Physics 1252 Section Exam #1A

Size: px
Start display at page:

Download "Physics 1252 Section Exam #1A"

Transcription

1 Thu, 09 February 2017 Name: Physics 1252 Section Exam #1A Instructions: This is a closed-book, closed-notes exam. You are allowed to use a clean print-out of your formula sheet, any scientific calculator, and a ruler. Do not write on your formula sheet There is space after each question to show your work; if you need more space, you may use the back of the page, or request more paper. Please clearly indicate where your work for each problem is. Underline or draw a box around your final answer. The exam consists of four sections. Read all the questions at the start so that you can allocate your time wisely. Do easy ones first! You may not share your calculator. The use of cell phones or any other electronic devices (besides calculators) is prohibited. All such gadgets must be turned off and put away throughout the exam. Do not open the exam until told to begin. You have the entire lab/class period to finish the exam. Put your last name on every page of the exam. You must provide explanations and/or show work legibly to receive full credit for Sections III and IV. Make sure that your answers include appropriate units and significant digits. (Note: For intermediate steps in your calculation, it s best to carry around more significant digits.) Assume that the index of refraction of air is the same as for a vacuum, unless otherwise stated. By signing below, you indicate that you understand the instructions for this exam and agree to abide by them. You also certify that you will personally uphold the university s standards of academic honesty for this exam, and will not tolerate any violations of these standards by others. Unsigned exams will not be graded. Signature: UGACard #: Copyright c 2017 University of Georgia. Unauthorized duplication or distribution prohibited.

2 Section I II III IV V (Bonus) Score /20 /10 /35 /35 /10 I: Multiple-Choice Questions (20 points) For each question below, choose the single best response and write the corresponding capital letter in the box provided. There is no penalty for guessing the wrong answer. 1. A real object is placed in front of a converging mirror, at a distance greater than the focal length. When the object is moved slightly towards the mirror, without crossing the focal point, in which direction does the image move and/or change its size? A. The image moves closer to the mirror and the image (lateral) size grows. B. The image moves away from the mirror and the image (lateral) size grows. C. The image position doesn t change and the image (lateral) size grows. D. The image moves closer to the mirror and the image (lateral) size shrinks. E. The image moves away from the mirror and the image (lateral) size shrinks. 2. Which of the following statements best explains why a telescope enables you to see the details of the Moon more clearly? A. The final image formed by the telescope is brighter than the original object is. B. The final image formed by the telescope is closer to your eye than the original object is. C. The final image formed by the telescope is virtual rather than real. D. The final image formed by the telescope has a larger angular size, subtended at the eye, than the original object. E. The final image formed by the telescope is inverted rather than erect, relative to the original object. Copyright c 2017 University of Georgia. 2

3 3. UGA waves weren t covered in class, but they do obey Snell s law! They have a speed of wave propagation v A = 2097m/s in apple juice and v B = 522m/s in butter milk. Also, assume that arcsin(522/2097) = o. A narrow beam of UGA waves striking a flat horizontal interface between apple juice and butter milk, with the apple juice above and the butter milk below the interface, will... A. not undergo total internal reflection if incident from below the interface with an angle of incidence of 8.5 o. B. have an angle of refraction greater than the angle of incidence if the beam is incident from above the interface without total internal reflection. C. not undergo total internal reflection if incident from below the interface with an angle of incidence of 29.0 o. D. undergo total internal reflection if incident from above the interface with an angle of incidence of 29.0 o. E. always have an angle of refraction not exceeding o if the beam is incident from below the interface. 4. An image forming device, either a lens or a mirror, forms an image of a virtual object, as shown by the ray diagram below. Hint: Use the F -ray and the P -ray to first find focal points, F and F. H F-ray F -ray P -ray Q P-ray Object Optical Axis A Lens or Mirror? The ray diagram above shows... A. a convergent lens forming an inverted, virtual image to the left of the device. B. a divergent lens forming an erect, real image to the right of the device. C. a convergent lens forming an erect, real image to the right of the device. D. a divergent mirror forming an erect, real image to the right of the device. E. a divergent mirror forming an inverted, virtual image to the left of the device. Copyright c 2017 University of Georgia. 3

4 II: Draw a Ray Diagram (10 points) A virtual image is generated by a divergent mirror. The image is to the left of the mirror, at an absolute distance from the mirror which is greater than the absolute value of the mirror s focal length. Use a ruler to draw a clean ray diagram for the formation of the image, showing at least two of the principal rays, the mirror and both its focal points, the object and the image, all of them clearly labeled. Also answer this: Is the object real or virtual? Hint: You need to construct the object here, given the image. First draw optical axis, mirror and image. Then use sign conventions to find and label incoming and outgoing side of mirror. Then use that to find the location of focal points F and F. Warning: Be very careful if you use the C - and C-ray to construct the object. The C-ray does not pass straight through the mirror to form the C -ray, but rather the C-ray is reflected by the mirror to form the C -ray. Copyright c 2017 University of Georgia. 4

5 III: Refraction at a Prism Immersed in Air (35 points) Surface L Surface R Glass n G α φ Surface B Refraction at Prism a prism surface immersed B and in theair: incident ray (outside the prism) are horizontal. The angle between prism surfaces L and B is α = 15 o. The index of refraction of the glass is n G = The Prism surface refracted B and the rayincident from surface ray (outside L insidethe theprism) are strikes horizontal. surface The B. angle between prism surfaces L and B is α = 25 o. The index of refraction of the glass is n G = The refracted ray from surface L inside the prism strikes surface (a) Find B. the angle of incidence and the angle of refraction at surface L. A) Find the angle of incidence at surface L B) Find the angle of refraction at surface L C) Find the angle φ at surface B D) Find the angle of incidence at surface B E) Does the ray exit the prism thru surface B? If so, at what angle of refraction? If not, why not? (b) Find the angle φ at surface B. (c) Does the ray exit the prism thru surface B? If so, at what angle of refraction? If not, why not? Copyright c 2017 University of Georgia. 5

6 IV: A Microscope Image (35 points) In a microscope, an objective lens (Lens 1) of +1.10cm focal length is placed to the left of an eyepiece lens (Lens 2) of +1.90cm focal length. Your eye is located very close to, and to the right, of the eyepiece. A neuron (brain cell) is placed as the original object 1.15cm to the left of the objective lens. The final image produced by the eyepiece appears 29cm to the left of the eyepiece. Make a careful drawing of all this before you start!! (a) How far from the objective lens and to which side of it is the image produced by the objective lens? Is this image real or virtual? Is it erect or inverted relative to the original object. (b) Is the final image produced by the eyepiece real or virtual and, therefore, what is its image distance from the eyepiece? How far from the eyepiece is the eyepiece s object (=object from which the final image is produced)? How far apart are the two lenses? [Hint: The objective lens image found in (a) serves as the object to the eyepiece lens.] (c) If the original neuron object is 0.095mm in diameter what is the diameter of its final image, as seen through the eyepiece of the microscope? Is this final image erect or inverted relative to the original object? Copyright c 2017 University of Georgia. 6

7 V: Microscope Angular Magnification (10 extra points bonus, if correct numerical answer is obtained) From the results in Problem IV calculate the angular magnification achieved with the microscope, compared to viewing the neuron without any optical instrument, held at the near-point distance, 25.0cm from the eye. Do not use any memorized angular magnification formula that is not shown in the formula sheet! Copyright c 2017 University of Georgia. 7

Geometric Optics. Ray Model. assume light travels in straight line uses rays to understand and predict reflection & refraction

Geometric Optics. Ray Model. assume light travels in straight line uses rays to understand and predict reflection & refraction Geometric Optics Ray Model assume light travels in straight line uses rays to understand and predict reflection & refraction General Physics 2 Geometric Optics 1 Reflection Law of reflection the angle

More information

13. Optical Instruments*

13. Optical Instruments* 13. Optical Instruments* Objective: Here what you have been learning about thin lenses is applied to make a telescope. In the process you encounter general optical instrument design concepts. The learning

More information

Complete the diagram to show what happens to the rays. ... (1) What word can be used to describe this type of lens? ... (1)

Complete the diagram to show what happens to the rays. ... (1) What word can be used to describe this type of lens? ... (1) Q1. (a) The diagram shows two parallel rays of light, a lens and its axis. Complete the diagram to show what happens to the rays. (2) Name the point where the rays come together. (iii) What word can be

More information

Converging Lenses. Parallel rays are brought to a focus by a converging lens (one that is thicker in the center than it is at the edge).

Converging Lenses. Parallel rays are brought to a focus by a converging lens (one that is thicker in the center than it is at the edge). Chapter 30: Lenses Types of Lenses Piece of glass or transparent material that bends parallel rays of light so they cross and form an image Two types: Converging Diverging Converging Lenses Parallel rays

More information

Option G 2: Lenses. The diagram below shows the image of a square grid as produced by a lens that does not cause spherical aberration.

Option G 2: Lenses. The diagram below shows the image of a square grid as produced by a lens that does not cause spherical aberration. Name: Date: Option G 2: Lenses 1. This question is about spherical aberration. The diagram below shows the image of a square grid as produced by a lens that does not cause spherical aberration. In the

More information

Part 1 Investigating Snell s Law

Part 1 Investigating Snell s Law Geometric Optics with Lenses PURPOSE: To observe the refraction of light off through lenses; to investigate the relationship between objects and images; to study the relationship between object distance,

More information

Laboratory 7: Properties of Lenses and Mirrors

Laboratory 7: Properties of Lenses and Mirrors Laboratory 7: Properties of Lenses and Mirrors Converging and Diverging Lens Focal Lengths: A converging lens is thicker at the center than at the periphery and light from an object at infinity passes

More information

PHYSICS 289 Experiment 8 Fall Geometric Optics II Thin Lenses

PHYSICS 289 Experiment 8 Fall Geometric Optics II Thin Lenses PHYSICS 289 Experiment 8 Fall 2005 Geometric Optics II Thin Lenses Please look at the chapter on lenses in your text before this lab experiment. Please submit a short lab report which includes answers

More information

Readings: Hecht, Chapter 24

Readings: Hecht, Chapter 24 5. GEOMETRIC OPTICS Readings: Hecht, Chapter 24 Introduction In this lab you will measure the index of refraction of glass using Snell s Law, study the application of the laws of geometric optics to systems

More information

Lab 11: Lenses and Ray Tracing

Lab 11: Lenses and Ray Tracing Name: Lab 11: Lenses and Ray Tracing Group Members: Date: TA s Name: Materials: Ray box, two different converging lenses, one diverging lens, screen, lighted object, three stands, meter stick, two letter

More information

General Physics II. Ray Optics

General Physics II. Ray Optics General Physics II Ray Optics 1 Dispersion White light is a combination of all the wavelengths of the visible part of the electromagnetic spectrum. Red light has the longest wavelengths and violet light

More information

Physics 4L Spring 2010 Problem set 1 Due Tuesday 26 January in class

Physics 4L Spring 2010 Problem set 1 Due Tuesday 26 January in class Physics 4L Spring 2010 Problem set 1 Due Tuesday 26 January in class From Wolfson: Chapter 30 problem 36 (the flashlight beam comes out of the water some distance from the edge of the lake; the figure

More information

Final Reg Optics Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Final Reg Optics Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Final Reg Optics Review 1) How far are you from your image when you stand 0.75 m in front of a vertical plane mirror? 1) 2) A object is 12 cm in front of a concave mirror, and the image is 3.0 cm in front

More information

CHAPTER 3LENSES. 1.1 Basics. Convex Lens. Concave Lens. 1 Introduction to convex and concave lenses. Shape: Shape: Symbol: Symbol:

CHAPTER 3LENSES. 1.1 Basics. Convex Lens. Concave Lens. 1 Introduction to convex and concave lenses. Shape: Shape: Symbol: Symbol: CHAPTER 3LENSES 1 Introduction to convex and concave lenses 1.1 Basics Convex Lens Shape: Concave Lens Shape: Symbol: Symbol: Effect to parallel rays: Effect to parallel rays: Explanation: Explanation:

More information

General Physics II. Optical Instruments

General Physics II. Optical Instruments General Physics II Optical Instruments 1 The Thin-Lens Equation 2 The Thin-Lens Equation Using geometry, one can show that 1 1 1 s+ =. s' f The magnification of the lens is defined by For a thin lens,

More information

Reflection and Refraction of Light

Reflection and Refraction of Light Reflection and Refraction of Light Physics 102 28 March 2002 Lecture 6 28 Mar 2002 Physics 102 Lecture 6 1 Light waves and light rays Last time we showed: Time varying B fields E fields B fields to create

More information

Geometric Optics. PSI AP Physics 2. Multiple-Choice

Geometric Optics. PSI AP Physics 2. Multiple-Choice Geometric Optics PSI AP Physics 2 Name Multiple-Choice 1. When an object is placed in front of a plane mirror the image is: (A) Upright, magnified and real (B) Upright, the same size and virtual (C) Inverted,

More information

Test Review # 8. Physics R: Form TR8.17A. Primary colors of light

Test Review # 8. Physics R: Form TR8.17A. Primary colors of light Physics R: Form TR8.17A TEST 8 REVIEW Name Date Period Test Review # 8 Light and Color. Color comes from light, an electromagnetic wave that travels in straight lines in all directions from a light source

More information

Chapter 34 Geometric Optics

Chapter 34 Geometric Optics Chapter 34 Geometric Optics Lecture by Dr. Hebin Li Goals of Chapter 34 To see how plane and curved mirrors form images To learn how lenses form images To understand how a simple image system works Reflection

More information

Lenses. A transparent object used to change the path of light Examples: Human eye Eye glasses Camera Microscope Telescope

Lenses. A transparent object used to change the path of light Examples: Human eye Eye glasses Camera Microscope Telescope SNC2D Lenses A transparent object used to change the path of light Examples: Human eye Eye glasses Camera Microscope Telescope Reading stones used by monks, nuns, and scholars ~1000 C.E. Lenses THERE ARE

More information

Applied Optics. , Physics Department (Room #36-401) , ,

Applied Optics. , Physics Department (Room #36-401) , , Applied Optics Professor, Physics Department (Room #36-401) 2290-0923, 019-539-0923, shsong@hanyang.ac.kr Office Hours Mondays 15:00-16:30, Wednesdays 15:00-16:30 TA (Ph.D. student, Room #36-415) 2290-0921,

More information

Video. Part I. Equipment

Video. Part I. Equipment 1 of 7 11/8/2013 11:32 AM There are two parts to this lab that can be done in either order. In Part I you will study the Laws of Reflection and Refraction, measure the index of refraction of glass and

More information

always positive for virtual image

always positive for virtual image Point to be remembered: sign convention for Spherical mirror Object height, h = always positive Always +ve for virtual image Image height h = Always ve for real image. Object distance from pole (u) = always

More information

Algebra Based Physics. Reflection. Slide 1 / 66 Slide 2 / 66. Slide 3 / 66. Slide 4 / 66. Slide 5 / 66. Slide 6 / 66.

Algebra Based Physics. Reflection. Slide 1 / 66 Slide 2 / 66. Slide 3 / 66. Slide 4 / 66. Slide 5 / 66. Slide 6 / 66. Slide 1 / 66 Slide 2 / 66 Algebra Based Physics Geometric Optics 2015-12-01 www.njctl.org Slide 3 / 66 Slide 4 / 66 Table of ontents lick on the topic to go to that section Reflection Refraction and Snell's

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A plane mirror is placed on the level bottom of a swimming pool that holds water (n =

More information

Chapter 23. Light Geometric Optics

Chapter 23. Light Geometric Optics Chapter 23. Light Geometric Optics There are 3 basic ways to gather light and focus it to make an image. Pinhole - Simple geometry Mirror - Reflection Lens - Refraction Pinhole Camera Image Formation (the

More information

Converging and Diverging Surfaces. Lenses. Converging Surface

Converging and Diverging Surfaces. Lenses. Converging Surface Lenses Sandy Skoglund 2 Converging and Diverging s AIR Converging If the surface is convex, it is a converging surface in the sense that the parallel rays bend toward each other after passing through the

More information

Chapter 26. The Refraction of Light: Lenses and Optical Instruments

Chapter 26. The Refraction of Light: Lenses and Optical Instruments Chapter 26 The Refraction of Light: Lenses and Optical Instruments 26.1 The Index of Refraction Light travels through a vacuum at a speed c=3. 00 10 8 m/ s Light travels through materials at a speed less

More information

10.2 Images Formed by Lenses SUMMARY. Refraction in Lenses. Section 10.1 Questions

10.2 Images Formed by Lenses SUMMARY. Refraction in Lenses. Section 10.1 Questions 10.2 SUMMARY Refraction in Lenses Converging lenses bring parallel rays together after they are refracted. Diverging lenses cause parallel rays to move apart after they are refracted. Rays are refracted

More information

Geometric Optics. This is a double-convex glass lens mounted in a wooden frame. We will use this as the eyepiece for our microscope.

Geometric Optics. This is a double-convex glass lens mounted in a wooden frame. We will use this as the eyepiece for our microscope. I. Before you come to lab Read through this handout in its entirety. II. Learning Objectives As a result of performing this lab, you will be able to: 1. Use the thin lens equation to determine the focal

More information

PHYSICS FOR THE IB DIPLOMA CAMBRIDGE UNIVERSITY PRESS

PHYSICS FOR THE IB DIPLOMA CAMBRIDGE UNIVERSITY PRESS Option C Imaging C Introduction to imaging Learning objectives In this section we discuss the formation of images by lenses and mirrors. We will learn how to construct images graphically as well as algebraically.

More information

General Physics Experiment 5 Optical Instruments: Simple Magnifier, Microscope, and Newtonian Telescope

General Physics Experiment 5 Optical Instruments: Simple Magnifier, Microscope, and Newtonian Telescope General Physics Experiment 5 Optical Instruments: Simple Magnifier, Microscope, and Newtonian Telescope Objective: < To observe the magnifying properties of the simple magnifier, the microscope and the

More information

Reading: Lenses and Mirrors; Applications Key concepts: Focal points and lengths; real images; virtual images; magnification; angular magnification.

Reading: Lenses and Mirrors; Applications Key concepts: Focal points and lengths; real images; virtual images; magnification; angular magnification. Reading: Lenses and Mirrors; Applications Key concepts: Focal points and lengths; real images; virtual images; magnification; angular magnification. 1.! Questions about objects and images. Can a virtual

More information

c v n = n r Sin n c = n i Refraction of Light Index of Refraction Snell s Law or Refraction Example Problem Total Internal Reflection Optics

c v n = n r Sin n c = n i Refraction of Light Index of Refraction Snell s Law or Refraction Example Problem Total Internal Reflection Optics Refraction is the bending of the path of a light wave as it passes from one material into another material. Refraction occurs at the boundary and is caused by a change in the speed of the light wave upon

More information

PHYS 1020 LAB 7: LENSES AND OPTICS. Pre-Lab

PHYS 1020 LAB 7: LENSES AND OPTICS. Pre-Lab PHYS 1020 LAB 7: LENSES AND OPTICS Note: Print and complete the separate pre-lab assignment BEFORE the lab. Hand it in at the start of the lab. Pre-Lab Start by reading the entire prelab and lab write-up.

More information

Chapter 34: Geometrical Optics (Part 2)

Chapter 34: Geometrical Optics (Part 2) Chapter 34: Geometrical Optics (Part 2) Brief review Optical instruments Camera Human eye Magnifying glass Telescope Microscope Optical Aberrations Phys Phys 2435: 22: Chap. 34, 31, Pg 1 The Lens Equation

More information

O5: Lenses and the refractor telescope

O5: Lenses and the refractor telescope O5. 1 O5: Lenses and the refractor telescope Introduction In this experiment, you will study converging lenses and the lens equation. You will make several measurements of the focal length of lenses and

More information

BHARATIYA VIDYA BHAVAN S V M PUBLIC SCHOOL, VADODARA QUESTION BANK

BHARATIYA VIDYA BHAVAN S V M PUBLIC SCHOOL, VADODARA QUESTION BANK BHARATIYA VIDYA BHAVAN S V M PUBLIC SCHOOL, VADODARA QUESTION BANK Ch Light : Reflection and Refraction One mark questions Q1 Q3 What happens when a ray of light falls normally on the surface of a plane

More information

PHYS 160 Astronomy. When analyzing light s behavior in a mirror or lens, it is helpful to use a technique called ray tracing.

PHYS 160 Astronomy. When analyzing light s behavior in a mirror or lens, it is helpful to use a technique called ray tracing. Optics Introduction In this lab, we will be exploring several properties of light including diffraction, reflection, geometric optics, and interference. There are two sections to this lab and they may

More information

Physics II. Chapter 23. Spring 2018

Physics II. Chapter 23. Spring 2018 Physics II Chapter 23 Spring 2018 IMPORTANT: Except for multiple-choice questions, you will receive no credit if you show only an answer, even if the answer is correct. Always show in the space on your

More information

Assignment X Light. Reflection and refraction of light. (a) Angle of incidence (b) Angle of reflection (c) principle axis

Assignment X Light. Reflection and refraction of light. (a) Angle of incidence (b) Angle of reflection (c) principle axis Assignment X Light Reflection of Light: Reflection and refraction of light. 1. What is light and define the duality of light? 2. Write five characteristics of light. 3. Explain the following terms (a)

More information

REFLECTION THROUGH LENS

REFLECTION THROUGH LENS REFLECTION THROUGH LENS A lens is a piece of transparent optical material with one or two curved surfaces to refract light rays. It may converge or diverge light rays to form an image. Lenses are mostly

More information

Algebra Based Physics. Reflection. Slide 1 / 66 Slide 2 / 66. Slide 3 / 66. Slide 4 / 66. Slide 5 / 66. Slide 6 / 66.

Algebra Based Physics. Reflection. Slide 1 / 66 Slide 2 / 66. Slide 3 / 66. Slide 4 / 66. Slide 5 / 66. Slide 6 / 66. Slide 1 / 66 Slide 2 / 66 lgebra ased Physics Geometric Optics 2015-12-01 www.njctl.org Slide 3 / 66 Slide 4 / 66 Table of ontents lick on the topic to go to that section Reflection Refraction and Snell's

More information

Division C Optics KEY Captains Exchange

Division C Optics KEY Captains Exchange Division C Optics KEY 2017-2018 Captains Exchange 1.) If a laser beam is reflected off a mirror lying on a table and bounces off a nearby wall at a 30 degree angle, what was the angle of incidence of the

More information

There is a range of distances over which objects will be in focus; this is called the depth of field of the lens. Objects closer or farther are

There is a range of distances over which objects will be in focus; this is called the depth of field of the lens. Objects closer or farther are Chapter 25 Optical Instruments Some Topics in Chapter 25 Cameras The Human Eye; Corrective Lenses Magnifying Glass Telescopes Compound Microscope Aberrations of Lenses and Mirrors Limits of Resolution

More information

2015 EdExcel A Level Physics EdExcel A Level Physics. Lenses

2015 EdExcel A Level Physics EdExcel A Level Physics. Lenses 2015 EdExcel A Level Physics 2015 EdExcel A Level Physics Topic Topic 5 5 Lenses Types of lenses Converging lens bi-convex has two convex surfaces Diverging lens bi-concave has two concave surfaces Thin

More information

Dr. Todd Satogata (ODU/Jefferson Lab) Monday, April

Dr. Todd Satogata (ODU/Jefferson Lab)  Monday, April University Physics 227N/232N Mirrors and Lenses Homework Optics 2 due Friday AM Quiz Friday Optional review session next Monday (Apr 28) Bring Homework Notebooks to Final for Grading Dr. Todd Satogata

More information

Activity 6.1 Image Formation from Spherical Mirrors

Activity 6.1 Image Formation from Spherical Mirrors PHY385H1F Introductory Optics Practicals Day 6 Telescopes and Microscopes October 31, 2011 Group Number (number on Intro Optics Kit):. Facilitator Name:. Record-Keeper Name: Time-keeper:. Computer/Wiki-master:..

More information

Parity and Plane Mirrors. Invert Image flip about a horizontal line. Revert Image flip about a vertical line.

Parity and Plane Mirrors. Invert Image flip about a horizontal line. Revert Image flip about a vertical line. Optical Systems 37 Parity and Plane Mirrors In addition to bending or folding the light path, reflection from a plane mirror introduces a parity change in the image. Invert Image flip about a horizontal

More information

Lecture Outline Chapter 27. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 27. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 27 Physics, 4 th Edition James S. Walker Chapter 27 Optical Instruments Units of Chapter 27 The Human Eye and the Camera Lenses in Combination and Corrective Optics The Magnifying

More information

INDIAN SCHOOL MUSCAT SENIOR SECTION DEPARTMENT OF PHYSICS CLASS X REFLECTION AND REFRACTION OF LIGHT QUESTION BANK

INDIAN SCHOOL MUSCAT SENIOR SECTION DEPARTMENT OF PHYSICS CLASS X REFLECTION AND REFRACTION OF LIGHT QUESTION BANK INDIAN SCHOOL MUSCAT SENIOR SECTION DEPARTMENT OF PHYSICS CLASS X REFLECTION AND REFRACTION OF LIGHT QUESTION BANK 1. Q. A small candle 2.5cm in size is placed at 27 cm in front of concave mirror of radius

More information

Physics 228 Lecture 3. Today: Spherical Mirrors Lenses.

Physics 228 Lecture 3. Today: Spherical Mirrors Lenses. Physics 228 Lecture 3 Today: Spherical Mirrors Lenses www.physics.rutgers.edu/ugrad/228 a) Santa as he sees himself in a mirrored sphere. b) Santa as he sees himself in a flat mirror after too much eggnog.

More information

Optics Practice. Version #: 0. Name: Date: 07/01/2010

Optics Practice. Version #: 0. Name: Date: 07/01/2010 Optics Practice Date: 07/01/2010 Version #: 0 Name: 1. Which of the following diagrams show a real image? a) b) c) d) e) i, ii, iii, and iv i and ii i and iv ii and iv ii, iii and iv 2. A real image is

More information

Chapter 9 - Ray Optics and Optical Instruments. The image distance can be obtained using the mirror formula:

Chapter 9 - Ray Optics and Optical Instruments. The image distance can be obtained using the mirror formula: Question 9.1: A small candle, 2.5 cm in size is placed at 27 cm in front of a concave mirror of radius of curvature 36 cm. At what distance from the mirror should a screen be placed in order to obtain

More information

Basic Optics System OS-8515C

Basic Optics System OS-8515C 40 50 30 60 20 70 10 80 0 90 80 10 20 70 T 30 60 40 50 50 40 60 30 70 20 80 90 90 80 BASIC OPTICS RAY TABLE 10 0 10 70 20 60 50 40 30 Instruction Manual with Experiment Guide and Teachers Notes 012-09900B

More information

Phys 102 Lecture 21 Optical instruments

Phys 102 Lecture 21 Optical instruments Phys 102 Lecture 21 Optical instruments 1 Today we will... Learn how combinations of lenses form images Thin lens equation & magnification Learn about the compound microscope Eyepiece & objective Total

More information

30 Lenses. Lenses change the paths of light.

30 Lenses. Lenses change the paths of light. Lenses change the paths of light. A light ray bends as it enters glass and bends again as it leaves. Light passing through glass of a certain shape can form an image that appears larger, smaller, closer,

More information

Physics Chapter Review Chapter 25- The Eye and Optical Instruments Ethan Blitstein

Physics Chapter Review Chapter 25- The Eye and Optical Instruments Ethan Blitstein Physics Chapter Review Chapter 25- The Eye and Optical Instruments Ethan Blitstein The Human Eye As light enters through the human eye it first passes through the cornea (a thin transparent membrane of

More information

Physics 1C. Lecture 25B

Physics 1C. Lecture 25B Physics 1C Lecture 25B "More than 50 years ago, Austrian researcher Ivo Kohler gave people goggles thats severely distorted their vision: The lenses turned the world upside down. After several weeks, subjects

More information

Chapter 19 Lenses (Sample)

Chapter 19 Lenses (Sample) Chapter 19 Lenses (Sample) A. Key Examples of Exam-type Questions Problem-solving strategy How lenses produce images: Steps 1. principal axis 2. convex or concave lens 3. scale, object size and distance

More information

CHAPTER 18 REFRACTION & LENSES

CHAPTER 18 REFRACTION & LENSES Physics Approximate Timeline Students are expected to keep up with class work when absent. CHAPTER 18 REFRACTION & LENSES Day Plans for the day Assignments for the day 1 18.1 Refraction of Light o Snell

More information

Physics Learning Guide Name:

Physics Learning Guide Name: Physics Learning Guide Name: Instructions: Using a pencil, complete the following notes as you work through the related lessons. Show ALL work as is explained in the lessons. You are required to have this

More information

Lab 10: Lenses & Telescopes

Lab 10: Lenses & Telescopes Physics 2020, Fall 2010 Lab 8 page 1 of 6 Circle your lab day and time. Your name: Mon Tue Wed Thu Fri TA name: 8-10 10-12 12-2 2-4 4-6 INTRODUCTION Lab 10: Lenses & Telescopes In this experiment, you

More information

Chapter 24 Geometrical Optics. Copyright 2010 Pearson Education, Inc.

Chapter 24 Geometrical Optics. Copyright 2010 Pearson Education, Inc. Chapter 24 Geometrical Optics Lenses convex (converging) concave (diverging) Mirrors Ray Tracing for Mirrors We use three principal rays in finding the image produced by a curved mirror. The parallel ray

More information

Lecture 21. Physics 1202: Lecture 21 Today s Agenda

Lecture 21. Physics 1202: Lecture 21 Today s Agenda Physics 1202: Lecture 21 Today s Agenda Announcements: Team problems today Team 14: Gregory Desautels, Benjamin Hallisey, Kyle Mcginnis Team 15: Austin Dion, Nicholas Gandza, Paul Macgillis-Falcon Homework

More information

Chapter 2 - Geometric Optics

Chapter 2 - Geometric Optics David J. Starling Penn State Hazleton PHYS 214 The human eye is a visual system that collects light and forms an image on the retina. The human eye is a visual system that collects light and forms an image

More information

!"#$%&$'()(*'+,&-./,'(0' focal point! parallel rays! converging lens" image of an object in a converging lens" converging lens: 3 easy rays" !

!#$%&$'()(*'+,&-./,'(0' focal point! parallel rays! converging lens image of an object in a converging lens converging lens: 3 easy rays ! !"#$%&$'()(*'+,&-./,'(0' converging lens"! +,7$,$'! 8,9/4&:27'473'+,7$,$'! 84#';%4?.4:27' 1234#5$'126%&$'''! @4=,/4$'! 1",'A.=47'>#,*'+,7$,$'473'B4

More information

Chapter 36. Image Formation

Chapter 36. Image Formation Chapter 36 Image Formation Real and Virtual Images Real images can be displayed on screens Virtual Images can not be displayed onto screens. Focal Length& Radius of Curvature When the object is very far

More information

Department of Physics & Astronomy Undergraduate Labs. Thin Lenses

Department of Physics & Astronomy Undergraduate Labs. Thin Lenses Thin Lenses Reflection and Refraction When light passes from one medium to another, part of the light is reflected and the rest is transmitted. Light rays that are transmitted undergo refraction (bending)

More information

Physics 197 Lab 7: Thin Lenses and Optics

Physics 197 Lab 7: Thin Lenses and Optics Physics 197 Lab 7: Thin Lenses and Optics Equipment: Item Part # Qty per Team # of Teams Basic Optics Light Source PASCO OS-8517 1 12 12 Power Cord for Light Source 1 12 12 Ray Optics Set (Concave Lens)

More information

Phy Ph s y 102 Lecture Lectur 21 Optical instruments 1

Phy Ph s y 102 Lecture Lectur 21 Optical instruments 1 Phys 102 Lecture 21 Optical instruments 1 Today we will... Learn how combinations of lenses form images Thin lens equation & magnification Learn about the compound microscope Eyepiece & objective Total

More information

AP Physics Problems -- Waves and Light

AP Physics Problems -- Waves and Light AP Physics Problems -- Waves and Light 1. 1974-3 (Geometric Optics) An object 1.0 cm high is placed 4 cm away from a converging lens having a focal length of 3 cm. a. Sketch a principal ray diagram for

More information

25 cm. 60 cm. 50 cm. 40 cm.

25 cm. 60 cm. 50 cm. 40 cm. Geometrical Optics 7. The image formed by a plane mirror is: (a) Real. (b) Virtual. (c) Erect and of equal size. (d) Laterally inverted. (e) B, c, and d. (f) A, b and c. 8. A real image is that: (a) Which

More information

1. Draw the Ray Diagram, name lens or mirror shown and determine the SALT for each picture

1. Draw the Ray Diagram, name lens or mirror shown and determine the SALT for each picture Honors Physics Chapter 22 and 23 Test Name: 1. Draw the Ray Diagram, name lens or mirror shown and determine the SALT for each picture 2. Type of Mirror above: i. SALT of image: S: A: L: T: b. Type of

More information

OPTICS DIVISION B. School/#: Names:

OPTICS DIVISION B. School/#: Names: OPTICS DIVISION B School/#: Names: Directions: Fill in your response for each question in the space provided. All questions are worth two points. Multiple Choice (2 points each question) 1. Which of the

More information

Unit 3: Energy On the Move

Unit 3: Energy On the Move 14 14 Table of Contents Unit 3: Energy On the Move Chapter 14: Mirrors and Lenses 14.1: Mirrors 14.2: Lenses 14.3: Optical Instruments 14.1 Mirrors How do you use light to see? When light travels from

More information

2. The radius of curvature of a spherical mirror is 20 cm. What is its focal length?

2. The radius of curvature of a spherical mirror is 20 cm. What is its focal length? 1. Define the principle focus of a concave mirror? The principle focus of a concave mirror is a point on its principle axis to which all the light rays which are parallel and close to the axis, converge

More information

Experiment 3: Reflection

Experiment 3: Reflection Model No. OS-8515C Experiment 3: Reflection Experiment 3: Reflection Required Equipment from Basic Optics System Light Source Mirror from Ray Optics Kit Other Required Equipment Drawing compass Protractor

More information

INSIDE LAB 6: The Properties of Lenses and Telescopes

INSIDE LAB 6: The Properties of Lenses and Telescopes INSIDE LAB 6: The Properties of Lenses and Telescopes OBJECTIVE: To construct a simple refracting telescope and to measure some of its properties. DISCUSSION: In tonight s lab we will build a simple telescope

More information

Practice Problems (Geometrical Optics)

Practice Problems (Geometrical Optics) 1 Practice Problems (Geometrical Optics) 1. A convex glass lens (refractive index = 3/2) has a focal length of 8 cm when placed in air. What is the focal length of the lens when it is immersed in water

More information

04. REFRACTION OF LIGHT AT CURVED SURFACES

04. REFRACTION OF LIGHT AT CURVED SURFACES CLASS-10 PHYSICAL SCIENCE 04. REFRACTION OF LIGHT AT CURVED SURFACES Questions and Answers *Reflections on Concepts* 1. Write the lens maker s formula and explain the terms in it. A. Lens maker s formula

More information

Physics 222, October 25

Physics 222, October 25 Physics 222, October 25 Key Concepts: Image formation by refraction Thin lenses The eye Optical instruments A single flat interface Images can be formed by refraction, when light traverses a boundary between

More information

Chapter 23. Mirrors and Lenses

Chapter 23. Mirrors and Lenses Chapter 23 Mirrors and Lenses Mirrors and Lenses The development of mirrors and lenses aided the progress of science. It led to the microscopes and telescopes. Allowed the study of objects from microbes

More information

Chapter 18 Optical Elements

Chapter 18 Optical Elements Chapter 18 Optical Elements GOALS When you have mastered the content of this chapter, you will be able to achieve the following goals: Definitions Define each of the following terms and use it in an operational

More information

28 Thin Lenses: Ray Tracing

28 Thin Lenses: Ray Tracing 28 Thin Lenses: Ray Tracing A lens is a piece of transparent material whose surfaces have been shaped so that, when the lens is in another transparent material (call it medium 0), light traveling in medium

More information

Phys214 Fall 2004 Midterm Form A

Phys214 Fall 2004 Midterm Form A 1. A clear sheet of polaroid is placed on top of a similar sheet so that their polarizing axes make an angle of 30 with each other. The ratio of the intensity of emerging light to incident unpolarized

More information

LAB 12 Reflection and Refraction

LAB 12 Reflection and Refraction Cabrillo College Physics 10L Name LAB 12 Reflection and Refraction Read Hewitt Chapters 28 and 29 What to learn and explore Please read this! When light rays reflect off a mirror surface or refract through

More information

1) An electromagnetic wave is a result of electric and magnetic fields acting together. T 1)

1) An electromagnetic wave is a result of electric and magnetic fields acting together. T 1) Exam 3 Review Name TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) An electromagnetic wave is a result of electric and magnetic fields acting together. T 1) 2) Electromagnetic

More information

Physics 102 Exam 3 Fall Last Name: First Name Network-ID

Physics 102 Exam 3 Fall Last Name: First Name Network-ID Physics 102 Exam 3 Fall 2013 Last Name: First Name Network-ID Discussion Section: Discussion TA Name: Turn off your cell phone and put it out of sight. Keep your calculator on your own desk. Calculators

More information

The Law of Reflection

The Law of Reflection PHY132H1F Introduction to Physics II Class 5 Outline: Reflection and Refraction Fibre-Optics Colour and Dispersion Thin Lens Equation Image Formation Quick reading quiz.. virtual image is. the cause of

More information

Physics 1202: Lecture 19 Today s Agenda

Physics 1202: Lecture 19 Today s Agenda Physics 1202: Lecture 19 Today s Agenda Announcements: Team problems today Team 12: Kervell Baird, Matthew George, Derek Schultz Team 13: Paxton Stowik, Stacey Ann Burke Team 14: Gregory Desautels, Benjamin

More information

An image is being formed by a mirror with a spherical radius of R=+40cm. Draw mirror spherical surface curving to the right!

An image is being formed by a mirror with a spherical radius of R=+40cm. Draw mirror spherical surface curving to the right! Image formation by Reflection at a Spherical Mirror An image is being formed by a mirror with a spherical radius of R=+40cm. Left side of room: Right side of room: Draw mirror spherical surface curving

More information

University of Rochester Department of Physics and Astronomy Physics123, Spring Homework 5 - Solutions

University of Rochester Department of Physics and Astronomy Physics123, Spring Homework 5 - Solutions Problem 5. University of Rochester Department of Physics and Astronomy Physics23, Spring 202 Homework 5 - Solutions An optometrist finds that a farsighted person has a near point at 25 cm. a) If the eye

More information

Name. Light Chapter Summary Cont d. Refraction

Name. Light Chapter Summary Cont d. Refraction Page 1 of 17 Physics Week 12(Sem. 2) Name Light Chapter Summary Cont d with a smaller index of refraction to a material with a larger index of refraction, the light refracts towards the normal line. Also,

More information

7 = <» _1_. The Language of Physics. Summary of Important Equations. J_ Pi. \j?i rj

7 = <» _1_. The Language of Physics. Summary of Important Equations. J_ Pi. \j?i rj The Language of Physics Refraction The bending of light as it travels from one medium into another. It occurs because of the difference in the speed of light in the different mediums. Whenever a ray of

More information

Physics 2020 Lab 8 Lenses

Physics 2020 Lab 8 Lenses Physics 2020 Lab 8 Lenses Name Section Introduction. In this lab, you will study converging lenses. There are a number of different types of converging lenses, but all of them are thicker in the middle

More information

Condition Mirror Refractive Lens Concave Focal Length Positive Focal Length Negative. Image distance positive

Condition Mirror Refractive Lens Concave Focal Length Positive Focal Length Negative. Image distance positive Comparison between mirror lenses and refractive lenses Condition Mirror Refractive Lens Concave Focal Length Positive Focal Length Negative Convex Focal Length Negative Focal Length Positive Image location

More information

Lab 8 Microscope. Name. I. Introduction/Theory

Lab 8 Microscope. Name. I. Introduction/Theory Lab 8 Microscope Name I. Introduction/Theory The purpose of this experiment is to construct a microscope and determine the magnification. A microscope magnifies an object that is close to the microscope.

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 27 Geometric Optics Spring 205 Semester Matthew Jones Sign Conventions > + = Convex surface: is positive for objects on the incident-light side is positive for

More information

Refraction, Lenses, and Prisms

Refraction, Lenses, and Prisms CHAPTER 16 14 SECTION Sound and Light Refraction, Lenses, and Prisms KEY IDEAS As you read this section, keep these questions in mind: What happens to light when it passes from one medium to another? How

More information