Area of the Secondary Mirror Obscuration Ratio = Area of the EP Ignoring the Obscuration

Size: px
Start display at page:

Download "Area of the Secondary Mirror Obscuration Ratio = Area of the EP Ignoring the Obscuration"

Transcription

1 Compact Gregorian Telescope Design a compact 10X25 Gregorian telescope. The Gregorian telescope provides an erect image and consists of two concave mirrors followed by an eyepiece to produce an afocal system. An important design feature of a mirror-based telescope is its obscuration ratio. This ratio characterizes the fraction of the light entering the telescope that is blocked by the secondary mirror: Area of the econdary Mirror Obscuration Ratio = Area of the P Ignoring the Obscuration ince the system stop is often at the primary mirror (as it is in this design), the obscuration ratio gives the reduction in light collection efficiency of the primary mirror. Remember that since the central portion of the primary mirror is obscured, there is no penalty for placing a hole in the center of the primary mirror to get the light out the back of the telescope and into the eyepiece. An aperture is placed at the front of the telescope to define the diameter of the telescope tube. This aperture is physically located at the same plane as the secondary mirror. This aperture is not the system stop. The secondary mirror is often attached by a mechanical spider to this aperture. We will assume that this mechanical spider has no area. ection A Provide the first-order design of a Gregorian Telescope with the following specifications: Magnifying Power MP 10X ield of View OV +/- 2 deg Primary Mirror ocal Length f P 45 mm Diameter D P 25 mm top is located at the primary mirror Obscuration Ratio 50% ye Lens Diameter D 10 mm Overall ystem Length L 100 mm (from the secondary mirror or mounting aperture to the eye lens) Unvignetted Object at Infinity or vignetting calculations, the element diameters must be at the minimum size to satisfy the condition for no vignetting. In other words, the entire diameters of the primary mirror, secondary mirror, field lens and eye lens must be used. 1

2 Determine the following: Primary Mirror: Radius of Curvature R P Minimum Hole ize D H econdary Mirror Radius of Curvature R Diameter D ield Lens ocal Length f Diameter D ye Lens ocal Length f Aperture Diameter D A xit Pupil Diameter D XP ye Relief (ye Lens to XP) R All pacings or determination of the hole diameter in the primary mirror, you may assume that the primary mirror has zero thickness. A good check of the design is that the hole diameter must be smaller than the secondary mirror diameter. The field lens is located at the second intermediate image plane. Please use the variable names as defined above. The system drawing on the solution page may also help in defining the system. 2

3 ection B A Maksutov variation to the Gregorian telescope uses a thin meniscus glass shell to form the secondary mirror. This shell covers the entire entrance aperture of the telescope and eliminates the need for the mechanical spider or other mount for the secondary mirror. The central portion of the second surface of the shell is aluminized to produce the secondary mirror. In one option, both surfaces of the shell have a radius of curvature equal to that of the secondary mirror. A second option is to use a concentric shell. econdary Mirror or the purposes of this discussion, assume a 2 mm thick shell of BK7 glass (n = 1.517) with both surfaces having a radius of curvature equal to that of the secondary mirror. Discuss the effect of this glass shell on the design obtained in ection A. Assume that the mirror curvatures and mirror spacing remains fixed. What changes would be needed to the eyepiece to obtain a telescope of the desired MP. This is a discussion problem only do not redesign the telescope or the eyepiece. Note: This is a first-order design problem. All lenses can be assumed to be thin lenses in air with no aberrations and no thickness. imilarly, mirrors have radii of curvature but no sag. To aid in grading, this problem may be more completely specified than you would normally encounter. In fact, the approach specified may or may not be the best form of the solution. All of the given specifications must be met exactly. 3

4 Compact Gregorian Telescope olution ummary ection A D A = mm R P = -90 mm D H = mm f = mm D = mm D XP = 2.50 mm R = mm D = mm f = mm t 1 = mm t 2 = mm t 3 = mm R = mm L = 100 mm ection B ummary of Discussion The Maksutov shell used to form the secondary mirror introduces a small amount of power into the optical system. or the configuration given, the focal length of the shell is 4400 mm. This additional power will change MP of the telescope by changing the focal length of the telescope objective (the combination of the shell and the primary mirror). In addition, the locations of both intermediate images will shift, so that the telescope will no longer be in focus. Two changes to the eyepiece must occur: - modify the focal length of the eyepiece to get the desired MP. - shift the eyepiece to place its front focal point at the second intermediate image to present an image ay infinity to the eye. 4

5 olution Design a compact 10X25 Gregorian telescope. pecifications: Magnifying Power MP 10X ield of View OV +/- 2 deg Primary Mirror ocal Length f P 45 mm Diameter D P 25 mm top is located at the primary mirror Obscuration Ratio 50% ye Lens Diameter D 10 mm Overall ystem Length L 100 mm (from the secondary mirror or mounting aperture to the eye lens) Unvignetted Object at Infinity Area of the econdary Mirror Obscuration Ratio = Area of the P Ignoring the Obscuration tarting with the specifications and the layout: R 0 R 2f 90mm P P P R 0 u tan 1/2 tan The obscuration ration gives the diameter of the secondary mirror: Area Area D / 4 D Obscuration Ratio = 0.5 Area Area D / 4 D P P P P D 0.707D 0.707(25mm) 17.68mm P a 8.84mm The separation between the primary and the secondary is determined by the vignetting condition at the secondary. Trace marginal and chief rays from the primary to an arbitrary secondary location (transfer distance = -t 1 ). 5

6 At the secondary mirror: y t 0 1 y t 0 1 or no vignetting (and solving for the minimum secondary size): a y y a t t 8.84mm 1 1 t mm The next step is to obtain the proper MP for the telescope and solve for the focal lengths of the secondary mirror and the eye lens. No field lens is needed at this time. Note that a Gregorian telescope is a mirror version of a relayed Keplerian telescope, where the secondary mirror is the relay lens. The total magnifying power is f f MP m m m z /1 z P P R f f z / 1 z Remember that z is in the reflected space of the primary and has an index of -1. On the top of the next page, the system is shown with various distances. As an aside, it may be easier to design the system as the equivalent refracting relayed Keplerian telescope, and convert it back into the mirror based system. This works because a raytrace unfolds the mirror system into an air equivalent refractive system. z t f f 45mm 1 P P L z f 100mm z 23.24mm z 100mm f f z 45mm (100mm f ) P MP 10 f 16.21mm f z f 23.24mm 6

7 z 83.79mm z z f 83.79mm f f mm R 2f 36.39mm z f P t 1 = mm R = t 2 = z Ś t 3 = f L = 100 mm The spacings of all the elements are now specified, and the field lens is added at the front focal point of the eye lens. The focal length of this lens is determined by the condition of no vignetting at the eye lens (D = 10 mm). A system raytrace to the eye lens is attached as Raytrace 1. Note that the marginal ray raytrace confirms that the system MP = 10 (y = y P /10) and that D XP = 2.5 mm. At the eye lens: y 1.25mm y 16.21( ) y

8 or no vignetting at the eye lens (using the equality to utilize the entire aperture of the eye lens): a y y 5.0mm 1.25mm mm 5.0mm / mm f 26.45mm The diameter of the field lens is given by the chief ray at the field lens (the location of the second intermediate image): a y 5.665mm D 11.33mm Now that all of the optical components are specified, a final raytrace can determine the R and the sizes of the two other apertures. The entrance aperture is located t 1 in front of the primary mirror and the hole in the primary mirror is optically located t 1 behind the secondary mirror. rom the perspective of the secondary mirror, the hole looks just like an aperture that must pass all of the light. As a result, the minimum hole size in the primary mirror can be found by applying the condition for no vignetting at this location. Of course, the XP is located where the system chief ray goes to zero. Raytrace 2 is attached. R = mm Aperture: y A 12.5mm a y y 14.88mm A A A y A 2.383mm D A 29.76mm Hole: y H 1.203mm a y y 5.37mm H H H y H 4.171mm D H 10.74mm 8

9 ummary of the results: Primary Mirror: Radius of Curvature R P = -90 mm Minimum Hole ize D H = mm econdary Mirror Radius of Curvature R = mm Diameter D = mm ield Lens ocal Length f = mm Diameter D = mm ye Lens ocal Length f = mm Aperture Diameter D A = mm xit Pupil Diameter D XP = 2.50 mm ye Relief (ye Lens to XP) R = mm Primary-econdary pacing t 1 = mm econdary-ield Lens pacing t 2 = mm ield Lens-ye Lens pacing t 3 = mm ection B The Maksutov shell used to form the secondary mirror introduces a small amount of power into the optical system. or the configuration given: ( ) / mm R 36.39mm econdary Mirror t 2 t t 2.0mm n n / mm f 3760mm This additional power will change MP of the telescope by changing the focal length of the telescope objective (the combination of the shell and the primary mirror). In addition, the locations of both intermediate images will shift, so that the telescope will no longer be in focus. Two changes to the eyepiece must occur: - modify the focal length of the eyepiece to get the desired MP. - shift the eyepiece to place its front focal point at the second intermediate image to present an image ay infinity to the eye. In practice, the MP error is small enough that it might be ignored, and the focusing mechanism in the telescope can be used to adjust for the focus error. Note also that a concentric shell introduces a negative power, and that a zero power shell can be designed. 9

10 10

11 11

Actually, you only need to design one monocular of the binocular.

Actually, you only need to design one monocular of the binocular. orro rism Binoculars Design a pair of 8X40 binoculars: Actually, you only need to design one monocular of the binocular. Specifications: Objective ocal Length = 200 mm Eye Relief = 15 mm The system stop

More information

OPTI-202R Geometrical and Instrumental Optics John E. Greivenkamp Final Exam Page 1/11 Spring 2017

OPTI-202R Geometrical and Instrumental Optics John E. Greivenkamp Final Exam Page 1/11 Spring 2017 Final Exam Page 1/11 Spring 2017 Name SOLUTIONS Closed book; closed notes. Time limit: 120 minutes. An equation sheet is attached and can be removed. A spare raytrace sheet is also attached. Use the back

More information

OPTI-202R Geometrical and Instrumental Optics John E. Greivenkamp Midterm II Page 1/8 Spring 2017

OPTI-202R Geometrical and Instrumental Optics John E. Greivenkamp Midterm II Page 1/8 Spring 2017 OPTI-0R Geometrical and Instrumental Optics John E. Greivenkamp Midterm II Page /8 Spring 07 Name SOLUTIONS Closed book; closed notes. Time limit: 50 minutes. An equation sheet is attached and can be removed.

More information

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term Lens Design I Lecture 3: Properties of optical systems II 207-04-20 Herbert Gross Summer term 207 www.iap.uni-jena.de 2 Preliminary Schedule - Lens Design I 207 06.04. Basics 2 3.04. Properties of optical

More information

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term Lens Design I Lecture 3: Properties of optical systems II 205-04-8 Herbert Gross Summer term 206 www.iap.uni-jena.de 2 Preliminary Schedule 04.04. Basics 2.04. Properties of optical systrems I 3 8.04.

More information

Section 3. Imaging With A Thin Lens

Section 3. Imaging With A Thin Lens 3-1 Section 3 Imaging With A Thin Lens Object at Infinity An object at infinity produces a set of collimated set of rays entering the optical system. Consider the rays from a finite object located on the

More information

Some lens design methods. Dave Shafer David Shafer Optical Design Fairfield, CT #

Some lens design methods. Dave Shafer David Shafer Optical Design Fairfield, CT # Some lens design methods Dave Shafer David Shafer Optical Design Fairfield, CT 06824 #203-259-1431 shaferlens@sbcglobal.net Where do we find our ideas about how to do optical design? You probably won t

More information

System/Prescription Data

System/Prescription Data System/Prescription Data File : U:\alpi's designs\1.0 Meter\1.0 meter optical design\old Lenses- Design Stuff\LCOGT 1.0meter Telescope Design for UCSB.zmx Title: LCOGT 1.0 Meter Telescope Date : THU NOV

More information

Chapter 3. Introduction to Zemax. 3.1 Introduction. 3.2 Zemax

Chapter 3. Introduction to Zemax. 3.1 Introduction. 3.2 Zemax Chapter 3 Introduction to Zemax 3.1 Introduction Ray tracing is practical only for paraxial analysis. Computing aberrations and diffraction effects are time consuming. Optical Designers need some popular

More information

Physics 197 Lab 7: Thin Lenses and Optics

Physics 197 Lab 7: Thin Lenses and Optics Physics 197 Lab 7: Thin Lenses and Optics Equipment: Item Part # Qty per Team # of Teams Basic Optics Light Source PASCO OS-8517 1 12 12 Power Cord for Light Source 1 12 12 Ray Optics Set (Concave Lens)

More information

2.71 Optics Fall 05 QUIZ 1 Wednesday, Oct. 12, 2005

2.71 Optics Fall 05 QUIZ 1 Wednesday, Oct. 12, 2005 2.71 Quiz 1 MASSACHUSETTS INSTITUTE OF TECHNOLOGY 2.71 Optics Fall 05 QUIZ 1 Wednesday, Oct. 12, 2005 1. (60%) The optical instrument shown below is a telephoto lens. It consists of a combination of two

More information

OPTICAL IMAGING AND ABERRATIONS

OPTICAL IMAGING AND ABERRATIONS OPTICAL IMAGING AND ABERRATIONS PARTI RAY GEOMETRICAL OPTICS VIRENDRA N. MAHAJAN THE AEROSPACE CORPORATION AND THE UNIVERSITY OF SOUTHERN CALIFORNIA SPIE O P T I C A L E N G I N E E R I N G P R E S S A

More information

Phys 531 Lecture 9 30 September 2004 Ray Optics II. + 1 s i. = 1 f

Phys 531 Lecture 9 30 September 2004 Ray Optics II. + 1 s i. = 1 f Phys 531 Lecture 9 30 September 2004 Ray Optics II Last time, developed idea of ray optics approximation to wave theory Introduced paraxial approximation: rays with θ 1 Will continue to use Started disussing

More information

Optical Design with Zemax

Optical Design with Zemax Optical Design with Zemax Lecture : Correction II 3--9 Herbert Gross Summer term www.iap.uni-jena.de Correction II Preliminary time schedule 6.. Introduction Introduction, Zemax interface, menues, file

More information

25 cm. 60 cm. 50 cm. 40 cm.

25 cm. 60 cm. 50 cm. 40 cm. Geometrical Optics 7. The image formed by a plane mirror is: (a) Real. (b) Virtual. (c) Erect and of equal size. (d) Laterally inverted. (e) B, c, and d. (f) A, b and c. 8. A real image is that: (a) Which

More information

Computer exercise 2 geometrical optics and the telescope

Computer exercise 2 geometrical optics and the telescope Computer exercise 2 geometrical optics and the telescope In this exercise, you will learn more of the tools included in Synopsys, including how to find system specifications such as focal length and F-number.

More information

Activity 6.1 Image Formation from Spherical Mirrors

Activity 6.1 Image Formation from Spherical Mirrors PHY385H1F Introductory Optics Practicals Day 6 Telescopes and Microscopes October 31, 2011 Group Number (number on Intro Optics Kit):. Facilitator Name:. Record-Keeper Name: Time-keeper:. Computer/Wiki-master:..

More information

Magnification, stops, mirrors More geometric optics

Magnification, stops, mirrors More geometric optics Magnification, stops, mirrors More geometric optics D. Craig 2005-02-25 Transverse magnification Refer to figure 5.22. By convention, distances above the optical axis are taken positive, those below, negative.

More information

Algebra Based Physics. Reflection. Slide 1 / 66 Slide 2 / 66. Slide 3 / 66. Slide 4 / 66. Slide 5 / 66. Slide 6 / 66.

Algebra Based Physics. Reflection. Slide 1 / 66 Slide 2 / 66. Slide 3 / 66. Slide 4 / 66. Slide 5 / 66. Slide 6 / 66. Slide 1 / 66 Slide 2 / 66 Algebra Based Physics Geometric Optics 2015-12-01 www.njctl.org Slide 3 / 66 Slide 4 / 66 Table of ontents lick on the topic to go to that section Reflection Refraction and Snell's

More information

Lens Design I Seminar 1

Lens Design I Seminar 1 Xiang Lu, Ralf Hambach Friedrich Schiller University Jena Institute of Applied Physics Albert-Einstein-Str 15 07745 Jena Lens Design I Seminar 1 Warm-Up (20min) Setup a single, symmetric, biconvex lens

More information

Converging and Diverging Surfaces. Lenses. Converging Surface

Converging and Diverging Surfaces. Lenses. Converging Surface Lenses Sandy Skoglund 2 Converging and Diverging s AIR Converging If the surface is convex, it is a converging surface in the sense that the parallel rays bend toward each other after passing through the

More information

Final Reg Optics Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Final Reg Optics Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Final Reg Optics Review 1) How far are you from your image when you stand 0.75 m in front of a vertical plane mirror? 1) 2) A object is 12 cm in front of a concave mirror, and the image is 3.0 cm in front

More information

Image Formation. Light from distant things. Geometrical optics. Pinhole camera. Chapter 36

Image Formation. Light from distant things. Geometrical optics. Pinhole camera. Chapter 36 Light from distant things Chapter 36 We learn about a distant thing from the light it generates or redirects. The lenses in our eyes create images of objects our brains can process. This chapter concerns

More information

Lens Design I. Lecture 5: Advanced handling I Herbert Gross. Summer term

Lens Design I. Lecture 5: Advanced handling I Herbert Gross. Summer term Lens Design I Lecture 5: Advanced handling I 2018-05-17 Herbert Gross Summer term 2018 www.iap.uni-jena.de 2 Preliminary Schedule - Lens Design I 2018 1 12.04. Basics 2 19.04. Properties of optical systems

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A plane mirror is placed on the level bottom of a swimming pool that holds water (n =

More information

OPTICAL SYSTEMS OBJECTIVES

OPTICAL SYSTEMS OBJECTIVES 101 L7 OPTICAL SYSTEMS OBJECTIVES Aims Your aim here should be to acquire a working knowledge of the basic components of optical systems and understand their purpose, function and limitations in terms

More information

Lens Design II Seminar 6 (Solutions)

Lens Design II Seminar 6 (Solutions) 2017-01-04 Prof. Herbert Gross Yi Zhong, Norman G. Worku Friedrich Schiller University Jena Institute of Applied Physics Albert-Einstein-Str 15 07745 Jena Lens Design II Seminar 6 (Solutions) 6.1. Correction

More information

Algebra Based Physics. Reflection. Slide 1 / 66 Slide 2 / 66. Slide 3 / 66. Slide 4 / 66. Slide 5 / 66. Slide 6 / 66.

Algebra Based Physics. Reflection. Slide 1 / 66 Slide 2 / 66. Slide 3 / 66. Slide 4 / 66. Slide 5 / 66. Slide 6 / 66. Slide 1 / 66 Slide 2 / 66 lgebra ased Physics Geometric Optics 2015-12-01 www.njctl.org Slide 3 / 66 Slide 4 / 66 Table of ontents lick on the topic to go to that section Reflection Refraction and Snell's

More information

Department of Physics & Astronomy Undergraduate Labs. Thin Lenses

Department of Physics & Astronomy Undergraduate Labs. Thin Lenses Thin Lenses Reflection and Refraction When light passes from one medium to another, part of the light is reflected and the rest is transmitted. Light rays that are transmitted undergo refraction (bending)

More information

Section 11. Vignetting

Section 11. Vignetting Copright 2018 John E. Greivenkamp 11-1 Section 11 Vignetting Vignetting The stop determines the sie of the bundle of ras that propagates through the sstem for an on-axis object. As the object height increases,

More information

Lens Design I. Lecture 10: Optimization II Herbert Gross. Summer term

Lens Design I. Lecture 10: Optimization II Herbert Gross. Summer term Lens Design I Lecture : Optimization II 5-6- Herbert Gross Summer term 5 www.iap.uni-jena.de Preliminary Schedule 3.. Basics.. Properties of optical systrems I 3 7.5..5. Properties of optical systrems

More information

PHYS 202 OUTLINE FOR PART III LIGHT & OPTICS

PHYS 202 OUTLINE FOR PART III LIGHT & OPTICS PHYS 202 OUTLINE FOR PART III LIGHT & OPTICS Electromagnetic Waves A. Electromagnetic waves S-23,24 1. speed of waves = 1/( o o ) ½ = 3 x 10 8 m/s = c 2. waves and frequency: the spectrum (a) radio red

More information

Applied Optics. , Physics Department (Room #36-401) , ,

Applied Optics. , Physics Department (Room #36-401) , , Applied Optics Professor, Physics Department (Room #36-401) 2290-0923, 019-539-0923, shsong@hanyang.ac.kr Office Hours Mondays 15:00-16:30, Wednesdays 15:00-16:30 TA (Ph.D. student, Room #36-415) 2290-0921,

More information

Tutorial Zemax 8: Correction II

Tutorial Zemax 8: Correction II Tutorial Zemax 8: Correction II 2012-10-11 8 Correction II 1 8.1 High-NA Collimator... 1 8.2 Zoom-System... 6 8.3 New Achromate and wide field system... 11 8 Correction II 8.1 High-NA Collimator An achromatic

More information

REFLECTION THROUGH LENS

REFLECTION THROUGH LENS REFLECTION THROUGH LENS A lens is a piece of transparent optical material with one or two curved surfaces to refract light rays. It may converge or diverge light rays to form an image. Lenses are mostly

More information

Chapter 24 Geometrical Optics. Copyright 2010 Pearson Education, Inc.

Chapter 24 Geometrical Optics. Copyright 2010 Pearson Education, Inc. Chapter 24 Geometrical Optics Lenses convex (converging) concave (diverging) Mirrors Ray Tracing for Mirrors We use three principal rays in finding the image produced by a curved mirror. The parallel ray

More information

University of Rochester Department of Physics and Astronomy Physics123, Spring Homework 5 - Solutions

University of Rochester Department of Physics and Astronomy Physics123, Spring Homework 5 - Solutions Problem 5. University of Rochester Department of Physics and Astronomy Physics23, Spring 202 Homework 5 - Solutions An optometrist finds that a farsighted person has a near point at 25 cm. a) If the eye

More information

Chapter 3 Mirrors. The most common and familiar optical device

Chapter 3 Mirrors. The most common and familiar optical device Chapter 3 Mirrors The most common and familiar optical device Outline Plane mirrors Spherical mirrors Graphical image construction Two mirrors; The Cassegrain Telescope Plane mirrors Common household mirrors:

More information

Lecture 17. Image formation Ray tracing Calculation. Lenses Convex Concave. Mirrors Convex Concave. Optical instruments

Lecture 17. Image formation Ray tracing Calculation. Lenses Convex Concave. Mirrors Convex Concave. Optical instruments Lecture 17. Image formation Ray tracing Calculation Lenses Convex Concave Mirrors Convex Concave Optical instruments Image formation Laws of refraction and reflection can be used to explain how lenses

More information

R 1 R 2 R 3. t 1 t 2. n 1 n 2

R 1 R 2 R 3. t 1 t 2. n 1 n 2 MASSACHUSETTS INSTITUTE OF TECHNOLOGY 2.71/2.710 Optics Spring 14 Problem Set #2 Posted Feb. 19, 2014 Due Wed Feb. 26, 2014 1. (modified from Pedrotti 18-9) A positive thin lens of focal length 10cm is

More information

Chapter 2 - Geometric Optics

Chapter 2 - Geometric Optics David J. Starling Penn State Hazleton PHYS 214 The human eye is a visual system that collects light and forms an image on the retina. The human eye is a visual system that collects light and forms an image

More information

Astro 500 A500/L-8! 1!

Astro 500 A500/L-8! 1! Astro 500 1! Optics! Review! Compound systems: Outline o Pupils, stops, and telecentricity Telescopes! Review! Two-mirror systems! Figures of merit Examples: WIYN & SALT 2! Review: The Thin Lens! s parallel

More information

Tangents. The f-stops here. Shedding some light on the f-number. by Marcus R. Hatch and David E. Stoltzmann

Tangents. The f-stops here. Shedding some light on the f-number. by Marcus R. Hatch and David E. Stoltzmann Tangents Shedding some light on the f-number The f-stops here by Marcus R. Hatch and David E. Stoltzmann The f-number has peen around for nearly a century now, and it is certainly one of the fundamental

More information

Elementary Optical Systems. Section 13. Magnifiers and Telescopes

Elementary Optical Systems. Section 13. Magnifiers and Telescopes 13-1 Elementary Optical Systems Section 13 Magniiers and Telescopes Elementary Optical Systems Many optical systems can be understood when treated as combinations o thin lenses. Mirror equivalents exist

More information

TOPICS Recap of PHYS110-1 lecture Physical Optics - 4 lectures EM spectrum and colour Light sources Interference and diffraction Polarization

TOPICS Recap of PHYS110-1 lecture Physical Optics - 4 lectures EM spectrum and colour Light sources Interference and diffraction Polarization TOPICS Recap of PHYS110-1 lecture Physical Optics - 4 lectures EM spectrum and colour Light sources Interference and diffraction Polarization Lens Aberrations - 3 lectures Spherical aberrations Coma, astigmatism,

More information

GEOMETRICAL OPTICS AND OPTICAL DESIGN

GEOMETRICAL OPTICS AND OPTICAL DESIGN GEOMETRICAL OPTICS AND OPTICAL DESIGN Pantazis Mouroulis Associate Professor Center for Imaging Science Rochester Institute of Technology John Macdonald Senior Lecturer Physics Department University of

More information

13. Optical Instruments*

13. Optical Instruments* 13. Optical Instruments* Objective: Here what you have been learning about thin lenses is applied to make a telescope. In the process you encounter general optical instrument design concepts. The learning

More information

Exam Preparation Guide Geometrical optics (TN3313)

Exam Preparation Guide Geometrical optics (TN3313) Exam Preparation Guide Geometrical optics (TN3313) Lectures: September - December 2001 Version of 21.12.2001 When preparing for the exam, check on Blackboard for a possible newer version of this guide.

More information

Big League Cryogenics and Vacuum The LHC at CERN

Big League Cryogenics and Vacuum The LHC at CERN Big League Cryogenics and Vacuum The LHC at CERN A typical astronomical instrument must maintain about one cubic meter at a pressure of

More information

OPTI-502 Optical Design and Instrumentation I John E. Greivenkamp Homework Set 5 Fall, 2018

OPTI-502 Optical Design and Instrumentation I John E. Greivenkamp Homework Set 5 Fall, 2018 Homework Set 5 all, 2018 Assigned: 9/26/18 Lecture 11 Due: 10/3/18 Lecture 13 Midterm Exam: Wednesday October 24 (Lecture 19) 5-1) Te following combination of tin lenses in air is in a telepoto configuration:

More information

Lens Design I. Lecture 10: Optimization II Herbert Gross. Summer term

Lens Design I. Lecture 10: Optimization II Herbert Gross. Summer term Lens Design I Lecture : Optimization II 8-6- Herbert Gross Summer term 8 www.iap.uni-jena.de Preliminary Schedule - Lens Design I 8.4. Basics 9.4. Properties of optical systems I 3 6.4. Properties of optical

More information

Dr. Todd Satogata (ODU/Jefferson Lab) Monday, April

Dr. Todd Satogata (ODU/Jefferson Lab)  Monday, April University Physics 227N/232N Mirrors and Lenses Homework Optics 2 due Friday AM Quiz Friday Optional review session next Monday (Apr 28) Bring Homework Notebooks to Final for Grading Dr. Todd Satogata

More information

Ch 24. Geometric Optics

Ch 24. Geometric Optics text concept Ch 24. Geometric Optics Fig. 24 3 A point source of light P and its image P, in a plane mirror. Angle of incidence =angle of reflection. text. Fig. 24 4 The blue dashed line through object

More information

Chapter 36. Image Formation

Chapter 36. Image Formation Chapter 36 Image Formation Image of Formation Images can result when light rays encounter flat or curved surfaces between two media. Images can be formed either by reflection or refraction due to these

More information

OPTI-202R Geometrical and Instrumental Optics John E. Greivenkamp Midterm II Page 1/7 Spring 2018

OPTI-202R Geometrical and Instrumental Optics John E. Greivenkamp Midterm II Page 1/7 Spring 2018 Midterm II Page 1/7 Spring 2018 Name SOUTIONS Closed book; closed notes. Time limit: 50 minutes. An equation sheet is attached and can be removed. A spare raytrace sheet is also attached. Use the back

More information

Warren J. Smith Chief Scientist, Consultant Rockwell Collins Optronics Carlsbad, California

Warren J. Smith Chief Scientist, Consultant Rockwell Collins Optronics Carlsbad, California Modern Optical Engineering The Design of Optical Systems Warren J. Smith Chief Scientist, Consultant Rockwell Collins Optronics Carlsbad, California Fourth Edition Me Graw Hill New York Chicago San Francisco

More information

Physics 142 Lenses and Mirrors Page 1. Lenses and Mirrors. Now for the sequence of events, in no particular order. Dan Rather

Physics 142 Lenses and Mirrors Page 1. Lenses and Mirrors. Now for the sequence of events, in no particular order. Dan Rather Physics 142 Lenses and Mirrors Page 1 Lenses and Mirrors Now or the sequence o events, in no particular order. Dan Rather Overview: making use o the laws o relection and reraction We will now study ormation

More information

Optical Design with Zemax for PhD

Optical Design with Zemax for PhD Optical Design with Zemax for PhD Lecture 7: Optimization II 26--2 Herbert Gross Winter term 25 www.iap.uni-jena.de 2 Preliminary Schedule No Date Subject Detailed content.. Introduction 2 2.2. Basic Zemax

More information

PHY385H1F Introductory Optics. Practicals Session 7 Studying for Test 2

PHY385H1F Introductory Optics. Practicals Session 7 Studying for Test 2 PHY385H1F Introductory Optics Practicals Session 7 Studying for Test 2 Entrance Pupil & Exit Pupil A Cooke-triplet consists of three thin lenses in succession, and is often used in cameras. It was patented

More information

2.710 Optics Spring 09 Problem Set #3 Posted Feb. 23, 2009 Due Wednesday, March 4, 2009

2.710 Optics Spring 09 Problem Set #3 Posted Feb. 23, 2009 Due Wednesday, March 4, 2009 MASSACHUSETTS INSTITUTE OF TECHNOLOGY 2.710 Optics Spring 09 Problem Set # Posted Feb. 2, 2009 Due Wednesday, March 4, 2009 1. Wanda s world Your goldfish Wanda happens to be situated at the center of

More information

Chapter 34. Images. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

Chapter 34. Images. Copyright 2014 John Wiley & Sons, Inc. All rights reserved. Chapter 34 Images Copyright 34-1 Images and Plane Mirrors Learning Objectives 34.01 Distinguish virtual images from real images. 34.02 Explain the common roadway mirage. 34.03 Sketch a ray diagram for

More information

FIELD LENS -EYE LENS VEYE

FIELD LENS -EYE LENS VEYE * IF YOU made one of the telescopes described last * month, you already are familiar with the basic information necessary to construct a terrestrial telescope, which is one for viewing objects on land.

More information

Chapter 3 Op,cal Instrumenta,on

Chapter 3 Op,cal Instrumenta,on Imaging by an Op,cal System Change in curvature of wavefronts by a thin lens Chapter 3 Op,cal Instrumenta,on 3-1 Stops, Pupils, and Windows 3-4 The Camera 3-5 Simple Magnifiers and Eyepieces 1. Magnifiers

More information

Refraction by Spherical Lenses by

Refraction by Spherical Lenses by Page1 Refraction by Spherical Lenses by www.examfear.com To begin with this topic, let s first know, what is a lens? A lens is a transparent material bound by two surfaces, of which one or both the surfaces

More information

Mirrors, Lenses &Imaging Systems

Mirrors, Lenses &Imaging Systems Mirrors, Lenses &Imaging Systems We describe the path of light as straight-line rays And light rays from a very distant point arrive parallel 145 Phys 24.1 Mirrors Standing away from a plane mirror shows

More information

There is a range of distances over which objects will be in focus; this is called the depth of field of the lens. Objects closer or farther are

There is a range of distances over which objects will be in focus; this is called the depth of field of the lens. Objects closer or farther are Chapter 25 Optical Instruments Some Topics in Chapter 25 Cameras The Human Eye; Corrective Lenses Magnifying Glass Telescopes Compound Microscope Aberrations of Lenses and Mirrors Limits of Resolution

More information

Aperture and Digi scoping. Thoughts on the value of the aperture of a scope digital camera combination.

Aperture and Digi scoping. Thoughts on the value of the aperture of a scope digital camera combination. Aperture and Digi scoping. Thoughts on the value of the aperture of a scope digital camera combination. Before entering the heart of the matter, let s do a few reminders. 1. Entrance pupil. It is the image

More information

ECEN 4606, UNDERGRADUATE OPTICS LAB

ECEN 4606, UNDERGRADUATE OPTICS LAB ECEN 4606, UNDERGRADUATE OPTICS LAB Lab 2: Imaging 1 the Telescope Original Version: Prof. McLeod SUMMARY: In this lab you will become familiar with the use of one or more lenses to create images of distant

More information

Introduction. Geometrical Optics. Milton Katz State University of New York. VfeWorld Scientific New Jersey London Sine Singapore Hong Kong

Introduction. Geometrical Optics. Milton Katz State University of New York. VfeWorld Scientific New Jersey London Sine Singapore Hong Kong Introduction to Geometrical Optics Milton Katz State University of New York VfeWorld Scientific «New Jersey London Sine Singapore Hong Kong TABLE OF CONTENTS PREFACE ACKNOWLEDGMENTS xiii xiv CHAPTER 1:

More information

Astronomy 80 B: Light. Lecture 9: curved mirrors, lenses, aberrations 29 April 2003 Jerry Nelson

Astronomy 80 B: Light. Lecture 9: curved mirrors, lenses, aberrations 29 April 2003 Jerry Nelson Astronomy 80 B: Light Lecture 9: curved mirrors, lenses, aberrations 29 April 2003 Jerry Nelson Sensitive Countries LLNL field trip 2003 April 29 80B-Light 2 Topics for Today Optical illusion Reflections

More information

GEOMETRICAL OPTICS Practical 1. Part I. BASIC ELEMENTS AND METHODS FOR CHARACTERIZATION OF OPTICAL SYSTEMS

GEOMETRICAL OPTICS Practical 1. Part I. BASIC ELEMENTS AND METHODS FOR CHARACTERIZATION OF OPTICAL SYSTEMS GEOMETRICAL OPTICS Practical 1. Part I. BASIC ELEMENTS AND METHODS FOR CHARACTERIZATION OF OPTICAL SYSTEMS Equipment and accessories: an optical bench with a scale, an incandescent lamp, matte, a set of

More information

Chapter 18 Optical Elements

Chapter 18 Optical Elements Chapter 18 Optical Elements GOALS When you have mastered the content of this chapter, you will be able to achieve the following goals: Definitions Define each of the following terms and use it in an operational

More information

Sequential Ray Tracing. Lecture 2

Sequential Ray Tracing. Lecture 2 Sequential Ray Tracing Lecture 2 Sequential Ray Tracing Rays are traced through a pre-defined sequence of surfaces while travelling from the object surface to the image surface. Rays hit each surface once

More information

Wide Angle Cross-Folded Telescope for Multiple Feeder Links

Wide Angle Cross-Folded Telescope for Multiple Feeder Links Wide Angle Cross-Folded Telescope for Multiple Feeder Links Thomas Weigel, Thomas Dreischer RUAG Space, Dept. OptoElectronics & Instruments RUAG Schweiz AG Zürich, Switzerland Abstract An optical design

More information

Opti 415/515. Introduction to Optical Systems. Copyright 2009, William P. Kuhn

Opti 415/515. Introduction to Optical Systems. Copyright 2009, William P. Kuhn Opti 415/515 Introduction to Optical Systems 1 Optical Systems Manipulate light to form an image on a detector. Point source microscope Hubble telescope (NASA) 2 Fundamental System Requirements Application

More information

For rotationally symmetric optical

For rotationally symmetric optical : Maintaining Uniform Temperature Fluctuations John Tejada, Janos Technology, Inc. An optical system is athermalized if its critical performance parameters (such as MTF, BFL, EFL, etc.,) do not change

More information

Laboratory 7: Properties of Lenses and Mirrors

Laboratory 7: Properties of Lenses and Mirrors Laboratory 7: Properties of Lenses and Mirrors Converging and Diverging Lens Focal Lengths: A converging lens is thicker at the center than at the periphery and light from an object at infinity passes

More information

Chapter 36. Image Formation

Chapter 36. Image Formation Chapter 36 Image Formation Notation for Mirrors and Lenses The object distance is the distance from the object to the mirror or lens Denoted by p The image distance is the distance from the image to the

More information

Properties of optical instruments. Visual optical systems part 2: focal visual instruments (microscope type)

Properties of optical instruments. Visual optical systems part 2: focal visual instruments (microscope type) Properties of optical instruments Visual optical systems part 2: focal visual instruments (microscope type) Examples of focal visual instruments magnifying glass Eyepieces Measuring microscopes from the

More information

Converging Lenses. Parallel rays are brought to a focus by a converging lens (one that is thicker in the center than it is at the edge).

Converging Lenses. Parallel rays are brought to a focus by a converging lens (one that is thicker in the center than it is at the edge). Chapter 30: Lenses Types of Lenses Piece of glass or transparent material that bends parallel rays of light so they cross and form an image Two types: Converging Diverging Converging Lenses Parallel rays

More information

PHYS 160 Astronomy. When analyzing light s behavior in a mirror or lens, it is helpful to use a technique called ray tracing.

PHYS 160 Astronomy. When analyzing light s behavior in a mirror or lens, it is helpful to use a technique called ray tracing. Optics Introduction In this lab, we will be exploring several properties of light including diffraction, reflection, geometric optics, and interference. There are two sections to this lab and they may

More information

OPTI-502 Optical Design and Instrumentation I John E. Greivenkamp Homework Set 11 Fall, 2017

OPTI-502 Optical Design and Instrumentation I John E. Greivenkamp Homework Set 11 Fall, 2017 Assigned: 11/8/17 Lectre 23 De: 11/15/17 Lectre 25 11-1) A teleconverter is an optical component that is placed between or camera lens and camera to increase the focal length of the lens. Common varieties

More information

Assignment X Light. Reflection and refraction of light. (a) Angle of incidence (b) Angle of reflection (c) principle axis

Assignment X Light. Reflection and refraction of light. (a) Angle of incidence (b) Angle of reflection (c) principle axis Assignment X Light Reflection of Light: Reflection and refraction of light. 1. What is light and define the duality of light? 2. Write five characteristics of light. 3. Explain the following terms (a)

More information

PHY385H1F Introductory Optics Term Test 2 November 6, 2012 Duration: 50 minutes. NAME: Student Number:.

PHY385H1F Introductory Optics Term Test 2 November 6, 2012 Duration: 50 minutes. NAME: Student Number:. PHY385H1F Introductory Optics Term Test 2 November 6, 2012 Duration: 50 minutes NAME: Student Number:. Aids allowed: A pocket calculator with no communication ability. One 8.5x11 aid sheet, written on

More information

2. The radius of curvature of a spherical mirror is 20 cm. What is its focal length?

2. The radius of curvature of a spherical mirror is 20 cm. What is its focal length? 1. Define the principle focus of a concave mirror? The principle focus of a concave mirror is a point on its principle axis to which all the light rays which are parallel and close to the axis, converge

More information

Lecture 4: Geometrical Optics 2. Optical Systems. Images and Pupils. Rays. Wavefronts. Aberrations. Outline

Lecture 4: Geometrical Optics 2. Optical Systems. Images and Pupils. Rays. Wavefronts. Aberrations. Outline Lecture 4: Geometrical Optics 2 Outline 1 Optical Systems 2 Images and Pupils 3 Rays 4 Wavefronts 5 Aberrations Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical

More information

Thin Lenses. Lecture 25. Chapter 23. Ray Optics. Physics II. Course website:

Thin Lenses. Lecture 25. Chapter 23. Ray Optics. Physics II. Course website: Lecture 25 Chapter 23 Physics II Ray Optics Thin Lenses Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Lecture Capture: http://echo360.uml.edu/danylov201415/physics2spring.html

More information

always positive for virtual image

always positive for virtual image Point to be remembered: sign convention for Spherical mirror Object height, h = always positive Always +ve for virtual image Image height h = Always ve for real image. Object distance from pole (u) = always

More information

CH. 23 Mirrors and Lenses HW# 6, 7, 9, 11, 13, 21, 25, 31, 33, 35

CH. 23 Mirrors and Lenses HW# 6, 7, 9, 11, 13, 21, 25, 31, 33, 35 CH. 23 Mirrors and Lenses HW# 6, 7, 9, 11, 13, 21, 25, 31, 33, 35 Mirrors Rays of light reflect off of mirrors, and where the reflected rays either intersect or appear to originate from, will be the location

More information

Compound Lens Example

Compound Lens Example Compound Lens Example Charles A. DiMarzio Filename: twolens 3 October 28 at 5:28 Thin Lens To better understand the concept of principal planes, we consider the compound lens of two elements shown in Figure.

More information

Person s Optics Test KEY SSSS

Person s Optics Test KEY SSSS Person s Optics Test KEY SSSS 2017-18 Competitors Names: School Name: All questions are worth one point unless otherwise stated. Show ALL WORK or you may not receive credit. Include correct units whenever

More information

Chapter 3 Op+cal Instrumenta+on

Chapter 3 Op+cal Instrumenta+on Chapter 3 Op+cal Instrumenta+on 3-1 Stops, Pupils, and Windows 3-4 The Camera 3-5 Simple Magnifiers and Eyepieces 3-6 Microscopes 3-7 Telescopes Today (2011-09-22) 1. Magnifiers 2. Camera 3. Resolution

More information

Chapter 34 Geometric Optics (also known as Ray Optics) by C.-R. Hu

Chapter 34 Geometric Optics (also known as Ray Optics) by C.-R. Hu Chapter 34 Geometric Optics (also known as Ray Optics) by C.-R. Hu 1. Principles of image formation by mirrors (1a) When all length scales of objects, gaps, and holes are much larger than the wavelength

More information

ECEG105/ECEU646 Optics for Engineers Course Notes Part 4: Apertures, Aberrations Prof. Charles A. DiMarzio Northeastern University Fall 2008

ECEG105/ECEU646 Optics for Engineers Course Notes Part 4: Apertures, Aberrations Prof. Charles A. DiMarzio Northeastern University Fall 2008 ECEG105/ECEU646 Optics for Engineers Course Notes Part 4: Apertures, Aberrations Prof. Charles A. DiMarzio Northeastern University Fall 2008 July 2003+ Chuck DiMarzio, Northeastern University 11270-04-1

More information

Instructor: Doc. Ivan Kassamakov, Assistant: Kalle Hanhijärvi, Doctoral student

Instructor: Doc. Ivan Kassamakov, Assistant: Kalle Hanhijärvi, Doctoral student Instructor: Doc. Ivan Kassamakov, Assistant: Kalle Hanhijärvi, Doctoral student Course webpage: http://electronics.physics.helsinki.fi/teaching/optics-2014 Gaussian Optics Errors Taylor series 3 θ sin

More information

Classical Optical Solutions

Classical Optical Solutions Petzval Lens Enter Petzval, a Hungarian mathematician. To pursue a prize being offered for the development of a wide-field fast lens system he enlisted Hungarian army members seeing a distraction from

More information

Option G 2: Lenses. The diagram below shows the image of a square grid as produced by a lens that does not cause spherical aberration.

Option G 2: Lenses. The diagram below shows the image of a square grid as produced by a lens that does not cause spherical aberration. Name: Date: Option G 2: Lenses 1. This question is about spherical aberration. The diagram below shows the image of a square grid as produced by a lens that does not cause spherical aberration. In the

More information

Exam questions OPTI 517. Only a calculator and a single sheet of paper, 8 X11, with formulas will be allowed during the exam.

Exam questions OPTI 517. Only a calculator and a single sheet of paper, 8 X11, with formulas will be allowed during the exam. Exam questions OPTI 517 Only a calculator an a single sheet of paper, 8 X11, with formulas will be allowe uring the exam. 1) A single optical spherical surface oes not contribute spherical aberration.

More information

Lenses Design Basics. Introduction. RONAR-SMITH Laser Optics. Optics for Medical. System. Laser. Semiconductor Spectroscopy.

Lenses Design Basics. Introduction. RONAR-SMITH Laser Optics. Optics for Medical. System. Laser. Semiconductor Spectroscopy. Introduction Optics Application Lenses Design Basics a) Convex lenses Convex lenses are optical imaging components with positive focus length. After going through the convex lens, parallel beam of light

More information

mirrors and lenses PHY232 Remco Zegers Room W109 cyclotron building

mirrors and lenses PHY232 Remco Zegers Room W109 cyclotron building mirrors and lenses PHY232 Remco Zegers zegers@nscl.msu.edu Room W109 cyclotron building http://www.nscl.msu.edu/~zegers/phy232.html quiz (extra credit) a ray of light moves from air to a material with

More information