G. PATEL P.G. Student, Department of Electrical Engineering SSSRGI, Vadasma, Mehsana MR. CHIRAG V. PATEL Assistant Professor,

More information

Estimation of Vibrations in Switched Reluctance Motor Drives

Estimation of Vibrations in Switched Reluctance Motor Drives American Journal of Applied Sciences 2 (4): 79-795, 2005 ISS 546-9239 Science Publications, 2005 Estimation of Vibrations in Switched Reluctance Motor Drives S. Balamurugan and R. Arumugam Power System

More information

Actuators. EECS461, Lecture 5, updated September 16,

Actuators. EECS461, Lecture 5, updated September 16, Actuators The other side of the coin from sensors... Enable a microprocessor to modify the analog world. Examples: - speakers that transform an electrical signal into acoustic energy (sound) - remote control

More information

Designing An Efficient Three Phase Brushless Dc Motor Fuzzy Control Systems (BLDCM)

Designing An Efficient Three Phase Brushless Dc Motor Fuzzy Control Systems (BLDCM) Designing An Efficient Three Phase Brushless Dc Motor Fuzzy Control Systems (BLDCM) Rafid Ali Ridha Ibrahim Department of Physics University of Kirkuk /College of Science Kirkuk, Iraq ibrahim_aslanuz@yahoo.com

More information

Sinusoidal Control of a Single Phase Special Topology SRM, Without Rotor Position Sensor

Sinusoidal Control of a Single Phase Special Topology SRM, Without Rotor Position Sensor Sinusoidal Control of a Single Phase Special Topology SRM, Without Rotor Position Sensor Nicolae-Daniel IRIMIA, Alecsandru SIMION, Ovidiu DABIJA, Sorin VLĂSCEANU, Adrian MUNTEANU "Gheorghe Asachi" Technical

More information

CHAPTER 2 STATE SPACE MODEL OF BLDC MOTOR

CHAPTER 2 STATE SPACE MODEL OF BLDC MOTOR 29 CHAPTER 2 STATE SPACE MODEL OF BLDC MOTOR 2.1 INTRODUCTION Modelling and simulation have been an essential part of control system. The importance of modelling and simulation is increasing with the combination

More information

SPEED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR USING VOLTAGE SOURCE INVERTER

SPEED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR USING VOLTAGE SOURCE INVERTER SPEED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR USING VOLTAGE SOURCE INVERTER Kushal Rajak 1, Rajendra Murmu 2 1,2 Department of Electrical Engineering, B I T Sindri, (India) ABSTRACT This paper presents

More information

Sistemi per il controllo motori

Sistemi per il controllo motori Sistemi per il controllo motori TALENTIS 4ª SESSIONE - 28 MAGGIO 2018 Speaker: Ing. Giuseppe Scuderi Automation and Motion control team Central Lab Prodotti ST per il controllo motori 2 Applicazioni e

More information

User Guide IRMCS3041 System Overview/Guide. Aengus Murray. Table of Contents. Introduction

User Guide IRMCS3041 System Overview/Guide. Aengus Murray. Table of Contents. Introduction User Guide 0607 IRMCS3041 System Overview/Guide By Aengus Murray Table of Contents Introduction... 1 IRMCF341 Application Circuit... 2 Sensorless Control Algorithm... 4 Velocity and Current Control...

More information

CHAPTER-III MODELING AND IMPLEMENTATION OF PMBLDC MOTOR DRIVE

CHAPTER-III MODELING AND IMPLEMENTATION OF PMBLDC MOTOR DRIVE CHAPTER-III MODELING AND IMPLEMENTATION OF PMBLDC MOTOR DRIVE 3.1 GENERAL The PMBLDC motors used in low power applications (up to 5kW) are fed from a single-phase AC source through a diode bridge rectifier

More information

Analog Devices: High Efficiency, Low Cost, Sensorless Motor Control.

Analog Devices: High Efficiency, Low Cost, Sensorless Motor Control. Analog Devices: High Efficiency, Low Cost, Sensorless Motor Control. Dr. Tom Flint, Analog Devices, Inc. Abstract In this paper we consider the sensorless control of two types of high efficiency electric

More information

Bakiss Hiyana binti Abu Bakar JKE, POLISAS BHAB

Bakiss Hiyana binti Abu Bakar JKE, POLISAS BHAB 1 Bakiss Hiyana binti Abu Bakar JKE, POLISAS 1. Explain AC circuit concept and their analysis using AC circuit law. 2. Apply the knowledge of AC circuit in solving problem related to AC electrical circuit.

More information

A VARIABLE SPEED PFC CONVERTER FOR BRUSHLESS SRM DRIVE

A VARIABLE SPEED PFC CONVERTER FOR BRUSHLESS SRM DRIVE A VARIABLE SPEED PFC CONVERTER FOR BRUSHLESS SRM DRIVE Mrs. M. Rama Subbamma 1, Dr. V. Madhusudhan 2, Dr. K. S. R. Anjaneyulu 3 and Dr. P. Sujatha 4 1 Professor, Department of E.E.E, G.C.E.T, Y.S.R Kadapa,

More information

CHAPTER 3 EQUIVALENT CIRCUIT AND TWO AXIS MODEL OF DOUBLE WINDING INDUCTION MOTOR

CHAPTER 3 EQUIVALENT CIRCUIT AND TWO AXIS MODEL OF DOUBLE WINDING INDUCTION MOTOR 35 CHAPTER 3 EQUIVALENT CIRCUIT AND TWO AXIS MODEL OF DOUBLE WINDING INDUCTION MOTOR 3.1 INTRODUCTION DWIM consists of two windings on the same stator core and a squirrel cage rotor. One set of winding

More information

ELG2336 Introduction to Electric Machines

ELG2336 Introduction to Electric Machines ELG2336 Introduction to Electric Machines Magnetic Circuits DC Machine Shunt: Speed control Series: High torque Permanent magnet: Efficient AC Machine Synchronous: Constant speed Induction machine: Cheap

More information

Lab 4: PMSM Characterization. EE595S Fall 2005 S.D. Sudhoff

Lab 4: PMSM Characterization. EE595S Fall 2005 S.D. Sudhoff Lab 4: PMSM Characterization EE595S Fall 2005 S.D. Sudhoff 1 Machine to Characterize Reliance Electric 1 Hp Continuous at 2000 RPM Maximum Speed 5500 RPM Inertia: 0.012 Lb-in-sec^2 Continuous Stall Torque:

More information

PHYS 1444 Section 003 Lecture #19

PHYS 1444 Section 003 Lecture #19 PHYS 1444 Section 003 Lecture #19 Monday, Nov. 14, 2005 Electric Generators DC Generator Eddy Currents Transformer Mutual Inductance Today s homework is homework #10, due noon, next Tuesday!! 1 Announcements

More information

Design of A Closed Loop Speed Control For BLDC Motor

Design of A Closed Loop Speed Control For BLDC Motor International Refereed Journal of Engineering and Science (IRJES) ISSN (Online) 2319-183X, (Print) 2319-1821 Volume 3, Issue 11 (November 214), PP.17-111 Design of A Closed Loop Speed Control For BLDC

More information

Comparative Study of PID and Fuzzy Controllers for Speed Control of DC Motor

Comparative Study of PID and Fuzzy Controllers for Speed Control of DC Motor Comparative Study of PID and Fuzzy Controllers for Speed Control of DC Motor Osama Omer Adam Mohammed 1, Dr. Awadalla Taifor Ali 2 P.G. Student, Department of Control Engineering, Faculty of Engineering,

More information

User Guide Introduction. IRMCS3043 System Overview/Guide. International Rectifier s imotion Team. Table of Contents

User Guide Introduction. IRMCS3043 System Overview/Guide. International Rectifier s imotion Team. Table of Contents User Guide 08092 IRMCS3043 System Overview/Guide By International Rectifier s imotion Team Table of Contents IRMCS3043 System Overview/Guide... 1 Introduction... 1 IRMCF343 Application Circuit... 2 Power

More information

DC Motor Speed Control using PID Controllers

DC Motor Speed Control using PID Controllers "EE 616 Electronic System Design Course Project, EE Dept, IIT Bombay, November 2009" DC Motor Speed Control using PID Controllers Nikunj A. Bhagat (08307908) nbhagat@ee.iitb.ac.in, Mahesh Bhaganagare (CEP)

More information

Modelling and Simulation of a DC Motor Drive

Modelling and Simulation of a DC Motor Drive Modelling and Simulation of a DC Motor Drive 1 Introduction A simulation model of the DC motor drive will be built using the Matlab/Simulink environment. This assignment aims to familiarise you with basic

More information

TRACK VOLTAGE APPROACH USING CONVENTIONAL PI AND FUZZY LOGIC CONTROLLER FOR PERFORMANCE COMPARISON OF BLDC MOTOR DRIVE SYSTEM FED BY CUK CONVERTER

TRACK VOLTAGE APPROACH USING CONVENTIONAL PI AND FUZZY LOGIC CONTROLLER FOR PERFORMANCE COMPARISON OF BLDC MOTOR DRIVE SYSTEM FED BY CUK CONVERTER International Journal of Mechanical Engineering and Technology (IJMET) Volume 9, Issue 12, December 2018, pp. 778 786, Article ID: IJMET_09_12_078 Available online at http://www.ia aeme.com/ijmet/issues.asp?jtype=ijmet&vtype=

More information

ECE 5670/ Lab 5. Closed-Loop Control of a Stepper Motor. Objectives

ECE 5670/ Lab 5. Closed-Loop Control of a Stepper Motor. Objectives 1. Introduction ECE 5670/6670 - Lab 5 Closed-Loop Control of a Stepper Motor Objectives The objective of this lab is to develop and test a closed-loop control algorithm for a stepper motor. First, field

More information

Simulation and Dynamic Response of Closed Loop Speed Control of PMSM Drive Using Fuzzy Controller

Simulation and Dynamic Response of Closed Loop Speed Control of PMSM Drive Using Fuzzy Controller Simulation and Dynamic Response of Closed Loop Speed Control of PMSM Drive Using Fuzzy Controller Anguru Sraveen Babu M.Tech Student Scholar Dept of Electrical & Electronics Engineering, Baba Institute

More information

Penn State Erie, The Behrend College School of Engineering

Penn State Erie, The Behrend College School of Engineering Penn State Erie, The Behrend College School of Engineering EE BD 327 Signals and Control Lab Spring 2008 Lab 9 Ball and Beam Balancing Problem April 10, 17, 24, 2008 Due: May 1, 2008 Number of Lab Periods:

More information

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering Vol. 2, Issue 6, June 2013

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering Vol. 2, Issue 6, June 2013 Efficient Harmonics Reduction Based Three Phase H Bridge Speed Controller for DC Motor Speed Control using Hysteresis Controlled Synchronized Pulse Generator Sanjay Kumar Patel 1, Dhaneshwari Sahu 2, Vikrant

More information

AC Machinery. Revised October 6, Fundamentals of AC Machinery 1

AC Machinery. Revised October 6, Fundamentals of AC Machinery 1 Fundamentals of AC Machinery Revised October 6, 2008 4. Fundamentals of AC Machinery 1 AC Machines: We begin this study by first looking at some commonalities that eist for all machines, then look at specific

More information

Vector Approach for PI Controller for Speed Control of 3-Ø Induction Motor Fed by PWM Inverter with Output LC Filter

Vector Approach for PI Controller for Speed Control of 3-Ø Induction Motor Fed by PWM Inverter with Output LC Filter International Journal of Electronic and Electrical Engineering. ISSN 0974-2174 Volume 4, Number 2 (2011), pp. 195-202 International Research Publication House http://www.irphouse.com Vector Approach for

More information

Performance of a three-phase permanent magnet motor operating as a synchronous motor and a brushless DC motor

Performance of a three-phase permanent magnet motor operating as a synchronous motor and a brushless DC motor Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 26 Performance of a three-phase permanent magnet motor operating as a synchronous motor and a brushless DC motor Sophie

More information

DC and AC Circuits. Objective. Theory. 1. Direct Current (DC) R-C Circuit

DC and AC Circuits. Objective. Theory. 1. Direct Current (DC) R-C Circuit [International Campus Lab] Objective Determine the behavior of resistors, capacitors, and inductors in DC and AC circuits. Theory ----------------------------- Reference -------------------------- Young

More information

CONTROLLING THE OSCILLATIONS OF A SWINGING BELL BY USING THE DRIVING INDUCTION MOTOR AS A SENSOR

CONTROLLING THE OSCILLATIONS OF A SWINGING BELL BY USING THE DRIVING INDUCTION MOTOR AS A SENSOR Proceedings, XVII IMEKO World Congress, June 7,, Dubrovnik, Croatia Proceedings, XVII IMEKO World Congress, June 7,, Dubrovnik, Croatia XVII IMEKO World Congress Metrology in the rd Millennium June 7,,

More information

A Switched Boost Inverter Fed Three Phase Induction Motor Drive

A Switched Boost Inverter Fed Three Phase Induction Motor Drive A Switched Boost Inverter Fed Three Phase Induction Motor Drive 1 Riya Elizabeth Jose, 2 Maheswaran K. 1 P.G. student, 2 Assistant Professor 1 Department of Electrical and Electronics engineering, 1 Nehru

More information

Massachusetts Institute of Technology. Lab 2: Characterization of Lab System Components

Massachusetts Institute of Technology. Lab 2: Characterization of Lab System Components OBJECTIVES Massachusetts Institute of Technology Department of Mechanical Engineering 2.004 System Dynamics and Control Fall Term 2007 Lab 2: Characterization of Lab System Components In the future lab

More information

Code No: R Set No. 1

Code No: R Set No. 1 Code No: R05310204 Set No. 1 III B.Tech I Semester Regular Examinations, November 2007 ELECTRICAL MACHINES-III (Electrical & Electronic Engineering) Time: 3 hours Max Marks: 80 Answer any FIVE Questions

More information

Control of Electric Machine Drive Systems

Control of Electric Machine Drive Systems Control of Electric Machine Drive Systems Seung-Ki Sul IEEE 1 PRESS к SERIES I 0N POWER ENGINEERING Mohamed E. El-Hawary, Series Editor IEEE PRESS WILEY A JOHN WILEY & SONS, INC., PUBLICATION Contents

More information

MICROCONTROLLERS Stepper motor control with Sequential Logic Circuits

MICROCONTROLLERS Stepper motor control with Sequential Logic Circuits PH-315 MICROCONTROLLERS Stepper motor control with Sequential Logic Circuits Portland State University Summary Four sequential digital waveforms are used to control a stepper motor. The main objective

More information

Alternating Current. Slide 1 / 69. Slide 2 / 69. Slide 3 / 69. Topics to be covered. Sources of Alternating EMF. Sources of alternating EMF

Alternating Current. Slide 1 / 69. Slide 2 / 69. Slide 3 / 69. Topics to be covered. Sources of Alternating EMF. Sources of alternating EMF Slide 1 / 69 lternating urrent Sources of alternating EMF Transformers ircuits and Impedance Topics to be covered Slide 2 / 69 LR Series ircuits Resonance in ircuit Oscillations Sources of lternating EMF

More information

Alternating Current. Slide 2 / 69. Slide 1 / 69. Slide 3 / 69. Slide 4 / 69. Slide 6 / 69. Slide 5 / 69. Topics to be covered

Alternating Current. Slide 2 / 69. Slide 1 / 69. Slide 3 / 69. Slide 4 / 69. Slide 6 / 69. Slide 5 / 69. Topics to be covered Slide 1 / 69 lternating urrent Sources of alternating EMF ircuits and Impedance Slide 2 / 69 Topics to be covered LR Series ircuits Resonance in ircuit Oscillations Slide 3 / 69 Sources of lternating EMF

More information

International Journal of Advance Engineering and Research Development. PI Controller for Switched Reluctance Motor

International Journal of Advance Engineering and Research Development. PI Controller for Switched Reluctance Motor Scientific Journal of Impact Factor (SJIF): 4.14 International Journal of Advance Engineering and Research Development Volume 3, Issue 5, May -216 PI Controller for Switched Reluctance Motor Dr Mrunal

More information

Simulation and Dynamic Response of Closed Loop Speed Control of PMSM Drive Using Fuzzy Controller

Simulation and Dynamic Response of Closed Loop Speed Control of PMSM Drive Using Fuzzy Controller Simulation and Dynamic Response of Closed Loop Speed Control of PMSM Drive Using Fuzzy Controller Anguru Sraveen Babu M.Tech Student Scholar Department of Electrical & Electronics Engineering, Baba Institute

More information

CHAPTER 4 FUZZY BASED DYNAMIC PWM CONTROL

CHAPTER 4 FUZZY BASED DYNAMIC PWM CONTROL 47 CHAPTER 4 FUZZY BASED DYNAMIC PWM CONTROL 4.1 INTRODUCTION Passive filters are used to minimize the harmonic components present in the stator voltage and current of the BLDC motor. Based on the design,

More information

SYNCHRONOUS MACHINES

SYNCHRONOUS MACHINES SYNCHRONOUS MACHINES The geometry of a synchronous machine is quite similar to that of the induction machine. The stator core and windings of a three-phase synchronous machine are practically identical

More information

Experiment 1. Speed control of a DC motor with an inner current loop

Experiment 1. Speed control of a DC motor with an inner current loop he University of New South Wales School of Electrical Engineering & elecommunications ELEC463 - ELECRIC RIVE SYSEMS Experiment. Speed control of a C motor with an inner current loop. Introduction In this

More information

15. the power factor of an a.c circuit is.5 what will be the phase difference between voltage and current in this

15. the power factor of an a.c circuit is.5 what will be the phase difference between voltage and current in this 1 1. In a series LCR circuit the voltage across inductor, a capacitor and a resistor are 30 V, 30 V and 60 V respectively. What is the phase difference between applied voltage and current in the circuit?

More information

SERVOSTAR Position Feedback Resolution and Noise

SERVOSTAR Position Feedback Resolution and Noise APPLICATION NOTE ASU010H Issue 1 SERVOSTAR Position Resolution and Noise Position feedback resolution has two effects on servo system applications. The first effect deals with the positioning accuracy

More information

Sensorless Control of a Novel IPMSM Based on High-Frequency Injection

Sensorless Control of a Novel IPMSM Based on High-Frequency Injection Sensorless Control of a Novel IPMSM Based on High-Frequency Injection Xiaocan Wang*,Wei Xie**, Ralph Kennel*, Dieter Gerling** Institute for Electrical Drive Systems and Power Electronics,Technical University

More information

THE UNIVERSITY OF BRITISH COLUMBIA. Department of Electrical and Computer Engineering. EECE 365: Applied Electronics and Electromechanics

THE UNIVERSITY OF BRITISH COLUMBIA. Department of Electrical and Computer Engineering. EECE 365: Applied Electronics and Electromechanics THE UNIVERSITY OF BRITISH COLUMBIA Department of Electrical and Computer Engineering EECE 365: Applied Electronics and Electromechanics Final Exam / Sample-Practice Exam Spring 2008 April 23 Topics Covered:

More information

Module 7. Electrical Machine Drives. Version 2 EE IIT, Kharagpur 1

Module 7. Electrical Machine Drives. Version 2 EE IIT, Kharagpur 1 Module 7 Electrical Machine Drives Version 2 EE IIT, Kharagpur 1 Lesson 34 Electrical Actuators: Induction Motor Drives Version 2 EE IIT, Kharagpur 2 Instructional Objectives After learning the lesson

More information

Performance Optimization Using Slotless Motors and PWM Drives

Performance Optimization Using Slotless Motors and PWM Drives Motion Control Performance Optimization Using Slotless Motors and PWM Drives TN-93 REV 1781 Section 1: Abstract Smooth motion, meaning very low position and current loop error while at speed, is critical

More information

AC Circuits INTRODUCTION DISCUSSION OF PRINCIPLES. Resistance in an AC Circuit

AC Circuits INTRODUCTION DISCUSSION OF PRINCIPLES. Resistance in an AC Circuit AC Circuits INTRODUCTION The study of alternating current 1 (AC) in physics is very important as it has practical applications in our daily lives. As the name implies, the current and voltage change directions

More information

ELE847 Advanced Electromechanical Systems Course Notes 2008 Edition

ELE847 Advanced Electromechanical Systems Course Notes 2008 Edition Department of Electrical and Computer Engineering ELE847 Advanced Electromechanical Systems Course Notes 2008 Edition ELE847 Advanced Electromechanical Systems Table of Contents 1. Course Outline.... 1

More information

3. What is hysteresis loss? Also mention a method to minimize the loss. (N-11, N-12)

3. What is hysteresis loss? Also mention a method to minimize the loss. (N-11, N-12) DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE 6401 ELECTRICAL MACHINES I UNIT I : MAGNETIC CIRCUITS AND MAGNETIC MATERIALS Part A (2 Marks) 1. List

More information

DMCode-MS(BL) MATLAB Library

DMCode-MS(BL) MATLAB Library Technosoft is a Third Party of Texas Instruments supporting the TMS320C28xx and TMS320F24xx DSP controllers of the C2000 family To help you get your project started rapidly, Technosoft offers the DMCode-MS(BL)

More information

Vector Control of a 3-Phase PMSM Using the ZNEO Z16FMC MCU

Vector Control of a 3-Phase PMSM Using the ZNEO Z16FMC MCU MultiMotor Series Application Note Vector Control of a 3-Phase PMSM Using the ZNEO Z16FMC MCU AN039402-0816 Abstract Brushed DC machines are widely popular due to their simplicity, ease of control and

More information

AC CURRENTS, VOLTAGES, FILTERS, and RESONANCE

AC CURRENTS, VOLTAGES, FILTERS, and RESONANCE July 22, 2008 AC Currents, Voltages, Filters, Resonance 1 Name Date Partners AC CURRENTS, VOLTAGES, FILTERS, and RESONANCE V(volts) t(s) OBJECTIVES To understand the meanings of amplitude, frequency, phase,

More information

University of Pittsburgh

University of Pittsburgh University of Pittsburgh Experiment #11 Lab Report Inductance/Transformers Submission Date: 12/04/2017 Instructors: Dr. Minhee Yun John Erickson Yanhao Du Submitted By: Nick Haver & Alex Williams Station

More information

MODELING AND SIMULATION OF DISCONTINUOUS CURRENT MODE INVERTER FED PERMANENT MAGNET SYNCHRONOUS MOTOR DRIVE

MODELING AND SIMULATION OF DISCONTINUOUS CURRENT MODE INVERTER FED PERMANENT MAGNET SYNCHRONOUS MOTOR DRIVE Journal of Theoretical and Applied Information Technology 2005-2011 JATIT & LLS. All rights reserved. www.jatit.org MODELING AND SIMULATION OF DISCONTINUOUS CURRENT MODE INVERTER FED PERMANENT MAGNET SYNCHRONOUS

More information

RTLinux Based Speed Control System of SPMSM with An Online Real Time Simulator

RTLinux Based Speed Control System of SPMSM with An Online Real Time Simulator Extended Summary pp.453 458 RTLinux Based Speed Control System of SPMSM with An Online Real Time Simulator Tsuyoshi Hanamoto Member (Kyushu Institute of Technology) Ahmad Ghaderi Non-member (Kyushu Institute

More information

New Direct Torque Control of DFIG under Balanced and Unbalanced Grid Voltage

New Direct Torque Control of DFIG under Balanced and Unbalanced Grid Voltage 1 New Direct Torque Control of DFIG under Balanced and Unbalanced Grid Voltage B. B. Pimple, V. Y. Vekhande and B. G. Fernandes Department of Electrical Engineering, Indian Institute of Technology Bombay,

More information

UNIVERSITY OF UTAH ELECTRICAL ENGINEERING DEPARTMENT LABORATORY PROJECT NO. 3 DESIGN OF A MICROMOTOR DRIVER CIRCUIT

UNIVERSITY OF UTAH ELECTRICAL ENGINEERING DEPARTMENT LABORATORY PROJECT NO. 3 DESIGN OF A MICROMOTOR DRIVER CIRCUIT UNIVERSITY OF UTAH ELECTRICAL ENGINEERING DEPARTMENT EE 1000 LABORATORY PROJECT NO. 3 DESIGN OF A MICROMOTOR DRIVER CIRCUIT 1. INTRODUCTION The following quote from the IEEE Spectrum (July, 1990, p. 29)

More information

Modeling and Simulation of Cascaded Multilevel Inverter fed PMSM Drive with PV Stand-Alone Water Pumping System

Modeling and Simulation of Cascaded Multilevel Inverter fed PMSM Drive with PV Stand-Alone Water Pumping System IJMTST Volume: 2 Issue: 08 August 2016 ISSN: 2455-3778 Modeling and Simulation of Cascaded Multilevel Inverter fed PMSM Drive with PV Stand-Alone Water Pumping System S. Sireesha 1 T. Bhavani 2 1PG Scholar,

More information

A COMPARISON STUDY OF THE COMMUTATION METHODS FOR THE THREE-PHASE PERMANENT MAGNET BRUSHLESS DC MOTOR

A COMPARISON STUDY OF THE COMMUTATION METHODS FOR THE THREE-PHASE PERMANENT MAGNET BRUSHLESS DC MOTOR A COMPARISON STUDY OF THE COMMUTATION METHODS FOR THE THREE-PHASE PERMANENT MAGNET BRUSHLESS DC MOTOR Shiyoung Lee, Ph.D. Pennsylvania State University Berks Campus Room 120 Luerssen Building, Tulpehocken

More information

CHAPTER 4 CONTROL ALGORITHM FOR PROPOSED H-BRIDGE MULTILEVEL INVERTER

CHAPTER 4 CONTROL ALGORITHM FOR PROPOSED H-BRIDGE MULTILEVEL INVERTER 65 CHAPTER 4 CONTROL ALGORITHM FOR PROPOSED H-BRIDGE MULTILEVEL INVERTER 4.1 INTRODUCTION Many control strategies are available for the control of IMs. The Direct Torque Control (DTC) is one of the most

More information

University of North Carolina-Charlotte Department of Electrical and Computer Engineering ECGR 4143/5195 Electrical Machinery Fall 2009

University of North Carolina-Charlotte Department of Electrical and Computer Engineering ECGR 4143/5195 Electrical Machinery Fall 2009 University of North Carolina-Charlotte Department of Electrical and Computer Engineering ECGR 4143/5195 Electrical Machinery Fall 2009 Problem Set 3 Due: Monday September 28 Recommended Reading: Fitzgerald

More information

Placement Paper For Electrical

Placement Paper For Electrical Placement Paper For Electrical Q.1 The two windings of a transformer is (A) conductively linked. (B) inductively linked. (C) not linked at all. (D) electrically linked. Ans : B Q.2 A salient pole synchronous

More information

Performance Analysis of Fuzzy Logic And PID Controller for PM DC Motor Drive Khalid Al-Mutib 1, N. M. Adamali Shah 2, Ebrahim Mattar 3

Performance Analysis of Fuzzy Logic And PID Controller for PM DC Motor Drive Khalid Al-Mutib 1, N. M. Adamali Shah 2, Ebrahim Mattar 3 Performance Analysis of Fuzzy Logic And PID Controller for PM DC Motor Drive Khalid Al-Mutib 1, N. M. Adamali Shah 2, Ebrahim Mattar 3 1 King Saud University, Riyadh, Saudi Arabia, muteb@ksu.edu.sa 2 King

More information

Stepper Motors WE CREATE MOTION

Stepper Motors WE CREATE MOTION WE CREATE MOTIO PRECIstep Technology EW Page FDM 6 Two Phase with Disc Magnet, AM 8 Two Phase,6 AM Two Phase,6 ADM S Two Phase with Disc Magnet, 6 7 AM Two Phase 6 8 AM Two Phase AM -R Two Phase WE CREATE

More information

Generalized Theory Of Electrical Machines

Generalized Theory Of Electrical Machines Essentials of Rotating Electrical Machines Generalized Theory Of Electrical Machines All electrical machines are variations on a common set of fundamental principles, which apply alike to dc and ac types,

More information

EE 410/510: Electromechanical Systems Chapter 5

EE 410/510: Electromechanical Systems Chapter 5 EE 410/510: Electromechanical Systems Chapter 5 Chapter 5. Induction Machines Fundamental Analysis ayssand dcontrol o of Induction Motors Two phase induction motors Lagrange Eqns. (optional) Torque speed

More information

7 Lab: Motor control for orientation and angular speed

7 Lab: Motor control for orientation and angular speed Prelab Participation Lab Name: 7 Lab: Motor control for orientation and angular speed Control systems help satellites to track distant stars, airplanes to follow a desired trajectory, cars to travel at

More information

Aligarh College of Engineering & Technology (College Code: 109) Affiliated to UPTU, Approved by AICTE Electrical Engg.

Aligarh College of Engineering & Technology (College Code: 109) Affiliated to UPTU, Approved by AICTE Electrical Engg. Aligarh College of Engineering & Technology (College Code: 19) Electrical Engg. (EE-11/21) Unit-I DC Network Theory 1. Distinguish the following terms: (a) Active and passive elements (b) Linearity and

More information

A Comparative Study of Sinusoidal PWM and Space Vector PWM of a Vector Controlled BLDC Motor

A Comparative Study of Sinusoidal PWM and Space Vector PWM of a Vector Controlled BLDC Motor A Comparative Study of Sinusoidal PWM and Space Vector PWM of a Vector Controlled BLDC Motor Lydia Anu Jose 1, K. B.Karthikeyan 2 PG Student, Dept. of EEE, Rajagiri School of Engineering and Technology,

More information

PESIT Bangalore South Campus Hosur road, 1km before Electronic City, Bengaluru -100 Department of Electronics & Communication Engineering

PESIT Bangalore South Campus Hosur road, 1km before Electronic City, Bengaluru -100 Department of Electronics & Communication Engineering INTERNAL ASSESSMENT TEST 3 Date : 15/11/16 Marks: 0 Subject & Code: BASIC ELECTRICAL ENGINEERING -15ELE15 Sec : F,G,H,I,J,K Name of faculty : Mrs.Hema, Mrs.Dhanashree, Mr Nagendra, Mr.Prashanth Time :

More information

E x p e r i m e n t 3 Characterization of DC Motor: Part 1

E x p e r i m e n t 3 Characterization of DC Motor: Part 1 E x p e r i m e n t 3 Characterization of DC Motor: Part 1 3.1 Introduction The output voltage control of a two-pole DC-Switch-mode-converter was implemented in realtime, in the last experiment. The purpose

More information

Modeling and Simulation of Field Oriented Control PMSM Drive System using SVPWM Technique

Modeling and Simulation of Field Oriented Control PMSM Drive System using SVPWM Technique International Journal of Engineering Trends and Technology (IJETT) olume 9 Number 4- September 26 Modeling and Simulation of Field Oriented Control PMSM Drive System using SPWM Technique Pradeep Kumar,

More information

Impact of PWM Control Frequency onto Efficiency of a 1 kw Permanent Magnet Synchronous Motor

Impact of PWM Control Frequency onto Efficiency of a 1 kw Permanent Magnet Synchronous Motor http://dx.doi.org/10.5755/j01.eie.22.6.17216 ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 22, NO. 6, 2016 Impact of PWM Control Frequency onto Efficiency of a 1 kw Permanent Magnet Synchronous

More information

Lab Exercise 9: Stepper and Servo Motors

Lab Exercise 9: Stepper and Servo Motors ME 3200 Mechatronics Laboratory Lab Exercise 9: Stepper and Servo Motors Introduction In this laboratory exercise, you will explore some of the properties of stepper and servomotors. These actuators are

More information

ECE 2006 University of Minnesota Duluth Lab 11. AC Circuits

ECE 2006 University of Minnesota Duluth Lab 11. AC Circuits 1. Objective AC Circuits In this lab, the student will study sinusoidal voltages and currents in order to understand frequency, period, effective value, instantaneous power and average power. Also, the

More information

Modeling & Simulation of PMSM Drives with Fuzzy Logic Controller

Modeling & Simulation of PMSM Drives with Fuzzy Logic Controller Vol. 3, Issue. 4, Jul - Aug. 2013 pp-2492-2497 ISSN: 2249-6645 Modeling & Simulation of PMSM Drives with Fuzzy Logic Controller Praveen Kumar 1, Anurag Singh Tomer 2 1 (ME Scholar, Department of Electrical

More information

Lab 7 - Inductors and LR Circuits

Lab 7 - Inductors and LR Circuits Lab 7 Inductors and LR Circuits L7-1 Name Date Partners Lab 7 - Inductors and LR Circuits The power which electricity of tension possesses of causing an opposite electrical state in its vicinity has been

More information

Designing With Motion Handbook

Designing With Motion Handbook Designing With Motion Handbook Chapter IV Brush There are many different types of systems that can use manyy different types of motor such as BLDC, Brush, Stepper, Hollow Core, etc. But for this write-up,

More information

UG Student, Department of Electrical Engineering, Gurunanak Institute of Engineering & Technology, Nagpur

UG Student, Department of Electrical Engineering, Gurunanak Institute of Engineering & Technology, Nagpur A Review: Modelling of Permanent Magnet Brushless DC Motor Drive Ravikiran H. Rushiya 1, Renish M. George 2, Prateek R. Dongre 3, Swapnil B. Borkar 4, Shankar S. Soneker 5 And S. W. Khubalkar 6 1,2,3,4,5

More information