ELECTRIC MACHINES (TRANSFORMERS)

Size: px
Start display at page:

Download "ELECTRIC MACHINES (TRANSFORMERS)"

Transcription

1 ELECTRIC MACHINES (TRANSFORMERS) USER MANUAL

2 CONTENTS. INTRODUCTION.... OVERVIEW..... Functionality..... Specifications SAFETY REQUIREMENTS HARDWARE AND SOFTWARE System Architecture Test Bench hardware Other required equipment Required software Test Bench Modules Description HARDWARE ASSEMBLY Installing NI PXI modules on the chassis Connections to the NI PXI data acquisition modules Grounding the chassis Connecting power SOFTWARE INSTALLATION AND SETUP Installation of NI Device Drivers Laboratory Software Installation Setting up PXI module addresses in MAX TEST BENCH SOFTWARE Running the software and getting started Lab s Interactive Block Diagram Graph window Scope window Time diagrams tab Vector diagrams window Power Modules on the Interactive Diagram Terms used in this manual: GETTING STARTED Background knowledge and skills prerequisites Preparation of the Test Bench HANDS-ON EXPERIMENTS No-load mode and determination of the transformation ratio Short circuit mode External characteristics of -phase transformer Parallel operation of -phase transformers Determining a 3-phase transformer windings polarity Asymmetric loading of 3-phase transformers TEST BENCH COMPONENTS SPECIFICATIONS TROUBLESHOOTING Problems and possible solutions Replacing a blown fuse... 6

3 . INTRODUCTION The Transformers Laboratory can be used for hands-on study of the Theory of electrical machines and transformers. The lab software has a simple and intuitive user interface. The student may choose the desired subject from the menu, working with step-by-step instructions according to individual circuits for each lab, as provided by the lab manual. Detailed help screens are included in the lab software so that the students may refresh their memory with related topics without laboratory work interruption. The experimentally obtained data can be saved in MS Excel format for offline work, reviewing, and grading. The Test Bench has been designed based on the NI PXI hardware platform with software developed in the NI LabVIEW graphical programming environment using the virtual instruments technology of National Instruments.. OVERVIEW.. Functionality The Test Bench has been developed as a tool for conducting 6 educational hands-on experiments: 4 labs on the one-phase transformer properties and labs on three-phase transformer properties. The student works with the software installed on the personal computer. Before starting the experiments the student shall register by entering his name and group. In each lab appropriate wiring diagrams are displayed on the front panel (with managed configuration items). The software allows you to control the progress of work and conduct an interactive settings of parameters. All the control functions and data acquisition are fully automated. Scope patterns, graphs, and numeric values based on the obtained experimental results are shown on the screen. The results can be saved as an MS Excel file along with the appropriate student data and date of conducting the experiment. The Test Bench provides the possibility to conduct the following hands-on experiments:. No-Load mode and determination of transformation ratio. Short-circuit mode 3. External characteristics of a -phase transformer 4. Parallel operation of -phase transformers 5. Determining a 3-phase transformer windings polarity 6. Asymmetric loading of 3-phase transformers All the hands-on labs are conducted on the Transformers Test Bench... Specifications. Power supply: three-phase mains network /38V, 5Hz. Max. power consumption:.5 kw 3. Dimensions: 5xx4mm 4. Max. weight: 3 kg The Test Bench should be used indoors, at C temperature range, with relative humidity not exceeding 8% at 5 C.

4 3. SAFETY REQUIREMENTS Please carefully read the safety instructions before starting to work with the laboratory setup. Follow the safety arrangements when connecting the hardware, during the hands-on experiments, or when disconnecting the system. The power supply of the device should not be disassembled. No third-party power sources shall be connected to the NI PXI platform and no external power or other electrical connections should be made to it. The power supplies of NI PXI and of any components of the laboratory setup should only be connected to a properly grounded wall socket. The presence of any foreign objects on the table is not allowed during the lab. The Test Bench can only be used indoors. Do not power the setup in an atmosphere containing flammable gases or in proximity of highly flammable liquids. There are no user-serviceable parts in the system. Technical maintenance shall only be provided by qualified personnel. In case of failure of the device or if a burning smell of wires or components is detected, please turn OFF the setup immediately, disconnect the power cord from the wall socket and seek qualified service from an appropriate agency. The Test Bench shall only be operated in the absence of electrical shock risk factors, such as extreme humidity, condensation, lack of grounding, etc. The body of the Test Bench should be connected to a proper grounding network through a resistive loop not exceeding 4 Ohm. Any maintenance operations can only be performed when the Test Bench is disconnected from the mains. All the students should receive obligatory safety instructions prior to starting work with the Test Bench. The Students who received the instructions shall register in a special log book, confirming with signature that they received the safety instructions and agree to the terms and conditions of using the Test Bench. Students who didn t receive the instructions are not allowed to use the Test Bench; students who violated the terms of the safety requirement shall not be allowed to perform further on the hands-on labs. The following safety requirements are obligatory:. The Test Bench should only be connected to the mains network with the approval and in the presence of the instructor. The electric connections should be made in accordance with the provided circuit diagrams and only when the Test Bench is disconnected from the mains network The following is forbidden:. Conducting any experiments or tests in the absence of the instructor. Connecting and disconnecting wires during the hands-on lab 3

5 4. HARDWARE AND SOFTWARE 4.. System Architecture The overall system architecture is shown in the Fig. 4.-: Fig. 4.- The overall system architecture The system consists of the Transformers Test Bench working in conjunction with the NI PXI system. 4.. Test Bench hardware Standard hardware of the workbench:. Front Panel with the following modules:.. Power supply module.. One-phase autotransformer.3. One-phase transformer.4. Three-phase transformer.5. Adjustable load module.6. Meters. Cable for NI PXI-4 3. Connector wires set 4. Allen key wrench 5. Software CD QTY QTY 4.3. Other required equipment NI PXI-33 Integrated MXIe, 5 Periph. Slots, Port PCIe, 3m Cable NI PXI-4 Triple Output DC Power Supply with APS-4 Aux Power NI PXI-65 (6 Analog inputs, 4 Digital I/O, Analog Outputs) SHC68-68-EPM Shielded Cable, 68-D-Type to 68 VHDCI Offset, m Power Cord, 4V, A, Euro Class Personal computer (refer to System Requirements below) Minimum System Requirements CPU RAM Hard disk Other requirements Intel or AMD, GHz or faster GB or more at least 5 GB of free space a free PCI Express slot Other equipment can be possibly used upon consent of test bench manufacturer 4

6 9. HANDS-ON EXPERIMENTS 9.. No-load mode and determination of the transformation ratio Hands-on objectives In this lab we shall study the transformer in no-load mode. Based on the obtained results we shall:. Determine the transformation factor by voltage.. Determine the no-load characteristics I, P,cos j, Z = fv ( ), when I =. Theory No-load characterization is an important part of tests that each manufactured transformer has to be subjected to. The objective of these tests is to verify whether the transformer meets the standard requirements or technical specifications, according to which it was manufactured. In the process of the no-load tests it is possible to determine the transformation factor, the no-load current, magnetic losses, and the reactive power required for core magnetization. In no-load mode (idling) the transformer s primary winding is supplied from an AC voltage source, and the secondary winding is unconnected (Fig. 9.-). E E where: m Fig. 9.- Transformer circuit in no-load mode = 4.44WfФ, (9..) = 4.44W fф, (9..) m W, W the numbers of turns of the primary and secondary windings, Ф magnetic flux amplitude, m f AC frequency. In no-load mode, when the currents are insignificant: E ª V, E ª V, and the transformation factor equals to: where W E V K W E V = = =, (9..3) V, V input and output voltage effective values. The transformer s power P in no-load mode is comprised of core (iron) loss winding copper loss P = I r, сopper where I - primary winding current under no load r - primary winding active resistance P сore and the primary 8

7 Therefore, P = P + Р (9..4) core copper The no-load current I makes 5 8% of the nominal current, and copper loss P сopper is usually less than % of P. Therefore, with precision suffice for practical applications, we may consider that the power consumed in idling is mainly due to core losses, i.e. Р ª Рcore P = V I cosj (9..5) Since the magnetic flux in the transformer is virtually the same in nominal and in no-load modes, the losses in nominal mode are usually taken as equal to idling losses ( P ). The equivalent circuit of the transformer in no-load mode is shown in Fig.9.-. r and x on the diagram are the active and reactive resistances, respectively, which determine the voltage drop on the transformer s primary winding, whereas r and m x m are resistances of the magnetization circuit, which determine the active and reactive component of the EMF E. Fig.9.- Transformer s equivalent circuit in no-load mode The equivalent circuit parameters in idling can be found by the following expressions: P r = r + rm = I (9..6) V Z = I (9..7) = x + x = Z r (9..8) x m - Parameters Z, r, x vary depending on voltage V, thus the dependences between voltage V and current I are generally non-linear. Considering that the transformer s losses in idling are primarily comprised of core magnetic losses, we can take that: r = r + r m ª r m, (9..9) P r m ª. I (9..) Considering that the inductive voltage drop on the primary winding I x is insignificant compared with the value of I xm, it is reputed that: x = x+ xm ª xm, (9..) Z V m ª. (9..) I 9

8 To obtain the idling characteristics we shall vary the voltage supplied to the primary winding, measure the supplied voltage, current and power factor, and calculate the power and resistance values. Based on the obtained results the dependences I, P,cos j, Z = fv ( ) are to be plotted. The no-load characteristics are shown in Fig Hands-on procedure Fig.9.-3 Transformer no-load characteristics During the lab the secondary winding is disconnected, and the primary winding is supplied with AC voltage of nominal frequency from a regulated voltage source (Fig. 9.-4). Measurements should be done at several values of the supply voltage in the.3v r -.V r range. The transformation factor is to be determined at nominal voltage or lower. Required equipment. -phase transformer. Power Switch module 3. Autotransformer 4. Voltmeters (V, V ) 5. Ammeter (A ) Preparations Fig The no-load lab circuit. Select No-load mode and determination of the transformation ratio from the labs menu.. Assemble the circuit in Fig Note: To measure the value of cosj correctly pay attention to the polarity of ammeters and voltmeters: whenever an ammeter and a voltmeter have a common connection point, make sure that they are connected to that point by the plug of same color. 3

9 Fig.9.-5 Schematic diagram of lab connections Request the instructor to check the circuit connections before continuing your work on the lab. 3. Make sure that the switch K is disconnected and autotransformer knob is in the Min position. 4. Set the automatic switch (, Fig. 4.5-) to the ON position and activate the turnkey (5, Fig. 4.5-) to enable the supply of power to all circuits on the Test Bench. 5. Check the tick marks near A, V, V and Phase Meter to enable the corresponding meters. In the drop-down menus for j and j on the Phase Meter module select A and V, respectively. Step-by-step instructions. Activate the switch K on the lab Front Panel.. Gradually turn the autotransformer knob clockwise to increase the voltage up to the value of.v r (V =4V) and record the indications of the meters by clicking Record on the Front Panel after each measurement. 3. Gradually reduce the voltage up to.3v r (V =66V), recording the indications of the meters (4-5 points). For visual representation of the obtained graphs in the process of the experiment use the Graph window 4. When finished, click Stop. 5. Recorded indications of the meters are automatically saved in an Excel file, which can be opened by clicking Excel on the Front Panel. Report The report shall include:. A table with meter readings at each step, along with calculated values (Table 9-).. Characteristic graphs of I, P,cos j, Z as a function of voltage fv ( ), obtained through the experiment. Table 9-3 Experimental values Calculated values I V V cosφ P K Z x r A V V - W - Ohm Ohm Ohm 3

10 4 5 Expressions V K = V P = VIcosj V Z = I P r = r + rm = I x = x + x = Z - r m Test questions. How are the EMF and the voltage of the transformer secondary winding correlated?. How are the EMFs of the primary and secondary windings of the transformer correlated? 3. What comprises power consumed by the transformer in idling? 4. How are the core losses in the nominal mode and under no-load correlated? 3

11 . TEST BENCH COMPONENTS SPECIFICATIONS Specifications for power modules are given in Table -: Table - Power modules Power module Power and 3-phase network connection/disconnection P (kw) f (Hz) V (V) V out (V) /38 Adjustable AC voltage Variable Load Specifications of the transformers are given in Table -. Table - Transformers Power module P (kw) f (Hz) V r (V) V r (V) I r (A) I r (A) One-phase transformers Three-phase transformer The three phase transformer module contains wafer switches S and S. Depending on the position of these switches, different interconnections are provided between transformer windings and terminals on the Front Panel. Connections of windings in position of the switches are given in Table -3 and Table -4. Table -3 Primary winding switch (S) in position Terminal # Marking Terminal # Marking Terminal # Marking A 3 B 5 C X 4 Y 6 Z Table -4 Secondary winding switch (S) in position Terminal # Marking Terminal # Marking Terminal # Marking 7 a 9 b c 8 x y z Before starting the lab 9.5 Determining a 3-phase transformer windings polarity the instructor changes the positions of switches S and S. During the experiment the student must determine the connection (phasing, the beginning and end) of each winding to the terminals. In all other labs the switches S and S should remain in position. 6

Physics 472, Graduate Laboratory DAQ with Matlab. Overview of data acquisition (DAQ) with GPIB

Physics 472, Graduate Laboratory DAQ with Matlab. Overview of data acquisition (DAQ) with GPIB 1 Overview of data acquisition (DAQ) with GPIB The schematic below gives an idea of how the interfacing happens between Matlab, your computer and your lab devices via the GPIB bus. GPIB stands for General

More information

Precalculations Individual Portion Introductory Lab: Basic Operation of Common Laboratory Instruments

Precalculations Individual Portion Introductory Lab: Basic Operation of Common Laboratory Instruments Name: Date of lab: Section number: M E 345. Lab 1 Precalculations Individual Portion Introductory Lab: Basic Operation of Common Laboratory Instruments Precalculations Score (for instructor or TA use only):

More information

1. THREE-PHASE TRANSFORMER. SHORT CIRCUIT TEST

1. THREE-PHASE TRANSFORMER. SHORT CIRCUIT TEST 1. THREE-PHASE TRANSFORMER. SHORT CIRCUIT TEST 1.1 INTRODUCTION. DESCRIPTION OF THE EXPERIMENT The short-circuit test consists of measuring the input quantities of the transformer when its secondary winding

More information

EE 210: CIRCUITS AND DEVICES

EE 210: CIRCUITS AND DEVICES EE 210: CIRCUITS AND DEVICES LAB #3: VOLTAGE AND CURRENT MEASUREMENTS This lab features a tutorial on the instrumentation that you will be using throughout the semester. More specifically, you will see

More information

Laboratory Equipment Instruction Manual 2011

Laboratory Equipment Instruction Manual 2011 University of Toronto Department of Electrical and Computer Engineering Instrumentation Laboratory GB341 Laboratory Equipment Instruction Manual 2011 Page 1. Wires and Cables A-2 2. Protoboard A-3 3. DC

More information

Fig. 1. NI Elvis System

Fig. 1. NI Elvis System Lab 2: Introduction to I Elvis Environment. Objectives: The purpose of this laboratory is to provide an introduction to the NI Elvis design and prototyping environment. Basic operations provided by Elvis

More information

DUAL OUTPUT AC CURRENT/VOLTAGE TRANSDUCER

DUAL OUTPUT AC CURRENT/VOLTAGE TRANSDUCER OPERATOR S MANUAL DUAL OUTPUT AC CURRENT/VOLTAGE TRANSDUCER Masibus Automation & Instrumentation Pvt. Ltd. B/30, GIDC Electronics Estate, Sector-25, Gandhinagar-382044, Gujarat, India Web Site: www..com

More information

2.5 GHz 75 Ω Multiplexer and SPDT Relay Switches

2.5 GHz 75 Ω Multiplexer and SPDT Relay Switches 2.5 GHz Multiplexer and SPDT Relay Switches NI PXI-255x NEW! 2.5 GHz bandwidth characteristic impedance 30 V max switching voltage 0.5 A max switching current 10 W max switching power Mini SMB direct connectivity

More information

Advanced Lab LAB 6: Signal Acquisition & Spectrum Analysis Using VirtualBench DSA Equipment: Objectives:

Advanced Lab LAB 6: Signal Acquisition & Spectrum Analysis Using VirtualBench DSA Equipment: Objectives: Advanced Lab LAB 6: Signal Acquisition & Spectrum Analysis Using VirtualBench DSA Equipment: Pentium PC with National Instruments PCI-MIO-16E-4 data-acquisition board (12-bit resolution; software-controlled

More information

1. SQUIRREL CAGE AC MOTOR. NO LOAD TEST

1. SQUIRREL CAGE AC MOTOR. NO LOAD TEST 1. SQUIRREL CAGE AC MOTOR. NO LOAD TEST 1.1 INTRODUCTION. DESCRIPTION OF THE EXPERIMENT The three-phase induction motor carries a three-phase winding on its stator. The rotor is either a wound type or

More information

Three Phase Transformers

Three Phase Transformers EE/CME 392 Laboratory 6-1 Three Phase Transformers Safety The voltages used in this experiment are lethal. Assemble or modify a circuit only with the breakers off. Do not apply power until the wiring has

More information

Laboratory Preliminaries and Data Acquisition Using LabVIEW

Laboratory Preliminaries and Data Acquisition Using LabVIEW Experiment-0 Laboratory Preliminaries and Data Acquisition Using LabVIEW Introduction The objectives of the first part of this experiment are to introduce the laboratory transformer and to show how to

More information

THE BREADBOARD; DC POWER SUPPLY; RESISTANCE OF METERS; NODE VOLTAGES AND EQUIVALENT RESISTANCE; THÉVENIN EQUIVALENT CIRCUIT

THE BREADBOARD; DC POWER SUPPLY; RESISTANCE OF METERS; NODE VOLTAGES AND EQUIVALENT RESISTANCE; THÉVENIN EQUIVALENT CIRCUIT THE BREADBOARD; DC POWER SUPPLY; RESISTANCE OF METERS; NODE VOLTAGES AND EQUIVALENT RESISTANCE; THÉVENIN EQUIVALENT CIRCUIT YOUR NAME GTA S SIGNATURE LAB MEETING TIME Objectives: To correctly operate the

More information

Electric Transformer. Specifically, for each coil: Since the rate of change in flux through single loop of each coil are approximately the same,

Electric Transformer. Specifically, for each coil: Since the rate of change in flux through single loop of each coil are approximately the same, Electric Transformer Safety and Equipment Computer with PASCO 850 Universal Interface and PASCO Capstone Coils Set 3 Double Banana Cables PASCO Voltage Sensor (DIN to Banana cable with slip-on Alligator

More information

Cobalt Series 20 GHz EXTEND YOUR REACH TM

Cobalt Series 20 GHz EXTEND YOUR REACH TM Cobalt Series 20 GHz TM Frequency range: 100 khz - 20 GHz Wide output power range: -60 dbm to +10 dbm Dynamic range: 135 db (10 Hz IF bandwidth) typ. Measurement time per point: 10 µs per point, min typ.

More information

Full system level calibration (levels, s-parameters, noise) Full RF source and measure capability Applications Vector network analyzer capability

Full system level calibration (levels, s-parameters, noise) Full RF source and measure capability Applications Vector network analyzer capability Semiconductor Test AXRF - Multi-Port PXI RF Subsystem Modulated Vector Source and Measurement Data Sheet The most important thing we build is trust Functionality High speed, reliable solid state design

More information

LAB Week 7: Data Acquisition

LAB Week 7: Data Acquisition LAB Week 7: Data Acquisition Wright State University: Mechanical Engineering ME 3600L Section 01 Report and experiment by: Nicholas Smith Experiment performed on February 23, 2015 Due: March 16, 2015 Instructor:

More information

EKT 314/4 LABORATORIES SHEET

EKT 314/4 LABORATORIES SHEET EKT 314/4 LABORATORIES SHEET WEEK DAY HOUR 4 1 2 PREPARED BY: EN. MUHAMAD ASMI BIN ROMLI EN. MOHD FISOL BIN OSMAN JULY 2009 Creating a Typical Measurement Application 5 This chapter introduces you to common

More information

Power Circuits and Transformers

Power Circuits and Transformers Electricity and New Energy Power Circuits and Transformers Student Manual 30328-00 Order no.: 30328-00 Revision level: 11/2014 By the staff of Festo Didactic Festo Didactic Ltée/Ltd, Quebec, Canada 1995

More information

Physics 309 Lab 3 Bipolar junction transistor

Physics 309 Lab 3 Bipolar junction transistor Physics 39 Lab 3 Bipolar junction transistor The purpose of this third lab is to learn the principles of operation of a bipolar junction transistor, how to characterize its performances, and how to use

More information

Tap Changer Analyzer & Winding Ohmmeter RMO60TD

Tap Changer Analyzer & Winding Ohmmeter RMO60TD Tap Changer Analyzer & Winding Ohmmeter RMO60TD Test current 5 ma 60 A DC Rapid automatic demagnetization AC Current monitoring channel Lightweight 13 kg Measuring range 0,1-2 k Two voltage sense channels

More information

LVSIM-EMS Help Table of Contents

LVSIM-EMS Help Table of Contents LVSIM-EMS Help Table of Contents LVSIM-EMS Help... 1 Overview of LVSIM-EMS... 7 LVSIM-EMS Toolbar... 8 LVSIM-EMS Menus... 10 File Menu Commands... 10 Virtual Laboratory File (filename.lvsimweb)... 10 New...

More information

Experiment 2 Electric Circuit Fundamentals

Experiment 2 Electric Circuit Fundamentals Experiment 2 Electric Circuit Fundamentals Introduction This experiment has two parts. Each part will have to be carried out using the Multisim Electronics Workbench software. The experiment will then

More information

TMS 580. Transformer Loss Measuring System FEATURES BENEFITS APPLICATIONS

TMS 580. Transformer Loss Measuring System FEATURES BENEFITS APPLICATIONS TMS 580 Transformer Loss Measuring System The measurement of the losses in power transformers is an indispensable quality-verification process. Due to the fact that normally the transformer user puts a

More information

Experiment 8: An AC Circuit

Experiment 8: An AC Circuit Experiment 8: An AC Circuit PART ONE: AC Voltages. Set up this circuit. Use R = 500 Ω, L = 5.0 mh and C =.01 μf. A signal generator built into the interface provides the emf to run the circuit from Output

More information

Lab E2: B-field of a Solenoid. In the case that the B-field is uniform and perpendicular to the area, (1) reduces to

Lab E2: B-field of a Solenoid. In the case that the B-field is uniform and perpendicular to the area, (1) reduces to E2.1 Lab E2: B-field of a Solenoid In this lab, we will explore the magnetic field created by a solenoid. First, we must review some basic electromagnetic theory. The magnetic flux over some area A is

More information

Compact VNA - TR1300/1

Compact VNA - TR1300/1 Compact VNA - TR1300/1 TM Extended Specifications Frequency range: 300 khz - 1.3 GHz Wide output power adjustment range: -55 dbm to +3 dbm Dynamic range: 135 db (10 Hz IF bandwidth) typ. Measurement time

More information

PXIe Contents. Required Software CALIBRATION PROCEDURE

PXIe Contents. Required Software CALIBRATION PROCEDURE CALIBRATION PROCEDURE PXIe-5113 This document contains the verification and adjustment procedures for the PXIe-5113. Refer to ni.com/calibration for more information about calibration solutions. Contents

More information

Section L5: PRE-ENERGIZATION TEST PROCEDURES FOR LOAD-ONLY ENTITIES AND TRANSMISSION-ONLY ENTITIES

Section L5: PRE-ENERGIZATION TEST PROCEDURES FOR LOAD-ONLY ENTITIES AND TRANSMISSION-ONLY ENTITIES Section L5: PRE-ENERGIZATION TEST PROCEDURES FOR LOAD-ONLY ENTITIES AND TRANSMISSION-ONLY ENTITIES PURPOSE The following is PG&E's procedure for pre-energization inspections. For PG&E to provide the Load

More information

Tap Changer Analyzer & Winding Ohmmeter RMO25TD

Tap Changer Analyzer & Winding Ohmmeter RMO25TD Tap Changer Analyzer & Winding Ohmmeter RMO25TD Test current 5 ma 25 A DC Rapid automatic demagnetization AC Current monitoring channel Lightweight 9,5 kg Measuring range 0,1-2 k Two voltage sense channels

More information

PXIe Contents. Required Software CALIBRATION PROCEDURE

PXIe Contents. Required Software CALIBRATION PROCEDURE CALIBRATION PROCEDURE PXIe-5160 This document contains the verification and adjustment procedures for the PXIe-5160. Refer to ni.com/calibration for more information about calibration solutions. Contents

More information

LAB I. INTRODUCTION TO LAB EQUIPMENT

LAB I. INTRODUCTION TO LAB EQUIPMENT 1. OBJECTIVE LAB I. INTRODUCTION TO LAB EQUIPMENT In this lab you will learn how to properly operate the oscilloscope Agilent MSO6032A, the Keithley Source Measure Unit (SMU) 2430, the function generator

More information

UNIVERSITY OF TECHNOLOGY, JAMAICA School of Engineering -

UNIVERSITY OF TECHNOLOGY, JAMAICA School of Engineering - UNIVERSITY OF TECHNOLOGY, JAMAICA School of Engineering - Electrical Engineering Science Laboratory Manual Table of Contents Safety Rules and Operating Procedures... 3 Troubleshooting Hints... 4 Experiment

More information

Compact VNA - TR7530. Extended Specifications EXTEND YOUR REACH TM

Compact VNA - TR7530. Extended Specifications EXTEND YOUR REACH TM Compact VNA - TR7530 TM Extended Specifications Frequency range: 20 khz - 3 GHz Wide output power adjustment range: -50 dbm to +5 dbm Dynamic range: 123 db (10 Hz IF bandwidth) typ. Measurement time per

More information

For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary and the secondary circuit.

For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary and the secondary circuit. Current Transducer IN 1000-S N = 1000 A For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary and the secondary circuit. Features Closed loop (compensated)

More information

HYVA404 CTPT Analyzer instruction manual (V1.3.19) CT/PT Analyzer. User Manual (V1.3.19)

HYVA404 CTPT Analyzer instruction manual (V1.3.19) CT/PT Analyzer. User Manual (V1.3.19) CT/PT Analyzer User Manual (V1.3.19) Content Warning...3 1 Application and Technical Index of CT/PT Analyzer... 4 1.1 Application... 4 1.2 CT Technical Index... 4 2 Hardware... 6 2.1 Introduction... 6

More information

Ohm s Law and Electrical Circuits

Ohm s Law and Electrical Circuits Ohm s Law and Electrical Circuits INTRODUCTION In this experiment, you will measure the current-voltage characteristics of a resistor and check to see if the resistor satisfies Ohm s law. In the process

More information

EE283 Laboratory Exercise 1-Page 1

EE283 Laboratory Exercise 1-Page 1 EE283 Laboratory Exercise # Basic Circuit Concepts Objectives:. To become familiar with the DC Power Supply unit, analog and digital multi-meters, fixed and variable resistors, and the use of solderless

More information

AC Excitation. AC Excitation 1. Introduction

AC Excitation. AC Excitation 1. Introduction AC Excitation 1 AC Excitation Introduction Transformers are foundational elements in all power distribution systems. A transformer couples two (or more) coils to the same flux. As long as the flux is changing

More information

USB Multifunction Arbitrary Waveform Generator AWG2300. User Guide

USB Multifunction Arbitrary Waveform Generator AWG2300. User Guide USB Multifunction Arbitrary Waveform Generator AWG2300 User Guide Contents Safety information... 3 About this guide... 4 AWG2300 specifications... 5 Chapter 1. Product introduction 1 1. Package contents......

More information

Experiment 6: Franck Hertz Experiment v1.3

Experiment 6: Franck Hertz Experiment v1.3 Experiment 6: Franck Hertz Experiment v1.3 Background This series of experiments demonstrates the energy quantization of atoms. The concept was first implemented by James Franck and Gustaf Ludwig Hertz

More information

Lab 3 DC CIRCUITS AND OHM'S LAW

Lab 3 DC CIRCUITS AND OHM'S LAW 43 Name Date Partners Lab 3 DC CIRCUITS AND OHM'S LAW AMPS + - VOLTS OBJECTIVES To learn to apply the concept of potential difference (voltage) to explain the action of a battery in a circuit. To understand

More information

PIECAL 311 Automated Universal RTD Calibrator Operating Instructions. Product Description

PIECAL 311 Automated Universal RTD Calibrator Operating Instructions. Product Description Product Description Easy to use With the PIECAL 311 you can check & calibrate all your RTD instruments and measure RTD Sensors. Automatic indication of connections on the display for simple hookups. Take

More information

Electrical Machines (EE-343) For TE (ELECTRICAL)

Electrical Machines (EE-343) For TE (ELECTRICAL) PRACTICALWORKBOOK Electrical Machines (EE-343) For TE (ELECTRICAL) Name: Roll Number: Year: Batch: Section: Semester: Department: N.E.D University of Engineering &Technology, Karachi Electrical Machines

More information

Physics 1051 Laboratory #4 DC Circuits and Ohm s Law. DC Circuits and Ohm s Law

Physics 1051 Laboratory #4 DC Circuits and Ohm s Law. DC Circuits and Ohm s Law DC Circuits and Ohm s Law Contents Part I: Objective Part II: Introduction Part III: Apparatus and Setup Part IV: Measurements Part V: Analysis Part VI: Summary and Conclusions Part I: Objective In this

More information

MBC DG GUI MBC INTERFACE

MBC DG GUI MBC INTERFACE MBC DG GUI MBC INTERFACE User Manual Version 2.6 Table des matières Interface - Introduction... 3 Interface - Setup... 3 Minimum Computer Requirements... 3 Software installation... 3 Hardware Setup...

More information

High Frequency SineWave Guardian TM Filter

High Frequency SineWave Guardian TM Filter High Frequency SineWave Guardian TM Filter 380V 480V TECHNICAL REFERENCE MANUAL WARNING High Voltage! Only a qualified electrician can carry out the electrical installation of this filter. Quick Reference

More information

DC CIRCUITS AND OHM'S LAW

DC CIRCUITS AND OHM'S LAW July 15, 2008 DC Circuits and Ohm s Law 1 Name Date Partners DC CIRCUITS AND OHM'S LAW AMPS - VOLTS OBJECTIVES OVERVIEW To learn to apply the concept of potential difference (voltage) to explain the action

More information

Reactance and Impedance

Reactance and Impedance eactance and Impedance Theory esistors, inductors, and capacitors all have the effect of modifying the size of the current in an AC circuit and the time at which the current reaches its maximum value (in

More information

Specification for the CCDPS DAQ/Control Capacitor Charge/Discharge Power Supply (CCDPS) for FLARE

Specification for the CCDPS DAQ/Control Capacitor Charge/Discharge Power Supply (CCDPS) for FLARE Specification for the CCDPS DAQ/Control Capacitor Charge/Discharge Power Supply (CCDPS) for FLARE March 8, 2016 1 Contents 1 Specifications for DAQ/control 4 1.1 Description..............................................

More information

Load-Trainer Transformer Simulator

Load-Trainer Transformer Simulator Load-Trainer Transformer Simulator XFMR-4BUSHING Four Bushing Transformer Simulator Operation Manual Product Description 2 Components Set-Up 3 4 Simulator Description 4 Front Panel Description 5 Toggle

More information

M5090. Extended Specifications EXTEND YOUR REACH TM

M5090. Extended Specifications EXTEND YOUR REACH TM M5090 Extended Specifications TM Frequency range: 300 khz - 8.5 GHz Wide output power adjustment range: -55 dbm to +5 dbm Dynamic range: 130 db (10 Hz IF bandwidth) typ. Measurement time per point: 70

More information

Revision: Jan 29, E Main Suite D Pullman, WA (509) Voice and Fax

Revision: Jan 29, E Main Suite D Pullman, WA (509) Voice and Fax Revision: Jan 29, 2011 215 E Main Suite D Pullman, WA 99163 (509) 334 6306 Voice and Fax Overview The purpose of this lab assignment is to provide users with an introduction to some of the equipment which

More information

EE 241 Experiment #4: USE OF BASIC ELECTRONIC MEASURING INSTRUMENTS, Part III 1

EE 241 Experiment #4: USE OF BASIC ELECTRONIC MEASURING INSTRUMENTS, Part III 1 EE 241 Experiment #4: USE OF BASIC ELECTRONIC MEASURING INSTRUMENTS, Part III 1 PURPOSE: To become familiar with more of the instruments in the laboratory. To become aware of operating limitations of input

More information

Experiment 2. Ohm s Law. Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current.

Experiment 2. Ohm s Law. Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current. Experiment 2 Ohm s Law 2.1 Objectives Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current. Construct a circuit using resistors, wires and a breadboard

More information

Tap Changer Analyzer & Winding Ohmmeter RMO60TD

Tap Changer Analyzer & Winding Ohmmeter RMO60TD Tap Changer Analyzer & Winding Ohmmeter RMO60TD Test current 5 ma 60 A DC Rapid automatic demagnetization AC Current monitoring channel Lightweight 13 kg Measuring range 0,1-2 k Two voltage sense channels

More information

PXI Timing and Synchronization Control

PXI Timing and Synchronization Control NI PXI-665x Works with all PXI modules Multichassis PXI synchronization Onboard routing of internal or external clock and trigger signals PXI slot 2 star trigger controller Onboard high-stability references

More information

Contents. Software Requirements

Contents. Software Requirements CALIBRATION PROCEDURE NI PXIe-4154 This document contains information for calibrating the NI PXIe-4154 Battery Simulator. For more information about calibration, visit ni.com/calibration. Contents Software

More information

201AP Charge Amplifier User Manual

201AP Charge Amplifier User Manual Trig-Tek 201AP Charge Amplifier User Manual Publication No. 980996 Rev. A Astronics Test Systems Inc. 4 Goodyear, Irvine, CA 92618 Tel: (800) 722-2528, (949) 859-8999; Fax: (949) 859-7139 atsinfo@astronics.com

More information

1-Port USB VNA - R60 Extended Specifications

1-Port USB VNA - R60 Extended Specifications TM 1- USB VNA - R60 Extended Specifications Patent US 9,291,657 - No test cable needed Frequency range: 1 MHz - 6 GHz Measurement time per point: 100 µs min typ. Automation programming in LabView, Python,

More information

Sept 13 Pre-lab due Sept 12; Lab memo due Sept 19 at the START of lab time, 1:10pm

Sept 13 Pre-lab due Sept 12; Lab memo due Sept 19 at the START of lab time, 1:10pm Sept 13 Pre-lab due Sept 12; Lab memo due Sept 19 at the START of lab time, 1:10pm EGR 220: Engineering Circuit Theory Lab 1: Introduction to Laboratory Equipment Pre-lab Read through the entire lab handout

More information

Load-Trainer Transformer Simulator

Load-Trainer Transformer Simulator Load-Trainer Transformer Simulator XFMR-3BUSHING Three Bushing Transformer Simulator Operation Manual C-00879 XFMR-3BUSHING (11-11-15) Product Description 2 Components 3 Set-Up 4 Simulator Description

More information

HAWK5000 Operators Manual

HAWK5000 Operators Manual HAWK5000 Operators Manual Keison Products P.O. Box 2124, Chelmsford CM1 3UP, England Tel: +44 (0) 1245 600560 Fax: +44 (0) 1245 600030 Email: sales@keison.co.uk www.keison.co.uk KANE INTERNATIONAL LIMITED

More information

PIECAL 211 Automated RTD Calibrator Operating Instructions. Product Description. Practical Instrument Electronics

PIECAL 211 Automated RTD Calibrator Operating Instructions. Product Description. Practical Instrument Electronics Product Description Easy to use With the PIECAL 211 you can check & calibrate all your RTD instruments and measure RTD Sensors. Automatic indication of connections on the display for simple hookups. Take

More information

NI PXI ½ Digit FlexDMM Calibration Procedure

NI PXI ½ Digit FlexDMM Calibration Procedure NI PXI-4070 6½ Digit FlexDMM Calibration Procedure Contents This document contains step-by-step instructions for writing an external calibration procedure for the NI PXI-4070 6½ digit FlexDMM and 1.8 MS/s

More information

CHAPTER 7 HARDWARE IMPLEMENTATION

CHAPTER 7 HARDWARE IMPLEMENTATION 168 CHAPTER 7 HARDWARE IMPLEMENTATION 7.1 OVERVIEW In the previous chapters discussed about the design and simulation of Discrete controller for ZVS Buck, Interleaved Boost, Buck-Boost, Double Frequency

More information

Equipment: You will use the bench power supply, function generator and oscilloscope.

Equipment: You will use the bench power supply, function generator and oscilloscope. EE203 Lab #0 Laboratory Equipment and Measurement Techniques Purpose Your objective in this lab is to gain familiarity with the properties and effective use of the lab power supply, function generator

More information

Three-Phase Transformer Demagnetizer DEM60

Three-Phase Transformer Demagnetizer DEM60 Three-Phase Transformer Demagnetizer DEM60 Fully automatic demagnetization Demagnetization currents 5 ma 60 A DC Automatic discharging circuit Lightweight 13,1 kg High DC Current Source for Automatic Transformers

More information

PLA-240. Small Room Loop Amplifier System. USER Manual MAN 211A

PLA-240. Small Room Loop Amplifier System. USER Manual MAN 211A PLA-240 Small Room Loop Amplifier System USER Manual MAN 211A Overview Thank you for purchasing the PLA 240 Small Room Loop Amplifier System. The PLA 240 Loop System provides a practical solution for hearing

More information

Voltage-Versus-Speed Characteristic of a Wind Turbine Generator

Voltage-Versus-Speed Characteristic of a Wind Turbine Generator Exercise 1 Voltage-Versus-Speed Characteristic of a Wind Turbine Generator EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the principle of electromagnetic induction.

More information

ECE ECE285. Electric Circuit Analysis I. Spring Nathalia Peixoto. Rev.2.0: Rev Electric Circuits I

ECE ECE285. Electric Circuit Analysis I. Spring Nathalia Peixoto. Rev.2.0: Rev Electric Circuits I ECE285 Electric Circuit Analysis I Spring 2014 Nathalia Peixoto Rev.2.0: 140124. Rev 2.1. 140813 1 Lab reports Background: these 9 experiments are designed as simple building blocks (like Legos) and students

More information

Digital Function Generator

Digital Function Generator Digital Function Generator 13654-99 PHYWE Systeme GmbH & Co. KG Robert-Bosch-Breite 10 37079 Göttingen Germany Tel. +49 (0) 551 604-0 Fax +49 (0) 551 604-107 E-mail info@phywe.de Operating Instructions

More information

UCE-DSO212 DIGITAL OSCILLOSCOPE USER MANUAL. UCORE ELECTRONICS

UCE-DSO212 DIGITAL OSCILLOSCOPE USER MANUAL. UCORE ELECTRONICS UCE-DSO212 DIGITAL OSCILLOSCOPE USER MANUAL UCORE ELECTRONICS www.ucore-electronics.com 2017 Contents 1. Introduction... 2 2. Turn on or turn off... 3 3. Oscilloscope Mode... 4 3.1. Display Description...

More information

DPA74/154 AUDAC PROFESSIONAL AUDIO EQUIPMENT. DPA74/154 Quad Channel Class-D Amplifier. User Manual & Installation Guide

DPA74/154 AUDAC PROFESSIONAL AUDIO EQUIPMENT. DPA74/154 Quad Channel Class-D Amplifier. User Manual & Installation Guide DPA74/154 PROFESSIONAL AUDIO EQUIPMENT DPA74/154 Quad Channel Class-D Amplifier AUDAC User Manual & Installation Guide AUDAC PROFESSIONAL AUDIO EQUIPMENT User Manual & Installation Guide AUDAC http://www.audac.eu

More information

Technical Note Series

Technical Note Series Technical Note Series RESPIRATION SENSOR (SA9311M) S TN0007-0 0 R e s p i r a t i o n S e n s o r Page 2 IMPORTANT OPERATION INFORMATION WARNING Type BF Equipment Internally powered equipment Continuous

More information

AME140 Lab #2 INTRODUCTION TO ELECTRONIC TEST EQUIPMENT AND BASIC ELECTRONICS MEASUREMENTS

AME140 Lab #2 INTRODUCTION TO ELECTRONIC TEST EQUIPMENT AND BASIC ELECTRONICS MEASUREMENTS INTRODUCTION TO ELECTRONIC TEST EQUIPMENT AND BASIC ELECTRONICS MEASUREMENTS The purpose of this document is to guide students through a few simple activities to increase familiarity with basic electronics

More information

SCOPE TRM 25 TRM 25+ Transformer Winding Resistance Meter. The most advanced Transformer Winding Resistance Meter injects up to 25A DC...

SCOPE TRM 25 TRM 25+ Transformer Winding Resistance Meter. The most advanced Transformer Winding Resistance Meter injects up to 25A DC... SCOPE TRM 25 TRM 25+ Transformer Winding Resistance Meter The most advanced Transformer Winding Resistance Meter injects up to 25A DC......TRM 25 The Product TRM 25 / TRM 25+ : Advanced Transformer Winding

More information

Circuit Characterization with the Agilent 8714 VNA

Circuit Characterization with the Agilent 8714 VNA Circuit Characterization with the Agilent 8714 VNA By: Larry Dunleavy Wireless and Microwave Instruments University of South Florida Objectives 1) To examine the concepts of reflection, phase shift, attenuation,

More information

Zürcherstrasse 70 -CH 8104 Weiningen Tel Fax P.O. Box 155 Switzerland

Zürcherstrasse 70 -CH 8104 Weiningen Tel Fax P.O. Box 155 Switzerland Zürcherstrasse 70 -CH 8104 Weiningen Tel. + 41 44 750 63 63 Fax + 41 44 750 63 66 P.O. Box 155 Switzerland www.prescoag.com info@prescoag.com Table of contents 1 Safety precautions 1.1 Safety 1.2 Safety

More information

ELECTRICAL POWER TRANSMISSION TRAINER

ELECTRICAL POWER TRANSMISSION TRAINER ELECTRICAL POWER TRANSMISSION TRAINER ELECTRICAL POWER TRANSMISSION TRAINER This training system has been designed to provide the students with a fully comprehensive knowledge in Electrical Power Engineering

More information

Model 4210-MMPC-W. Multi-measurement Prober Cable Kit. Overview

Model 4210-MMPC-W. Multi-measurement Prober Cable Kit. Overview Model 4210-MMPC-W Keithley Instruments, Inc. Multi-measurement Prober Cable Kit 28775 urora Road Quick Start Guide Cleveland, Ohio 44139 1-888-KEITHLEY http://www.keithley.com Overview The Keithley Instruments

More information

Experiment Guide: RC/RLC Filters and LabVIEW

Experiment Guide: RC/RLC Filters and LabVIEW Description and ackground Experiment Guide: RC/RLC Filters and LabIEW In this lab you will (a) manipulate instruments manually to determine the input-output characteristics of an RC filter, and then (b)

More information

Focusrite Saffire 6 USB. User Guide

Focusrite Saffire 6 USB. User Guide Focusrite Saffire 6 USB User Guide 1 IMPORTANT SAFETY INSTRUCTIONS 1. Read these instructions. 2. Keep these instructions. 3. Heed all warnings. 4. Follow all instructions. 5. Do not use this apparatus

More information

UCE-DSO210 DIGITAL OSCILLOSCOPE USER MANUAL. FATIH GENÇ UCORE ELECTRONICS REV1

UCE-DSO210 DIGITAL OSCILLOSCOPE USER MANUAL. FATIH GENÇ UCORE ELECTRONICS REV1 UCE-DSO210 DIGITAL OSCILLOSCOPE USER MANUAL FATIH GENÇ UCORE ELECTRONICS www.ucore-electronics.com 2017 - REV1 Contents 1. Introduction... 2 2. Turn on or turn off... 3 3. Oscilloscope Mode... 3 3.1. Display

More information

OPERATION & SERVICE MANUAL FOR FC 110 AC POWER SOURCE

OPERATION & SERVICE MANUAL FOR FC 110 AC POWER SOURCE OPERATION & SERVICE MANUAL FOR FC 100 SERIES AC POWER SOURCE FC 110 AC POWER SOURCE VERSION 1.3, April 2001. copyright reserved. DWG No. FC00001 TABLE OF CONTENTS CHAPTER 1 INTRODUCTION... 1 1.1 GENERAL...

More information

LAB II. INTRODUCTION TO LAB EQUIPMENT

LAB II. INTRODUCTION TO LAB EQUIPMENT 1. OBJECTIVE LAB II. INTRODUCTION TO LAB EQUIPMENT In this lab you will learn how to properly operate the oscilloscope Keysight DSOX1102A, the Keithley Source Measure Unit (SMU) 2430, the function generator

More information

Single-Phase Grid-Tied Inverter (PWM Rectifier/Inverter)

Single-Phase Grid-Tied Inverter (PWM Rectifier/Inverter) Exercise 2 Single-Phase Grid-Tied Inverter (PWM Rectifier/Inverter) EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the singlephase grid-tied inverter. DISCUSSION OUTLINE

More information

PE Electrical Machine / Power Electronics. Power Electronics Training System. ufeatures. } List of Experiments

PE Electrical Machine / Power Electronics. Power Electronics Training System. ufeatures. } List of Experiments Electrical Machine / Power Electronics PE-5000 Power Electronics Training System The PE-5000 Power Electronics Training System consists of 28 experimental modules, a three-phase squirrel cage motor, load,

More information

Electromagnetic Induction - A

Electromagnetic Induction - A Electromagnetic Induction - A APPARATUS 1. Two 225-turn coils 2. Table Galvanometer 3. Rheostat 4. Iron and aluminum rods 5. Large circular loop mounted on board 6. AC ammeter 7. Variac 8. Search coil

More information

Experiment 3. Ohm s Law. Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current.

Experiment 3. Ohm s Law. Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current. Experiment 3 Ohm s Law 3.1 Objectives Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current. Construct a circuit using resistors, wires and a breadboard

More information

Back to the Basics Current Transformer (CT) Testing

Back to the Basics Current Transformer (CT) Testing Back to the Basics Current Transformer (CT) Testing As test equipment becomes more sophisticated with better features and accuracy, we risk turning our field personnel into test set operators instead of

More information

6 1 2-Digit Digital Multimeter, 1.8 MS/s Isolated Digitizer, and LCR Meter

6 1 2-Digit Digital Multimeter, 1.8 MS/s Isolated Digitizer, and LCR Meter NI PXI-4072 FlexDMM Superior accuracy and measurement rates Multifunction device 6 1 2-digit digital multimeter 1.8 MS/s isolated digitizer LCR meter (inductance, capacitance, and resistance) 20 built-in

More information

Winding Ohmmeter & Tap Changer Test Set RMO40TD with Demagnetizer

Winding Ohmmeter & Tap Changer Test Set RMO40TD with Demagnetizer Winding Ohmmeter & Tap Changer Test Set RMO40TD with Demagnetizer Lightweight 9,5 kg Test current 5 ma 40 A DC Measuring range 0,1-2 k Two voltage sense channels Extremely quick measurement Rapid automatic

More information

Trusted Speed Monitor Input FTA (SIFTA)

Trusted Speed Monitor Input FTA (SIFTA) PD-T8846 Trusted Product Overview The Trusted Speed Monitor Input Field Termination Assembly (SIFTA) is a DIN rail assembly. It provides the input field interface for three rotating machine groups when

More information

Contents I. APPLICATIONS II. SPECIFICATIONS III. PRINCIPLES IV OPERATION V. MAINTENANCE

Contents I. APPLICATIONS II. SPECIFICATIONS III. PRINCIPLES IV OPERATION V. MAINTENANCE Contents I. APPLICATIONS...- 1 - II. SPECIFICATIONS...- 2 - III. PRINCIPLES...- 3 - IV OPERATION...- 9 - V. MAINTENANCE...- 21 - VI SUPPLEMENT...- 23 - Warning: The responsible person must be clear that

More information

PIECAL 311 Automated Universal RTD Calibrator Operating Instructions. Product Description. Practical Instrument Electronics

PIECAL 311 Automated Universal RTD Calibrator Operating Instructions. Product Description. Practical Instrument Electronics Product Description Easy to use With the PIECAL 311 you can check & calibrate all your RTD instruments and measure RTD Sensors. Automatic indication of connections on the display for simple hookups. Take

More information

WDMX-512. user manual

WDMX-512. user manual WDMX-512 user manual Measurements are in millimeters. WDMX512 Standard model 195 50 125 223 436 44 482 182 WDMX512 ProDiversity model 2003 Martin Professional A/S, Denmark. All rights reserved. No part

More information

Trusted 20 Channel Isolated AI/DI FTA Loop Powered

Trusted 20 Channel Isolated AI/DI FTA Loop Powered ICSTT-RM294E-EN-P (PD-T8833) Trusted Trusted 20 Channel Isolated AI/DI FTA Loop Powered Product Overview The Trusted 20 Channel Isolated Analogue Input/Digital Input (AI/DI) Field Termination Assembly

More information

CALIBRATION PROCEDURE NI PXIe-4330/4331. Contents

CALIBRATION PROCEDURE NI PXIe-4330/4331. Contents CALIBRATION PROCEURE NI PXIe-4330/4331 Français eutsch ni.com/manuals Contents This document contains information about verifying and adjusting National Instruments NI PXIe-4330/4331 modules using NI-AQmx

More information

Sarspec, Lda. - Rua Camilo Castelo Branco, 965 PQ Vila Nova de Gaia Phone:

Sarspec, Lda. - Rua Camilo Castelo Branco, 965 PQ Vila Nova de Gaia Phone: 2 3 IMPORTANT SAFETY NOTE: Before operating this device, please read carefully this User Manual and be familiar with its contents prior to using this equipment. To help avoid potential serious injury to

More information