# The ultimate camera. Computational Photography. Creating the ultimate camera. The ultimate camera. What does it do?

Save this PDF as:

Size: px
Start display at page:

Download "The ultimate camera. Computational Photography. Creating the ultimate camera. The ultimate camera. What does it do?"

## Transcription

1 Computational Photography The ultimate camera What does it do? Image from Durand & Freeman s MIT Course on Computational Photography Today s reading Szeliski Chapter 9 The ultimate camera Infinite resolution Infinite zoom control Desired object(s) are in focus No noise No motion blur Infinite dynamic range (can see dark and bright things)... Creating the ultimate camera The analog camera has changed very little in >100 yrs we re unlikely to get there following this path More promising is to combine analog optics with computational techniques Computational cameras or Computational photography This lecture will survey techniques for producing higher quality images by combining optics and computation Common themes: take multiple photos modify the camera

2 Noise reduction Take several images and average them Field of view We can artificially increase the field of view by compositing several photos together (project 2). Why does this work? Basic statistics: variance of the mean decreases with n: Improving resolution: Gigapixel images Improving resolution: super resolution What if you don t have a zoom lens? Max Lyons, 2003 fused 196 telephoto shots A few other notable examples: Obama inauguration (gigapan.org) HDView (Microsoft Research)

3 Intuition (slides from Yossi Rubner & Miki Elad) Intuition (slides from Yossi Rubner & Miki Elad) For a given band-limited image, the Nyquist sampling theorem states that if a uniform sampling is fine enough ( D), perfect reconstruction is possible. D Due to our limited camera resolution, we sample using an insufficient grid D 9 10 Intuition (slides from Yossi Rubner & Miki Elad) Intuition (slides from Yossi Rubner & Miki Elad) However, if we take a second picture, shifting the camera slightly to the right we obtain: Similarly, by shifting down we get a third image: 11 12

4 Intuition (slides from Yossi Rubner & Miki Elad) Intuition And finally, by shifting down and to the right we get the fourth image: By combining all four images the desired resolution is obtained, and thus perfect reconstruction is guaranteed Example Handling more general motions 3:1 scale-up in each axis using 9 images, with pure global translation between them What if the camera displacement is Arbitrary? What if the camera rotates? Gets closer to the object (zoom)? 15 16

5 Super-resolution Basic idea: define a destination (dst) image of desired resolution assume mapping from dst to each input image is known usually a combination of a motion/warp and an average (point-spread function) can be expressed as a set of linear constraints sometimes the mapping is solved for as well add some form of regularization (e.g., smoothness assumption ) can also be expressed using linear constraints but L1, other nonlinear methods work better How does this work? [Baker & Kanade, 2002] Limits of super-resolution [Baker & Kanade, 2002] Performance degrades significantly beyond 4x or so Doesn t matter how many new images you add space of possible (ambiguous) solutions explodes quickly Major cause quantizing pixels to 8-bit gray values Dynamic Range Typical cameras have limited dynamic range Possible solutions: nonlinear techniques (e.g., L1) better priors (e.g., using domain knowledge) Baker & Kanade Hallucination, 2002 Freeman et al. Example-based super-resolution

6 HDR images merge multiple inputs HDR images merged Pixel count Pixel count Scene Radiance Radiance Camera is not a photometer! Limited dynamic range 8 bits captures only 2 orders of magnitude of light intensity We can see ~10 orders of magnitude of light intensity Unknown, nonlinear response pixel intensity amount of light (# photons, or radiance ) Solution: Recover response curve from multiple exposures, then reconstruct the radiance map Camera response function 255 Pixel value 0 log Exposure = log (Radiance * Δt) (CCD photon count)

7 Calculating response function Debevec & Malik [SIGGRAPH 1997] Δt = 1/64 sec Δt = 1/16 sec Δt = 1/4 sec Δt = 1 sec Pixel Value Z = f(exposure) Exposure = Radiance Δt log Exposure = log Radiance + log Δt Δt = 4 sec Pixel value Assuming unit radiance for each pixel log Exposure After adjusting radiances to obtain a smooth response curve Pixel value log Exposure The Math Let g(z) be the discrete inverse response function For each pixel site i in each image j, want: Solve the over-determined linear system: N P [ ln Radiance i + lnδt j g(z ij )] 2 +λ g (z) 2 i=1 j=1 ln Radiance i +ln Δt j = g(z ij ) Z max z =Z min Capture and composite several photos Same trick works for field of view resolution signal to noise dynamic range Focus But sometimes you can do better by modifying the camera fitting term smoothness term

8 Focus Suppose we want to produce images where the desired object is guaranteed to be in focus? Light field camera [Ng et al., 2005] Or suppose we want everything to be in focus? Conventional vs. light field camera Prototype camera Contax medium format camera Kodak 16-megapixel sensor Adaptive Optics microlens array 125μ square-sided microlenses pixels lenses = pixels per lens

9 Simulating depth of field Σ Σ stopping down aperture = summing only the central portion of each microlens Digital refocusing Example of digital refocusing Σ Σ refocusing = summing windows extracted from several microlenses

10 All-in-focus If you only want to produce an all-focus image, there are simpler alternatives E.g., Wavefront coding [Dowsky 1995] Coded aperture [Levin SIGGRAPH 2007], [Raskar SIGGRAPH 2007] can also produce change in focus (ala Ng s light field camera) Levin et al., SIGGRAPH 2007 Input Levin et al., SIGGRAPH 2007

11 All-focused (deconvolved) Close-up Original image All-focus image Motion blur removal Instead of coding the aperture, code the... Raskar et al., Shutter SIGGRAPH is OPEN 2007 and CLOSED

12 Raskar et al., SIGGRAPH 2007 Many more possibilities Seeing through/behind objects Using a camera array ( synthetic aperture ) Levoy et al., SIGGRAPH 2004 Removing interreflections Nayar et al., SIGGRAPH 2006 Family portraits where everyone s smiling Photomontage (Agarwala at al., SIGGRAPH 2004) License Plate Retrieval More on computational photography SIGGRAPH course notes and video Other courses MIT course CMU course Stanford course Columbia course Wikipedia page Symposium on Computational Photography ICCP 2009 (conference)

### CS6670: Computer Vision

CS6670: Computer Vision Noah Snavely Lecture 22: Computational photography photomatix.com Announcements Final project midterm reports due on Tuesday to CMS by 11:59pm BRDF s can be incredibly complicated

### High Dynamic Range Imaging

High Dynamic Range Imaging 1 2 Lecture Topic Discuss the limits of the dynamic range in current imaging and display technology Solutions 1. High Dynamic Range (HDR) Imaging Able to image a larger dynamic

### Capturing Light. The Light Field. Grayscale Snapshot 12/1/16. P(q, f)

Capturing Light Rooms by the Sea, Edward Hopper, 1951 The Penitent Magdalen, Georges de La Tour, c. 1640 Some slides from M. Agrawala, F. Durand, P. Debevec, A. Efros, R. Fergus, D. Forsyth, M. Levoy,

### Computational Approaches to Cameras

Computational Approaches to Cameras 11/16/17 Magritte, The False Mirror (1935) Computational Photography Derek Hoiem, University of Illinois Announcements Final project proposal due Monday (see links on

### Coded photography , , Computational Photography Fall 2018, Lecture 14

Coded photography http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2018, Lecture 14 Overview of today s lecture The coded photography paradigm. Dealing with

### Coded Computational Photography!

Coded Computational Photography! EE367/CS448I: Computational Imaging and Display! stanford.edu/class/ee367! Lecture 9! Gordon Wetzstein! Stanford University! Coded Computational Photography - Overview!!

### Coded photography , , Computational Photography Fall 2017, Lecture 18

Coded photography http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2017, Lecture 18 Course announcements Homework 5 delayed for Tuesday. - You will need cameras

### Deblurring. Basics, Problem definition and variants

Deblurring Basics, Problem definition and variants Kinds of blur Hand-shake Defocus Credit: Kenneth Josephson Motion Credit: Kenneth Josephson Kinds of blur Spatially invariant vs. Spatially varying

### Dappled Photography: Mask Enhanced Cameras for Heterodyned Light Fields and Coded Aperture Refocusing

Dappled Photography: Mask Enhanced Cameras for Heterodyned Light Fields and Coded Aperture Refocusing Ashok Veeraraghavan, Ramesh Raskar, Ankit Mohan & Jack Tumblin Amit Agrawal, Mitsubishi Electric Research

### High dynamic range imaging and tonemapping

High dynamic range imaging and tonemapping http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2017, Lecture 12 Course announcements Homework 3 is out. - Due

### Light field sensing. Marc Levoy. Computer Science Department Stanford University

Light field sensing Marc Levoy Computer Science Department Stanford University The scalar light field (in geometrical optics) Radiance as a function of position and direction in a static scene with fixed

### High Dynamic Range Images : Rendering and Image Processing Alexei Efros. The Grandma Problem

High Dynamic Range Images 15-463: Rendering and Image Processing Alexei Efros The Grandma Problem 1 Problem: Dynamic Range 1 1500 The real world is high dynamic range. 25,000 400,000 2,000,000,000 Image

### Wavefront coding. Refocusing & Light Fields. Wavefront coding. Final projects. Is depth of field a blur? Frédo Durand Bill Freeman MIT - EECS

6.098 Digital and Computational Photography 6.882 Advanced Computational Photography Final projects Send your slides by noon on Thrusday. Send final report Refocusing & Light Fields Frédo Durand Bill Freeman

### Computational Camera & Photography: Coded Imaging

Computational Camera & Photography: Coded Imaging Camera Culture Ramesh Raskar MIT Media Lab http://cameraculture.media.mit.edu/ Image removed due to copyright restrictions. See Fig. 1, Eight major types

### Computational Cameras. Rahul Raguram COMP

Computational Cameras Rahul Raguram COMP 790-090 What is a computational camera? Camera optics Camera sensor 3D scene Traditional camera Final image Modified optics Camera sensor Image Compute 3D scene

### To Do. Advanced Computer Graphics. Outline. Computational Imaging. How do we see the world? Pinhole camera

Advanced Computer Graphics CSE 163 [Spring 2017], Lecture 14 Ravi Ramamoorthi http://www.cs.ucsd.edu/~ravir To Do Assignment 2 due May 19 Any last minute issues or questions? Next two lectures: Imaging,

### Deconvolution , , Computational Photography Fall 2018, Lecture 12

Deconvolution http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2018, Lecture 12 Course announcements Homework 3 is out. - Due October 12 th. - Any questions?

### The Dynamic Range Problem. High Dynamic Range (HDR) Multiple Exposure Photography. Multiple Exposure Photography. Dr. Yossi Rubner.

The Dynamic Range Problem High Dynamic Range (HDR) starlight Domain of Human Vision: from ~10-6 to ~10 +8 cd/m moonlight office light daylight flashbulb 10-6 10-1 10 100 10 +4 10 +8 Dr. Yossi Rubner yossi@rubner.co.il

### Lenses, exposure, and (de)focus

Lenses, exposure, and (de)focus http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2017, Lecture 15 Course announcements Homework 4 is out. - Due October 26

### Burst Photography! EE367/CS448I: Computational Imaging and Display! stanford.edu/class/ee367! Lecture 7! Gordon Wetzstein! Stanford University!

Burst Photography! EE367/CS448I: Computational Imaging and Display! stanford.edu/class/ee367! Lecture 7! Gordon Wetzstein! Stanford University! Motivation! wikipedia! exposure sequence! -4 stops! Motivation!

### When Does Computational Imaging Improve Performance?

When Does Computational Imaging Improve Performance? Oliver Cossairt Assistant Professor Northwestern University Collaborators: Mohit Gupta, Changyin Zhou, Daniel Miau, Shree Nayar (Columbia University)

### Introduction to Light Fields

MIT Media Lab Introduction to Light Fields Camera Culture Ramesh Raskar MIT Media Lab http://cameraculture.media.mit.edu/ Introduction to Light Fields Ray Concepts for 4D and 5D Functions Propagation of

### Computational Photography Introduction

Computational Photography Introduction Jongmin Baek CS 478 Lecture Jan 9, 2012 Background Sales of digital cameras surpassed sales of film cameras in 2004. Digital cameras are cool Free film Instant display

### Lecture 18: Light field cameras. (plenoptic cameras) Visual Computing Systems CMU , Fall 2013

Lecture 18: Light field cameras (plenoptic cameras) Visual Computing Systems Continuing theme: computational photography Cameras capture light, then extensive processing produces the desired image Today:

### ! High&Dynamic!Range!Imaging! Slides!from!Marc!Pollefeys,!Gabriel! Brostow!(and!Alyosha!Efros!and! others)!!

! High&Dynamic!Range!Imaging! Slides!from!Marc!Pollefeys,!Gabriel! Brostow!(and!Alyosha!Efros!and! others)!! Today! High!Dynamic!Range!Imaging!(LDR&>HDR)! Tone!mapping!(HDR&>LDR!display)! The!Problem!

### Coded Aperture for Projector and Camera for Robust 3D measurement

Coded Aperture for Projector and Camera for Robust 3D measurement Yuuki Horita Yuuki Matugano Hiroki Morinaga Hiroshi Kawasaki Satoshi Ono Makoto Kimura Yasuo Takane Abstract General active 3D measurement

### Improving Film-Like Photography. aka, Epsilon Photography

Improving Film-Like Photography aka, Epsilon Photography Ankit Mohan Courtesy of Ankit Mohan. Used with permission. Film-like like Optics: Imaging Intuition Angle(θ,ϕ) Ray Center of Projection Position

### Why learn about photography in this course?

Why learn about photography in this course? Geri's Game: Note the background is blurred. - photography: model of image formation - Many computer graphics methods use existing photographs e.g. texture &

### lecture 24 image capture - photography: model of image formation - image blur - camera settings (f-number, shutter speed) - exposure - camera response

lecture 24 image capture - photography: model of image formation - image blur - camera settings (f-number, shutter speed) - exposure - camera response - application: high dynamic range imaging Why learn

### Lecture 30: Image Sensors (Cont) Computer Graphics and Imaging UC Berkeley CS184/284A

Lecture 30: Image Sensors (Cont) Computer Graphics and Imaging UC Berkeley Reminder: The Pixel Stack Microlens array Color Filter Anti-Reflection Coating Stack height 4um is typical Pixel size 2um is typical

### Light field photography and microscopy

Light field photography and microscopy Marc Levoy Computer Science Department Stanford University The light field (in geometrical optics) Radiance as a function of position and direction in a static scene

### Deconvolution , , Computational Photography Fall 2017, Lecture 17

Deconvolution http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2017, Lecture 17 Course announcements Homework 4 is out. - Due October 26 th. - There was another

### Computational Photography and Video. Prof. Marc Pollefeys

Computational Photography and Video Prof. Marc Pollefeys Today s schedule Introduction of Computational Photography Course facts Syllabus Digital Photography What is computational photography Convergence

### Unit 1: Image Formation

Unit 1: Image Formation 1. Geometry 2. Optics 3. Photometry 4. Sensor Readings Szeliski 2.1-2.3 & 6.3.5 1 Physical parameters of image formation Geometric Type of projection Camera pose Optical Sensor

### Near-Invariant Blur for Depth and 2D Motion via Time-Varying Light Field Analysis

Near-Invariant Blur for Depth and 2D Motion via Time-Varying Light Field Analysis Yosuke Bando 1,2 Henry Holtzman 2 Ramesh Raskar 2 1 Toshiba Corporation 2 MIT Media Lab Defocus & Motion Blur PSF Depth

Project 4 Results http://www.cs.brown.edu/courses/cs129/results/proj4/jcmace/ http://www.cs.brown.edu/courses/cs129/results/proj4/damoreno/ http://www.cs.brown.edu/courses/csci1290/results/proj4/huag/

### Improved motion invariant imaging with time varying shutter functions

Improved motion invariant imaging with time varying shutter functions Steve Webster a and Andrew Dorrell b Canon Information Systems Research, Australia (CiSRA), Thomas Holt Drive, North Ryde, Australia

### Cameras. Outline. Pinhole camera. Camera trial #1. Pinhole camera Film camera Digital camera Video camera High dynamic range imaging

Outline Cameras Pinhole camera Film camera Digital camera Video camera High dynamic range imaging Digital Visual Effects, Spring 2006 Yung-Yu Chuang 2006/3/1 with slides by Fedro Durand, Brian Curless,

### ALMALENCE SUPER SENSOR. A software component with an effect of increasing the pixel size and number of pixels in the sensor

ALMALENCE SUPER SENSOR A software component with an effect of increasing the pixel size and number of pixels in the sensor MOBILE CAMERA: SMALL SENSOR AND TINY LENS Insufficient resolution, low light performance,

### Image Formation and Camera Design

Image Formation and Camera Design Spring 2003 CMSC 426 Jan Neumann 2/20/03 Light is all around us! From London & Upton, Photography Conventional camera design... Ken Kay, 1969 in Light & Film, TimeLife

### Distributed Algorithms. Image and Video Processing

Chapter 7 High Dynamic Range (HDR) Distributed Algorithms for Introduction to HDR (I) Source: wikipedia.org 2 1 Introduction to HDR (II) High dynamic range classifies a very high contrast ratio in images

### Coding and Modulation in Cameras

Coding and Modulation in Cameras Amit Agrawal June 2010 Mitsubishi Electric Research Labs (MERL) Cambridge, MA, USA Coded Computational Imaging Agrawal, Veeraraghavan, Narasimhan & Mohan Schedule Introduction

### CSC320H: Intro to Visual Computing. Course WWW (course information sheet available there):

CSC320H: Intro to Visual Computing Instructor: Fernando Flores-Mangas Office: PT265C Email: mangas320@cs.toronto.edu Office Hours: W 11-noon or by appt. Course WWW (course information sheet available there):

### Cameras. Steve Rotenberg CSE168: Rendering Algorithms UCSD, Spring 2017

Cameras Steve Rotenberg CSE168: Rendering Algorithms UCSD, Spring 2017 Camera Focus Camera Focus So far, we have been simulating pinhole cameras with perfect focus Often times, we want to simulate more

### Capturing Light in man and machine. Some figures from Steve Seitz, Steve Palmer, Paul Debevec, and Gonzalez et al.

Capturing Light in man and machine Some figures from Steve Seitz, Steve Palmer, Paul Debevec, and Gonzalez et al. 15-463: Computational Photography Alexei Efros, CMU, Fall 2005 Image Formation Digital

### Admin. Lightfields. Overview. Overview 5/13/2008. Idea. Projects due by the end of today. Lecture 13. Lightfield representation of a scene

Admin Lightfields Projects due by the end of today Email me source code, result images and short report Lecture 13 Overview Lightfield representation of a scene Unified representation of all rays Overview

### Computational Photography

Computational photography Computational Photography Digital Visual Effects Yung-Yu Chuang wikipedia: Computational photography h refers broadly to computational imaging techniques that enhance or extend

### Dynamically Reparameterized Light Fields & Fourier Slice Photography. Oliver Barth, 2009 Max Planck Institute Saarbrücken

Dynamically Reparameterized Light Fields & Fourier Slice Photography Oliver Barth, 2009 Max Planck Institute Saarbrücken Background What we are talking about? 2 / 83 Background What we are talking about?

### A Framework for Analysis of Computational Imaging Systems

A Framework for Analysis of Computational Imaging Systems Kaushik Mitra, Oliver Cossairt, Ashok Veeraghavan Rice University Northwestern University Computational imaging CI systems that adds new functionality

### Computational Photography: Principles and Practice

Computational Photography: Principles and Practice HCI & Robotics (HCI 및로봇응용공학 ) Ig-Jae Kim, Korea Institute of Science and Technology ( 한국과학기술연구원김익재 ) Jaewon Kim, Korea Institute of Science and Technology

### Agenda. Fusion and Reconstruction. Image Fusion & Reconstruction. Image Fusion & Reconstruction. Dr. Yossi Rubner.

Fusion and Reconstruction Dr. Yossi Rubner yossi@rubner.co.il Some slides stolen from: Jack Tumblin 1 Agenda We ve seen Panorama (from different FOV) Super-resolution (from low-res) HDR (from different

### Cameras. CSE 455, Winter 2010 January 25, 2010

Cameras CSE 455, Winter 2010 January 25, 2010 Announcements New Lecturer! Neel Joshi, Ph.D. Post-Doctoral Researcher Microsoft Research neel@cs Project 1b (seam carving) was due on Friday the 22 nd Project

### Overview. Pinhole camera model Projective geometry Vanishing points and lines Projection matrix Cameras with Lenses Color Digital image

Camera & Color Overview Pinhole camera model Projective geometry Vanishing points and lines Projection matrix Cameras with Lenses Color Digital image Book: Hartley 6.1, Szeliski 2.1.5, 2.2, 2.3 The trip

### Computer Vision. Howie Choset Introduction to Robotics

Computer Vision Howie Choset http://www.cs.cmu.edu.edu/~choset Introduction to Robotics http://generalrobotics.org What is vision? What is computer vision? Edge Detection Edge Detection Interest points

### 6.098 Digital and Computational Photography Advanced Computational Photography. Bill Freeman Frédo Durand MIT - EECS

6.098 Digital and Computational Photography 6.882 Advanced Computational Photography Bill Freeman Frédo Durand MIT - EECS Administrivia PSet 1 is out Due Thursday February 23 Digital SLR initiation? During

### Noise and ISO. CS 178, Spring Marc Levoy Computer Science Department Stanford University

Noise and ISO CS 178, Spring 2014 Marc Levoy Computer Science Department Stanford University Outline examples of camera sensor noise don t confuse it with JPEG compression artifacts probability, mean,

### Applications of Flash and No-Flash Image Pairs in Mobile Phone Photography

Applications of Flash and No-Flash Image Pairs in Mobile Phone Photography Xi Luo Stanford University 450 Serra Mall, Stanford, CA 94305 xluo2@stanford.edu Abstract The project explores various application

### multiframe visual-inertial blur estimation and removal for unmodified smartphones

multiframe visual-inertial blur estimation and removal for unmodified smartphones, Severin Münger, Carlo Beltrame, Luc Humair WSCG 2015, Plzen, Czech Republic images taken by non-professional photographers

The Noise about Noise I have found that few topics in astrophotography cause as much confusion as noise and proper exposure. In this column I will attempt to present some of the theory that goes into determining

### Admin Deblurring & Deconvolution Different types of blur

Admin Assignment 3 due Deblurring & Deconvolution Lecture 10 Last lecture Move to Friday? Projects Come and see me Different types of blur Camera shake User moving hands Scene motion Objects in the scene

### Transfer Efficiency and Depth Invariance in Computational Cameras

Transfer Efficiency and Depth Invariance in Computational Cameras Jongmin Baek Stanford University IEEE International Conference on Computational Photography 2010 Jongmin Baek (Stanford University) Transfer

### Projection. Readings. Szeliski 2.1. Wednesday, October 23, 13

Projection Readings Szeliski 2.1 Projection Readings Szeliski 2.1 Müller-Lyer Illusion by Pravin Bhat Müller-Lyer Illusion by Pravin Bhat http://www.michaelbach.de/ot/sze_muelue/index.html Müller-Lyer

### IMAGE FORMATION. Light source properties. Sensor characteristics Surface. Surface reflectance properties. Optics

IMAGE FORMATION Light source properties Sensor characteristics Surface Exposure shape Optics Surface reflectance properties ANALOG IMAGES An image can be understood as a 2D light intensity function f(x,y)

### Realistic Image Synthesis

Realistic Image Synthesis - HDR Capture & Tone Mapping - Philipp Slusallek Karol Myszkowski Gurprit Singh Karol Myszkowski LDR vs HDR Comparison Various Dynamic Ranges (1) 10-6 10-4 10-2 100 102 104 106

### Optical image stabilization (IS)

Optical image stabilization (IS) CS 178, Spring 2010 Marc Levoy Computer Science Department Stanford University Outline! what are the causes of camera shake? how can you avoid it (without having an IS

### Resolution test with line patterns

Resolution test with line patterns OBJECT IMAGE 1 line pair Resolution limit is usually given in line pairs per mm in sensor plane. Visual evaluation usually. Test of optics alone Magnifying glass Test

### Optical image stabilization (IS)

Optical image stabilization (IS) CS 178, Spring 2011 Marc Levoy Computer Science Department Stanford University Outline! what are the causes of camera shake? how can you avoid it (without having an IS

### Recent Advances in Image Deblurring. Seungyong Lee (Collaboration w/ Sunghyun Cho)

Recent Advances in Image Deblurring Seungyong Lee (Collaboration w/ Sunghyun Cho) Disclaimer Many images and figures in this course note have been copied from the papers and presentation materials of previous

### What will be on the midterm?

What will be on the midterm? CS 178, Spring 2014 Marc Levoy Computer Science Department Stanford University General information 2 Monday, 7-9pm, Cubberly Auditorium (School of Edu) closed book, no notes

### Tomorrow s Digital Photography

Tomorrow s Digital Photography Gerald Peter Vienna University of Technology Figure 1: a) - e): A series of photograph with five different exposures. f) In the high dynamic range image generated from a)

### Automatic Selection of Brackets for HDR Image Creation

Automatic Selection of Brackets for HDR Image Creation Michel VIDAL-NAQUET, Wei MING Abstract High Dynamic Range imaging (HDR) is now readily available on mobile devices such as smart phones and compact

### Cameras and Sensors. Today. Today. It receives light from all directions. BIL721: Computational Photography! Spring 2015, Lecture 2!

!! Cameras and Sensors Today Pinhole camera! Lenses! Exposure! Sensors! photo by Abelardo Morell BIL721: Computational Photography! Spring 2015, Lecture 2! Aykut Erdem! Hacettepe University! Computer Vision

### Introduction , , Computational Photography Fall 2018, Lecture 1

Introduction http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2018, Lecture 1 Overview of today s lecture Teaching staff introductions What is computational

### Coded Aperture and Coded Exposure Photography

Coded Aperture and Coded Exposure Photography Martin Wilson University of Cape Town Cape Town, South Africa Email: Martin.Wilson@uct.ac.za Fred Nicolls University of Cape Town Cape Town, South Africa Email:

### Building a Real Camera. Slides Credit: Svetlana Lazebnik

Building a Real Camera Slides Credit: Svetlana Lazebnik Home-made pinhole camera Slide by A. Efros http://www.debevec.org/pinhole/ Shrinking the aperture Why not make the aperture as small as possible?

### Determining MTF with a Slant Edge Target ABSTRACT AND INTRODUCTION

Determining MTF with a Slant Edge Target Douglas A. Kerr Issue 2 October 13, 2010 ABSTRACT AND INTRODUCTION The modulation transfer function (MTF) of a photographic lens tells us how effectively the lens

### Introductory Photography

Introductory Photography Basic concepts + Tips & Tricks Ken Goldman Apple Pi General Meeting 26 June 2010 Kenneth R. Goldman 1 The Flow General Thoughts Cameras Composition Miscellaneous Tips & Tricks

### Projection. Projection. Image formation. Müller-Lyer Illusion. Readings. Readings. Let s design a camera. Szeliski 2.1. Szeliski 2.

Projection Projection Readings Szeliski 2.1 Readings Szeliski 2.1 Müller-Lyer Illusion Image formation object film by Pravin Bhat http://www.michaelbach.de/ot/sze_muelue/index.html Let s design a camera

### University Of Lübeck ISNM Presented by: Omar A. Hanoun

University Of Lübeck ISNM 12.11.2003 Presented by: Omar A. Hanoun What Is CCD? Image Sensor: solid-state device used in digital cameras to capture and store an image. Photosites: photosensitive diodes

### Lecture 22: Cameras & Lenses III. Computer Graphics and Imaging UC Berkeley CS184/284A, Spring 2017

Lecture 22: Cameras & Lenses III Computer Graphics and Imaging UC Berkeley, Spring 2017 F-Number For Lens vs. Photo A lens s F-Number is the maximum for that lens E.g. 50 mm F/1.4 is a high-quality telephoto

### Presented to you today by the Fort Collins Digital Camera Club

Presented to you today by the Fort Collins Digital Camera Club www.fcdcc.com Photography: February 19, 2011 Fort Collins Digital Camera Club 2 Film Photography: Photography using light sensitive chemicals

### Optimal Single Image Capture for Motion Deblurring

Optimal Single Image Capture for Motion Deblurring Amit Agrawal Mitsubishi Electric Research Labs (MERL) 1 Broadway, Cambridge, MA, USA agrawal@merl.com Ramesh Raskar MIT Media Lab Ames St., Cambridge,

### Image stabilization (IS)

Image stabilization (IS) CS 178, Spring 2009 Marc Levoy Computer Science Department Stanford University Outline what are the causes of camera shake? and how can you avoid it (without having an IS system)?

### Ocular Shack-Hartmann sensor resolution. Dan Neal Dan Topa James Copland

Ocular Shack-Hartmann sensor resolution Dan Neal Dan Topa James Copland Outline Introduction Shack-Hartmann wavefront sensors Performance parameters Reconstructors Resolution effects Spot degradation Accuracy

### Acquisition. Some slides from: Yung-Yu Chuang (DigiVfx) Jan Neumann, Pat Hanrahan, Alexei Efros

Acquisition Some slides from: Yung-Yu Chuang (DigiVfx) Jan Neumann, Pat Hanrahan, Alexei Efros Image Acquisition Digital Camera Film Outline Pinhole camera Lens Lens aberrations Exposure Sensors Noise

### Cvision 2. António J. R. Neves João Paulo Silva Cunha. Bernardo Cunha. IEETA / Universidade de Aveiro

Cvision 2 Digital Imaging António J. R. Neves (an@ua.pt) & João Paulo Silva Cunha & Bernardo Cunha IEETA / Universidade de Aveiro Outline Image sensors Camera calibration Sampling and quantization Data

### Modeling and Synthesis of Aperture Effects in Cameras

Modeling and Synthesis of Aperture Effects in Cameras Douglas Lanman, Ramesh Raskar, and Gabriel Taubin Computational Aesthetics 2008 20 June, 2008 1 Outline Introduction and Related Work Modeling Vignetting

### Image acquisition. In both cases, the digital sensing element is one of the following: Line array Area array. Single sensor

Image acquisition Digital images are acquired by direct digital acquisition (digital still/video cameras), or scanning material acquired as analog signals (slides, photographs, etc.). In both cases, the

### CS354 Computer Graphics Computational Photography. Qixing Huang April 23 th 2018

CS354 Computer Graphics Computational Photography Qixing Huang April 23 th 2018 Background Sales of digital cameras surpassed sales of film cameras in 2004 Digital Cameras Free film Instant display Quality

### COMPUTATIONAL PHOTOGRAPHY. Chapter 10

1 COMPUTATIONAL PHOTOGRAPHY Chapter 10 Computa;onal photography Computa;onal photography: image analysis and processing algorithms are applied to one or more photographs to create images that go beyond

### A Kalman-Filtering Approach to High Dynamic Range Imaging for Measurement Applications

A Kalman-Filtering Approach to High Dynamic Range Imaging for Measurement Applications IEEE Transactions on Image Processing, Vol. 21, No. 2, 2012 Eric Dedrick and Daniel Lau, Presented by Ran Shu School

### Midterm Examination CS 534: Computational Photography

Midterm Examination CS 534: Computational Photography November 3, 2015 NAME: SOLUTIONS Problem Score Max Score 1 8 2 8 3 9 4 4 5 3 6 4 7 6 8 13 9 7 10 4 11 7 12 10 13 9 14 8 Total 100 1 1. [8] What are

### ELEC Dr Reji Mathew Electrical Engineering UNSW

ELEC 4622 Dr Reji Mathew Electrical Engineering UNSW Filter Design Circularly symmetric 2-D low-pass filter Pass-band radial frequency: ω p Stop-band radial frequency: ω s 1 δ p Pass-band tolerances: δ

### Optical image stabilization (IS)

Optical image stabilization (IS) CS 178, Spring 2013 Begun 4/30/13, finished 5/2/13. Marc Levoy Computer Science Department Stanford University Outline what are the causes of camera shake? how can you

### Implementation of Adaptive Coded Aperture Imaging using a Digital Micro-Mirror Device for Defocus Deblurring

Implementation of Adaptive Coded Aperture Imaging using a Digital Micro-Mirror Device for Defocus Deblurring Ashill Chiranjan and Bernardt Duvenhage Defence, Peace, Safety and Security Council for Scientific

### Optical Flow Estimation. Using High Frame Rate Sequences

Optical Flow Estimation Using High Frame Rate Sequences Suk Hwan Lim and Abbas El Gamal Programmable Digital Camera Project Department of Electrical Engineering, Stanford University, CA 94305, USA ICIP

### Camera Image Processing Pipeline: Part II

Lecture 14: Camera Image Processing Pipeline: Part II Visual Computing Systems Today Finish image processing pipeline Auto-focus / auto-exposure Camera processing elements Smart phone processing elements

### Recent advances in deblurring and image stabilization. Michal Šorel Academy of Sciences of the Czech Republic

Recent advances in deblurring and image stabilization Michal Šorel Academy of Sciences of the Czech Republic Camera shake stabilization Alternative to OIS (optical image stabilization) systems Should work