High Resolution Spectral Video Capture & Computational Photography Xun Cao ( 曹汛 )

Size: px
Start display at page:

Download "High Resolution Spectral Video Capture & Computational Photography Xun Cao ( 曹汛 )"

Transcription

1 High Resolution Spectral Video Capture & Computational Photography Xun Cao ( 曹汛 ) School of Electronic Science & Engineering Nanjing University caoxun@nju.edu.cn Dec 30th, 2015

2 Computational Photography Computational photography refers broadly to computational imaging techniques that enhance or extend the capabilities of digital photography. The output of these techniques is an ordinary photograph, but one that could not have been taken by a traditional camera. (Wikipedia) Computational photography is an emerging new field created by the convergence of computer graphics, computer vision and photography. Its role is to overcome the limitations of the traditional camera by using computational techniques to produce a richer, more vivid, perhaps more perceptually meaningful representation of our visual world. (CMU Course Introduction) 2

3 CP for various imaging dimensions Depth & View (3D) Spectral(Color) Spatial Gigapixel UHD 3840*2160 HD 1920*1080 SD<720p Light Field Multiview Stereo 2D Gray scale 10Hz Multispectral RGB 30Hz Hyperspectral 60Hz 120Hz Ps.Fs Temporal Dynamic Range 8 bit 10/12 bit 24 bit

4 Computational Imaging Technology & Engineering The lab focuses on 3 kinds of computational cameras Spectral Camera High Resolution Spectral Video Camera: PMIS Multiview Stereo Camera Array High Accuracy 3D Reconstruction Super-Resolution Camera Nano-Scale Pixel Camera Gigapixel on Single Chip

5 Grayscale Imaging I( ) light source K K R( ) S( ) d S( ) scene R( ) sensor

6 Color Imaging I( ) light source ( R, G, B) R R( ) SR( ) d G R( ) SG ( ) d B R( ) SB( ) d S( ) scene R( ) sensor

7 Spectral Imaging light source R( ) I( )? scene R( )? Imaging system

8 Related Work (1) Filtered Camera based Spectrum Imaging [Kidono07] [Gat00][Yamaguchi06][Schechner02] Filter wheel Color Filter Array Programmable Filter Filter Scanning Key idea: Trade time for spectrum Prof. S.Nayar Columbia Spatially varying filter PAMI 02 Shortcomings: Incapable of capturing dynamic scenes Low spectrum resolution

9 Related Work (2) Coded Aperture Snapshot Spectral Imager (CASSI) [Brady 06] [Willett 07] [Gehm 07] [Wagadarikar 08] Key Idea: Coded Aperture 2D Imaging + reconstruction Spectrum resolution: 6 nm Spatial resolution: 256 x 248 Limited spatial resolution Limited accuracy Time-consuming reconstructing (20min / frame) Prof. D.Brady (Duke Univ.) CASSI: Applied Optics SPIE, JOSA 06-09

10 Related Work (3) Computed Tomography Imaging Spectrometer [Descour95] [Descour01] [Vandervlugt07] [Hagen08] Key Ideas: CT Projections + Reconstruction Shortcomings: Low Resolution Prof. E. Dereniak Arizona Computed Tomographic Imaging Spectrometer CTIS Difficult to Calibrate High Computational Cost different linear projections of the spectral data cube E. Dereniak Applied Optics SPIE, JOSA [JOSA 08]

11 Our Spectral Video Camera - PMIS 2008~2010: Prism-Mask Imaging Spectrometer (PMIS 1 ) Directly capture multispectral video High spectra-resolution Low cost Easy setup and calibration 2011~2014: Hybrid-Camera PMIS 2 Both high spectral and spatial resolution Real-time hyperspectral video capture 2014~now Scene-Adaptive PMIS 3 Space-time coded modulation Spectral video capture with improved accuracy and efficiency

12 A glance at PMIS 1 Pointgrey grayscale camera capturing system mask

13 System Principle Grayscale Camera Occlusion Mask Prism GIF source: Wiki Camera System Re-generated RGB Video

14 A Typical Camera lens sensor array camera

15 Camera & Prism prism lens camera sensor array Spectra Overlap!

16 Camera & Mask mask lens camera sensor array

17 Camera & Mask & Prism mask lens camera sensor array Spectra Overlap!

18 Spectral Resolution R spec W( S) a CCD cell size grayscale camera f s e WS ( ) mask prism aperture image plane sin ( ) sin ( ( )) n sin ( ( )) sin ( ( )) W( S) f (tan( ( ) a) tan( ( ) a)) e s

19 Spectral Resolution Tradeoff Spatial/Spectral Resolution f mask prism aperture image plane W ( S) f (tan( ( ) a) tan( ( ) a)) e s

20 Spectral Resolution Tradeoff Spatial/Spectral Resolution f mask prism aperture image plane R spec W( S) W ( S ) f (tan( ( ) a ) tan( ( ) a )) e s

21 Spectral Resolution Tradeoff Spatial/Spectral Resolution f mask prism aperture image plane R spec W( S) W ( S ) f (tan( ( ) a ) tan( ( ) a )) e s

22 Spectral Resolution Tradeoff Spatial/Spectral Resolution f mask prism aperture image plane R spec W( S) W ( S ) f (tan( ( ) a ) tan( ( ) a )) e s

23 Spatial Resolution Small Mask Hole Distance Spectra Overlap! mask prism aperture image plane

24 Spatial Resolution Large Mask Hole Distance Unused Pixels mask prism aperture image plane

25 Spatial Resolution In practice, we can use a uniform mask Design Mask Hole Distance D d Perfect Alignment mask prism aperture image plane D d (tan( ( )) tan( ( ))) e s

26 Device Calibration

27 Calibration Overview Mapping Position to Wavelength Spectrum Calibration Geometry Calibration Radiance Calibration Non-constant CCDSensitivity Geometry Distortion caused by the prism (Smile Distortion)

28 Spectrum Calibration Spectrum Calibration Geometry Calibration Radiance Calibration

29 Spectrum Calibration captured spectra Ground truth fluorescent spectra

30 Spectrum Calibration target spectra Warp Ground truth fluorescent spectra

31 Spectrum Calibration Mapping Function : Wavelength <-> Position a f x mask prism aperture image plane sin x( ) f tan a arcsin( n sin( arcsin( ))) n Non linear, but smooth curve!

32 Geometry Calibration Spectrum Calibration Geometry Calibration Radiance Calibration

33 Geometry Calibration Predefined mask pattern captured image geometry calibrated image

34 Radiance Calibration Spectrum Calibration captured radiance genuine radiance Geometry Calibration Radiance Calibration

35 intensity sensitivity Radiance Calibration captured radiance genuine radiance z( ) b I( z) g( c( ) l( ) d ) z( ) a assuming c( ), l( ) locally constant light input wavelength l( ) g 1 ( I( z)) c( )( ) b a

36 Application 1: Human Skin Detection The W pattern in human skin reflectance [Angelopoulou01]

37 Application 1: Human Skin Detection

38 Application 2: Material Discrimination RGB Image IR Image Our measurement The differences in IR

39 PMIS 1 Conclusions Compared to Traditional Spectrometers Passive Multispectral Video Capture High spectral resolution Tradeoff spectral and spatial resolution Easy setup and calibration Applications Skin Detection Material Recognition Illumination Identification PMIS 1 : A Prism-Mask System for Multispectral Video Acquisition, IEEE Intl Conf. Computer Vision (ICCV), 2009, Oral IEEE Trans. Pattern Anal. Mach. Intell. (PAMI), 2011 High Resolution Multispectral Image Capture,US Patent

40 PMIS 1 : limitations Light throughput is limited by occlusion mask relatively small aperture Can NOT achieve both high spatial and spectral resolution Limited CCD resolution Spatial resolution (1000 pixels)

41 Scene or Object Gray Camera Low-Spatial High-Spectral Resolution Video Occlusion Mask Prism PMIS 2 : Hybrid Camera System RGB Camera High-Spatial Low-Spectral Resolution Video

42 PMIS 2 : System Pipeline Propagation

43 PMIS 2 : System Implementation

44 Propagation Algorithm Gray Camera RGB Camera High Low Spatial Resolution Resolution Multispectral RGB Video Video

45 Propagation Algorithm ms G ( d ) G ( d ) RGB xy c k r k s k k k ij RGB xy c R, G, B G ( d ) ( ) k r k G d s k ms e.g. R / R, k ij k for red channel

46 Propagation Algorithm Ground Truth Data Evaluation (11 datasets,.aix,.mat) - Spectral Database, University of Joensuu Color Group

47 Propagation Algorithm Temporal Enhancement Error 7.8% 4.3%

48 PMIS 2 : Results & Applications

49 Spatial Comparison PMIS 1 : Prism-Mask Multispectral-Video Imaging System (ICCV 09, PAMI 2011) PMIS 2 : Hybrid Camera Multispectral Video Imaging System (CVPR 2011, IJCV 2014)

50 Spatial Comparison PMIS 1 : Prism-Mask Multispectral-Video Imaging System (ICCV 09, PAMI 2011) PMIS 2 : Hybrid Camera Multispectral Video Imaging System (CVPR 2011, IJCV 2014)

51 Application 3: illumination recognition

52 Application 3: Automatic White Balance

53 Application 3: mixed illumination Fluorescent light Tungsten light

54 Application 3: mixed illumination Original Frame Fluorescent Light Tungsten Light Our Result

55 Spectral Comparison Poster vs. Water Color RGB Space Spectral Space

56 Application 4: Tracking

57 PMIS 2 Conclusions High Resolution Spectral Resolution - (1~6nm, adjustable) Spatial Resolution - ( ) Temporal Resolution - (15fps, Real-Time Capture) Additional Applications by PMIS 2 - Automatic White balance - Object Tracking PMIS 2 : Acquisition of High Spatial & Spectral Resolution Video with a Hybrid Camera System, IEEE Intl Conf. Computer Vision & Pattern Recognition. (CVPR), 2011 International Journal of Computer Vision (IJCV), 2014 A Computational Spectral Video Capture Device,China Patent. ZL X

58 PMIS 3 Basic Idea PMIS 1 & PMIS 2 Fixed-Pattern Mask Can we dynamically change the mask adaptive to the scene content?

59 PMIS 3 Prototype and Capturing Results Spatial Light Modulation Accuracy improvement PMIS 3 : Content-Adaptive High-resolution Spectral Video Acquisition Optics Letters, 39(15), pp , 2014 Optics Express, 22(16), pp , 2014 IEEE CVPR, pp , 2015 Targeted spectral acquisition by annotating regions of interest

60 Summary PMIS: High Resolution Spectral Video Camera vs Traditional Spectrometer: Snapshot Capability (Video) vs CTIS / CASSI: Real-Time Video Output Low Reconstruction Error Improved Resolution <-> Low Cost PMIS Hyperspectral Video Datasets Available : Ma C, Cao X, Dai, Q, et al. IJCV 2014 Spectra Viewing Software

61 Commercial Spectral Video Cameras Light Gene PMIS Camera Wavelength Range Spectral Resolution Temporal Resolution Spatial Resolution BaySpec nm 10 nm 8 fps 256*256 SoC nm 18 nm 60 fps 320*256 PMIS nm 6 nm 15 fps 1024*1024 (1M)

62 NSF China Acknowledgements Prof. Qionghai Dai, Dr. Steve Lin, Dr. Xin Dr. Yue Tao, Dr. Chenguang Ma Assistance in experimentation Moshe Ben-Ezra, Yanxiang Lan Helpful discussions on implementation issues

63 Computational Imaging Technology & Engineering Welcome to visit CITE Nanjing Univ.

64 The Optical Path

65 Spectra of Illuminations

Acquisition of High Spatial and Spectral Resolution Video with a Hybrid Camera System

Acquisition of High Spatial and Spectral Resolution Video with a Hybrid Camera System DOI 10.1007/s11263-013-0690-4 Acquisition of High Spatial and Spectral Resolution Video with a Hybrid Camera System Chenguang Ma Xun Cao Xin Tong Qionghai Dai Stephen Lin Received: 28 February 2013 / Accepted:

More information

Wavelengths and Colors. Ankit Mohan MAS.131/531 Fall 2009

Wavelengths and Colors. Ankit Mohan MAS.131/531 Fall 2009 Wavelengths and Colors Ankit Mohan MAS.131/531 Fall 2009 Epsilon over time (Multiple photos) Prokudin-Gorskii, Sergei Mikhailovich, 1863-1944, photographer. Congress. Epsilon over time (Bracketing) Image

More information

Coding and Modulation in Cameras

Coding and Modulation in Cameras Coding and Modulation in Cameras Amit Agrawal June 2010 Mitsubishi Electric Research Labs (MERL) Cambridge, MA, USA Coded Computational Imaging Agrawal, Veeraraghavan, Narasimhan & Mohan Schedule Introduction

More information

Capturing Light in man and machine. Some figures from Steve Seitz, Steve Palmer, Paul Debevec, and Gonzalez et al.

Capturing Light in man and machine. Some figures from Steve Seitz, Steve Palmer, Paul Debevec, and Gonzalez et al. Capturing Light in man and machine Some figures from Steve Seitz, Steve Palmer, Paul Debevec, and Gonzalez et al. 15-463: Computational Photography Alexei Efros, CMU, Fall 2005 Image Formation Digital

More information

Hyper-spectral, UHD imaging NANO-SAT formations or HAPS to detect, identify, geolocate and track; CBRN gases, fuel vapors and other substances

Hyper-spectral, UHD imaging NANO-SAT formations or HAPS to detect, identify, geolocate and track; CBRN gases, fuel vapors and other substances Hyper-spectral, UHD imaging NANO-SAT formations or HAPS to detect, identify, geolocate and track; CBRN gases, fuel vapors and other substances Arnold Kravitz 8/3/2018 Patent Pending US/62544811 1 HSI and

More information

Sensors and Sensing Cameras and Camera Calibration

Sensors and Sensing Cameras and Camera Calibration Sensors and Sensing Cameras and Camera Calibration Todor Stoyanov Mobile Robotics and Olfaction Lab Center for Applied Autonomous Sensor Systems Örebro University, Sweden todor.stoyanov@oru.se 20.11.2014

More information

Improving the Collection Efficiency of Raman Scattering

Improving the Collection Efficiency of Raman Scattering PERFORMANCE Unparalleled signal-to-noise ratio with diffraction-limited spectral and imaging resolution Deep-cooled CCD with excelon sensor technology Aberration-free optical design for uniform high resolution

More information

Acquisition Basics. How can we measure material properties? Goal of this Section. Special Purpose Tools. General Purpose Tools

Acquisition Basics. How can we measure material properties? Goal of this Section. Special Purpose Tools. General Purpose Tools Course 10 Realistic Materials in Computer Graphics Acquisition Basics MPI Informatik (moving to the University of Washington Goal of this Section practical, hands-on description of acquisition basics general

More information

ME 6406 MACHINE VISION. Georgia Institute of Technology

ME 6406 MACHINE VISION. Georgia Institute of Technology ME 6406 MACHINE VISION Georgia Institute of Technology Class Information Instructor Professor Kok-Meng Lee MARC 474 Office hours: Tues/Thurs 1:00-2:00 pm kokmeng.lee@me.gatech.edu (404)-894-7402 Class

More information

Light-Field Database Creation and Depth Estimation

Light-Field Database Creation and Depth Estimation Light-Field Database Creation and Depth Estimation Abhilash Sunder Raj abhisr@stanford.edu Michael Lowney mlowney@stanford.edu Raj Shah shahraj@stanford.edu Abstract Light-field imaging research has been

More information

Image acquisition. In both cases, the digital sensing element is one of the following: Line array Area array. Single sensor

Image acquisition. In both cases, the digital sensing element is one of the following: Line array Area array. Single sensor Image acquisition Digital images are acquired by direct digital acquisition (digital still/video cameras), or scanning material acquired as analog signals (slides, photographs, etc.). In both cases, the

More information

POTENTIAL OF MULTISPECTRAL TECHNIQUES FOR MEASURING COLOR IN THE AUTOMOTIVE SECTOR

POTENTIAL OF MULTISPECTRAL TECHNIQUES FOR MEASURING COLOR IN THE AUTOMOTIVE SECTOR POTENTIAL OF MULTISPECTRAL TECHNIQUES FOR MEASURING COLOR IN THE AUTOMOTIVE SECTOR Meritxell Vilaseca, Francisco J. Burgos, Jaume Pujol 1 Technological innovation center established in 1997 with the aim

More information

Simultaneous geometry and color texture acquisition using a single-chip color camera

Simultaneous geometry and color texture acquisition using a single-chip color camera Simultaneous geometry and color texture acquisition using a single-chip color camera Song Zhang *a and Shing-Tung Yau b a Department of Mechanical Engineering, Iowa State University, Ames, IA, USA 50011;

More information

Rotation/ scale invariant hybrid digital/optical correlator system for automatic target recognition

Rotation/ scale invariant hybrid digital/optical correlator system for automatic target recognition Rotation/ scale invariant hybrid digital/optical correlator system for automatic target recognition V. K. Beri, Amit Aran, Shilpi Goyal, and A. K. Gupta * Photonics Division Instruments Research and Development

More information

COMPRESSIVE SPECTRAL IMAGING BASED ON COLORED CODED APERTURES

COMPRESSIVE SPECTRAL IMAGING BASED ON COLORED CODED APERTURES 2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP COMPRESSIVE SPECTRA IMAGING BASED ON COORED CODED APERTURES oover Rueda enry Arguello Gonzalo R. Arce Department of

More information

Introduction to Computer Vision

Introduction to Computer Vision Introduction to Computer Vision CS / ECE 181B Thursday, April 1, 2004 Course Details HW #0 and HW #1 are available. Course web site http://www.ece.ucsb.edu/~manj/cs181b Syllabus, schedule, lecture notes,

More information

Computer Vision. Howie Choset Introduction to Robotics

Computer Vision. Howie Choset   Introduction to Robotics Computer Vision Howie Choset http://www.cs.cmu.edu.edu/~choset Introduction to Robotics http://generalrobotics.org What is vision? What is computer vision? Edge Detection Edge Detection Interest points

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY LINCOLN LABORATORY 244 WOOD STREET LEXINGTON, MASSACHUSETTS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY LINCOLN LABORATORY 244 WOOD STREET LEXINGTON, MASSACHUSETTS MASSACHUSETTS INSTITUTE OF TECHNOLOGY LINCOLN LABORATORY 244 WOOD STREET LEXINGTON, MASSACHUSETTS 02420-9108 3 February 2017 (781) 981-1343 TO: FROM: SUBJECT: Dr. Joseph Lin (joseph.lin@ll.mit.edu), Advanced

More information

IMAGE FORMATION. Light source properties. Sensor characteristics Surface. Surface reflectance properties. Optics

IMAGE FORMATION. Light source properties. Sensor characteristics Surface. Surface reflectance properties. Optics IMAGE FORMATION Light source properties Sensor characteristics Surface Exposure shape Optics Surface reflectance properties ANALOG IMAGES An image can be understood as a 2D light intensity function f(x,y)

More information

Camera Overview. Digital Microscope Cameras for Material Science: Clear Images, Precise Analysis. Digital Cameras for Microscopy

Camera Overview. Digital Microscope Cameras for Material Science: Clear Images, Precise Analysis. Digital Cameras for Microscopy Digital Cameras for Microscopy Camera Overview For Materials Science Microscopes Digital Microscope Cameras for Material Science: Clear Images, Precise Analysis Passionate about Imaging: Olympus Digital

More information

Changyin Zhou. Ph.D, Computer Science, Columbia University Oct 2012

Changyin Zhou. Ph.D, Computer Science, Columbia University Oct 2012 Changyin Zhou Software Engineer at Google X Google Inc. 1600 Amphitheater Parkway, Mountain View, CA 94043 E-mail: changyin@google.com URL: http://www.changyin.org Office: (917) 209-9110 Mobile: (646)

More information

A collection of hyperspectral images for imaging systems research Torbjørn Skauli a,b, Joyce Farrell *a

A collection of hyperspectral images for imaging systems research Torbjørn Skauli a,b, Joyce Farrell *a A collection of hyperspectral images for imaging systems research Torbjørn Skauli a,b, Joyce Farrell *a a Stanford Center for Image Systems Engineering, Stanford CA, USA; b Norwegian Defence Research Establishment,

More information

Capturing Light in man and machine

Capturing Light in man and machine Capturing Light in man and machine 15-463: Computational Photography Alexei Efros, CMU, Fall 2008 Image Formation Digital Camera Film The Eye Digital camera A digital camera replaces film with a sensor

More information

PolarCam and Advanced Applications

PolarCam and Advanced Applications PolarCam and Advanced Applications Workshop Series 2013 Outline Polarimetry Background Stokes vector Types of Polarimeters Micro-polarizer Camera Data Processing Application Examples Passive Illumination

More information

TO perceive and understand more complex scenes, researchers MULTISPECTRAL FOCAL STACK ACQUISITION USING A CHROMATIC ABERRATION ENLARGED CAMERA

TO perceive and understand more complex scenes, researchers MULTISPECTRAL FOCAL STACK ACQUISITION USING A CHROMATIC ABERRATION ENLARGED CAMERA MULTISPECTRAL FOCAL STACK ACQUISITION USING A CHROMATIC ABERRATION ENLARGED CAMERA Qian Huang 1, Yunqian Li 1, Linsen Chen 1, Xiaoming Zhong 2, Jinli Suo 3, Zhan Ma 1, Tao Yue 1, Xun Cao 1 1 School of

More information

Multispectral imaging and image processing

Multispectral imaging and image processing Multispectral imaging and image processing Julie Klein Institute of Imaging and Computer Vision RWTH Aachen University, D-52056 Aachen, Germany ABSTRACT The color accuracy of conventional RGB cameras is

More information

Goal of this Section. Capturing Reflectance From Theory to Practice. Acquisition Basics. How can we measure material properties? Special Purpose Tools

Goal of this Section. Capturing Reflectance From Theory to Practice. Acquisition Basics. How can we measure material properties? Special Purpose Tools Capturing Reflectance From Theory to Practice Acquisition Basics GRIS, TU Darmstadt (formerly University of Washington, Seattle Goal of this Section practical, hands-on description of acquisition basics

More information

Generalized Assorted Camera Arrays: Robust Cross-channel Registration and Applications Jason Holloway, Kaushik Mitra, Sanjeev Koppal, Ashok

Generalized Assorted Camera Arrays: Robust Cross-channel Registration and Applications Jason Holloway, Kaushik Mitra, Sanjeev Koppal, Ashok Generalized Assorted Camera Arrays: Robust Cross-channel Registration and Applications Jason Holloway, Kaushik Mitra, Sanjeev Koppal, Ashok Veeraraghavan Cross-modal Imaging Hyperspectral Cross-modal Imaging

More information

MUSKY: Multispectral UV Sky camera. Valentina Caricato, Andrea Egidi, Marco Pisani and Massimo Zucco, INRIM

MUSKY: Multispectral UV Sky camera. Valentina Caricato, Andrea Egidi, Marco Pisani and Massimo Zucco, INRIM MUSKY: Multispectral UV Sky camera Valentina Caricato, Andrea Egidi, Marco Pisani and Massimo Zucco, INRIM Outline Purpose of the instrument Required specs Hyperspectral or multispectral? Optical design

More information

CRISATEL High Resolution Multispectral System

CRISATEL High Resolution Multispectral System CRISATEL High Resolution Multispectral System Pascal Cotte and Marcel Dupouy Lumiere Technology, Paris, France We have designed and built a high resolution multispectral image acquisition system for digitizing

More information

Estimation of spectral response of a consumer grade digital still camera and its application for temperature measurement

Estimation of spectral response of a consumer grade digital still camera and its application for temperature measurement Indian Journal of Pure & Applied Physics Vol. 47, October 2009, pp. 703-707 Estimation of spectral response of a consumer grade digital still camera and its application for temperature measurement Anagha

More information

Lecture 2. Electromagnetic radiation principles. Units, image resolutions.

Lecture 2. Electromagnetic radiation principles. Units, image resolutions. NRMT 2270, Photogrammetry/Remote Sensing Lecture 2 Electromagnetic radiation principles. Units, image resolutions. Tomislav Sapic GIS Technologist Faculty of Natural Resources Management Lakehead University

More information

Camera Overview. Digital Microscope Cameras for Material Science: Clear Images, Precise Analysis. Digital Cameras for Microscopy

Camera Overview. Digital Microscope Cameras for Material Science: Clear Images, Precise Analysis. Digital Cameras for Microscopy Digital Cameras for Microscopy Camera Overview For Materials Science Microscopes Digital Microscope Cameras for Material Science: Clear Images, Precise Analysis Passionate about Imaging: Olympus Digital

More information

Efficient Color Object Segmentation Using the Dichromatic Reflection Model

Efficient Color Object Segmentation Using the Dichromatic Reflection Model Efficient Color Object Segmentation Using the Dichromatic Reflection Model Vladimir Kravtchenko, James J. Little The University of British Columbia Department of Computer Science 201-2366 Main Mall, Vancouver

More information

Privacy Preserving Optics for Miniature Vision Sensors

Privacy Preserving Optics for Miniature Vision Sensors Privacy Preserving Optics for Miniature Vision Sensors Francesco Pittaluga and Sanjeev J. Koppal University of Florida Electrical and Computer Engineering Shoham et al. 07, Wood 08, Enikov et al. 09, Agrihouse

More information

Multiplex Image Projection using Multi-Band Projectors

Multiplex Image Projection using Multi-Band Projectors 2013 IEEE International Conference on Computer Vision Workshops Multiplex Image Projection using Multi-Band Projectors Makoto Nonoyama Fumihiko Sakaue Jun Sato Nagoya Institute of Technology Gokiso-cho

More information

Multispectral. imaging device. ADVANCED LIGHT ANALYSIS by. Most accurate homogeneity MeasureMent of spectral radiance. UMasterMS1 & UMasterMS2

Multispectral. imaging device. ADVANCED LIGHT ANALYSIS by. Most accurate homogeneity MeasureMent of spectral radiance. UMasterMS1 & UMasterMS2 Multispectral imaging device Most accurate homogeneity MeasureMent of spectral radiance UMasterMS1 & UMasterMS2 ADVANCED LIGHT ANALYSIS by UMaster Ms Multispectral Imaging Device UMaster MS Description

More information

Colour image watermarking in real life

Colour image watermarking in real life Colour image watermarking in real life Konstantin Krasavin University of Joensuu, Finland ABSTRACT: In this report we present our work for colour image watermarking in different domains. First we consider

More information

Computational Camera & Photography: Coded Imaging

Computational Camera & Photography: Coded Imaging Computational Camera & Photography: Coded Imaging Camera Culture Ramesh Raskar MIT Media Lab http://cameraculture.media.mit.edu/ Image removed due to copyright restrictions. See Fig. 1, Eight major types

More information

NIST Agency Report May 2012 OUTLINE. The case for traceability NMI capabilities A view to the future the HIP Current/recent NIST activities

NIST Agency Report May 2012 OUTLINE. The case for traceability NMI capabilities A view to the future the HIP Current/recent NIST activities NIST Agency Report May 2012 OUTLINE The case for traceability NMI capabilities A view to the future the HIP Current/recent NIST activities The case for traceability Earth Radiation Budget: Solar irradiance

More information

What Makes Push-broom Hyperspectral Imaging Advantageous for Art Applications. Timo Hyvärinen SPECIM, Spectral Imaging Ltd Oulu Finland

What Makes Push-broom Hyperspectral Imaging Advantageous for Art Applications. Timo Hyvärinen SPECIM, Spectral Imaging Ltd Oulu Finland What Makes Push-broom Hyperspectral Imaging Advantageous for Art Applications Timo Hyvärinen SPECIM, Spectral Imaging Ltd Oulu Finland www.specim.fi Outline What is hyperspectral imaging? Hyperspectral

More information

Computational Approaches to Cameras

Computational Approaches to Cameras Computational Approaches to Cameras 11/16/17 Magritte, The False Mirror (1935) Computational Photography Derek Hoiem, University of Illinois Announcements Final project proposal due Monday (see links on

More information

technology meets pathology Institute of Pathology, Charité Universitätsmedizin Berlin, Berlin, Germany 3 Overview

technology meets pathology Institute of Pathology, Charité Universitätsmedizin Berlin, Berlin, Germany 3 Overview ASSESSMENT OF TECHNICAL PARAMETERS A. Alekseychuk 1, N. Zerbe 2, Y. Yagi 3 1 Computer Vision and Remote Sensing, TU Berlin, Berlin, Germany 2 Institute of Pathology, Charité Universitätsmedizin Berlin,

More information

Overview. Pinhole camera model Projective geometry Vanishing points and lines Projection matrix Cameras with Lenses Color Digital image

Overview. Pinhole camera model Projective geometry Vanishing points and lines Projection matrix Cameras with Lenses Color Digital image Camera & Color Overview Pinhole camera model Projective geometry Vanishing points and lines Projection matrix Cameras with Lenses Color Digital image Book: Hartley 6.1, Szeliski 2.1.5, 2.2, 2.3 The trip

More information

DEPTH FUSED FROM INTENSITY RANGE AND BLUR ESTIMATION FOR LIGHT-FIELD CAMERAS. Yatong Xu, Xin Jin and Qionghai Dai

DEPTH FUSED FROM INTENSITY RANGE AND BLUR ESTIMATION FOR LIGHT-FIELD CAMERAS. Yatong Xu, Xin Jin and Qionghai Dai DEPTH FUSED FROM INTENSITY RANGE AND BLUR ESTIMATION FOR LIGHT-FIELD CAMERAS Yatong Xu, Xin Jin and Qionghai Dai Shenhen Key Lab of Broadband Network and Multimedia, Graduate School at Shenhen, Tsinghua

More information

Observing a colour and a spectrum of light mixed by a digital projector

Observing a colour and a spectrum of light mixed by a digital projector Observing a colour and a spectrum of light mixed by a digital projector Zdeněk Navrátil Abstract In this paper an experiment studying a colour and a spectrum of light produced by a digital projector is

More information

High-sensitivity. optical molecular imaging and high-resolution digital X-ray. In-Vivo Imaging Systems

High-sensitivity. optical molecular imaging and high-resolution digital X-ray. In-Vivo Imaging Systems High-sensitivity optical molecular imaging and high-resolution digital X-ray In-Vivo Imaging Systems In vivo imaging solutions available in several packages Carestream Molecular Imaging offers a selection

More information

Design of Temporally Dithered Codes for Increased Depth of Field in Structured Light Systems

Design of Temporally Dithered Codes for Increased Depth of Field in Structured Light Systems Design of Temporally Dithered Codes for Increased Depth of Field in Structured Light Systems Ricardo R. Garcia University of California, Berkeley Berkeley, CA rrgarcia@eecs.berkeley.edu Abstract In recent

More information

Hyperspectral Image Denoising using Superpixels of Mean Band

Hyperspectral Image Denoising using Superpixels of Mean Band Hyperspectral Image Denoising using Superpixels of Mean Band Letícia Cordeiro Stanford University lrsc@stanford.edu Abstract Denoising is an essential step in the hyperspectral image analysis process.

More information

DESIGN AND CHARACTERIZATION OF A HYPERSPECTRAL CAMERA FOR LOW LIGHT IMAGING WITH EXAMPLE RESULTS FROM FIELD AND LABORATORY APPLICATIONS

DESIGN AND CHARACTERIZATION OF A HYPERSPECTRAL CAMERA FOR LOW LIGHT IMAGING WITH EXAMPLE RESULTS FROM FIELD AND LABORATORY APPLICATIONS DESIGN AND CHARACTERIZATION OF A HYPERSPECTRAL CAMERA FOR LOW LIGHT IMAGING WITH EXAMPLE RESULTS FROM FIELD AND LABORATORY APPLICATIONS J. Hernandez-Palacios a,*, I. Baarstad a, T. Løke a, L. L. Randeberg

More information

A simulation tool for evaluating digital camera image quality

A simulation tool for evaluating digital camera image quality A simulation tool for evaluating digital camera image quality Joyce Farrell ab, Feng Xiao b, Peter Catrysse b, Brian Wandell b a ImagEval Consulting LLC, P.O. Box 1648, Palo Alto, CA 94302-1648 b Stanford

More information

LENSLESS IMAGING BY COMPRESSIVE SENSING

LENSLESS IMAGING BY COMPRESSIVE SENSING LENSLESS IMAGING BY COMPRESSIVE SENSING Gang Huang, Hong Jiang, Kim Matthews and Paul Wilford Bell Labs, Alcatel-Lucent, Murray Hill, NJ 07974 ABSTRACT In this paper, we propose a lensless compressive

More information

PROCEEDINGS OF SPIE. Measuring and teaching light spectrum using Tracker as a spectrometer. M. Rodrigues, M. B. Marques, P.

PROCEEDINGS OF SPIE. Measuring and teaching light spectrum using Tracker as a spectrometer. M. Rodrigues, M. B. Marques, P. PROCEEDINGS OF SPIE SPIEDigitalLibrary.org/conference-proceedings-of-spie Measuring and teaching light spectrum using Tracker as a spectrometer M. Rodrigues, M. B. Marques, P. Simeão Carvalho M. Rodrigues,

More information

High Dynamic Range Imaging

High Dynamic Range Imaging High Dynamic Range Imaging 1 2 Lecture Topic Discuss the limits of the dynamic range in current imaging and display technology Solutions 1. High Dynamic Range (HDR) Imaging Able to image a larger dynamic

More information

Burst Photography! EE367/CS448I: Computational Imaging and Display! stanford.edu/class/ee367! Lecture 7! Gordon Wetzstein! Stanford University!

Burst Photography! EE367/CS448I: Computational Imaging and Display! stanford.edu/class/ee367! Lecture 7! Gordon Wetzstein! Stanford University! Burst Photography! EE367/CS448I: Computational Imaging and Display! stanford.edu/class/ee367! Lecture 7! Gordon Wetzstein! Stanford University! Motivation! wikipedia! exposure sequence! -4 stops! Motivation!

More information

Camera Calibration Certificate No: DMC III 27542

Camera Calibration Certificate No: DMC III 27542 Calibration DMC III Camera Calibration Certificate No: DMC III 27542 For Peregrine Aerial Surveys, Inc. #201 1255 Townline Road Abbotsford, B.C. V2T 6E1 Canada Calib_DMCIII_27542.docx Document Version

More information

Color , , Computational Photography Fall 2017, Lecture 11

Color , , Computational Photography Fall 2017, Lecture 11 Color http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2017, Lecture 11 Course announcements Homework 2 grades have been posted on Canvas. - Mean: 81.6% (HW1:

More information

An Introduction to Geomatics. Prepared by: Dr. Maher A. El-Hallaq خاص بطلبة مساق مقدمة في علم. Associate Professor of Surveying IUG

An Introduction to Geomatics. Prepared by: Dr. Maher A. El-Hallaq خاص بطلبة مساق مقدمة في علم. Associate Professor of Surveying IUG An Introduction to Geomatics خاص بطلبة مساق مقدمة في علم الجيوماتكس Prepared by: Dr. Maher A. El-Hallaq Associate Professor of Surveying IUG 1 Airborne Imagery Dr. Maher A. El-Hallaq Associate Professor

More information

A Spectral Database of Commonly Used Cine Lighting Andreas Karge, Jan Fröhlich, Bernd Eberhardt Stuttgart Media University

A Spectral Database of Commonly Used Cine Lighting Andreas Karge, Jan Fröhlich, Bernd Eberhardt Stuttgart Media University A Spectral Database of Commonly Used Cine Lighting Andreas Karge, Jan Fröhlich, Bernd Eberhardt Stuttgart Media University Slide 1 Outline Motivation: Why there is a need of a spectral database of cine

More information

Lecture 2 Digital Image Fundamentals. Lin ZHANG, PhD School of Software Engineering Tongji University Fall 2016

Lecture 2 Digital Image Fundamentals. Lin ZHANG, PhD School of Software Engineering Tongji University Fall 2016 Lecture 2 Digital Image Fundamentals Lin ZHANG, PhD School of Software Engineering Tongji University Fall 2016 Contents Elements of visual perception Light and the electromagnetic spectrum Image sensing

More information

CMVision and Color Segmentation. CSE398/498 Robocup 19 Jan 05

CMVision and Color Segmentation. CSE398/498 Robocup 19 Jan 05 CMVision and Color Segmentation CSE398/498 Robocup 19 Jan 05 Announcements Please send me your time availability for working in the lab during the M-F, 8AM-8PM time period Why Color Segmentation? Computationally

More information

Preliminary Characterization Results: Fiber-Coupled, Multi-channel, Hyperspectral Spectrographs

Preliminary Characterization Results: Fiber-Coupled, Multi-channel, Hyperspectral Spectrographs Preliminary Characterization Results: Fiber-Coupled, Multi-channel, Hyperspectral Spectrographs Carol Johnson, NIST MODIS-VIIRS Team Meeting January 26-28, 2010 Washington, DC Marine Optical System & Data

More information

Capturing Light. The Light Field. Grayscale Snapshot 12/1/16. P(q, f)

Capturing Light. The Light Field. Grayscale Snapshot 12/1/16. P(q, f) Capturing Light Rooms by the Sea, Edward Hopper, 1951 The Penitent Magdalen, Georges de La Tour, c. 1640 Some slides from M. Agrawala, F. Durand, P. Debevec, A. Efros, R. Fergus, D. Forsyth, M. Levoy,

More information

Industrial Applications of Spectral Color Technology

Industrial Applications of Spectral Color Technology Industrial Applications of Spectral Color Technology Markku Hauta-Kasari InFotonics Center Joensuu, University of Joensuu, P.O.Box 111, FI-80101 Joensuu, FINLAND Abstract In this paper, we will present

More information

The ultimate camera. Computational Photography. Creating the ultimate camera. The ultimate camera. What does it do?

The ultimate camera. Computational Photography. Creating the ultimate camera. The ultimate camera. What does it do? Computational Photography The ultimate camera What does it do? Image from Durand & Freeman s MIT Course on Computational Photography Today s reading Szeliski Chapter 9 The ultimate camera Infinite resolution

More information

Measurement and alignment of linear variable filters

Measurement and alignment of linear variable filters Measurement and alignment of linear variable filters Rob Sczupak, Markus Fredell, Tim Upton, Tom Rahmlow, Sheetal Chanda, Gregg Jarvis, Sarah Locknar, Florin Grosu, Terry Finnell and Robert Johnson Omega

More information

Digital Photographic Imaging Using MOEMS

Digital Photographic Imaging Using MOEMS Digital Photographic Imaging Using MOEMS Vasileios T. Nasis a, R. Andrew Hicks b and Timothy P. Kurzweg a a Department of Electrical and Computer Engineering, Drexel University, Philadelphia, USA b Department

More information

Prof. Feng Liu. Winter /09/2017

Prof. Feng Liu. Winter /09/2017 Prof. Feng Liu Winter 2017 http://www.cs.pdx.edu/~fliu/courses/cs410/ 01/09/2017 Today Course overview Computer vision Admin. Info Visual Computing at PSU Image representation Color 2 Big Picture: Visual

More information

Spatially Resolved Backscatter Ceilometer

Spatially Resolved Backscatter Ceilometer Spatially Resolved Backscatter Ceilometer Design Team Hiba Fareed, Nicholas Paradiso, Evan Perillo, Michael Tahan Design Advisor Prof. Gregory Kowalski Sponsor, Spectral Sciences Inc. Steve Richstmeier,

More information

Realistic Image Synthesis

Realistic Image Synthesis Realistic Image Synthesis - HDR Capture & Tone Mapping - Philipp Slusallek Karol Myszkowski Gurprit Singh Karol Myszkowski LDR vs HDR Comparison Various Dynamic Ranges (1) 10-6 10-4 10-2 100 102 104 106

More information

WIDE SPECTRAL RANGE IMAGING INTERFEROMETER

WIDE SPECTRAL RANGE IMAGING INTERFEROMETER WIDE SPECTRAL RANGE IMAGING INTERFEROMETER Alessandro Barducci, Donatella Guzzi, Cinzia Lastri, Paolo Marcoionni, Vanni Nardino, Ivan Pippi CNR IFAC Sesto Fiorentino, ITALY ICSO 2012 Ajaccio 8-12/10/2012

More information

Capturing Light in man and machine

Capturing Light in man and machine Capturing Light in man and machine 15-463: Computational Photography Alexei Efros, CMU, Fall 2010 Etymology PHOTOGRAPHY light drawing / writing Image Formation Digital Camera Film The Eye Sensor Array

More information

Color , , Computational Photography Fall 2018, Lecture 7

Color , , Computational Photography Fall 2018, Lecture 7 Color http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2018, Lecture 7 Course announcements Homework 2 is out. - Due September 28 th. - Requires camera and

More information

SUPER RESOLUTION INTRODUCTION

SUPER RESOLUTION INTRODUCTION SUPER RESOLUTION Jnanavardhini - Online MultiDisciplinary Research Journal Ms. Amalorpavam.G Assistant Professor, Department of Computer Sciences, Sambhram Academy of Management. Studies, Bangalore Abstract:-

More information

Hyperspectral Systems: Recent Developments and Low Cost Sensors. 56th Photogrammetric Week in Stuttgart, September 11 to September 15, 2017

Hyperspectral Systems: Recent Developments and Low Cost Sensors. 56th Photogrammetric Week in Stuttgart, September 11 to September 15, 2017 Hyperspectral Systems: Recent Developments and Low Cost Sensors 56th Photogrammetric Week in Stuttgart, September 11 to September 15, 2017 Ralf Reulke Humboldt-Universität zu Berlin Institut für Informatik,

More information

Instructions for the Experiment

Instructions for the Experiment Instructions for the Experiment Excitonic States in Atomically Thin Semiconductors 1. Introduction Alongside with electrical measurements, optical measurements are an indispensable tool for the study of

More information

METHOD FOR CALIBRATING THE IMAGE FROM A MIXEL CAMERA BASED SOLELY ON THE ACQUIRED HYPERSPECTRAL DATA

METHOD FOR CALIBRATING THE IMAGE FROM A MIXEL CAMERA BASED SOLELY ON THE ACQUIRED HYPERSPECTRAL DATA EARSeL eproceedings 12, 2/2013 174 METHOD FOR CALIBRATING THE IMAGE FROM A MIXEL CAMERA BASED SOLELY ON THE ACQUIRED HYPERSPECTRAL DATA Gudrun Høye, and Andrei Fridman Norsk Elektro Optikk, Lørenskog,

More information

SPECTRAL SCANNER. Recycling

SPECTRAL SCANNER. Recycling SPECTRAL SCANNER The Spectral Scanner, produced on an original project of DV s.r.l., is an instrument to acquire with extreme simplicity the spectral distribution of the different wavelengths (spectral

More information

Image Formation: Camera Model

Image Formation: Camera Model Image Formation: Camera Model Ruigang Yang COMP 684 Fall 2005, CS684-IBMR Outline Camera Models Pinhole Perspective Projection Affine Projection Camera with Lenses Digital Image Formation The Human Eye

More information

Digital Image Processing

Digital Image Processing Part 1: Course Introduction Achim J. Lilienthal AASS Learning Systems Lab, Dep. Teknik Room T1209 (Fr, 11-12 o'clock) achim.lilienthal@oru.se Course Book Chapters 1 & 2 2011-04-05 Contents 1. Introduction

More information

Chapter 3 Part 2 Color image processing

Chapter 3 Part 2 Color image processing Chapter 3 Part 2 Color image processing Motivation Color fundamentals Color models Pseudocolor image processing Full-color image processing: Component-wise Vector-based Recent and current work Spring 2002

More information

Computational Photography

Computational Photography Computational photography Computational Photography Digital Visual Effects Yung-Yu Chuang wikipedia: Computational photography h refers broadly to computational imaging techniques that enhance or extend

More information

Oversubscription. Sorry, not fixed yet. We ll let you know as soon as we can.

Oversubscription. Sorry, not fixed yet. We ll let you know as soon as we can. Bela Borsodi Bela Borsodi Oversubscription Sorry, not fixed yet. We ll let you know as soon as we can. CS 143 James Hays Continuing his course many materials, courseworks, based from him + previous staff

More information

Optical Signal Processing

Optical Signal Processing Optical Signal Processing ANTHONY VANDERLUGT North Carolina State University Raleigh, North Carolina A Wiley-Interscience Publication John Wiley & Sons, Inc. New York / Chichester / Brisbane / Toronto

More information

INNOVATIVE CAMERA CHARACTERIZATION BASED ON LED LIGHT SOURCE

INNOVATIVE CAMERA CHARACTERIZATION BASED ON LED LIGHT SOURCE Image Engineering imagequalitytools INNOVATIVE CAMERA CHARACTERIZATION BASED ON LED LIGHT SOURCE Image Engineering Relative Power ILLUMINATION DEVICES imagequalitytools The most flexible LED-based light

More information

Wide Field-of-View Fluorescence Imaging of Coral Reefs

Wide Field-of-View Fluorescence Imaging of Coral Reefs Wide Field-of-View Fluorescence Imaging of Coral Reefs Tali Treibitz, Benjamin P. Neal, David I. Kline, Oscar Beijbom, Paul L. D. Roberts, B. Greg Mitchell & David Kriegman Supplementary Note 1: Image

More information

OLYMPUS Digital Cameras for Materials Science Applications: Get the Best out of Your Microscope

OLYMPUS Digital Cameras for Materials Science Applications: Get the Best out of Your Microscope Digital Cameras for Microscopy Camera Overview For Materials Science Microscopes OLYMPUS Digital Cameras for Materials Science Applications: Get the Best out of Your Microscope Passionate About Imaging

More information

Capturing Light in man and machine

Capturing Light in man and machine Capturing Light in man and machine CS194: Image Manipulation & Computational Photography Alexei Efros, UC Berkeley, Fall 2014 Etymology PHOTOGRAPHY light drawing / writing Image Formation Digital Camera

More information

Image Processing - Intro. Tamás Szirányi

Image Processing - Intro. Tamás Szirányi Image Processing - Intro Tamás Szirányi The path of light through optics A Brief History of Images 1558 Camera Obscura, Gemma Frisius, 1558 A Brief History of Images 1558 1568 Lens Based Camera Obscura,

More information

Applied Machine Vision

Applied Machine Vision Applied Machine Vision ME Machine Vision Class Doug Britton GTRI 12/1/2005 Not everybody trusts paintings but people believe photographs. Ansel Adams Machine Vision Components Product Camera/Sensor Illumination

More information

Acquisition and representation of images

Acquisition and representation of images Acquisition and representation of images Stefano Ferrari Università degli Studi di Milano stefano.ferrari@unimi.it Methods for mage Processing academic year 2017 2018 Electromagnetic radiation λ = c ν

More information

Method for quantifying image quality in push-broom hyperspectral cameras

Method for quantifying image quality in push-broom hyperspectral cameras Method for quantifying image quality in push-broom hyperspectral cameras Gudrun Høye Trond Løke Andrei Fridman Optical Engineering 54(5), 053102 (May 2015) Method for quantifying image quality in push-broom

More information

Capturing Light in man and machine

Capturing Light in man and machine Capturing Light in man and machine CS194: Image Manipulation & Computational Photography Alexei Efros, UC Berkeley, Fall 2015 Etymology PHOTOGRAPHY light drawing / writing Image Formation Digital Camera

More information

Color and Image Characterization of a Three CCD Seven Band Spectral Camera

Color and Image Characterization of a Three CCD Seven Band Spectral Camera Color and Image Characterization of a Three CCD Seven Band Spectral Camera Ana Gebejes, Joni Orava, Niko Penttinen, Ville Heikkinen, Jouni Hiltunen, and Markku Hauta-Kasari University of Eastern Finland,

More information

Color Image Processing

Color Image Processing Color Image Processing Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr Color Used heavily in human vision. Visible spectrum for humans is 400 nm (blue) to 700

More information

GPI INSTRUMENT PAGES

GPI INSTRUMENT PAGES GPI INSTRUMENT PAGES This document presents a snapshot of the GPI Instrument web pages as of the date of the call for letters of intent. Please consult the GPI web pages themselves for up to the minute

More information

NSERC Summer Project 1 Helping Improve Digital Camera Sensors With Prof. Glenn Chapman (ENSC)

NSERC Summer Project 1 Helping Improve Digital Camera Sensors With Prof. Glenn Chapman (ENSC) NSERC Summer 2016 Digital Camera Sensors & Micro-optic Fabrication ASB 8831, phone 778-782-319 or 778-782-3814, Fax 778-782-4951, email glennc@cs.sfu.ca http://www.ensc.sfu.ca/people/faculty/chapman/ Interested

More information

Study of self-interference incoherent digital holography for the application of retinal imaging

Study of self-interference incoherent digital holography for the application of retinal imaging Study of self-interference incoherent digital holography for the application of retinal imaging Jisoo Hong and Myung K. Kim Department of Physics, University of South Florida, Tampa, FL, US 33620 ABSTRACT

More information

VC 11/12 T2 Image Formation

VC 11/12 T2 Image Formation VC 11/12 T2 Image Formation Mestrado em Ciência de Computadores Mestrado Integrado em Engenharia de Redes e Sistemas Informáticos Miguel Tavares Coimbra Outline Computer Vision? The Human Visual System

More information

Spectral and Polarization Configuration Guide for MS Series 3-CCD Cameras

Spectral and Polarization Configuration Guide for MS Series 3-CCD Cameras Spectral and Polarization Configuration Guide for MS Series 3-CCD Cameras Geospatial Systems, Inc (GSI) MS 3100/4100 Series 3-CCD cameras utilize a color-separating prism to split broadband light entering

More information