Optics looks at the properties and behaviour of light!

Size: px
Start display at page:

Download "Optics looks at the properties and behaviour of light!"

Transcription

1 Optics looks at the properties and behaviour of light! Chapter 4: Wave Model of Light Past Theories Pythagoras believed that light consisted of beams made up of tiny particles that carried information about an object to the eye so we could see it Galileo believed to be the first person to try to determine the speed of light. He and an assistant stood on two hilltops about 1 km apart with lanterns. Galileo uncovered his lantern first and his assistant was suppose to uncover his lantern when he saw Galileo s light. This did not work well and Galileo could not calculate the speed of light! Michelson He is the first person to accurately carry out experiments to measure the speed of light. He used a strong light source, an 8 sided rotating mirror and another large mirror about 35 km away. Using the distance the light travelled and the speed at which his mirrored wheel was spinning he was able to calculate the speed of light. Scientific knowledge of light has led to the development of early technologies such as: Microscope created by the Janssen s who experimented with lenses and tubes. By moving the tubes in and out they made small objects appear larger Telescope created by Galileo who made his own lenses to magnify objects in space 1

2 Light Specifics Light a form of energy that can be detected by the human eye Speed of light The speed of light is m/s or 3 x 10 8 m/s * Compare speed of light with speed of sound: - Speed of sound at sea level is about 330 m/s (1200 km/h) compared to the speed of light at m/s ( km/h) - light travels extremely fast so fast that we cannot notice the time required for light to travel normal distances around us - The light from a distant lightening strike reaches us almost instantly but the sound from the strike (the thunder) takes longer to reach us! The longer it takes for you to hear the thunder after seeing the lightening, the further away the lightening is! Properties of light waves Light waves have the same features as ocean waves: Relationship between frequency and wavelength: High frequency waves have short wavelengths while low frequency waves have long wavelengths The red has the longest wavelength but the least refraction The violent has the shortest wavelength but the most refraction 2

3 The light that we see is called visible light. It is only one small part of the larger electromagnetic spectrum. The physical make up of our eyes allow us only to see visible light in the form of the colors below! Visible Light Spectrum Visible light a form of energy that can be detected with our eyes. Roy G Biv to remember colors! Red has the smallest refraction, orange refracts a little more, yellow a little more and so on... violet has the largest refraction! A prism refracts light and disperses it, separating its colors. Different colors of light are carried by light waves that have different wavelengths. An object appears blue in sunlight because only the blue color is reflected. The other colors are absorbed because of the properties of their wavelengths. Other examples of light dispersion to separate colors occur in sun catchers, rainbows in the sky or when you use a sprinkler on the lawn. 3

4 Electromagnetic radiation movement of electric and magnetic energy through space Electromagnetic radiation is always present but we do not realize it because its wavelengths are too short or too long for our eyes to see! We can only see the visible light portion of the electromagnetic spectrum! The electromagnetic spectrum has 7 types of electromagnetic radiation which can be categorized in order by the size of their wavelengths, their frequencies and their energy: Everyday Uses: 1. Radio waves used in telecommunications (phone, radios, radar, satellite communication) 2. Microwaves cooking food, Wireless LAN, Bluetooth devices 3. Infrared motion sensors, night vision devices, infrared cameras detect heat loss in homes 4. Visible light Everything we see, microscopes, CD players, fax machines, photocopiers 5. Ultraviolet sun tanning, black lights, glow in the dark objects, fluorescent lamps 6. X-rays x-rays, radiation treatment for cancer, airport security scanners 7. Gamma rays Gamma radiation sterilizes hospital equipment, used to kill some cancer cells 4

5 Positive and Negative effects of Electromagnetic Radiation * Higher energy radiation, such as X-rays and Gamma rays, is more harmful and dangerous. Electromagnetic Radiation Positive Effects Negative Effects Radio Waves Improved telecommunication Uncertain of long term exposure effects Microwaves Quick cooking of food May decrease nutritional value of foods when used in heating Infrared Improved night vision Long term exposure can have irreversible effects on eyesight Ultraviolet Used to treat jaundice in Skin cancer babies X-rays Medical detection Over exposure can lead to cancer Gamma rays Radiation therapy for cancer May kill other exposed cells To remember the electromagnetic spectrum visit the electromagnetic song at: 5

6 Chapter 5: Laws of Reflection Properties of visible light 1. Rectilinear propagation light travels in a straight line, like when we make shadows 2. Reflection specular reflection using mirrors and diffuse reflection using dust 3. Refraction bending or changing direction of wave as it passes from one material to another such as a popsicle stick appearing bent in a glass of water 4. Dispersion formation of a rainbow as light separates into its different colors 5. Travels through a vacuum does not require a medium such as the light from stars that reaches earth by travelling through space 6. Travels through transparent, translucent and opaque materials (in varying amounts) Transparent can see through it (glass, air, water) Translucent cannot see through (frosted or stained glass) Opaque light cannot pass through and so we cannot see through it (doors, wood) 6

7 Laws of Reflection in Mirrors Ray diagram uses straight lines to show the path of light rays Incident light ray the incoming light ray Reflected light ray the ray that bounces off the surface of the barrier (surface, mirror etc) Normal the imaginary line that is perpendicular to the barrier Angle of incidence the angle formed by the incident ray and the normal (i) Angle of reflection the angle formed by the reflected ray and the normal (r) Two types of reflection: Specular reflection reflection from a mirror like surface which produces an image of the Surroundings Diffuse reflection reflection from a rough surface that does not produce a clear image but instead allows you to see what is on the surface 7

8 Examples of specular versus diffuse reflection: Matte versus Glossy Paint: Matte paints have a higher proportion of diffuse reflection resulting in lower luster. Gloss paints have a greater proportion of specular reflection resulting in a shinier appearance. Unglazed versus Glazed ceramics: Unglazed has higher proportion of diffuse reflection; glazed has greater proportion of specular reflection Matte versus Glossy photographs: same effect as matte versus glossy paint! Types of Mirrors Plane mirror flat, smooth mirrors like bathroom mirrors Concave mirror has a reflecting surface that curve inwards like the inside of a metal spoon Convex mirror has a reflecting surface that curves outward like the safety mirror on the front of a school bus 8

9 Ray Diagrams for Mirrors Key Backgroud Knowledge: Law of Reflection observations on all types of surfaces show that the angle of incidence is alway equal to the angle of reflection Object the initial object facing the mirror (if you look at a mirror, you are the object) Image the appearance of the object that was facing the mirror (the image of yourself in the mirror is not you, just a likeness of you) Real image happens when reflected or refracted rays meet and the image appears to be in front of the mirror. It is often distorted and you need a screen to see it clearly Virtual image the reflected rays do not meet, but their extended rays meet at the object. The image appears to be behind the mirror 9

10 Object size size of the original object Image size size of the reflected/refracted image Object distance distance between the object and the mirror Image distance distance between the image and the mirror Upright same drection as the original object Inverted upside down from original object Prinipal axis a straight line that is perpindicular to the centre of a mirror or lens Vertex the point where the principal axis meets the mirror Focal point the point where converging light ray meet or diverging light rays diverge (converging means come together and diverging mean to spread out as per the diagram below) Focal length distance from the lens (vertex) to the focal point 10

11 Drawing Ray Diagrams for Plane Mirrors SPOT Characteristic Plane Mirror S = size (sizes of object and image) Image size = Object size P = position (object distance or image distance) Image distance = Object distance O = Orientation (upright or inverted) Upright, flipped in plane mirrors T = Type (real or virtual) Virtual Drawing Ray Diagrams for Concave Mirrors Concave mirrors are more complicated because the characteristics depend on location of object: SPOT Characteristic Object between focal point and mirror S = size (sizes of object and image) P = position (object distance and image distance) O = Orientation (upright or inverted) T = Type (real or virtual) Object between focal point and 2x focal point Image is larger than Object beyond the 2x focal point Image is larger than object object Image is smaller than object Image distance is Image distance is Image distance is larger than object larger than object smaller than object distance distance distance Upright Inverted Inverted Virtual Real Real In curved mirrors: - incident rays travelling parallel to the principal axis are reflected through the focal point - incident rays going throug the focal point are reflected parallel to the principal axis 11

12 Object between mirror and focal point * Any ray that is drawn beyond the mirror is an extended ray and should be a dotted line, not a solid line. 12

13 Object between the focal point and 2x the focal point 13

14 Object beyond the 2F point 14

15 Drawing Ray Diagrams for Convex Mirrors SPOT Characteristic Convex Mirror S = size (sizes of object and image) Image is smaller than object P = position (object distance or image distance) Image distance is smaller than object distance O = Orientation (upright or inverted) Upright T = Type (real or virtual) Virtual * The focal point for convex ray diagrams is behind the mirror! Any lines drawn beyond the mirror are dotted, not solid. * rays travelling parallel to the principal axis will reflect so that there extended rays go through the focal poing * rays travelling through the focal point will cause the reflected ray to be parallel to the principal axis 15

16 Chapter 6: Lenses Refract Light to Form Images (The first part of this section is found in chapter 5 but fits better here with chapter 6) Refraction Refraction the bending of light rays when they travel from one medium to another (ie: from air to water) The human brain does not recognize that light rays become bent or refracted as they travel from water to air and so the apparent position of an object is different from its actual position. As the light rays travel from one medium to another their speed changes. - speed will decrease as it travels from one medium to another that has a greater density (slows down as it goes from air to water). This will result in the ray bending toward the normal - speed will increase if it travels from one medium to another with a lesser density. This will result in the ray bending away from the normal. 16

17 Lenses Lens a curved piece of transparent material such as glass or plastic that refracts light in a predicatable way (like camera lenses or contact lenses). There are 2 types: concave and convex: 17

18 Converging vs Diverging Uses of Concave and Convex Lenses: Concave Eye glasses (fix near-sightedness) Convex Magnifying glasses Eye Glasses (fix far-sightedness) How do lenses fix your vision? The type of lens you need depends on your vision problem does your eye lens converge light rays to a point in front of your retina or behind it?? If your eye refracts light too much then you are nearsighted and you will need to use concave lenses in your glasses. If your eye does not refract enough light then you are far-sighted and you will need to use a convex lens in your glasses. Usually, convex lenses in glasses make someone s eyes look lager where concave lenses make someone s eyes and face look smaller! 18

Life Science Chapter 2 Study Guide

Life Science Chapter 2 Study Guide Key concepts and definitions Waves and the Electromagnetic Spectrum Wave Energy Medium Mechanical waves Amplitude Wavelength Frequency Speed Properties of Waves (pages 40-41) Trough Crest Hertz Electromagnetic

More information

Test Review # 8. Physics R: Form TR8.17A. Primary colors of light

Test Review # 8. Physics R: Form TR8.17A. Primary colors of light Physics R: Form TR8.17A TEST 8 REVIEW Name Date Period Test Review # 8 Light and Color. Color comes from light, an electromagnetic wave that travels in straight lines in all directions from a light source

More information

LlIGHT REVIEW PART 2 DOWNLOAD, PRINT and submit for 100 points

LlIGHT REVIEW PART 2 DOWNLOAD, PRINT and submit for 100 points WRITE ON SCANTRON WITH NUMBER 2 PENCIL DO NOT WRITE ON THIS TEST LlIGHT REVIEW PART 2 DOWNLOAD, PRINT and submit for 100 points Multiple Choice Identify the choice that best completes the statement or

More information

Longitudinal No, Mechanical wave ~340 m/s (in air) 1,100 feet per second More elastic/denser medium = Greater speed of sound

Longitudinal No, Mechanical wave ~340 m/s (in air) 1,100 feet per second More elastic/denser medium = Greater speed of sound Type of wave Travel in Vacuum? Speed Speed vs. Medium Light Sound vs. Sound Longitudinal No, Mechanical wave ~340 m/s (in air) 1,100 feet per second More elastic/denser medium = Greater speed of sound

More information

Physics for Kids. Science of Light. What is light made of?

Physics for Kids. Science of Light. What is light made of? Physics for Kids Science of Light What is light made of? This is not an easy question. Light has no mass and is not really considered matter. So does it even exist? Of course it does! We couldn't live

More information

Light sources can be natural or artificial (man-made)

Light sources can be natural or artificial (man-made) Light The Sun is our major source of light Light sources can be natural or artificial (man-made) People and insects do not see the same type of light - people see visible light - insects see ultraviolet

More information

Light and Applications of Optics

Light and Applications of Optics UNIT 4 Light and Applications of Optics Topic 4.1: What is light and how is it produced? Topic 4.6: What are lenses and what are some of their applications? Topic 4.2 : How does light interact with objects

More information

Topic 1 - What is Light? 1. Radiation is the type of energy transfer which does not require... A matter B heat C waves D light

Topic 1 - What is Light? 1. Radiation is the type of energy transfer which does not require... A matter B heat C waves D light Grade 8 Unit 1 Test Student Class Topic 1 - What is Light? 1. Radiation is the type of energy transfer which does not require... A matter B heat C waves D light 2. Light-producing technologies, such as

More information

Science 8 Unit 2 Pack:

Science 8 Unit 2 Pack: Science 8 Unit 2 Pack: Name Page 0 Section 4.1 : The Properties of Waves Pages By the end of section 4.1 you should be able to understand the following: Waves are disturbances that transmit energy from

More information

Physics Learning Guide Name:

Physics Learning Guide Name: Physics Learning Guide Name: Instructions: Using a pencil, complete the following notes as you work through the related lessons. Show ALL work as is explained in the lessons. You are required to have this

More information

Name: Date: Block: Light Unit Study Guide Matching Match the correct definition to each term. 1. Waves

Name: Date: Block: Light Unit Study Guide Matching Match the correct definition to each term. 1. Waves Name: Date: Block: Light Unit Study Guide Matching Match the correct definition to each term. 1. Waves 2. Medium 3. Mechanical waves 4. Longitudinal waves 5. Transverse waves 6. Frequency 7. Reflection

More information

Optics Review (Chapters 11, 12, 13)

Optics Review (Chapters 11, 12, 13) Optics Review (Chapters 11, 12, 13) Complete the following questions in preparation for your test on FRIDAY. The notes that you need are in italics. Try to answer it on your own first, then check with

More information

Section 1: Sound. Sound and Light Section 1

Section 1: Sound. Sound and Light Section 1 Sound and Light Section 1 Section 1: Sound Preview Key Ideas Bellringer Properties of Sound Sound Intensity and Decibel Level Musical Instruments Hearing and the Ear The Ear Ultrasound and Sonar Sound

More information

Test Review # 9. Physics R: Form TR9.15A. Primary colors of light

Test Review # 9. Physics R: Form TR9.15A. Primary colors of light Physics R: Form TR9.15A TEST 9 REVIEW Name Date Period Test Review # 9 Light and Color. Color comes from light, an electromagnetic wave that travels in straight lines in all directions from a light source

More information

OPTICS DIVISION B. School/#: Names:

OPTICS DIVISION B. School/#: Names: OPTICS DIVISION B School/#: Names: Directions: Fill in your response for each question in the space provided. All questions are worth two points. Multiple Choice (2 points each question) 1. Which of the

More information

National 3 Physics Waves and Radiation. 1. Wave Properties

National 3 Physics Waves and Radiation. 1. Wave Properties 1. Wave Properties What is a wave? Waves are a way of transporting energy from one place to another. They do this through some form of vibration. We see waves all the time, for example, ripples on a pond

More information

Lens: Lenses are usually made of and have 2 curved surfaces. Draw figure 5.23 on Page 191. Label it clearly and use a ruler for the light rays.

Lens: Lenses are usually made of and have 2 curved surfaces. Draw figure 5.23 on Page 191. Label it clearly and use a ruler for the light rays. 5.3 Lenses We have seen lenses in our microscopes, cameras or eyeglasses. Lens: Lenses are usually made of and have 2 curved surfaces. Concave lens: A lens curved inward Thinner at the centre than at the

More information

Make a Refractor Telescope

Make a Refractor Telescope Make a Refractor Telescope In this activity students will build, and observe with, simple refractory telescope providing an interactive introduction to light, lenses and refraction. LEARNING OBJECTIVES

More information

Waves. A wave is a disturbance which travels through a vacuum or medium (air, water, etc) that contains matter A wave transports ENERGY not matter

Waves. A wave is a disturbance which travels through a vacuum or medium (air, water, etc) that contains matter A wave transports ENERGY not matter Waves and Optics Waves A wave is a disturbance which travels through a vacuum or medium (air, water, etc) that contains matter A wave transports ENERGY not matter Waves Some waves do not need a medium

More information

Science Focus 8. Light and Optical Systems. Pop Quiz Master (5 questions) for each Topic A C B D C C B C C A D B C A B B C C A C A C D B A C B B C D

Science Focus 8. Light and Optical Systems. Pop Quiz Master (5 questions) for each Topic A C B D C C B C C A D B C A B B C C A C A C D B A C B B C D Science Focus 8 Pop Quiz Master (5 questions) for each Topic Light and Optical Systems Answer Key Science Focus 8 Questions Topics 1. 2. 3. 4. 5. Topic 1 - What is Light? A C B D C Topic 2 Reflection C

More information

Electromagnetic Waves

Electromagnetic Waves Electromagnetic Waves What is an Electromagnetic Wave? An EM Wave is a disturbance that transfers energy through a field. A field is a area around an object where the object can apply a force on another

More information

ID: A. Optics Review Package Answer Section TRUE/FALSE

ID: A. Optics Review Package Answer Section TRUE/FALSE Optics Review Package Answer Section TRUE/FALSE 1. T 2. F Reflection occurs when light bounces off a surface Refraction is the bending of light as it travels from one medium to another. 3. T 4. F 5. T

More information

Name: Date: Waves and Electromagnetic Spectrum, Sound Waves, and Light Waves Study Guide For Final

Name: Date: Waves and Electromagnetic Spectrum, Sound Waves, and Light Waves Study Guide For Final Name: Date: Waves and Electromagnetic Spectrum, Sound Waves, and Light Waves Study Guide For Final Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A disturbance

More information

LIGHT. ENERGY FOR LIFE 2 Presented by- Ms.Priya

LIGHT. ENERGY FOR LIFE 2 Presented by- Ms.Priya LIGHT ENERGY FOR LIFE 2 Presented by- Ms.Priya VOCABULARY 1. Opaque 2. Transparent 3. Translucent 4. Refraction 5. Reflection 6. Ray 7. Image 8. Virtual image 9. Medium 10.Vacuum 11. Lens 12. Spectrum

More information

Unit 3: Energy On the Move

Unit 3: Energy On the Move 14 14 Table of Contents Unit 3: Energy On the Move Chapter 14: Mirrors and Lenses 14.1: Mirrors 14.2: Lenses 14.3: Optical Instruments 14.1 Mirrors How do you use light to see? When light travels from

More information

Light Energy. By: Genevieve Rickey 5th Grade Mrs. Branin 2016

Light Energy. By: Genevieve Rickey 5th Grade Mrs. Branin 2016 Light Energy By: Genevieve Rickey 5th Grade Mrs. Branin 2016 Everyone has probably turned on a light before, but have you ever thought about what light is? Light is a form of energy that is reflected from

More information

Unit 2: Optics Part 2

Unit 2: Optics Part 2 Unit 2: Optics Part 2 Refraction of Visible Light 1. Bent-stick effect: When light passes from one medium to another (for example, when a beam of light passes through air and into water, or vice versa),

More information

Instructional Resources/Materials: Light vocabulary cards printed (class set) Enough for each student (See card sort below)

Instructional Resources/Materials: Light vocabulary cards printed (class set) Enough for each student (See card sort below) Grade Level/Course: Grade 7 Life Science Lesson/Unit Plan Name: Light Card Sort Rationale/Lesson Abstract: Light vocabulary building, students identify and share vocabulary meaning. Timeframe: 10 to 20

More information

Chapter: Sound and Light

Chapter: Sound and Light Table of Contents Chapter: Sound and Light Section 1: Sound Section 2: Reflection and Refraction of Light Section 3: Mirrors, Lenses, and the Eye Section 4: Light and Color 1 Sound Sound When an object

More information

1. Draw the Ray Diagram, name lens or mirror shown and determine the SALT for each picture

1. Draw the Ray Diagram, name lens or mirror shown and determine the SALT for each picture Honors Physics Chapter 22 and 23 Test Name: 1. Draw the Ray Diagram, name lens or mirror shown and determine the SALT for each picture 2. Type of Mirror above: i. SALT of image: S: A: L: T: b. Type of

More information

Refraction, Lenses, and Prisms

Refraction, Lenses, and Prisms CHAPTER 16 14 SECTION Sound and Light Refraction, Lenses, and Prisms KEY IDEAS As you read this section, keep these questions in mind: What happens to light when it passes from one medium to another? How

More information

Light. In this unit: 1) Electromagnetic Spectrum 2) Properties of Light 3) Reflection 4) Colors 5) Refraction

Light. In this unit: 1) Electromagnetic Spectrum 2) Properties of Light 3) Reflection 4) Colors 5) Refraction Light In this unit: 1) Electromagnetic Spectrum 2) Properties of Light 3) Reflection 4) Colors 5) Refraction Part 1 Electromagnetic Spectrum and Visible Light Remember radio waves are long and gamma rays

More information

L 32 Light and Optics [2] The rainbow. Why is it a rain BOW? Atmospheric scattering. Different colors are refracted (bent) by different amounts

L 32 Light and Optics [2] The rainbow. Why is it a rain BOW? Atmospheric scattering. Different colors are refracted (bent) by different amounts L 32 Light and Optics [2] Measurements of the speed of light The bending of light refraction Total internal reflection Dispersion Dispersion Rainbows Atmospheric scattering Blue sky and red sunsets Mirrors

More information

Fill in the blanks. Reading Skill: Compare and Contrast - questions 3, 17

Fill in the blanks. Reading Skill: Compare and Contrast - questions 3, 17 Light and Color Lesson 9 Fill in the blanks Reading Skill: Compare and Contrast - questions 3, 17 How Do You Get Color From White Light? 1 A(n) is a triangular piece of polished glass that refracts white

More information

Lenses. A transparent object used to change the path of light Examples: Human eye Eye glasses Camera Microscope Telescope

Lenses. A transparent object used to change the path of light Examples: Human eye Eye glasses Camera Microscope Telescope SNC2D Lenses A transparent object used to change the path of light Examples: Human eye Eye glasses Camera Microscope Telescope Reading stones used by monks, nuns, and scholars ~1000 C.E. Lenses THERE ARE

More information

Ch. 18 Notes 3/28/16

Ch. 18 Notes 3/28/16 Section 1 Light & Color: Vocabulary Transparent material: transmits most of the light that strikes it. Light passes through without being scattered, so you can see clearly what is on the other side. Ex.

More information

SCI-PS Light and Optics Pre Assessment Exam not valid for Paper Pencil Test Sessions

SCI-PS Light and Optics Pre Assessment Exam not valid for Paper Pencil Test Sessions SCI-PS Light and Optics Pre Assessment Exam not valid for Paper Pencil Test Sessions [Exam ID:1TL2E1 1 If the angle of incidence is 45, what is the angle of reflection? A 120 B 50 C 90 D 45 2 The wave

More information

Answers to Chapter 11

Answers to Chapter 11 Answers to Chapter 11 11.1 What is Light? #1 Radiation (light) does NOT need a medium to travel through. Conduction needs a solid medium and convection needs liquid or gas medium to travel through. #2

More information

UNIT 12 LIGHT and OPTICS

UNIT 12 LIGHT and OPTICS UNIT 12 LIGHT and OPTICS What is light? Light is simply a name for a range of electromagnetic radiation that can be detected by the human eye. What characteristic does light have? Light is electromagnetic

More information

Term Info Picture. A wave that has both electric and magnetic fields. They travel through empty space (a vacuum).

Term Info Picture. A wave that has both electric and magnetic fields. They travel through empty space (a vacuum). Waves S8P4. Obtain, evaluate, and communicate information to support the claim that electromagnetic (light) waves behave differently than mechanical (sound) waves. A. Ask questions to develop explanations

More information

Notes: Light and Optics. Reflection. Refraction. Law of Reflection. Light goes straight 12/13/2012

Notes: Light and Optics. Reflection. Refraction. Law of Reflection. Light goes straight 12/13/2012 Notes: Light and Optics Light goes straight Light travels in a straight line unless it interacts with a medium. The material through which a wave travels is called a medium. Light can be reflected, refracted

More information

Section Electromagnetic Waves and the Electromagnetic Spectrum

Section Electromagnetic Waves and the Electromagnetic Spectrum Section 17.6 Electromagnetic Waves and the Electromagnetic Spectrum Electromagnetic Waves Can you name all the colors of the rainbow? Red, Orange, Yellow, Green, Blue, Indigo, Violet Electromagnetic Waves

More information

Unit 3: Chapter 6. Refraction

Unit 3: Chapter 6. Refraction Unit 3: Chapter 6 Refraction Refraction of Visible Light 2 Examples: 1. Bent-stick effect: When light passes from one medium to another (ex: from air into water), the change of speed causes it to change

More information

II. Types of Waves A. Transverse waves 1. Can travel with or without matter (medium)

II. Types of Waves A. Transverse waves 1. Can travel with or without matter (medium) SOL: PS. 8 & 9 I. Waves A. Definitionà a disturbance that transfers energy through matter or space II. Types of Waves A. Transverse waves 1. Can travel with or without matter (medium) 2. Moves at rt. angles

More information

Unit 1.5 Waves. The number waves per second. 1 Hz is 1waves per second. If there are 40 waves in 10 seconds then the frequency is 4 Hz.

Unit 1.5 Waves. The number waves per second. 1 Hz is 1waves per second. If there are 40 waves in 10 seconds then the frequency is 4 Hz. Unit 1.5 Waves Basic information Transverse: The oscillations of the particles are at right angles (90 ) to the direction of travel (propagation) of the wave. Examples: All electromagnetic waves (Light,

More information

Optics & Light. See What I m Talking About. Grade 8 - Science OPTICS - GRADE 8 SCIENCE 1

Optics & Light. See What I m Talking About. Grade 8 - Science OPTICS - GRADE 8 SCIENCE 1 Optics & Light See What I m Talking About Grade 8 - Science OPTICS - GRADE 8 SCIENCE 1 Overview In this cluster, students broaden their understanding of how light is produced, transmitted, and detected.

More information

Chapter 18 Optical Elements

Chapter 18 Optical Elements Chapter 18 Optical Elements GOALS When you have mastered the content of this chapter, you will be able to achieve the following goals: Definitions Define each of the following terms and use it in an operational

More information

General Physics II. Ray Optics

General Physics II. Ray Optics General Physics II Ray Optics 1 Dispersion White light is a combination of all the wavelengths of the visible part of the electromagnetic spectrum. Red light has the longest wavelengths and violet light

More information

Electromagnetic Waves & the Electromagnetic Spectrum

Electromagnetic Waves & the Electromagnetic Spectrum Electromagnetic Waves & the Electromagnetic Spectrum longest wavelength shortest wavelength The Electromagnetic Spectrum The name given to a group of energy waves that are mostly invisible and can travel

More information

Converging Lenses. Parallel rays are brought to a focus by a converging lens (one that is thicker in the center than it is at the edge).

Converging Lenses. Parallel rays are brought to a focus by a converging lens (one that is thicker in the center than it is at the edge). Chapter 30: Lenses Types of Lenses Piece of glass or transparent material that bends parallel rays of light so they cross and form an image Two types: Converging Diverging Converging Lenses Parallel rays

More information

An object that refracts light. A from of energy that travels in waves and can be seen when it interacts with matter

An object that refracts light. A from of energy that travels in waves and can be seen when it interacts with matter Science Study Guide Light, Chapter 9 Fourth Grade Vocabulary Definition Absorb To take in Lens An object that refracts light Example Light A from of energy that travels in waves and can be seen when it

More information

G1 THE NATURE OF EM WAVES AND LIGHT SOURCES

G1 THE NATURE OF EM WAVES AND LIGHT SOURCES G1 THE NATURE OF EM WAVES AND LIGHT SOURCES G2 OPTICAL INSTRUMENTS HW/Study Packet Required: READ Tsokos, pp 598-620 SL/HL Supplemental: Hamper, pp 411-450 DO Questions p 605 #1,3 pp 621-623 #6,8,15,18,19,24,26

More information

ELECTROMAGNETIC WAVES AND LIGHT. Physics 5 th Six Weeks

ELECTROMAGNETIC WAVES AND LIGHT. Physics 5 th Six Weeks ELECTROMAGNETIC WAVES AND LIGHT Physics 5 th Six Weeks What are Electromagnetic Waves Electromagnetic Waves Sound and water waves are examples of waves resulting from energy being transferred from particle

More information

A. Ptolemy B. Aristotle C. Pythagoras D. Archimedes

A. Ptolemy B. Aristotle C. Pythagoras D. Archimedes his is the end of the rade 8 UN NWR KY ach slide will change after the mouse click QUN 1 houghts about light have changed over time as we learn more about it. ur eyes causing vision to occur were proven

More information

GraspIT Questions AQA GCSE Physics Waves

GraspIT Questions AQA GCSE Physics Waves A Waves in air, fluids and solids 1. The diagrams below show two types of wave produced on a slinky spring. A B a. Which one is a transverse wave? (1) Wave B b. What is the name of the other type of wave?

More information

1) An electromagnetic wave is a result of electric and magnetic fields acting together. T 1)

1) An electromagnetic wave is a result of electric and magnetic fields acting together. T 1) Exam 3 Review Name TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) An electromagnetic wave is a result of electric and magnetic fields acting together. T 1) 2) Electromagnetic

More information

Using Mirrors to Form Images. Reflections of Reflections. Key Terms. Find Out ACTIVITY

Using Mirrors to Form Images. Reflections of Reflections. Key Terms. Find Out ACTIVITY 5.2 Using Mirrors to Form Images All mirrors reflect light according to the law of reflection. Plane mirrors form an image that is upright and appears to be as far behind the mirror as the is in front

More information

4.6 Waves Waves in air, fluids and solids Transverse and longitudinal waves

4.6 Waves Waves in air, fluids and solids Transverse and longitudinal waves 4.6 Waves Wave behaviour is common in both natural and man-made systems. Waves carry energy from one place to another and can also carry information. Designing comfortable and safe structures such as bridges,

More information

4.6.1 Waves in air, fluids and solids Transverse and longitudinal waves Properties of waves

4.6.1 Waves in air, fluids and solids Transverse and longitudinal waves Properties of waves 4.6 Waves Wave behaviour is common in both natural and man-made systems. Waves carry energy from one place to another and can also carry information. Designing comfortable and safe structures such as bridges,

More information

Table of Contents. Chapter x 2 Using Light. Chapter Preview. 2.1 Waves and the Electromagnetic Spectrum. 2.2 Visible Light and Color

Table of Contents. Chapter x 2 Using Light. Chapter Preview. 2.1 Waves and the Electromagnetic Spectrum. 2.2 Visible Light and Color Table of Contents Chapter Preview 2.1 Waves and the Electromagnetic Spectrum 2.2 Visible Light and Color 2.3 Reflection and Refraction 2.4 Seeing Light 2.5 Optical Tools Chapter Preview Questions 1. What

More information

Unit 3 - Foundations of Waves

Unit 3 - Foundations of Waves Unit 3 - Foundations of Waves Chapter 6 - Light, Mirrors, and Lenses Mr. Palmarin Chapter 6 - Light, Mirrors, and Lenses 1 / 57 Section 6.1 - The Behaviour of Light History of Light Plato (428 BCE - 348

More information

Chapter Introduction. Chapter Wrap-Up. and the Eye

Chapter Introduction. Chapter Wrap-Up. and the Eye Chapter Introduction Lesson 1 Lesson 2 Lesson 3 Sound Light Chapter Wrap-Up Mirrors, Lenses, and the Eye How do sound and light waves travel and interact with matter? What do you think? Before you begin,

More information

Chapter 9: Light, Colour and Radiant Energy. Passed a beam of white light through a prism.

Chapter 9: Light, Colour and Radiant Energy. Passed a beam of white light through a prism. Chapter 9: Light, Colour and Radiant Energy Where is the colour in sunlight? In the 17 th century (1600 s), Sir Isaac Newton conducted a famous experiment. Passed a beam of white light through a prism.

More information

Chapter 29/30. Wave Fronts and Rays. Refraction of Sound. Dispersion in a Prism. Index of Refraction. Refraction and Lenses

Chapter 29/30. Wave Fronts and Rays. Refraction of Sound. Dispersion in a Prism. Index of Refraction. Refraction and Lenses Chapter 29/30 Refraction and Lenses Refraction Refraction the bending of waves as they pass from one medium into another. Caused by a change in the average speed of light. Analogy A car that drives off

More information

Refraction of Light. Refraction of Light

Refraction of Light. Refraction of Light 1 Refraction of Light Activity: Disappearing coin Place an empty cup on the table and drop a penny in it. Look down into the cup so that you can see the coin. Move back away from the cup slowly until the

More information

PHYS 202 OUTLINE FOR PART III LIGHT & OPTICS

PHYS 202 OUTLINE FOR PART III LIGHT & OPTICS PHYS 202 OUTLINE FOR PART III LIGHT & OPTICS Electromagnetic Waves A. Electromagnetic waves S-23,24 1. speed of waves = 1/( o o ) ½ = 3 x 10 8 m/s = c 2. waves and frequency: the spectrum (a) radio red

More information

Algebra Based Physics. Reflection. Slide 1 / 66 Slide 2 / 66. Slide 3 / 66. Slide 4 / 66. Slide 5 / 66. Slide 6 / 66.

Algebra Based Physics. Reflection. Slide 1 / 66 Slide 2 / 66. Slide 3 / 66. Slide 4 / 66. Slide 5 / 66. Slide 6 / 66. Slide 1 / 66 Slide 2 / 66 Algebra Based Physics Geometric Optics 2015-12-01 www.njctl.org Slide 3 / 66 Slide 4 / 66 Table of ontents lick on the topic to go to that section Reflection Refraction and Snell's

More information

Unit Two: Light Energy Lesson 1: Mirrors

Unit Two: Light Energy Lesson 1: Mirrors 1. Plane mirror: Unit Two: Light Energy Lesson 1: Mirrors Light reflection: It is rebounding (bouncing) light ray in same direction when meeting reflecting surface. The incident ray: The light ray falls

More information

Chapter 16 Light Waves and Color

Chapter 16 Light Waves and Color Chapter 16 Light Waves and Color Lecture PowerPoint Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. What causes color? What causes reflection? What causes color?

More information

Using Mirrors to Form Images

Using Mirrors to Form Images Using Mirrors to Form Images Textbook pages 182 189 Before You Read You stand in front of a. In what ways is your reflection the same as you? In what ways is your reflection different from you? Write your

More information

Mastery. Chapter Content. What is light? CHAPTER 11 LESSON 1 C A

Mastery. Chapter Content. What is light? CHAPTER 11 LESSON 1 C A Chapter Content Mastery What is light? LESSON 1 Directions: Use the letters on the diagram to identify the parts of the wave listed below. Write the correct letters on the line provided. 1. amplitude 2.

More information

Person s Optics Test KEY SSSS

Person s Optics Test KEY SSSS Person s Optics Test KEY SSSS 2017-18 Competitors Names: School Name: All questions are worth one point unless otherwise stated. Show ALL WORK or you may not receive credit. Include correct units whenever

More information

Human Retina. Sharp Spot: Fovea Blind Spot: Optic Nerve

Human Retina. Sharp Spot: Fovea Blind Spot: Optic Nerve I am Watching YOU!! Human Retina Sharp Spot: Fovea Blind Spot: Optic Nerve Human Vision Optical Antennae: Rods & Cones Rods: Intensity Cones: Color Energy of Light 6 10 ev 10 ev 4 1 2eV 40eV KeV MeV Energy

More information

REFLECTION THROUGH LENS

REFLECTION THROUGH LENS REFLECTION THROUGH LENS A lens is a piece of transparent optical material with one or two curved surfaces to refract light rays. It may converge or diverge light rays to form an image. Lenses are mostly

More information

Note on Posted Slides. Fermat s Principle of Least Time. History of Light. Law of Reflection The angle of reflection equals the angle of incidence.

Note on Posted Slides. Fermat s Principle of Least Time. History of Light. Law of Reflection The angle of reflection equals the angle of incidence. Note on Posted Slides These are the slides that I intended to show in class on Thu. Apr. 3, 2014. They contain important ideas and questions from your reading. Due to time constraints, I was probably not

More information

Characteristic Primary Color Primary Pigment. Colors red, green, blue magenta, cyan, yellow

Characteristic Primary Color Primary Pigment. Colors red, green, blue magenta, cyan, yellow Light Energy Chapter 14 You can use a compare and contrast table to show how two or more items are alike and how they are different. Look at the example shown below for primary colors and primary pigments.

More information

Vocabulary. Unit 9 Forms of Energy. ENERGY: The capacity for doing work.

Vocabulary. Unit 9 Forms of Energy. ENERGY: The capacity for doing work. Unit 9 Forms of Energy Main Idea: There are many forms of energy, including radiant energy and chemical energy. Energy can change form. ENERGY: The capacity for doing work. Heat, Light and Radiant Energy

More information

The Optics of Mirrors

The Optics of Mirrors Use with Text Pages 558 563 The Optics of Mirrors Use the terms in the list below to fill in the blanks in the paragraphs about mirrors. reversed smooth eyes concave focal smaller reflect behind ray convex

More information

sclera pupil What happens to light that enters the eye?

sclera pupil What happens to light that enters the eye? Human Vision Textbook pages 202 215 Before You Read Some people can see things clearly from a great distance. Other people can see things clearly only when they are nearby. Why might this be? Write your

More information

Intermediate 2 Waves & Optics Past Paper questions

Intermediate 2 Waves & Optics Past Paper questions Intermediate 2 Waves & Optics Past Paper questions 2000-2010 2000 Q29. A converging lens has a focal length of 30 mm. (a) Calculate the power of this lens. (i) In the diagram below, which is drawn to scale,

More information

Wonderlab The Statoil Gallery

Wonderlab The Statoil Gallery Wonderlab The Statoil Gallery and maths s Age (s) Topic 7 11 LIGHT INFORMATION 11-14 Location WONDERLAB: THE STATOIL GALLERY LEVEL 3, SCIENCE MUSEUM LONDON 1 What s the science? What more will you wonder?

More information

Physics Unit 5 Waves Light & Sound

Physics Unit 5 Waves Light & Sound Physics Unit 5 Waves Light & Sound Wave A rhythmic disturbance that transfers energy through matter and/or a vacuum Material a wave travels through is called the medium 2 types of waves: 1. Transverse

More information

PiXL Independence: GCSE Physics Student Booklet KS4. I. Level 1- Multiple Choice Quiz 20 credits. Level 3 - Science in The News 100 credits

PiXL Independence: GCSE Physics Student Booklet KS4. I. Level 1- Multiple Choice Quiz 20 credits. Level 3 - Science in The News 100 credits PiXL Independence: GCSE Physics Student Booklet KS4 Topic: Light and electromagnetic waves Contents: I. Level 1- Multiple Choice Quiz 20 credits II. III. IV. Level 2-5 questions, 5 sentences, 5 words 10

More information

Exam 3--PHYS 151--S15

Exam 3--PHYS 151--S15 Name: Class: Date: Exam 3--PHYS 151--S15 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Consider this diagram of the eye and answer the following questions.

More information

UNIT 3 LIGHT AND SOUND

UNIT 3 LIGHT AND SOUND NIT 3 LIGHT AND SOUND Primary Colours Luminous Sources of Light Colours sources is divided Secondary Colours includes Illıminated Sources of Light LIGHT Illumination is form Travels in Spaces Shadow Reflection

More information

Sound. sound waves - compressional waves formed from vibrating objects colliding with air molecules.

Sound. sound waves - compressional waves formed from vibrating objects colliding with air molecules. Sound sound waves - compressional waves formed from vibrating objects colliding with air molecules. *Remember, compressional (longitudinal) waves are made of two regions, compressions and rarefactions.

More information

Chapter 23. Light Geometric Optics

Chapter 23. Light Geometric Optics Chapter 23. Light Geometric Optics There are 3 basic ways to gather light and focus it to make an image. Pinhole - Simple geometry Mirror - Reflection Lens - Refraction Pinhole Camera Image Formation (the

More information

Where should the fisherman aim? The fish is not moving.

Where should the fisherman aim? The fish is not moving. Where should the fisherman aim? The fish is not moving. When a wave hits a boundary it can Reflect Refract Reflect and Refract Be Absorbed Refraction The change in speed and direction of a wave Due to

More information

Refraction is the when a ray changes mediums. Examples of mediums:

Refraction is the when a ray changes mediums. Examples of mediums: Refraction and Lenses Refraction is the when a ray changes mediums. Examples of mediums: Lenses are optical devices which take advantage of the refraction of light to 1. produces images real and 2. change

More information

1. The convex lens will magnify the print, provided the object is not placed beyond 2F, While the concave lens will shrink the print image.

1. The convex lens will magnify the print, provided the object is not placed beyond 2F, While the concave lens will shrink the print image. 1 P a g e Grade 8 SCIENCE CHATER 6 QUESTIONS 6.1 A page 215 What Did You Find Out? Answers 1. The convex lens will magnify the print, provided the object is not placed beyond 2F, While the concave lens

More information

The Electromagnetic Spectrum

The Electromagnetic Spectrum The Electromagnetic Spectrum Wavelength/frequency/energy MAP TAP 2003-2004 The Electromagnetic Spectrum 1 Teacher Page Content: Physical Science The Electromagnetic Spectrum Grade Level: High School Creator:

More information

Preview. Light and Reflection Section 1. Section 1 Characteristics of Light. Section 2 Flat Mirrors. Section 3 Curved Mirrors

Preview. Light and Reflection Section 1. Section 1 Characteristics of Light. Section 2 Flat Mirrors. Section 3 Curved Mirrors Light and Reflection Section 1 Preview Section 1 Characteristics of Light Section 2 Flat Mirrors Section 3 Curved Mirrors Section 4 Color and Polarization Light and Reflection Section 1 TEKS The student

More information

Page 2. Q1.The figure below shows an incomplete electromagnetic spectrum. A microwaves B C ultraviolet D gamma

Page 2. Q1.The figure below shows an incomplete electromagnetic spectrum. A microwaves B C ultraviolet D gamma Q1.The figure below shows an incomplete electromagnetic spectrum. A microwaves B C ultraviolet D gamma (a) What name is given to the group of waves at the position labelled A in the figure above? Tick

More information

Chapter 24 Geometrical Optics. Copyright 2010 Pearson Education, Inc.

Chapter 24 Geometrical Optics. Copyright 2010 Pearson Education, Inc. Chapter 24 Geometrical Optics Lenses convex (converging) concave (diverging) Mirrors Ray Tracing for Mirrors We use three principal rays in finding the image produced by a curved mirror. The parallel ray

More information

Optics Review. 2. List the different types of Light/EM Radiation in order of increasing wavelength.

Optics Review. 2. List the different types of Light/EM Radiation in order of increasing wavelength. Optics Review 1. Match the vocabulary words from Column 1 with the choices in Column 2. Column 1 Vocabulary Words Column 2 Choices 1. incandescence A. production of light by friction 2. chemiluminescence

More information

Light: Lenses and. Mirrors. Test Date: Name 1ÿ-ÿ. Physics. Light: Lenses and Mirrors

Light: Lenses and. Mirrors. Test Date: Name 1ÿ-ÿ. Physics. Light: Lenses and Mirrors Name 1ÿ-ÿ Physics Light: Lenses and Mirrors i Test Date: "Shadows cannot see themselves in the mirror of the sun." -Evita Peron What are lenses? Lenses are made from transparent glass or plastice and refract

More information

Applications of Optics

Applications of Optics Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 26 Applications of Optics Marilyn Akins, PhD Broome Community College Applications of Optics Many devices are based on the principles of optics

More information

Reflection! Reflection and Virtual Image!

Reflection! Reflection and Virtual Image! 1/30/14 Reflection - wave hits non-absorptive surface surface of a smooth water pool - incident vs. reflected wave law of reflection - concept for all electromagnetic waves - wave theory: reflected back

More information

Chapter 23 Study Questions Name: Class:

Chapter 23 Study Questions Name: Class: Chapter 23 Study Questions Name: Class: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. When you look at yourself in a plane mirror, you

More information

Algebra Based Physics. Reflection. Slide 1 / 66 Slide 2 / 66. Slide 3 / 66. Slide 4 / 66. Slide 5 / 66. Slide 6 / 66.

Algebra Based Physics. Reflection. Slide 1 / 66 Slide 2 / 66. Slide 3 / 66. Slide 4 / 66. Slide 5 / 66. Slide 6 / 66. Slide 1 / 66 Slide 2 / 66 lgebra ased Physics Geometric Optics 2015-12-01 www.njctl.org Slide 3 / 66 Slide 4 / 66 Table of ontents lick on the topic to go to that section Reflection Refraction and Snell's

More information