Digital Image Processing. Lecture # 4 Image Enhancement (Histogram)

Size: px
Start display at page:

Download "Digital Image Processing. Lecture # 4 Image Enhancement (Histogram)"

Transcription

1 Digital Image Processing Lecture # 4 Image Enhancement (Histogram) 1

2 Histogram of a Grayscale Image Let I be a 1-band (grayscale) image. I(r,c) is an 8-bit integer between 0 and 255. Histogram, h I, of I: a 256-element array, h I h I (g) = number of pixels in I that have value g. for g = 0,1, 2, 3,, 255 2

3 HISTOGRAM A discrete function h(r k )=n k r k is the k th gray level n k is the number of pixels having gray level r k in the image Ex: n k r k 3

4 4 UNIQUENESS

5 Histogram of a Grayscale Image Histogram of a digital image with gray levels in the range [0,L-1] is a discrete function Where r k = k th gray level h( r ) k n k n k = number of pixels in the image having gray level r k h(r k ) = histogram of an image having r k gray levels 5

6 Normalized Histogram Dividing each of histogram at gray level r k by the total number of pixels in the image, n p( r ) n / n for k 0,1,, L 1 k k p(r k ) gives an estimate of the probability of occurrence of gray level r k The sum of all components of a normalized histogram is equal to 1 6

7 Histogram of a Grayscale Image 16-level (4-bit) image lower RHC: number of pixels with intensity g black marks pixels with intensity g 7

8 Histogram of a Grayscale Image Black marks pixels with intensity g Plot of histogram: number of pixels with intensity g 8

9 Histogram of a Grayscale Image Black marks pixels with intensity g Plot of histogram: number of pixels with intensity g 9

10 Histogram of a Grayscale Image hi g the number of pixels in I with graylevel g. 10

11 Histogram of a Color Image If I is a 3-band image then I(r,c,b) is an integer between 0 and 255. I has 3 histograms: h R (g) = # of pixels in I(:,:,1) with intensity value g h G (g) = # of pixels in I(:,:,2) with intensity value g h B (g) = # of pixels in I(:,:,3) with intensity value g 11

12 Histogram of a Color Image There is one histogram per color band R, G, & B. Luminosity histogram is from 1 band = (R+G+B)/3 12

13 Histogram of a Color Image 13

14 Histogram of a Color Image 14

15 Histogram: Example Dark Image How would the histograms of these images look like? Bright Image 15

16 Histogram: Example Dark image Components of histogram are concentrated on the low side of the gray scale Bright image Components of histogram are concentrated on the high side of the gray scale 16

17 17 HISTOGRAM INSIGHT INTO CONTRAST

18 Histogram: Example Low Contrast Image How would the histograms of these images look like? High Contrast Image 18

19 Histogram: Example Low contrast image Histogram is narrow and centered toward the middle of the gray scale High contrast image Histogram covers broad range of the gray scale and the distribution of pixels is not too far from uniform with very few vertical lines being much higher than the others 19

20 Contrast Stretching Improve the contrast in an image by `stretching' the range of intensity values it contains to span a desired range of values, e.g. the the full range of pixel values 20

21 Contrast Stretching If r max and r min are the maximum and minimum gray level of the input image and L is the total gray levels of output image, the transformation function for contrast stretch will be s T r r r L 1 ( ) ( min ) rmax rmin L 0 r min 127 r max

22 Contrast Stretching 22

23 Histogram Equalization Histogram equalization re-assigns the intensity values of pixels in the input image such that the output image contains a uniform distribution of intensities 23

24 24 HISTOGRAM EQUALIZATION

25 AERIAL PHOTOGRAPH OF THE PENTAGON 25 Resulting image uses more of dynamic range. Resulting histogram almost, but not completely, flat.

26 The Probability Distribution Function Let 255 g0 I A h g Note that since I with value g, hi g of an Image is the number of pixels in A is the number of pixels in I. That is if I is R rows by C columns then A RC. Then, 1 pi g hi g A This is the probability that an arbitrary pixel from I has value g. 26

27 The Probability Distribution Function of an Image p(g) is the fraction of pixels in an image that have intensity value g. p(g) is the probability that a pixel randomly selected from the given image has intensity value g. Whereas the sum of the histogram h(g) over all g from 0 to 255 is equal to the number of pixels in the image, the sum of p(g) over all g is 1. p is the normalized histogram of the image 27

28 The Cumulative Distribution Function of an Image Let q = I(r,c) be the value of a randomly selected pixel from I. Let g be a specific gray level. The probability that q g is given by g g 1 P g p h I I I 0 A 0 g h h I I, where h I (γ ) is the histogram of image I. This is the probability that any given pixel from I has value less than or equal to g. 28

29 The Cumulative Distribution Function of an Image Let q = I(r,c) be the value of a randomly selected pixel from I. Let g be a specific gray level. The probability that q g is given by g g 1 P g p h I I I 0 A 0 g h h I I, Also called CDF for Cumulative Distribution Function. where h I (γ ) is the histogram of image I. This is the probability that any given pixel from I has value less than or equal to g. 29

30 The Cumulative Distribution Function of an Image P(g) is the fraction of pixels in an image that have intensity values less than or equal to g. P(g) is the probability that a pixel randomly selected from the given band has an intensity value less than or equal to g. P(g) is the cumulative (or running) sum of p(g) from 0 through g inclusive. P(0) = p(0) and P(255) = 1; 30

31 Histogram Equalization Task: remap image I so that its histogram is as close to constant as possible Let PI be the cumulative (probability) distribution function of I. The CDF itself is used as the LUT. 31

32 Histogram Equalization pdf The CDF (cumulative distribution) is the LUT for remapping. CDF 32

33 Histogram Equalization pdf The CDF (cumulative distribution) is the LUT for remapping. LUT 33

34 Histogram Equalization pdf The CDF (cumulative distribution) is the LUT for remapping. LUT 34

35 Histogram Equalization 35

36 Histogram Equalization Luminosity before J r, c 255 PI I r, c. after 36

37 HISTOGRAM EQUALIZATION IMPLEMENTATION Gray levels Counts (h(r k )) r 0 r 1 r 2 r 3 r 4 r 5 r 6 Normalized h (P(r k )) 5/20 4/ /20 1/20 3/20 0 4/20 1/20 cdf F(r k ) 5/20 9/20 11/20 12/20 15/20 19/20 20/20 s k =round(9 F(r k )) s 0 s 1 s 2 s 3 s 4 s 5 s 6 37

38 Histogram Equalization: Example An 8x8 image 38

39 Histogram Equalization: Example Fill in the following table/histogram Image Histogram (Non-zero values) 39

40 Histogram Equalization: Example Image Histogram (Non-zero values shown) 40

41 Histogram Equalization: Example 41

42 Histogram Equalization: Example Cumulative Distribution Function (cdf) Image Histogram/Prob Mass Function 42

43 Histogram Equalization: Example Cumulative Distribution Function (cdf) 43

44 Histogram Equalization: Example Cumulative Distribution Function (cdf) 44

45 Histogram Equalization: Example Normalized Cumulative Distribution Function (cdf) Divide each value by total number of pixels (64) to get the normalized cdf 45

46 Histogram Equalization: Example If cdf is normalized If cdf is NOT normalized s s J r, c 255 PI I r, c. s round(255. cdf ( r)) cdf () r round (255. ) M N round ( / 64 ) s 183 Original Image

47 Histogram Equalization: Example 47

48 Histogram Equalization: Example Original Image Corresponding histogram (red) and cumulative histogram (black) Image after histogram equalization Corresponding histogram (red) and cumulative histogram (black) 48

49 Bright image Dark image Histogram Equalization: Example Equalized Histogram Equalized Histogram 49

50 High Contrast Low contrast Histogram Equalization: Example Equalized Histogram Equalized Histogram 50

51 HISTOGRAM MATCHING (SPECIFICATION) HISTOGRAM EQUALIZATION DOES NOT ALLOW INTERACTIVE IMAGE ENHANCEMENT AND GENERATES ONLY ONE RESULT: AN APPROXIMATION TO A UNIFORM HISTOGRAM. SOMETIMES THOUGH, WE NEED TO BE ABLE TO SPECIFY PARTICULAR HISTOGRAM SHAPES CAPABLE OF HIGHLIGHTING CERTAIN GRAY-LEVEL RANGES. 54

52 HISTOGRAM SPECIFICATION 55

53 HISTOGRAM SPECIFICATION THE PROCEDURE FOR HISTOGRAM-SPECIFICATION BASED ENHANCEMENT IS: EQUALIZE THE LEVELS OF THE ORIGINAL IMAGE USING: s T( r k ) k j0 n j n n: total number of pixels, nj: number of pixels with gray level rj, L: number of discrete gray levels 56

54 HISTOGRAM SPECIFICATION SPECIFY THE DESIRED DENSITY FUNCTION AND OBTAIN THE TRANSFORMATION FUNCTION G(z): v k k k pz zi sk G z i0 pz: specified desirable PDF for output 57

55 HISTOGRAM SPECIFICATION THE NEW, PROCESSED VERSION OF THE ORIGINAL IMAGE CONSISTS OF GRAY LEVELS CHARACTERIZED BY THE SPECIFIED DENSITY p z (z). In essence: z G 1 ( s) z G 1 [ T( r)] 58

56 59 MAPPINGS

57 HISTOGRAM SPECIFICATION OBTAIN THE HISTOGRAM OF THE GIVEN IMAGE MAP EACH LEVEL r K TO A LEVEL S K OBTAIN THE TRANSFORMATION FUNCTION G FROM THE GIVEN P Z (Z) PRECOMPUTE Z K FOR EACH VALUE OF S K FOR EACH PIXEL IN THE ORIGINAL IMAGE, IF THE VALUE OF THAT PIXEL IS r k MAP THIS VALUE TO ITS CORRESPONDING LEVEL S K, THEN MAP LEVEL S K INTO THE FINAL VALUE Z K 60

58 HISTOGRAM SPECIFICATION k n k p r (r k ) s k p z (z k ) v k n k A 64X64 (4096 PIXELS) IMAGE WITH 8 GRAY LEVELS 61

59 62 IMAGE ENHANCEMENT IN THE SPATIAL DOMAIN

60 63 IMAGE ENHANCEMENT IN THE SPATIAL DOMAIN

61 64

62 GLOBAL/LOCAL HISTOGRAM EQUALIZATION IT MAY BE NECESSARY TO ENHANCE DETAILS OVER SMALL AREAS IN THE IMAGE THE NUMBER OF PIXELS IN THESE AREAS MAY HAVE NEGLIGIBLE INFLUENCE ON THE COMPUTATION OF A GLOBAL TRANSFORMATION WHOSE SHAPE DOES NOT NECESSARILY GUARANTEE THE DESIRED LOCAL ENHANCEMENT DEVISE TRANSFORMATION FUNCTIONS BASED ON THE GRAY LEVEL DISTRIBUTION IN THE NEIGHBORHOOD OF EVERY PIXEL IN THE IMAGE THE PROCEDURE IS: DEFINE A SQUARE (OR RECTANGULAR) NEIGHBORHOOD AND MOVE THE CENTER OF THIS AREA FROM PIXEL TO PIXEL. AT EACH LOCATION, THE HISTOGRAM OF THE POINTS IN THE NEIGHBORHOOD IS COMPUTED AND EITHER A HISTOGRAM EQUALIZATION OR HISTOGRAM SPECIFICATION TRANSFORMATION FUNCTION IS OBTAINED. THIS FUNCTION IS FINALLY USED TO MAP THE GRAY LEVEL OF THE PIXEL CENTERED IN THE NEIGHBORHOOD. THE CENTER IS THEN MOVED TO AN ADJACENT PIXEL LOCATION AND THE PROCEDURE IS REPEATED. 65

63 66 GLOBAL/LOCAL HISTOGRAM EQUALIZATION

64 USE OF HISTOGRAM STATISTICS FOR IMAGE ENHANCEMENT (Global) LET r REPRESENT A GRAY LEVEL IN THE IMAGE [0, L-1], AND LET p(r i ) DENOTE THE NORMALIZED HISTOGRAM COMPONENT CORRESPONDING TO THE i th VALUE OF r. THE n th MOMENT OF r ABOUT ITS MEAN IS DEFINED AS n L 1 i0 r r m pr WHERE m IS THE MEAN VALUE OF r (AVERAGE GRAY LEVEL) i n i m L 1 0 r p r i i i 67

65 USE OF HISTOGRAM STATISTICS FOR IMAGE ENHANCEMENT (Global) THE SECOND MOMENT IS GIVEN BY L r r m pr 2 i0 WHICH IS THE VARIANCE OF r 1 MEAN AS A MEASURE OF AVERAGE GRAY LEVEL IN THE IMAGE VARIANCE AS A MEASURE OF AVERAGE CONTRAST i 2 i 68

66 USE OF HISTOGRAM STATISTICS FOR IMAGE ENHANCEMENT (Local) LET (x,y) BE THE COORDINATES OF A PIXEL IN AN IMAGE, AND LET S X,Y DENOTE A NEIGBORHOOD OF SPECIFIED SIZE, CENTERED AT (x,y) THE MEAN VALUE m SXY OF THE PIXELS IN S X,Y IS m THE GRAY LEVEL VARIANCE OF THE PIXELS IN REGION S X,Y IS GIVEN BY r p r sxy s, t s, t s, t S xy S 2 2 r s t ms p r xy, s, s, t S xy xy t 69

67 USE OF HISTOGRAM STATISTICS FOR IMAGE ENHANCEMENT THE GLOBAL MEAN AND VARIANCE ARE MEASURED OVER AN ENTIRE IMAGE AND ARE USEFUL FOR GROSS ADJUSTMENTS OF OVERALL INTENSITY AND CONTRAST. A USE OF THESE MEASURES IN LOCAL ENHANCEMENT IS, WHERE THE LOCAL MEAN AND VARIANCE ARE USED AS THE BASIS FOR MAKING CHANGES THAT DEPEND ON IMAGE CHARACTERISTICS IN A PREDEFINED REGION ABOUT EACH PIXEL IN THE IMAGE. 70

68 71 TUNGSTEN FILAMENT IMAGE

69 USE OF HISTOGRAM STATISTICS FOR IMAGE ENHANCEMENT A PIXEL AT POINT (x,y) IS CONSIDERED IF: m SXY k 0 M G, where k0 is a positive constant less than 1.0, and M G is global mean σ sxy k 2 D G, where D G is the global standard deviation and k 2 is a positive constant k 1 D G σ sxy,, with k1 < k2 A PIXEL THAT MEETS ALL ABOVE CONDITIONS IS PROCESSED SIMPLY BY MULTIPLYING IT BY A SPECIFIED CONSTANT, E, TO INCREASE OR DECREASE THE VALUE OF ITS GRAY LEVEL RELATIVE TO THE REST OF THE IMAGE. THE VALUES OF PIXELS THAT DO NOT MEET THE ENHANCEMENT CONDITIONS ARE LEFT UNCHANGED. 72

70 73 IMAGE ENHANCEMENT IN THE SPATIAL DOMAIN

71 74 IMAGE ENHANCEMENT IN THE SPATIAL DOMAIN

72 Readings from Book (3 rd Edn.) 3.3 Histogram

73 Material in these slides has been taken from, the following resources Acknowledgements Digital Image Processing, Rafael C. Gonzalez & Richard E. Woods, Addison-Wesley,

Digital Image Processing. Lecture # 3 Image Enhancement

Digital Image Processing. Lecture # 3 Image Enhancement Digital Image Processing Lecture # 3 Image Enhancement 1 Image Enhancement Image Enhancement 3 Image Enhancement 4 Image Enhancement Process an image so that the result is more suitable than the original

More information

TDI2131 Digital Image Processing

TDI2131 Digital Image Processing TDI2131 Digital Image Processing Image Enhancement in Spatial Domain Lecture 3 John See Faculty of Information Technology Multimedia University Some portions of content adapted from Zhu Liu, AT&T Labs.

More information

Histogram equalization

Histogram equalization Histogram equalization Stefano Ferrari Università degli Studi di Milano stefano.ferrari@unimi.it Elaborazione delle immagini (Image processing I) academic year 2011 2012 Histogram The histogram of an L-valued

More information

Image Enhancement: Histogram Based Methods

Image Enhancement: Histogram Based Methods Image Enhancement: Histogram Based Methods 1 What is the histogram of a digital image? 0, r,, r L The histogram of a digital image with gray values 1 1 is the discrete function p( r n : Number of pixels

More information

Computer Vision. Intensity transformations

Computer Vision. Intensity transformations Computer Vision Intensity transformations Filippo Bergamasco (filippo.bergamasco@unive.it) http://www.dais.unive.it/~bergamasco DAIS, Ca Foscari University of Venice Academic year 2016/2017 Introduction

More information

Image Processing. 2. Point Processes. Computer Engineering, Sejong University Dongil Han. Spatial domain processing

Image Processing. 2. Point Processes. Computer Engineering, Sejong University Dongil Han. Spatial domain processing Image Processing 2. Point Processes Computer Engineering, Sejong University Dongil Han Spatial domain processing g(x,y) = T[f(x,y)] f(x,y) : input image g(x,y) : processed image T[.] : operator on f, defined

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Part 2: Image Enhancement Digital Image Processing Course Introduction in the Spatial Domain Lecture AASS Learning Systems Lab, Teknik Room T26 achim.lilienthal@tech.oru.se Course

More information

Image Enhancement using Histogram Equalization and Spatial Filtering

Image Enhancement using Histogram Equalization and Spatial Filtering Image Enhancement using Histogram Equalization and Spatial Filtering Fari Muhammad Abubakar 1 1 Department of Electronics Engineering Tianjin University of Technology and Education (TUTE) Tianjin, P.R.

More information

Lecture 4: Spatial Domain Processing and Image Enhancement

Lecture 4: Spatial Domain Processing and Image Enhancement I2200: Digital Image processing Lecture 4: Spatial Domain Processing and Image Enhancement Prof. YingLi Tian Sept. 27, 2017 Department of Electrical Engineering The City College of New York The City University

More information

8. Statistical properties of grayscale images

8. Statistical properties of grayscale images Image Processing aboratory 8: Statistical properties of grayscale images 1 8. Statistical properties of grayscale images 8.1. Introduction This laboratory wor presents the main statistic features that

More information

CoE4TN4 Image Processing. Chapter 3: Intensity Transformation and Spatial Filtering

CoE4TN4 Image Processing. Chapter 3: Intensity Transformation and Spatial Filtering CoE4TN4 Image Processing Chapter 3: Intensity Transformation and Spatial Filtering Image Enhancement Enhancement techniques: to process an image so that the result is more suitable than the original image

More information

Image Enhancement in Spatial Domain

Image Enhancement in Spatial Domain Image Enhancement in Spatial Domain 2 Image enhancement is a process, rather a preprocessing step, through which an original image is made suitable for a specific application. The application scenarios

More information

Image Processing for Mechatronics Engineering For senior undergraduate students Academic Year 2017/2018, Winter Semester

Image Processing for Mechatronics Engineering For senior undergraduate students Academic Year 2017/2018, Winter Semester Image Processing for Mechatronics Engineering For senior undergraduate students Academic Year 2017/2018, Winter Semester Lecture 2: Elementary Image Operations 16.09.2017 Dr. Mohammed Abdel-Megeed Salem

More information

DIGITAL IMAGE PROCESSING (COM-3371) Week 2 - January 14, 2002

DIGITAL IMAGE PROCESSING (COM-3371) Week 2 - January 14, 2002 DIGITAL IMAGE PROCESSING (COM-3371) Week 2 - January 14, 22 Topics: Human eye Visual phenomena Simple image model Image enhancement Point processes Histogram Lookup tables Contrast compression and stretching

More information

ECC419 IMAGE PROCESSING

ECC419 IMAGE PROCESSING ECC419 IMAGE PROCESSING INTRODUCTION Image Processing Image processing is a subclass of signal processing concerned specifically with pictures. Digital Image Processing, process digital images by means

More information

IMAGE ENHANCEMENT - POINT PROCESSING

IMAGE ENHANCEMENT - POINT PROCESSING 1 IMAGE ENHANCEMENT - POINT PROCESSING KOM3212 Image Processing in Industrial Systems Some of the contents are adopted from R. C. Gonzalez, R. E. Woods, Digital Image Processing, 2nd edition, Prentice

More information

Last Lecture. Lecture 2, Point Processing GW , & , Ida-Maria Which image is wich channel?

Last Lecture. Lecture 2, Point Processing GW , & , Ida-Maria Which image is wich channel? Last Lecture Lecture 2, Point Processing GW 2.6-2.6.4, & 3.1-3.4, Ida-Maria Ida.sintorn@it.uu.se Digitization -sampling in space (x,y) -sampling in amplitude (intensity) How often should you sample in

More information

BBM 413 Fundamentals of Image Processing. Erkut Erdem Dept. of Computer Engineering Hacettepe University. Point Operations Histogram Processing

BBM 413 Fundamentals of Image Processing. Erkut Erdem Dept. of Computer Engineering Hacettepe University. Point Operations Histogram Processing BBM 413 Fundamentals of Image Processing Erkut Erdem Dept. of Computer Engineering Hacettepe University Point Operations Histogram Processing Today s topics Point operations Histogram processing Today

More information

Filtering. Image Enhancement Spatial and Frequency Based

Filtering. Image Enhancement Spatial and Frequency Based Filtering Image Enhancement Spatial and Frequency Based Brent M. Dingle, Ph.D. 2015 Game Design and Development Program Mathematics, Statistics and Computer Science University of Wisconsin - Stout Lecture

More information

BBM 413 Fundamentals of Image Processing. Erkut Erdem Dept. of Computer Engineering Hacettepe University. Point Operations Histogram Processing

BBM 413 Fundamentals of Image Processing. Erkut Erdem Dept. of Computer Engineering Hacettepe University. Point Operations Histogram Processing BBM 413 Fundamentals of Image Processing Erkut Erdem Dept. of Computer Engineering Hacettepe University Point Operations Histogram Processing Today s topics Point operations Histogram processing Today

More information

Contrast Enhancement Using Bi-Histogram Equalization With Brightness Preservation

Contrast Enhancement Using Bi-Histogram Equalization With Brightness Preservation Contrast Enhancement Using Bi-Histogram Equalization With Brightness Preservation 1 Gowthami Rajagopal, 2 K.Santhi 1 PG Student, Department of Electronics and Communication K S Rangasamy College Of Technology,

More information

Part I Feature Extraction (1) Image Enhancement. CSc I6716 Spring Local, meaningful, detectable parts of the image.

Part I Feature Extraction (1) Image Enhancement. CSc I6716 Spring Local, meaningful, detectable parts of the image. CSc I6716 Spring 211 Introduction Part I Feature Extraction (1) Zhigang Zhu, City College of New York zhu@cs.ccny.cuny.edu Image Enhancement What are Image Features? Local, meaningful, detectable parts

More information

ANALYSIS OF IMAGE ENHANCEMENT TECHNIQUES USING MATLAB

ANALYSIS OF IMAGE ENHANCEMENT TECHNIQUES USING MATLAB ANALYSIS OF IMAGE ENHANCEMENT TECHNIQUES USING MATLAB Abstract Ms. Jyoti kumari Asst. Professor, Department of Computer Science, Acharya Institute of Graduate Studies, jyothikumari@acharya.ac.in This study

More information

Image Processing for feature extraction

Image Processing for feature extraction Image Processing for feature extraction 1 Outline Rationale for image pre-processing Gray-scale transformations Geometric transformations Local preprocessing Reading: Sonka et al 5.1, 5.2, 5.3 2 Image

More information

BBM 413! Fundamentals of! Image Processing!

BBM 413! Fundamentals of! Image Processing! BBM 413! Fundamentals of! Image Processing! Today s topics" Point operations! Histogram processing! Erkut Erdem" Dept. of Computer Engineering" Hacettepe University" "! Point Operations! Histogram Processing!

More information

Computer Vision. Howie Choset Introduction to Robotics

Computer Vision. Howie Choset   Introduction to Robotics Computer Vision Howie Choset http://www.cs.cmu.edu.edu/~choset Introduction to Robotics http://generalrobotics.org What is vision? What is computer vision? Edge Detection Edge Detection Interest points

More information

Introduction. Computer Vision. CSc I6716 Fall Part I. Image Enhancement. Zhigang Zhu, City College of New York

Introduction. Computer Vision. CSc I6716 Fall Part I. Image Enhancement. Zhigang Zhu, City College of New York CSc I6716 Fall 21 Introduction Part I Feature Extraction ti (1) Zhigang Zhu, City College of New York zhu@cs.ccny.cuny.edu Image Enhancement What are Image Features? Local, meaningful, detectable parts

More information

Spatial Domain Processing and Image Enhancement

Spatial Domain Processing and Image Enhancement Spatial Domain Processing and Image Enhancement Lecture 4, Feb 18 th, 2008 Lexing Xie EE4830 Digital Image Processing http://www.ee.columbia.edu/~xlx/ee4830/ thanks to Shahram Ebadollahi and Min Wu for

More information

Image processing. Image formation. Brightness images. Pre-digitization image. Subhransu Maji. CMPSCI 670: Computer Vision. September 22, 2016

Image processing. Image formation. Brightness images. Pre-digitization image. Subhransu Maji. CMPSCI 670: Computer Vision. September 22, 2016 Image formation Image processing Subhransu Maji : Computer Vision September 22, 2016 Slides credit: Erik Learned-Miller and others 2 Pre-digitization image What is an image before you digitize it? Continuous

More information

CS 445 HW#2 Solutions

CS 445 HW#2 Solutions 1. Text problem 3.1 CS 445 HW#2 Solutions (a) General form: problem figure,. For the condition shown in the Solving for K yields Then, (b) General form: the problem figure, as in (a) so For the condition

More information

from: Point Operations (Single Operands)

from:  Point Operations (Single Operands) from: http://www.khoral.com/contrib/contrib/dip2001 Point Operations (Single Operands) Histogram Equalization Histogram equalization is as a contrast enhancement technique with the objective to obtain

More information

Reading Instructions Chapters for this lecture. Computer Assisted Image Analysis Lecture 2 Point Processing. Image Processing

Reading Instructions Chapters for this lecture. Computer Assisted Image Analysis Lecture 2 Point Processing. Image Processing 1/34 Reading Instructions Chapters for this lecture 2/34 Computer Assisted Image Analysis Lecture 2 Point Processing Anders Brun (anders@cb.uu.se) Centre for Image Analysis Swedish University of Agricultural

More information

Computer Programming

Computer Programming Computer Programming Dr. Deepak B Phatak Dr. Supratik Chakraborty Department of Computer Science and Engineering Session: Digital Images and Histograms Dr. Deepak B. Phatak & Dr. Supratik Chakraborty,

More information

Prof. Vidya Manian Dept. of Electrical and Comptuer Engineering

Prof. Vidya Manian Dept. of Electrical and Comptuer Engineering Image Processing Intensity Transformations Chapter 3 Prof. Vidya Manian Dept. of Electrical and Comptuer Engineering INEL 5327 ECE, UPRM Intensity Transformations 1 Overview Background Basic intensity

More information

Fuzzy Statistics Based Multi-HE for Image Enhancement with Brightness Preserving Behaviour

Fuzzy Statistics Based Multi-HE for Image Enhancement with Brightness Preserving Behaviour International Journal of Engineering and Management Research, Volume-3, Issue-3, June 2013 ISSN No.: 2250-0758 Pages: 47-51 www.ijemr.net Fuzzy Statistics Based Multi-HE for Image Enhancement with Brightness

More information

Digital Image Processing. Lecture # 8 Color Processing

Digital Image Processing. Lecture # 8 Color Processing Digital Image Processing Lecture # 8 Color Processing 1 COLOR IMAGE PROCESSING COLOR IMAGE PROCESSING Color Importance Color is an excellent descriptor Suitable for object Identification and Extraction

More information

SECTION I - CHAPTER 2 DIGITAL IMAGING PROCESSING CONCEPTS

SECTION I - CHAPTER 2 DIGITAL IMAGING PROCESSING CONCEPTS RADT 3463 - COMPUTERIZED IMAGING Section I: Chapter 2 RADT 3463 Computerized Imaging 1 SECTION I - CHAPTER 2 DIGITAL IMAGING PROCESSING CONCEPTS RADT 3463 COMPUTERIZED IMAGING Section I: Chapter 2 RADT

More information

Digital Image Processing CSL 783 REPORT

Digital Image Processing CSL 783 REPORT Digital Image Processing CSL 783 REPORT Assignment 1: Image Enhancement using Histogram Processing Jagjeet Singh Dhaliwal (2008CS50212) Kshiteej S. Mahajan (2008CS50214) Introduction In this assignment

More information

IMAGE ENHANCEMENT IN SPATIAL DOMAIN

IMAGE ENHANCEMENT IN SPATIAL DOMAIN A First Course in Machine Vision IMAGE ENHANCEMENT IN SPATIAL DOMAIN By: Ehsan Khoramshahi Definitions The principal objective of enhancement is to process an image so that the result is more suitable

More information

Histogram equalization

Histogram equalization Histogram equalization Contents Background... 2 Procedure... 3 Page 1 of 7 Background To understand histogram equalization, one must first understand the concept of contrast in an image. The contrast is

More information

Image enhancement. Image enhancement belongs to image preprocessing

Image enhancement. Image enhancement belongs to image preprocessing Image enhancement Image enhancement belongs to image preprocessing methods. Objective o image enhancement process the image (e.g. contrast improvement, image sharpening, ) so that it is better suited or

More information

Non Linear Image Enhancement

Non Linear Image Enhancement Non Linear Image Enhancement SAIYAM TAKKAR Jaypee University of information technology, 2013 SIMANDEEP SINGH Jaypee University of information technology, 2013 Abstract An image enhancement algorithm based

More information

CS 89.15/189.5, Fall 2015 ASPECTS OF DIGITAL PHOTOGRAPHY COMPUTATIONAL. Image Processing Basics. Wojciech Jarosz

CS 89.15/189.5, Fall 2015 ASPECTS OF DIGITAL PHOTOGRAPHY COMPUTATIONAL. Image Processing Basics. Wojciech Jarosz CS 89.15/189.5, Fall 2015 COMPUTATIONAL ASPECTS OF DIGITAL PHOTOGRAPHY Image Processing Basics Wojciech Jarosz wojciech.k.jarosz@dartmouth.edu Domain, range Domain vs. range 2D plane: domain of images

More information

LAB MANUAL SUBJECT: IMAGE PROCESSING BE (COMPUTER) SEM VII

LAB MANUAL SUBJECT: IMAGE PROCESSING BE (COMPUTER) SEM VII LAB MANUAL SUBJECT: IMAGE PROCESSING BE (COMPUTER) SEM VII IMAGE PROCESSING INDEX CLASS: B.E(COMPUTER) SR. NO SEMESTER:VII TITLE OF THE EXPERIMENT. 1 Point processing in spatial domain a. Negation of an

More information

Achim J. Lilienthal Mobile Robotics and Olfaction Lab, AASS, Örebro University

Achim J. Lilienthal Mobile Robotics and Olfaction Lab, AASS, Örebro University Achim J. Lilienthal Mobile Robotics and Olfaction Lab, Room T29, Mo, -2 o'clock AASS, Örebro University (please drop me an email in advance) achim.lilienthal@oru.se 4.!!!!!!!!! Pre-Class Reading!!!!!!!!!

More information

December 28, Dr. Praveen Sankaran (Department of ECE NIT Calicut DIP)

December 28, Dr. Praveen Sankaran (Department of ECE NIT Calicut DIP) Dr. Praveen Sankaran Department of ECE NIT Calicut December 28, 2012 Winter 2013 December 28, 2012 1 / 18 Outline 1 Piecewise-Linear Functions Review 2 Histogram Processing Winter 2013 December 28, 2012

More information

Frequency Domain Enhancement

Frequency Domain Enhancement Tutorial Report Frequency Domain Enhancement Page 1 of 21 Frequency Domain Enhancement ESE 558 - DIGITAL IMAGE PROCESSING Tutorial Report Instructor: Murali Subbarao Written by: Tutorial Report Frequency

More information

EE 168 Handout # Introduction to Digital Image Processing February 5, 2012 HOMEWORK 3 SOLUTIONS

EE 168 Handout # Introduction to Digital Image Processing February 5, 2012 HOMEWORK 3 SOLUTIONS EE 168 Handout # Introduction to Digital Image Processing February 5, 212 HOMEWORK 3 SOLUTIONS Problem 1 and 2: Image Stretching Using the approach from the lecture notes, an image with mean m 1 and standard

More information

Image Enhancement by using Biogeography Based Optimization

Image Enhancement by using Biogeography Based Optimization Image Enhancement by using Biogeography Based Optimization Nitika Jearth, Raju Sharma Abstract Digital image enhancement techniques provide a multitude of choices for improving the visual quality of image.

More information

EFFICIENT CONTRAST ENHANCEMENT USING GAMMA CORRECTION WITH MULTILEVEL THRESHOLDING AND PROBABILITY BASED ENTROPY

EFFICIENT CONTRAST ENHANCEMENT USING GAMMA CORRECTION WITH MULTILEVEL THRESHOLDING AND PROBABILITY BASED ENTROPY EFFICIENT CONTRAST ENHANCEMENT USING GAMMA CORRECTION WITH MULTILEVEL THRESHOLDING AND PROBABILITY BASED ENTROPY S.Gayathri 1, N.Mohanapriya 2, B.Kalaavathi 3 1 PG student, Computer Science and Engineering,

More information

Histogram Equalization: A Strong Technique for Image Enhancement

Histogram Equalization: A Strong Technique for Image Enhancement , pp.345-352 http://dx.doi.org/10.14257/ijsip.2015.8.8.35 Histogram Equalization: A Strong Technique for Image Enhancement Ravindra Pal Singh and Manish Dixit Dept. of Comp. Science/IT MITS Gwalior, 474005

More information

Computer Graphics Fundamentals

Computer Graphics Fundamentals Computer Graphics Fundamentals Jacek Kęsik, PhD Simple converts Rotations Translations Flips Resizing Geometry Rotation n * 90 degrees other Geometry Rotation n * 90 degrees other Geometry Translations

More information

Keywords-Image Enhancement, Image Negation, Histogram Equalization, DWT, BPHE.

Keywords-Image Enhancement, Image Negation, Histogram Equalization, DWT, BPHE. A Novel Approach to Medical & Gray Scale Image Enhancement Prof. Mr. ArjunNichal*, Prof. Mr. PradnyawantKalamkar**, Mr. AmitLokhande***, Ms. VrushaliPatil****, Ms.BhagyashriSalunkhe***** Department of

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Lecture # 5 Image Enhancement in Spatial Domain- I ALI JAVED Lecturer SOFTWARE ENGINEERING DEPARTMENT U.E.T TAXILA Email:: ali.javed@uettaxila.edu.pk Office Room #:: 7 Presentation

More information

Digital Image Processing. Lecture 5 (Enhancement) Bu-Ali Sina University Computer Engineering Dep. Fall 2009

Digital Image Processing. Lecture 5 (Enhancement) Bu-Ali Sina University Computer Engineering Dep. Fall 2009 Digital Image Processing Lecture 5 (Enhancement) Bu-Ali Sina University Computer Engineering Dep. Fall 2009 Outline Image Enhancement in Spatial Domain Histogram based methods Histogram Equalization Local

More information

Midterm Review. Image Processing CSE 166 Lecture 10

Midterm Review. Image Processing CSE 166 Lecture 10 Midterm Review Image Processing CSE 166 Lecture 10 Topics covered Image acquisition, geometric transformations, and image interpolation Intensity transformations Spatial filtering Fourier transform and

More information

Image Contrast Enhancement Techniques: A Comparative Study of Performance

Image Contrast Enhancement Techniques: A Comparative Study of Performance Image Contrast Enhancement Techniques: A Comparative Study of Performance Ismail A. Humied Faculty of Police, Police Academy, Ministry of Interior, Sana'a, Yemen Fatma E.Z. Abou-Chadi Faculty of Engineering,

More information

IMAGE PROCESSING: AREA OPERATIONS (FILTERING)

IMAGE PROCESSING: AREA OPERATIONS (FILTERING) IMAGE PROCESSING: AREA OPERATIONS (FILTERING) N. C. State University CSC557 Multimedia Computing and Networking Fall 2001 Lecture # 13 IMAGE PROCESSING: AREA OPERATIONS (FILTERING) N. C. State University

More information

Image enhancement. Image enhancement belongs to image preprocessing

Image enhancement. Image enhancement belongs to image preprocessing Image enhancement Image enhancement belongs to image preprocessing methods. Objective o image enhancement process the image (e.g. contrast improvement, image sharpening, ) so that it is better suited or

More information

CS 376A Digital Image Processing

CS 376A Digital Image Processing CS 376A Digital Image Processing 02 / 15 / 2017 Instructor: Michael Eckmann Today s Topics Questions? Comments? Color Image processing Fixing tonal problems Start histograms histogram equalization for

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Lecture # 10 Color Image Processing ALI JAVED Lecturer SOFTWARE ENGINEERING DEPARTMENT U.E.T TAXILA Email:: ali.javed@uettaxila.edu.pk Office Room #:: 7 Pseudo-Color (False Color)

More information

Statistics, Probability and Noise

Statistics, Probability and Noise Statistics, Probability and Noise Claudia Feregrino-Uribe & Alicia Morales-Reyes Original material: Rene Cumplido Autumn 2015, CCC-INAOE Contents Signal and graph terminology Mean and standard deviation

More information

Digital Image Processing. Lecture # 6 Corner Detection & Color Processing

Digital Image Processing. Lecture # 6 Corner Detection & Color Processing Digital Image Processing Lecture # 6 Corner Detection & Color Processing 1 Corners Corners (interest points) Unlike edges, corners (patches of pixels surrounding the corner) do not necessarily correspond

More information

USE OF HISTOGRAM EQUALIZATION IN IMAGE PROCESSING FOR IMAGE ENHANCEMENT

USE OF HISTOGRAM EQUALIZATION IN IMAGE PROCESSING FOR IMAGE ENHANCEMENT USE OF HISTOGRAM EQUALIZATION IN IMAGE PROCESSING FOR IMAGE ENHANCEMENT Sapana S. Bagade M.E,Computer Engineering, Sipna s C.O.E.T,Amravati, Amravati,India sapana.bagade@gmail.com Vijaya K. Shandilya Assistant

More information

Chapter 12 Image Processing

Chapter 12 Image Processing Chapter 12 Image Processing The distance sensor on your self-driving car detects an object 100 m in front of your car. Are you following the car in front of you at a safe distance or has a pedestrian jumped

More information

IMAGE PROCESSING: POINT PROCESSES

IMAGE PROCESSING: POINT PROCESSES IMAGE PROCESSING: POINT PROCESSES N. C. State University CSC557 Multimedia Computing and Networking Fall 2001 Lecture # 11 IMAGE PROCESSING: POINT PROCESSES N. C. State University CSC557 Multimedia Computing

More information

Introduction to Color Theory

Introduction to Color Theory Systems & Biomedical Engineering Department SBE 306B: Computer Systems III (Computer Graphics) Dr. Ayman Eldeib Spring 2018 Introduction to With colors you can set a mood, attract attention, or make a

More information

Image restoration and color image processing

Image restoration and color image processing 1 Enabling Technologies for Sports (5XSF0) Image restoration and color image processing Sveta Zinger ( s.zinger@tue.nl ) What is image restoration? 2 Reconstructing or recovering an image that has been

More information

Image acquisition. Midterm Review. Digitization, line of image. Digitization, whole image. Geometric transformations. Interpolation 10/26/2016

Image acquisition. Midterm Review. Digitization, line of image. Digitization, whole image. Geometric transformations. Interpolation 10/26/2016 Image acquisition Midterm Review Image Processing CSE 166 Lecture 10 2 Digitization, line of image Digitization, whole image 3 4 Geometric transformations Interpolation CSE 166 Transpose these matrices

More information

EE482: Digital Signal Processing Applications

EE482: Digital Signal Processing Applications Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu EE482: Digital Signal Processing Applications Spring 2014 TTh 14:30-15:45 CBC C222 Lecture 15 Image Processing 14/04/15 http://www.ee.unlv.edu/~b1morris/ee482/

More information

What is an image? Bernd Girod: EE368 Digital Image Processing Pixel Operations no. 1. A digital image can be written as a matrix

What is an image? Bernd Girod: EE368 Digital Image Processing Pixel Operations no. 1. A digital image can be written as a matrix What is an image? Definition: An image is a 2-dimensional light intensity function, f(x,y), where x and y are spatial coordinates, and f at (x,y) is related to the brightness of the image at that point.

More information

Image Processing. Adam Finkelstein Princeton University COS 426, Spring 2019

Image Processing. Adam Finkelstein Princeton University COS 426, Spring 2019 Image Processing Adam Finkelstein Princeton University COS 426, Spring 2019 Image Processing Operations Luminance Brightness Contrast Gamma Histogram equalization Color Grayscale Saturation White balance

More information

Image Enhancement in the Spatial Domain

Image Enhancement in the Spatial Domain Image Enhancement in the Spatial Domain Algorithms for improving the visual appearance of images Gamma correction Contrast improvements Histogram equalization Noise reduction Image sharpening Optimality

More information

CS534 Introduction to Computer Vision. Linear Filters. Ahmed Elgammal Dept. of Computer Science Rutgers University

CS534 Introduction to Computer Vision. Linear Filters. Ahmed Elgammal Dept. of Computer Science Rutgers University CS534 Introduction to Computer Vision Linear Filters Ahmed Elgammal Dept. of Computer Science Rutgers University Outlines What are Filters Linear Filters Convolution operation Properties of Linear Filters

More information

RESEARCH PROJECT TECHNICAL UNIVERSITY - SOFIA BACHELOR OF TELECOMUNICATIONS DEGREE FACULTY OF TELECOMMUNICATIONS

RESEARCH PROJECT TECHNICAL UNIVERSITY - SOFIA BACHELOR OF TELECOMUNICATIONS DEGREE FACULTY OF TELECOMMUNICATIONS TECHNICAL UNIVERSITY - SOFIA FACULTY OF TELECOMMUNICATIONS Department of Radio Communications and Video Technologies RESEARCH PROJECT BACHELOR OF TELECOMUNICATIONS DEGREE TITLE: IMAGE CONTRAST ENHANCEMENT

More information

Joint Distributions, Independence Class 7, Jeremy Orloff and Jonathan Bloom

Joint Distributions, Independence Class 7, Jeremy Orloff and Jonathan Bloom Learning Goals Joint Distributions, Independence Class 7, 8.5 Jeremy Orloff and Jonathan Bloom. Understand what is meant by a joint pmf, pdf and cdf of two random variables. 2. Be able to compute probabilities

More information

GE 113 REMOTE SENSING. Topic 7. Image Enhancement

GE 113 REMOTE SENSING. Topic 7. Image Enhancement GE 113 REMOTE SENSING Topic 7. Image Enhancement Lecturer: Engr. Jojene R. Santillan jrsantillan@carsu.edu.ph Division of Geodetic Engineering College of Engineering and Information Technology Caraga State

More information

Image Enhancement in spatial domain. Digital Image Processing GW Chapter 3 from Section (pag 110) Part 2: Filtering in spatial domain

Image Enhancement in spatial domain. Digital Image Processing GW Chapter 3 from Section (pag 110) Part 2: Filtering in spatial domain Image Enhancement in spatial domain Digital Image Processing GW Chapter 3 from Section 3.4.1 (pag 110) Part 2: Filtering in spatial domain Mask mode radiography Image subtraction in medical imaging 2 Range

More information

RGB colours: Display onscreen = RGB

RGB colours:  Display onscreen = RGB RGB colours: http://www.colorspire.com/rgb-color-wheel/ Display onscreen = RGB DIGITAL DATA and DISPLAY Myth: Most satellite images are not photos Photographs are also 'images', but digital images are

More information

Digital Image Processing. Digital Image Fundamentals II 12 th June, 2017

Digital Image Processing. Digital Image Fundamentals II 12 th June, 2017 Digital Image Processing Digital Image Fundamentals II 12 th June, 2017 Image Enhancement Image Enhancement Types of Image Enhancement Operations Neighborhood Operations on Images Spatial Filtering Filtering

More information

Image Enhancement using Histogram Approach

Image Enhancement using Histogram Approach Image Enhancement using Histogram Approach Shivali Arya Institute of Engineering and Technology Jaipur Krishan Kant Lavania Arya Institute of Engineering and Technology Jaipur Rajiv Kumar Gurgaon Institute

More information

A simple Technique for contrast stretching by the Addition, subtraction& HE of gray levels in digital image

A simple Technique for contrast stretching by the Addition, subtraction& HE of gray levels in digital image Volume 6, No. 5, May - June 2015 International Journal of Advanced Research in Computer Science RESEARCH PAPER Available Online at www.ijarcs.info A simple Technique for contrast stretching by the Addition,

More information

Preparing Remote Sensing Data for Natural Resources Mapping (image enhancement, rectifications )

Preparing Remote Sensing Data for Natural Resources Mapping (image enhancement, rectifications ) Preparing Remote Sensing Data for Natural Resources Mapping (image enhancement, rectifications ) Why is this important What are the major approaches Examples of digital image enhancement Follow up exercises

More information

To process an image so that the result is more suitable than the original image for a specific application.

To process an image so that the result is more suitable than the original image for a specific application. by Shahid Farid 1 To process an image so that the result is more suitable than the original image for a specific application. Categories: Spatial domain methods and Frequency domain methods 2 Procedures

More information

An Advanced Contrast Enhancement Using Partially Overlapped Sub-Block Histogram Equalization

An Advanced Contrast Enhancement Using Partially Overlapped Sub-Block Histogram Equalization IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 4, APRIL 2001 475 An Advanced Contrast Enhancement Using Partially Overlapped Sub-Block Histogram Equalization Joung-Youn Kim,

More information

BBM 413 Fundamentals of Image Processing. Erkut Erdem Dept. of Computer Engineering Hacettepe University. Point Operations Histogram Processing

BBM 413 Fundamentals of Image Processing. Erkut Erdem Dept. of Computer Engineering Hacettepe University. Point Operations Histogram Processing BBM 413 Fundamentals of Image Processing Erkut Erdem Dept. of Computer Engineering Hacettepe University Point Operations Histogram Processing Today s topics Point operations Histogram processing Today

More information

Reference Free Image Quality Evaluation

Reference Free Image Quality Evaluation Reference Free Image Quality Evaluation for Photos and Digital Film Restoration Majed CHAMBAH Université de Reims Champagne-Ardenne, France 1 Overview Introduction Defects affecting films and Digital film

More information

Image Enhancement in the Spatial Domain (Part 1)

Image Enhancement in the Spatial Domain (Part 1) Image Enhancement in the Spatial Domain (Part 1) Lecturer: Dr. Hossam Hassan Email : hossameldin.hassan@eng.asu.edu.eg Computers and Systems Engineering Principle Objective of Enhancement Process an image

More information

Sampling and Reconstruction. Today: Color Theory. Color Theory COMP575

Sampling and Reconstruction. Today: Color Theory. Color Theory COMP575 and COMP575 Today: Finish up Color Color Theory CIE XYZ color space 3 color matching functions: X, Y, Z Y is luminance X and Z are color values WP user acdx Color Theory xyy color space Since Y is luminance,

More information

Image Processing Lecture 4

Image Processing Lecture 4 Image Enhancement Image enhancement aims to process an image so that the output image is more suitable than the original. It is used to solve some computer imaging problems, or to improve image quality.

More information

Bi-Level Weighted Histogram Equalization with Adaptive Gamma Correction

Bi-Level Weighted Histogram Equalization with Adaptive Gamma Correction International Journal of Computational Engineering Research Vol, 04 Issue, 3 Bi-Level Weighted Histogram Equalization with Adaptive Gamma Correction Jeena Baby 1, V. Karunakaran 2 1 PG Student, Department

More information

BBM 413 Fundamentals of Image Processing. Point Operations Histogram Processing. Today s topics. Digital images. Today s topics

BBM 413 Fundamentals of Image Processing. Point Operations Histogram Processing. Today s topics. Digital images. Today s topics BBM 413 Fundamentals of Image Processing Today s topics Point operations Histogram processing Erkut Erdem Dept. of Computer Engineering Hacettepe University Point Operations Histogram Processing Today

More information

Chapter 2 Image Enhancement in the Spatial Domain

Chapter 2 Image Enhancement in the Spatial Domain Chapter 2 Image Enhancement in the Spatial Domain Abstract Although the transform domain processing is essential, as the images naturally occur in the spatial domain, image enhancement in the spatial domain

More information

Solution for Image & Video Processing

Solution for Image & Video Processing Solution for Image & Video Processing December-2015 Index Q.1) a). 2-3 b). 4 (N.A.) c). 4 (N.A.) d). 4 (N.A.) e). 4-5 Q.2) a). 5 to 7 b). 7 (N.A.) Q.3) a). 8-9 b). 9 to 12 Q.4) a). 12-13 b). 13 to 16 Q.5)

More information

Image analysis. CS/CME/BIOPHYS/BMI 279 Fall 2015 Ron Dror

Image analysis. CS/CME/BIOPHYS/BMI 279 Fall 2015 Ron Dror Image analysis CS/CME/BIOPHYS/BMI 279 Fall 2015 Ron Dror A two- dimensional image can be described as a function of two variables f(x,y). For a grayscale image, the value of f(x,y) specifies the brightness

More information

Multimedia Systems Giorgio Leonardi A.A Lectures 14-16: Raster images processing and filters

Multimedia Systems Giorgio Leonardi A.A Lectures 14-16: Raster images processing and filters Multimedia Systems Giorgio Leonardi A.A.2014-2015 Lectures 14-16: Raster images processing and filters Outline (of the following lectures) Light and color processing/correction Convolution filters: blurring,

More information

Digital Image Fundamentals and Image Enhancement in the Spatial Domain

Digital Image Fundamentals and Image Enhancement in the Spatial Domain Digital Image Fundamentals and Image Enhancement in the Spatial Domain Mohamed N. Ahmed, Ph.D. Introduction An image may be defined as 2D function f(x,y), where x and y are spatial coordinates. The amplitude

More information

Histogram and Its Processing

Histogram and Its Processing Histogram and Its Processing 3rd Lecture on Image Processing Martina Mudrová 24 Definition What a histogram is? = vector of absolute numbers occurrence of every colour in the picture [H(1),H(2), H(c)]

More information

Weaving Density Evaluation with the Aid of Image Analysis

Weaving Density Evaluation with the Aid of Image Analysis Lenka Techniková, Maroš Tunák Faculty of Textile Engineering, Technical University of Liberec, Studentská, 46 7 Liberec, Czech Republic, E-mail: lenka.technikova@tul.cz. maros.tunak@tul.cz. Weaving Density

More information

Histogram and Its Processing

Histogram and Its Processing ... 3.. 5.. 7.. 9 and Its Processing 3rd Lecture on Image Processing Martina Mudrová Definition What a histogram is? = vector of absolute numbers occurrence of every colour in the picture [H(),H(), H(c)]

More information