Distance Measurement. Figure 1: Internals of an IR electro-optical distance sensor

Size: px
Start display at page:

Download "Distance Measurement. Figure 1: Internals of an IR electro-optical distance sensor"

Transcription

1 Distance Measurement The Sharp GP2D12 Infrared Distance Sensor is an electro-optical device that emits an infrared (IR) beam from an LED and has a position sensitive detector (PSD) that receives reflected IR; see Figure 1. A lens is positioned in front of the PSD in order to focus the reflection before it reaches the sensor. The PSD sensor is an array of IR detectors. The distance of an object can be determined through optical triangulation, as depicted in Figure 2. The location of the focused reflection on the PSD is translated to a voltage that corresponds with the measured distance. The IR distance sensor is designed to measure distances from 9-80+cm. Figure 1: Internals of an IR electro-optical distance sensor 1

2 Figure 2: Top: Optical triangulation gauging distance of a near object. Bottom: Optical triangulation gauging range of a more distant object. The datasheet for the GP2D12 IR distance sensor on page 8 has a response curve with voltage on the y-axis and distance on the x-axis. The output of the device is a continuous voltage ranging from 0-2.6V. In order for the cybot to have range finding abilities, an A/D conversion of the sensors' voltage output must be performed, followed by a translation of the quantized (digital) value to distance. As you can see, the sensor's range finding output curve is non-linear with distance. This means that translating the values to distances is not as simple as using the slope of a line for the response curve (as in the lecture slides). There are several methods to address this programmatically. A couple examples are: Find an equation that approximates the curve and use this equation in your program to translate quantization (digital) values to distance. Complicated mathematical computations (e.g., non-integer, non-algebraic functions) are a challenge for an MCU. Depending on design criteria, the computational cost may not be acceptable. Create a static lookup table consisting of quantized values and corresponding distances. A simple table scheme for 12-bit quantization has 4096 rows. This application is a good example of what is called a time/memory tradeoff. One method takes more time, another method takes more memory, and your selection of a method may depend on design constraints and criteria. 2

3 Note also that the distance range from 0-9 cm will cause the sensor to produce voltage values consistent with distances farther away. Ideally the sensor is never applied in situations where the distances are that short. In our mobile environment, this ideal is not practical, so we will need to address this issue in future labs. TM4C123 ADC Basics Here are a few ADC facts for you to keep in mind: 1. The voltage on ADC0 will decrease as the distance increases. 2. The A/D quantized (digital) value will increase with voltage. The maximum digital value represents a voltage at VREF, and the lowest value represents a voltage at GND. 3. The number of quantization levels depends on the number of bits of resolution used in the A/D process. 4. There is a tradeoff between A/D sampling speed and resolution. How fast a sample is taken depends on the ADC conversion time, which depends on the number of bits of resolution. 5. The VREF we need is 2.56V, which is internally provided. This is because the voltage from the sensor will range from 0 to 2.6V. One could choose higher VREF values, but with a fixed number of quantization values, one sacrifices resolution in order to support a higher voltage range. 6. When configuring A/D conversion, keep in mind that register settings are necessary to enable A/D conversion and initiate conversion. 7. How do you know the conversion result is ready for use? There are two methods: 1) poll the Raw Interrupt Status register, or 2) enable an interrupt handler. Using an interrupt in this lab is optional; no extra points will be given. If you want to try using an interrupt, refer to textbook Table 5.10 (vectors and NVIC definitions) to find the name of the ADC interrupt handler (ISR name). Handler names can also be found in the TM4C123.s startup file. 3

4 IR Sensor Connection Make sure the IR sensor is connected to the correct pins on the cybot board. See the picture. The A/D pins of the TM4C123G are accessible on the peripherals set of pins on the cybot board. The pins labeled SNSR1 on the cybot board are connected to POWER, GROUND, and a connection to PB4 (AIN10). The pins are marked with 3 rows: signal, 5V (power), and ground. You need to orient the sensor connector so the white wire connects to signal and black connects to ground. The voltage supply wire is in the center position (5V Row). Part 1. Initial Distance Measurement Requirement - Write a program that will sample the IR distance sensor's analog output (voltage between 0-2.6V) with the ADC, compute the distance, and display both the ADC quantization value and the distance value (in centimeters). As noted above, due to the nonlinear sensor response, you should implement a tabular technique to map quantization values to distance values. Accurately display a distance value for an object 9-50 cm away. The output format should be the same for Part 1 and Part 2. The format should be: Quantization Value, Distance cm The displayed quantization values and distance values will be dynamic based on values produced by the ADC. The comma and the cm abbreviation should be present on the display as values update in order to make the output more understandable. You will notice quite a bit of jitter in the quantized value even when the device and object are stationary. You may want to slow down how fast samples are taken as well as how frequently the display is updated. 4

5 Part 2. Calibrate Distance Measurement Requirements Reduce the jitter seen in Part 1 by averaging multiple samples using the hardware averaging (Tiva datasheet section ) or software averaging to collect and average 16 samples to get a more stable sensor value. Also experimentally calibrate your IR sensor to accurately read distances from 9 to 50 cm. Continue to display the output as: Quantization Value, Distance cm The effect of the jitter observed in Part 1 can be reduced by averaging multiple samples and treating the average value as the current distance value. Use an averaging mechanism in your program. Beyond the averaging mechanism, work on calibrating the distance measurement so that it is accurate to one centimeter from 9-50 cm. To complete this activity, use a ruler provided and a flat reflective surface to determine the quantization value for the distance between the object and the sensor. Note this mapping between quantization value and distance and move to the next distance. There are potentially a number of quantization values between centimeter gradations. More than one quantization value may have the same distance value assigned to it. As described in the lecture slides, there are a couple of approaches to empirically calibrate the distance: 1) measure 50 points and create a table of quantization values for each cm, or 2) measure 5 points and use Excel to get a trend line. You will need to provide accurate distance values for distances beyond 50 cm for use in future labs, but you are not required to support distances beyond 50 cm for this lab. Demo the program execution on the board to your TA. 5

ACEEE Int. J. on Electrical and Power Engineering, Vol. 03, No. 02, May 2012

ACEEE Int. J. on Electrical and Power Engineering, Vol. 03, No. 02, May 2012 Effect of Glittering and Reflective Objects of Different Colors to the Output Voltage-Distance Characteristics of Sharp GP2D120 IR M.R. Yaacob 1, N.S.N. Anwar 1 and A.M. Kassim 1 1 Faculty of Electrical

More information

Using a Sharp GP2D12 Infrared Ranger with BasicX

Using a Sharp GP2D12 Infrared Ranger with BasicX Basic Express Application Note Using a Sharp GP2D12 Infrared Ranger with BasicX Introduction The Sharp GP2D12 infrared ranger is able to continuously measure the distance to an object. The usable range

More information

HVW Technologies Analog Infra-Red Ranging System (AIRRS )

HVW Technologies Analog Infra-Red Ranging System (AIRRS ) HVW Technologies Analog Infra-Red Ranging System (AIRRS ) Overview AIRRS is a low-cost, short-range Infra-Red (IR) alternative to ultrasonic range-finding systems. Usable detection range is 10 cm to 80

More information

CprE 288 Introduction to Embedded Systems (Output Compare and PWM) Instructors: Dr. Phillip Jones

CprE 288 Introduction to Embedded Systems (Output Compare and PWM) Instructors: Dr. Phillip Jones CprE 288 Introduction to Embedded Systems (Output Compare and PWM) Instructors: Dr. Phillip Jones 1 Announcements HW8: Due Sunday 10/29 (midnight) Exam 2: In class Thursday 11/9 This object detection lab

More information

GE423 Laboratory Assignment 6 Robot Sensors and Wall-Following

GE423 Laboratory Assignment 6 Robot Sensors and Wall-Following GE423 Laboratory Assignment 6 Robot Sensors and Wall-Following Goals for this Lab Assignment: 1. Learn about the sensors available on the robot for environment sensing. 2. Learn about classical wall-following

More information

ME 461 Laboratory #5 Characterization and Control of PMDC Motors

ME 461 Laboratory #5 Characterization and Control of PMDC Motors ME 461 Laboratory #5 Characterization and Control of PMDC Motors Goals: 1. Build an op-amp circuit and use it to scale and shift an analog voltage. 2. Calibrate a tachometer and use it to determine motor

More information

Lab 10: Lenses & Telescopes

Lab 10: Lenses & Telescopes Physics 2020, Fall 2010 Lab 8 page 1 of 6 Circle your lab day and time. Your name: Mon Tue Wed Thu Fri TA name: 8-10 10-12 12-2 2-4 4-6 INTRODUCTION Lab 10: Lenses & Telescopes In this experiment, you

More information

P202/219 Laboratory IUPUI Physics Department THIN LENSES

P202/219 Laboratory IUPUI Physics Department THIN LENSES THIN LENSES OBJECTIVE To verify the thin lens equation, m = h i /h o = d i /d o. d o d i f, and the magnification equations THEORY In the above equations, d o is the distance between the object and the

More information

Physics 2020 Lab 8 Lenses

Physics 2020 Lab 8 Lenses Physics 2020 Lab 8 Lenses Name Section Introduction. In this lab, you will study converging lenses. There are a number of different types of converging lenses, but all of them are thicker in the middle

More information

CprE 288 Introduction to Embedded Systems (Analog-to-Digital Converter)

CprE 288 Introduction to Embedded Systems (Analog-to-Digital Converter) CprE 288 Introduction to Embedded Systems (Analog-to-Digital Converter) Dr. Phillip Jones http://class.ece.iastate.edu/cpre288 1 Announcements HW6: Due Sunday 10/15 (midnight) Exam 2: In class Thursday

More information

DATASHEET SMT172. Features and Highlights. Application. Introduction

DATASHEET SMT172. Features and Highlights. Application. Introduction V12 1/9 Features and Highlights World s most energy efficient temperature sensor Wide temperature range: -45 C to 130 C Extreme low noise: less than 0.001 C High accuracy: 0.25 C (-10 C to 100 C) 0.1 C

More information

Pin Symbol Wire Colour Connect To. 1 Vcc Red + 5 V DC. 2 GND Black Ground. Table 1 - GP2Y0A02YK0F Pinout

Pin Symbol Wire Colour Connect To. 1 Vcc Red + 5 V DC. 2 GND Black Ground. Table 1 - GP2Y0A02YK0F Pinout AIRRSv2 Analog Infra-Red Ranging Sensor Sharp GP2Y0A02YK0F Sensor The GP2Y0A02YK0F is a well-proven, robust sensor that uses angleof-reflection to measure distances. It s not fooled by bright light or

More information

Momentum and Impulse. Objective. Theory. Investigate the relationship between impulse and momentum.

Momentum and Impulse. Objective. Theory. Investigate the relationship between impulse and momentum. [For International Campus Lab ONLY] Objective Investigate the relationship between impulse and momentum. Theory ----------------------------- Reference -------------------------- Young & Freedman, University

More information

EGG 101L INTRODUCTION TO ENGINEERING EXPERIENCE

EGG 101L INTRODUCTION TO ENGINEERING EXPERIENCE EGG 101L INTRODUCTION TO ENGINEERING EXPERIENCE LABORATORY 7: IR SENSORS AND DISTANCE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING UNIVERSITY OF NEVADA, LAS VEGAS GOAL: This section will introduce

More information

Thin Lenses. Physics 227 Lab. Introduction:

Thin Lenses. Physics 227 Lab. Introduction: Introduction: From last week's lab, Reflection and Refraction, you should already be familiar with the following terms: principle axis, focal point, focal length,f, converging lens (f is +), and diverging

More information

Electronics Design Laboratory Lecture #9. ECEN 2270 Electronics Design Laboratory

Electronics Design Laboratory Lecture #9. ECEN 2270 Electronics Design Laboratory Electronics Design Laboratory Lecture #9 Electronics Design Laboratory 1 Notes Finishing Lab 4 this week Demo requires position control using interrupts and two actions Rotate a given angle Move forward

More information

Signal Characteristics and Conditioning

Signal Characteristics and Conditioning Signal Characteristics and Conditioning Starting from the sensors, and working up into the system:. What characterizes the sensor signal types. Accuracy and Precision with respect to these signals 3. General

More information

SMART SENSOR SYSTEMS. WILEY A John Wiley and Sons, Ltd, Publication. Edited by. Gerard CM. Meijer

SMART SENSOR SYSTEMS. WILEY A John Wiley and Sons, Ltd, Publication. Edited by. Gerard CM. Meijer SMART SENSOR SYSTEMS Edited by Gerard CM. Meijer Delft University of Technology, the Netherlands SensArt, Delft, the Netherlands WILEY A John Wiley and Sons, Ltd, Publication Preface About the Authors

More information

Week 15. Mechanical Waves

Week 15. Mechanical Waves Chapter 15 Week 15. Mechanical Waves 15.1 Lecture - Mechanical Waves In this lesson, we will study mechanical waves in the form of a standing wave on a vibrating string. Because it is the last week of

More information

Module 13: Interfacing ADC. Introduction ADC Programming DAC Programming Sensor Interfacing

Module 13: Interfacing ADC. Introduction ADC Programming DAC Programming Sensor Interfacing Module 13: Interfacing ADC Introduction ADC Programming DAC Programming Sensor Interfacing Introduction ADC Devices o Analog-to-digital converters (ADC) are among the most widely used devices for data

More information

Effects of Incident Optical Power on the Effective Reverse Bias Voltage of Photodiodes This Lab Fact demonstrates how the effective reverse bias

Effects of Incident Optical Power on the Effective Reverse Bias Voltage of Photodiodes This Lab Fact demonstrates how the effective reverse bias Effects of Incident Optical Power on the Effective Reverse Bias Voltage of Photodiodes This Lab Fact demonstrates how the effective reverse bias voltage on a photodiode can vary as a function of the incident

More information

Lab 5: Brewster s Angle and Polarization. I. Brewster s angle

Lab 5: Brewster s Angle and Polarization. I. Brewster s angle Lab 5: Brewster s Angle and Polarization I. Brewster s angle CAUTION: The beam splitters are sensitive pieces of optical equipment; the oils on your fingertips if left there will degrade the coatings on

More information

Chapter 2 Sensors. The Author(s) 2018 M. Ben-Ari and F. Mondada, Elements of Robotics, https://doi.org/ / _2

Chapter 2 Sensors. The Author(s) 2018 M. Ben-Ari and F. Mondada, Elements of Robotics, https://doi.org/ / _2 Chapter 2 Sensors A robot cannot move a specific distance in a specific direction just by setting the relative power of the motors of the two wheels and the period of time that the motors run. Suppose

More information

DATASHEET. SMT172 Preliminary. Features and Highlights. Application. Introduction

DATASHEET. SMT172 Preliminary. Features and Highlights. Application. Introduction DATASHEET V4.0 1/7 Features and Highlights World s most energy efficient temperature sensor Wide temperature range: -45 C to 130 C Extreme low noise: less than 0.001 C Low inaccuracy: 0.25 C (-10 C to

More information

Today s Menu. Near Infrared Sensors

Today s Menu. Near Infrared Sensors Today s Menu Near Infrared Sensors CdS Cells Programming Simple Behaviors 1 Near-Infrared Sensors Infrared (IR) Sensors > Near-infrared proximity sensors are called IRs for short. These devices are insensitive

More information

Ultrasonic. Advantages

Ultrasonic. Advantages Ultrasonic Advantages Non-Contact: Nothing touches the target object Measures Distance: The distance to the target is measured, not just its presence Long and Short Range: Objects can be sensed from 2

More information

Graphing Techniques. Figure 1. c 2011 Advanced Instructional Systems, Inc. and the University of North Carolina 1

Graphing Techniques. Figure 1. c 2011 Advanced Instructional Systems, Inc. and the University of North Carolina 1 Graphing Techniques The construction of graphs is a very important technique in experimental physics. Graphs provide a compact and efficient way of displaying the functional relationship between two experimental

More information

Technical Explanation for Displacement Sensors and Measurement Sensors

Technical Explanation for Displacement Sensors and Measurement Sensors Technical Explanation for Sensors and Measurement Sensors CSM_e_LineWidth_TG_E_2_1 Introduction What Is a Sensor? A Sensor is a device that measures the distance between the sensor and an object by detecting

More information

ME 461 Laboratory #3 Analog-to-Digital Conversion

ME 461 Laboratory #3 Analog-to-Digital Conversion ME 461 Laboratory #3 Analog-to-Digital Conversion Goals: 1. Learn how to configure and use the MSP430 s 10-bit SAR ADC. 2. Measure the output voltage of your home-made DAC and compare it to the expected

More information

LENSES. a. To study the nature of image formed by spherical lenses. b. To study the defects of spherical lenses.

LENSES. a. To study the nature of image formed by spherical lenses. b. To study the defects of spherical lenses. Purpose Theory LENSES a. To study the nature of image formed by spherical lenses. b. To study the defects of spherical lenses. formation by thin spherical lenses s are formed by lenses because of the refraction

More information

Arduino Microcontroller Processing for Everyone!: Third Edition / Steven F. Barrett

Arduino Microcontroller Processing for Everyone!: Third Edition / Steven F. Barrett Arduino Microcontroller Processing for Everyone!: Third Edition / Steven F. Barrett Anatomy of a Program Programs written for a microcontroller have a fairly repeatable format. Slight variations exist

More information

EE251: Tuesday October 10

EE251: Tuesday October 10 EE251: Tuesday October 10 Analog to Digital Conversion Text Chapter 20 through section 20.2 TM4C Data Sheet Chapter 13 Lab #5 Writeup Lab Practical #1 this week Homework #4 is due on Thursday at 4:30 p.m.

More information

SHF Communication Technologies AG

SHF Communication Technologies AG SHF Communication Technologies AG Wilhelm-von-Siemens-Str. 23D 12277 Berlin Germany Phone ++49 30 772 051-0 Fax ++49 30 753 10 78 E-Mail: sales@shf.de Web: http://www.shf.de Datasheet SHF 46123 A Optical

More information

ZX Distance and Gesture Sensor Hookup Guide

ZX Distance and Gesture Sensor Hookup Guide Page 1 of 13 ZX Distance and Gesture Sensor Hookup Guide Introduction The ZX Distance and Gesture Sensor is a collaboration product with XYZ Interactive. The very smart people at XYZ Interactive have created

More information

Physics 4L Spring 2010 Problem set 1 Due Tuesday 26 January in class

Physics 4L Spring 2010 Problem set 1 Due Tuesday 26 January in class Physics 4L Spring 2010 Problem set 1 Due Tuesday 26 January in class From Wolfson: Chapter 30 problem 36 (the flashlight beam comes out of the water some distance from the edge of the lake; the figure

More information

PHYS 1112L - Introductory Physics Laboratory II

PHYS 1112L - Introductory Physics Laboratory II PHYS 1112L - Introductory Physics Laboratory II Laboratory Advanced Sheet Thin Lenses 1. Objectives. The objectives of this laboratory are a. to be able to measure the focal length of a converging lens.

More information

Measuring Voltage, Current & Resistance Building: Resistive Networks, V and I Dividers Design and Build a Resistance Indicator

Measuring Voltage, Current & Resistance Building: Resistive Networks, V and I Dividers Design and Build a Resistance Indicator ECE 3300 Lab 2 ECE 1250 Lab 2 Measuring Voltage, Current & Resistance Building: Resistive Networks, V and I Dividers Design and Build a Resistance Indicator Overview: In Lab 2 you will: Measure voltage

More information

Analog Digital Converter

Analog Digital Converter Analog Digital Converter - Overview Analog Digital Conversion - Operation Modes: Single Mode vs. Scan mode - Registers for Data, Control, Status - Using the ADC in Software - Handling of Interrupts Karl-Ragmar

More information

Lab 7 ADC Apr

Lab 7 ADC Apr Lab 7 ADC Apr. 2016 1 Objective 1. To be familiar with analog to digital converter module in LPC2138. Introduction Analog-to-digital conversion (ADC) is necessary because, while embedded systems deal with

More information

Note to the Teacher. Description of the investigation. Time Required. Additional Materials VEX KITS AND PARTS NEEDED

Note to the Teacher. Description of the investigation. Time Required. Additional Materials VEX KITS AND PARTS NEEDED In this investigation students will identify a relationship between the size of the wheel and the distance traveled when the number of rotations of the motor axles remains constant. Students are required

More information

Electronics Design Laboratory Lecture #10. ECEN 2270 Electronics Design Laboratory

Electronics Design Laboratory Lecture #10. ECEN 2270 Electronics Design Laboratory Electronics Design Laboratory Lecture #10 Electronics Design Laboratory 1 Lessons from Experiment 4 Code debugging: use print statements and serial monitor window Circuit debugging: Re check operation

More information

Magnetic Levitation System

Magnetic Levitation System Magnetic Levitation System Electromagnet Infrared LED Phototransistor Levitated Ball Magnetic Levitation System K. Craig 1 Magnetic Levitation System Electromagnet Emitter Infrared LED i Detector Phototransistor

More information

What will be on the midterm?

What will be on the midterm? What will be on the midterm? CS 178, Spring 2014 Marc Levoy Computer Science Department Stanford University General information 2 Monday, 7-9pm, Cubberly Auditorium (School of Edu) closed book, no notes

More information

Digital Imaging Rochester Institute of Technology

Digital Imaging Rochester Institute of Technology Digital Imaging 1999 Rochester Institute of Technology So Far... camera AgX film processing image AgX photographic film captures image formed by the optical elements (lens). Unfortunately, the processing

More information

VERTICAL ANEMOMETER YOUNG GILL PROPELLER 27105T & 27106T

VERTICAL ANEMOMETER YOUNG GILL PROPELLER 27105T & 27106T VERTICAL ANEMOMETER YOUNG GILL PROPELLER 27105T & 27106T ORDER - N O ELECTRICAL SUPPLY HEATING SUPPLY MODEL IN EOL MANAGER GILL Propeller 27105T Self-powered - PROPELLER 27105 GILL Propeller 27106T Self-powered

More information

Image Formation. Dr. Gerhard Roth. COMP 4102A Winter 2015 Version 3

Image Formation. Dr. Gerhard Roth. COMP 4102A Winter 2015 Version 3 Image Formation Dr. Gerhard Roth COMP 4102A Winter 2015 Version 3 1 Image Formation Two type of images Intensity image encodes light intensities (passive sensor) Range (depth) image encodes shape and distance

More information

YDLIDAR G4 DATASHEET. Doc#: 文档编码 :

YDLIDAR G4 DATASHEET. Doc#: 文档编码 : YDLIDAR G4 DATASHEET Doc#:01.13.000007 文档编码 :01.13.000008 CONTENTS overview... 2 Product Features... 2 Applications... 2 Installation and dimensions... 2 Specifications... 3 Product parameters... 3 Electrical

More information

Analog to Digital Conversion

Analog to Digital Conversion Analog to Digital Conversion The MSP in the name of our microcontroller MSP430G2554 is abbreviation for Mixed Signal Processor. This means that our microcontroller can be used to handle both analog and

More information

LAB 1 AN EXAMPLE MECHATRONIC SYSTEM: THE FURBY

LAB 1 AN EXAMPLE MECHATRONIC SYSTEM: THE FURBY LAB 1 AN EXAMPLE MECHATRONIC SYSTEM: THE FURBY Objectives Preparation Tools To see the inner workings of a commercial mechatronic system and to construct a simple manual motor speed controller and current

More information

CMOS OV7725 Camera Module 1/4-Inch 0.3-Megapixel Module Datasheet

CMOS OV7725 Camera Module 1/4-Inch 0.3-Megapixel Module Datasheet CMOS OV7725 Camera Module 1/4-Inch 0.3-Megapixel Module Datasheet Rev 2.0, June 2015 Table of Contents 1 Introduction... 2 2 Features... 3 3 Key Specifications... 3 4 Application... 3 5 Pin Definition...

More information

Parallel Input/Output. Microcomputer Architecture and Interfacing Colorado School of Mines Professor William Hoff

Parallel Input/Output. Microcomputer Architecture and Interfacing Colorado School of Mines Professor William Hoff Parallel Input/Output 1 Parallel Input/Output Ports A HCS12 device may have from 48 to 144 pins arranged in 3 to 12 I/O Ports An I/O pin can be configured for input or output An I/O pin usually serves

More information

Laboratory 1: Motion in One Dimension

Laboratory 1: Motion in One Dimension Phys 131L Spring 2018 Laboratory 1: Motion in One Dimension Classical physics describes the motion of objects with the fundamental goal of tracking the position of an object as time passes. The simplest

More information

GP2Y3A001K0F. Wide angle Distance Measuring Sensor Unit Measuring distance: 4 to 30 cm 5 Analog outputs type GP2Y3A001K0F

GP2Y3A001K0F. Wide angle Distance Measuring Sensor Unit Measuring distance: 4 to 30 cm 5 Analog outputs type GP2Y3A001K0F GP2Y3A001K0F Wide angle Distance Measuring Sensor Unit Measuring distance: 4 to 30 cm 5 Analog outputs type Description GP2Y3A001K0F is a distance measuring sensor unit, composed of an integrated combination

More information

APPLICATION NOTE. Atmel AVR127: Understanding ADC Parameters. Atmel 8-bit Microcontroller. Features. Introduction

APPLICATION NOTE. Atmel AVR127: Understanding ADC Parameters. Atmel 8-bit Microcontroller. Features. Introduction APPLICATION NOTE Atmel AVR127: Understanding ADC Parameters Atmel 8-bit Microcontroller Features Getting introduced to ADC concepts Understanding various ADC parameters Understanding the effect of ADC

More information

Background Suppression with Photoelectric Sensors Challenges and Solutions

Background Suppression with Photoelectric Sensors Challenges and Solutions Background Suppression with Photoelectric Sensors Challenges and Solutions Gary Frigyes, Product Manager Ed Myers, Product Manager Jeff Allison, Product Manager Pepperl+Fuchs Twinsburg, OH www.am.pepperl-fuchs.com

More information

FABO ACADEMY X ELECTRONIC DESIGN

FABO ACADEMY X ELECTRONIC DESIGN ELECTRONIC DESIGN MAKE A DEVICE WITH INPUT & OUTPUT The Shanghaino can be programmed to use many input and output devices (a motor, a light sensor, etc) uploading an instruction code (a program) to it

More information

PDSM010 Particle Sensor Module

PDSM010 Particle Sensor Module PDSM010 Particle Sensor Module Features Customized sensitivity for efficient control in application Detects approx. 1μm particle MCU Control (Factory Calibration) Easy maintenance PWM Output (Low Logic

More information

point at zero displacement string 80 scale / cm Fig. 4.1

point at zero displacement string 80 scale / cm Fig. 4.1 1 (a) Fig. 4.1 shows a section of a uniform string under tension at one instant of time. A progressive wave of wavelength 80 cm is moving along the string from left to right. At the instant shown, the

More information

EK 307 Lab: Light-Emitting Diodes

EK 307 Lab: Light-Emitting Diodes EK 307 Lab: Light-Emitting Diodes Laboratory Goal: To explore the characteristics of the light emitting diode. Learning Objectives: Voltage, current, power, and instrumentation. Suggested Tools: Voltage

More information

Focal Length of Lenses

Focal Length of Lenses Focal Length of Lenses OBJECTIVES Investigate the properties of converging and diverging lenses. Determine the focal length of converging lenses both by a real image of a distant object and by finite object

More information

Portland State University MICROCONTROLLERS

Portland State University MICROCONTROLLERS PH-315 MICROCONTROLLERS INTERRUPTS and ACCURATE TIMING I Portland State University OBJECTIVE We aim at becoming familiar with the concept of interrupt, and, through a specific example, learn how to implement

More information

Introduction to BLDC Motor Control Using Freescale MCU. Tom Wang Segment Biz. Dev. Manager Avnet Electronics Marketing Asia

Introduction to BLDC Motor Control Using Freescale MCU. Tom Wang Segment Biz. Dev. Manager Avnet Electronics Marketing Asia Introduction to BLDC Motor Control Using Freescale MCU Tom Wang Segment Biz. Dev. Manager Avnet Electronics Marketing Asia Agenda Introduction to Brushless DC Motors Motor Electrical and Mechanical Model

More information

ME 333 Assignment 7 and 8 PI Control of LED/Phototransistor Pair. Overview

ME 333 Assignment 7 and 8 PI Control of LED/Phototransistor Pair. Overview ME 333 Assignment 7 and 8 PI Control of LED/Phototransistor Pair Overview For this assignment, you will be controlling the light emitted from and received by an LED/phototransistor pair. There are many

More information

ANEMOMETER VECTOR A100L2 & VECTOR A100LK & VECTOR A100LM

ANEMOMETER VECTOR A100L2 & VECTOR A100LK & VECTOR A100LM ANEMOMETER VECTOR A100L2 & VECTOR A100LK & VECTOR A100LM ORDER - N O ELECTRICAL SUPPLY HEATING SUPPLY MODEL IN EOL MANAGER A100LK & A100LM A100L2 4.75..28 VDC max 1.3 ma 6.5..28 VDC max 2 ma No heating

More information

Figure 2d. Optical Through-the-Air Communications Handbook -David A. Johnson,

Figure 2d. Optical Through-the-Air Communications Handbook -David A. Johnson, onto the detector. The stray light competes with the modulated light from the distant transmitter. If the environmental light is sufficiently strong it can interfere with light from the light transmitter.

More information

Introduction. Theory of Operation

Introduction. Theory of Operation Mohan Rokkam Page 1 12/15/2004 Introduction The goal of our project is to design and build an automated shopping cart that follows a shopper around. Ultrasonic waves are used due to the slower speed of

More information

E X P E R I M E N T 12

E X P E R I M E N T 12 E X P E R I M E N T 12 Mirrors and Lenses Produced by the Physics Staff at Collin College Copyright Collin College Physics Department. All Rights Reserved. University Physics II, Exp 12: Mirrors and Lenses

More information

Advanced Measurements

Advanced Measurements Albaha University Faculty of Engineering Mechanical Engineering Department Lecture 5: Displacement measurement Ossama Abouelatta o_abouelatta@yahoo.com Mechanical Engineering Department Faculty of Engineering

More information

EE 308 Spring S12 SUBSYSTEMS: PULSE WIDTH MODULATION, A/D CONVERTER, AND SYNCHRONOUS SERIAN INTERFACE

EE 308 Spring S12 SUBSYSTEMS: PULSE WIDTH MODULATION, A/D CONVERTER, AND SYNCHRONOUS SERIAN INTERFACE 9S12 SUBSYSTEMS: PULSE WIDTH MODULATION, A/D CONVERTER, AND SYNCHRONOUS SERIAN INTERFACE In this sequence of three labs you will learn to use the 9S12 S hardware sybsystem. WEEK 1 PULSE WIDTH MODULATION

More information

Welcome to 6.111! Introductory Digital Systems Laboratory

Welcome to 6.111! Introductory Digital Systems Laboratory Welcome to 6.111! Introductory Digital Systems Laboratory Handouts: Info form (yellow) Course Calendar Safety Memo Kit Checkout Form Lecture slides Lectures: Chris Terman TAs: Karthik Balakrishnan HuangBin

More information

Cameras. CSE 455, Winter 2010 January 25, 2010

Cameras. CSE 455, Winter 2010 January 25, 2010 Cameras CSE 455, Winter 2010 January 25, 2010 Announcements New Lecturer! Neel Joshi, Ph.D. Post-Doctoral Researcher Microsoft Research neel@cs Project 1b (seam carving) was due on Friday the 22 nd Project

More information

Data Conversion and Lab (17.368) Fall Lecture Outline

Data Conversion and Lab (17.368) Fall Lecture Outline Data Conversion and Lab (17.368) Fall 2013 Lecture Outline Class # 07 October 17, 2013 Dohn Bowden 1 Today s Lecture Outline Administrative Detailed Technical Discussions Digital to Analog Conversion Lab

More information

Momentum and Impulse

Momentum and Impulse General Physics Lab Department of PHYSICS YONSEI University Lab Manual (Lite) Momentum and Impulse Ver.20180328 NOTICE This LITE version of manual includes only experimental procedures for easier reading

More information

Hello, and welcome to this presentation of the STM32 Digital Filter for Sigma-Delta modulators interface. The features of this interface, which

Hello, and welcome to this presentation of the STM32 Digital Filter for Sigma-Delta modulators interface. The features of this interface, which Hello, and welcome to this presentation of the STM32 Digital Filter for Sigma-Delta modulators interface. The features of this interface, which behaves like ADC with external analog part and configurable

More information

PHYS225 Lecture 22. Electronic Circuits

PHYS225 Lecture 22. Electronic Circuits PHYS225 Lecture 22 Electronic Circuits Last lecture Digital to Analog Conversion DAC Converts digital signal to an analog signal Computer control of everything! Various types/techniques for conversion

More information

Physics 131 Lab 1: ONE-DIMENSIONAL MOTION

Physics 131 Lab 1: ONE-DIMENSIONAL MOTION 1 Name Date Partner(s) Physics 131 Lab 1: ONE-DIMENSIONAL MOTION OBJECTIVES To familiarize yourself with motion detector hardware. To explore how simple motions are represented on a displacement-time graph.

More information

ENSC 470/894 Lab 3 Version 6.0 (Nov. 19, 2015)

ENSC 470/894 Lab 3 Version 6.0 (Nov. 19, 2015) ENSC 470/894 Lab 3 Version 6.0 (Nov. 19, 2015) Purpose The purpose of the lab is (i) To measure the spot size and profile of the He-Ne laser beam and a laser pointer laser beam. (ii) To create a beam expander

More information

Quintic Hardware Tutorial Camera Set-Up

Quintic Hardware Tutorial Camera Set-Up Quintic Hardware Tutorial Camera Set-Up 1 All Quintic Live High-Speed cameras are specifically designed to meet a wide range of needs including coaching, performance analysis and research. Quintic LIVE

More information

Note to Teacher. Description of the investigation. Time Required. Materials. Procedures for Wheel Size Matters TEACHER. LESSONS WHEEL SIZE / Overview

Note to Teacher. Description of the investigation. Time Required. Materials. Procedures for Wheel Size Matters TEACHER. LESSONS WHEEL SIZE / Overview In this investigation students will identify a relationship between the size of the wheel and the distance traveled when the number of rotations of the motor axles remains constant. It is likely that many

More information

INSTRUMENTATION BREADBOARDING (VERSION 1.3)

INSTRUMENTATION BREADBOARDING (VERSION 1.3) Instrumentation Breadboarding, Page 1 INSTRUMENTATION BREADBOARDING (VERSION 1.3) I. BACKGROUND The purpose of this experiment is to provide you with practical experience in building electronic circuits

More information

How to Create a Touchless Slider for Human Interface Applications

How to Create a Touchless Slider for Human Interface Applications How to Create a Touchless Slider for Human Interface Applications By Steve Gerber, Director of Human Interface Products Silicon Laboratories Inc., Austin, TX Introduction Imagine being able to control

More information

Geometric Optics. Objective: To study the basics of geometric optics and to observe the function of some simple and compound optical devices.

Geometric Optics. Objective: To study the basics of geometric optics and to observe the function of some simple and compound optical devices. Geometric Optics Objective: To study the basics of geometric optics and to observe the function of some simple and compound optical devices. Apparatus: Pasco optical bench, mounted lenses (f= +100mm, +200mm,

More information

AN3137 Application note

AN3137 Application note Application note Analog-to-digital converter on STM8L and STM8AL devices: description and precision improvement techniques Introduction This application note describes the 12-bit analog-to-digital converter

More information

SRV02-Series Rotary Experiment # 3. Ball & Beam. Student Handout

SRV02-Series Rotary Experiment # 3. Ball & Beam. Student Handout SRV02-Series Rotary Experiment # 3 Ball & Beam Student Handout SRV02-Series Rotary Experiment # 3 Ball & Beam Student Handout 1. Objectives The objective in this experiment is to design a controller for

More information

zforce AIR Touch Sensor Specifications

zforce AIR Touch Sensor Specifications zforce AIR Touch Sensor 2017-12-21 Legal Notice Neonode may make changes to specifications and product descriptions at any time, without notice. Do not finalize a design with this information. Neonode

More information

Infrared Receiver Module IRM-36XXT Series

Infrared Receiver Module IRM-36XXT Series Block Diagram Pin Configuration Features 1 2 3 1. OUT 2. GND 3. Vcc High protection ability against EMI Circular lens for improved reception characteristics Available for various carrier frequencies min

More information

G Metrology System Design (AA)

G Metrology System Design (AA) EMFFORCE OPS MANUAL 1 Space Systems Product Development-Spring 2003 G Metrology System Design (AA) G.1 Subsystem Outline The purpose of the metrology subsystem is to determine the separation distance and

More information

Infrared Receiver Module IRM-36XXM3 Series

Infrared Receiver Module IRM-36XXM3 Series Block Diagram Pin Configuration 1 2 3 1: Vout 2: GND 3: Vcc Features High protection ability against EMI Circular lens for improved reception characteristics Available for various carrier frequencies min

More information

Physics 2020 Lab 9 Wave Interference

Physics 2020 Lab 9 Wave Interference Physics 2020 Lab 9 Wave Interference Name Section Tues Wed Thu 8am 10am 12pm 2pm 4pm Introduction Consider the four pictures shown below, showing pure yellow lights shining toward a screen. In pictures

More information

Physics 2310 Lab #5: Thin Lenses and Concave Mirrors Dr. Michael Pierce (Univ. of Wyoming)

Physics 2310 Lab #5: Thin Lenses and Concave Mirrors Dr. Michael Pierce (Univ. of Wyoming) Physics 2310 Lab #5: Thin Lenses and Concave Mirrors Dr. Michael Pierce (Univ. of Wyoming) Purpose: The purpose of this lab is to introduce students to some of the properties of thin lenses and mirrors.

More information

Argos Ingegneria S.p.A. October 2009

Argos Ingegneria S.p.A. October 2009 Argos Ingegneria S.p.A. October 2009 1 Photometric Measurement Systems SMF/M SMF/M General description SMF/M is the photometric measurement system for AGL equipment especially designed and developed by

More information

Infrared Receiver Module IRM-36XXM Series

Infrared Receiver Module IRM-36XXM Series Block Diagram Pin Configuration 1 2 3 1.Vout 2. GND 3. Vcc Features High protection ability against EMI Circular lens for improved reception characteristics Available for various carrier frequencies Min

More information

The AD620 Instrumentation Amplifier and the Strain Gauge Building the Electronic Scale

The AD620 Instrumentation Amplifier and the Strain Gauge Building the Electronic Scale BE 209 Group BEW6 Jocelyn Poruthur, Justin Tannir Alice Wu, & Jeffrey Wu October 29, 1999 The AD620 Instrumentation Amplifier and the Strain Gauge Building the Electronic Scale INTRODUCTION: In this experiment,

More information

If a word starts with a vowel, add yay on to the end of the word, e.g. engineering becomes engineeringyay

If a word starts with a vowel, add yay on to the end of the word, e.g. engineering becomes engineeringyay ENGR 102-213 - Socolofsky Engineering Lab I - Computation Lab Assignment #07b Working with Array-Like Data Date : due 10/15/2018 at 12:40 p.m. Return your solution (one per group) as outlined in the activities

More information

Rutgers Analytical Physics 750:228, Spring 2013 ( RUPHYS228S13 ) My Courses Course Settings University Physics with Modern Physics, 13e Young/Freedman

Rutgers Analytical Physics 750:228, Spring 2013 ( RUPHYS228S13 ) My Courses Course Settings University Physics with Modern Physics, 13e Young/Freedman Signed in as RONALD GILMAN, Instructor Help Sign Out Rutgers Analytical Physics 750:228, Spring 2013 ( RUPHYS228S13 ) My Courses Course Settings University Physics with Modern Physics, 13e Young/Freedman

More information

Chapter 1: DC circuit basics

Chapter 1: DC circuit basics Chapter 1: DC circuit basics Overview Electrical circuit design depends first and foremost on understanding the basic quantities used for describing electricity: voltage, current, and power. In the simplest

More information

SECTION I - CHAPTER 2 DIGITAL IMAGING PROCESSING CONCEPTS

SECTION I - CHAPTER 2 DIGITAL IMAGING PROCESSING CONCEPTS RADT 3463 - COMPUTERIZED IMAGING Section I: Chapter 2 RADT 3463 Computerized Imaging 1 SECTION I - CHAPTER 2 DIGITAL IMAGING PROCESSING CONCEPTS RADT 3463 COMPUTERIZED IMAGING Section I: Chapter 2 RADT

More information

Infrared Receiver Module IRM-66XXN3 Series

Infrared Receiver Module IRM-66XXN3 Series Block Diagram Pin Configuration 1: Vout 2: GND 3: Vcc Features High protection ability against EMI Circular lens for improved reception characteristics Available for various carrier frequencies Low operating

More information

AR1000 DATASHEET v0.1

AR1000 DATASHEET v0.1 AR1000 DATASHEET - 2 - http://www.advanticsys.com/ar1000.html v0.1 Table of Contents 1. INTRODUCTION... 5 2. AR1000 COMPONENT LAYOUT... 5 2.1 LIST OF COMPONENTS... 6 2.2 AR1000 DESCRIPTION... 6 2.3 AR1000

More information

Quantizer step: volts Input Voltage [V]

Quantizer step: volts Input Voltage [V] EE 101 Fall 2008 Date: Lab Section # Lab #8 Name: A/D Converter and ECEbot Power Abstract Partner: Autonomous robots need to have a means to sense the world around them. For example, the bumper switches

More information