Contrast Image Correction Method

Size: px
Start display at page:

Download "Contrast Image Correction Method"

Transcription

1 Contrast Image Correction Method Journal of Electronic Imaging, Vol. 19, No. 2, 2010 Raimondo Schettini, Francesca Gasparini, Silvia Corchs, Fabrizio Marini, Alessandro Capra, and Alfio Castorina Presented by Woo-Heon Jang School of Electrical Engineering and Computer Science Kyungpook National Univ.

2 abstract Proposed method Contrast enhancement Local correction Overexposed region Underexposed region Image dependent exponential correction Using bilateral filter» Prevention halo artifact Preserving treatment» Stretching» Clipping» Saturation 2 / 30

3 Introduction Contrast image correction Considering scene of room by sunlit landscape Human observer Adaptation of eyes Photograph» Easy recognition of object in room» Easy recognition of feature in outdoor landscape Unaware outside landscape by overexposed window Unaware inside object by underexposed room 3 / 30

4 Two classes of contrast corrections Global correction Overall adjustment in image Disappointing result when shadow and highlight detail Gamma correction Histogram equalization Local correction Local adjustment in image» Allowing way for simultaneous shadow and highlight adjustment 4 / 30

5 Different algorithms for local contrast correction Moroney method Using nonlinear masking Simple pixel wise gamma correction of input data Representation of halo artifact» Boundary in scene Shrinking of dynamic range of scene Adaptive histogram equalization method Use of Local image information Modified cumulation function» Added weighting at cumulation function in local region 5 / 30

6 Retinex model Emphasis of reflectance component Elimination of luminance by acquisition of reflectance component Multiscale retinex with color restoration Rizzi et al. Automatic color equalization Enhancement of simultaneous global and local effect» Satisfactory tone equalization» Color constant correction High computation cost 6 / 30

7 Fairchild and Johnson Image color appearance model Traditional color appearance capability Chui et al.» Spatial vision attribution» Color difference metric Repeated clipping and low-pass filtering Larson et al Presented tone reproduction operator Preserving visibility in HDR scene Battiato et al Survey of early methods» Application of HDR image 7 / 30

8 Meylan and Susstrunk Using adaptive filter for halo artifact Durand and Dorsey Using anisotropic diffusion for enhanced edge Pattanik et.al Computational model by tone reproduction Proposed method Local contrast correction Elimination of halo artifact by bilateral filtering Estimation of optimized parameter for contrast correction Histogram clipping for improvement of overall image 8 / 30

9 Local contrast correction method Local exponential correction in LCC Gamma correction Elaborating input image through exponential γ Gamma correction transform Ii (, j) Oi (, j) = where γ is a positive number, Ii (, j) is each pixel of input image, and Oi (, j) is each pixel of output image. γ (1) Satisfactory result for total image Underexposed image Overexposed image 9 / 30

10 Dissatisfactory result Simultaneous Correction of under and overexposed regions Fig.1. (a) Original image with simultaneous underexposed and overexposed regions. (b) Gamma correction with γ = / 30

11 Extension of gamma correction Need of local correction Adjustment of simultaneous shadow and highlight region Ii (, j) Oi (, j) = γ [ i, j, N(, i j) ] (2) where Ni (, j) is neighboring pixels. Expression for exponent by Moroney s method γ [ 128 mask ( i, j)/128] [ i, j, N(, i j) ] = 2 (3) where mask(, i j) is an inverted Gaussian low-pass filtered version of the intensity of the input image. 11 / 30

12 where Greater distance from mean value 128» Stronger correction [ 128 BFmask ( i, j)/128] [ i, j, N(, i j) ] = γ α BFmask(. i j) is an inverted low pass version of intensity of input image, filtered with a bilateral filter, and α is a parameter depending on the image properties. (4) 12 / 30

13 Bilateral filter in LCC Computation of Gaussian low pass filter Weighted average of pixel values in neighborhood Decreasing weight with distance from center Similar values at near pixels Slow spatial variation at edge Blurring by low pass filtering Bilateral filter Preserving edge Smoothing image Decreasing halo artifact 13 / 30

14 Local exponential correction by proposed method Ii (, j) Oi (, j) = Bilateral filter mask 1 BFmask(, i j) = ki (, j) i+ K j+ K p= i Kq= j K [ 128 BFmask ( i, j )/128] α 1 exp ( i p) + ( j q) 2 2σ exp (, ) (, ) 2 inv inv 2σ 1 I ( pq, ) inv [ I i j I pq] 2 (5) (6) where ki (, j) is the normalization factor. 14 / 30

15 Normalization factor i+ K j+ K 1 1 ki (, j) = exp ( i p) + ( j q) 2 ki (, j) p= i Kq= j K 2σ 1 1 exp (, ) (, ) 2 inv inv 2σ 2 [ I i j I pq] (7) where σ 1 σ 2 is standard deviation of Gaussian function in spatial domain, and is standard deviation of Gaussian in intensity domain. Dimension of window Depending shape of spatial Gaussian K = 2.5 σ1 (8) where is integer part. 15 / 30

16 Fig. 2. Original image to be elaborated. Dimension: Fig. 3. (a) LCC output of Fig. 2. (b) Bilateral filtered mask used. Fig. 4. (a) Moroney correction of Fig. 2. (b) Gaussian mask used. 16 / 30

17 α parameter optimization Performance of different contrast correction Depending on characteristic of single shot Adjusting α value Development of automatic tool [ 128 BFmask ( i, j )/128] α Ii (, j) EOi [ (, j) ] = 255 E 255 where E is expected value. (9) 17 / 30

18 Mean value of gray image equal to 128 [ 128 BFmask ( i, j )/128] α Ii (, j) EOi [ (, j) ] = 255 E = (10) Estimated values ln( I / 255) α ln(0.5) when BFmask = 255 ln(0.5) α ln( I / 255) when BFmask = 0 (11) (12) where I is the estimated value or mean value of the input image. 18 / 30

19 (a) (b) (c) (d) Fig. 5. (a) Original image; dimension 320X240. (b) LCC output with α =1.5. (c) LCC output with α =2. (d) LCC output with α = / 30

20 Contrast enhancement chain : stretching, clipping and saturation gain in LCC Stretching and clipping Analysis of intensity histogram Dissatisfaction of overall contrast enhancement Low quality image with compression artifact Enhanced noise in dark zone Domination of undesirable loss in image quality Stretching Clipping Saturation 20 / 30

21 Entire enhancement procedure of proposed method Fig. 6. Flowchart of the local contrast correction method proposed here. 21 / 30

22 Color saturation Minimized change of color saturation 1 Y ' R' = ( ) 2 R+ Y + R Y Y 1 Y ' G' = ( G Y) G Y Y 1 Y ' B' = ( B+ Y) + B Y 2 Y (13) where Y ' is the corrected luminance obtained after the (LCC + clipping) correction module 22 / 30

23 Results and Discussion (a) (c) (e) (b) (d) Fig. 7. (a) Original image. (b) Histogram of (a). (c) LCC output with α =2.5. (d) Histogram of (c). (e) LCC+clipping+saturation. (f) Histogram of (e). (f) 23 / 30

24 (a) (c) (e) (b) (d) (f) Fig. 8. (a) Original image. (b) Histogram of (a). (c) LCC output. (d)histogram of (c). (e) LCC+clipping+saturation. (f) Histogram of (e). 24 / 30

25 (a) (b) (c) Fig. 9. (a) Original image. (b) Our proposed method. (c) Moroney correction. (d) Retinex. (d) 25 / 30

26 Quality assessment Objective metric Estimation of brightness and contrast in image Entropy Occupation of all intensity level Evaluation of pleasing image Absolute mean brightness error Absolute difference between input and output mean Measure of enhancement Approximation of average contrast in image Maximum and minimum intensity values in average Subjective evaluation Mean opinion score 26 / 30

27 (a) (b) (c) Fig. 11. (a) Original image (EME=25.09, H=5.86). (b) Our proposed method (EME=18.09, AMBE=18.89, H=6.01). (c) Moroney correction (EME=23.76, AMBE=23.86, H=6.58). (d) Retinex (EME=31.70, AMBE=48.58, H=7.61). (d) 27 / 30

28 Fig. 10. (a) Original image. (b) Our proposed method. (c) Moroney correction. (d) Retinex. 28 / 30

29 Fig. 12. (a) Original image. (b) Our proposed method. (c) Moroney correction. (d) Retinex. 29 / 30

30 Conclusion Local contrast correction algorithm Prevention of halo artifact Edge preserving filter Bilateral low pass technique Comparison with other solutions Enhancement of dynamic range in image Common quality loss Halo artifact Desaturation Grayish appearance 30 / 30

Fast Bilateral Filtering for the Display of High-Dynamic-Range Images

Fast Bilateral Filtering for the Display of High-Dynamic-Range Images Fast Bilateral Filtering for the Display of High-Dynamic-Range Images Frédo Durand & Julie Dorsey Laboratory for Computer Science Massachusetts Institute of Technology Contributions Contrast reduction

More information

Efficient Contrast Enhancement Using Adaptive Gamma Correction and Cumulative Intensity Distribution

Efficient Contrast Enhancement Using Adaptive Gamma Correction and Cumulative Intensity Distribution Efficient Contrast Enhancement Using Adaptive Gamma Correction and Cumulative Intensity Distribution Yi-Sheng Chiu, Fan-Chieh Cheng and Shih-Chia Huang Department of Electronic Engineering, National Taipei

More information

Tone mapping. Digital Visual Effects, Spring 2009 Yung-Yu Chuang. with slides by Fredo Durand, and Alexei Efros

Tone mapping. Digital Visual Effects, Spring 2009 Yung-Yu Chuang. with slides by Fredo Durand, and Alexei Efros Tone mapping Digital Visual Effects, Spring 2009 Yung-Yu Chuang 2009/3/5 with slides by Fredo Durand, and Alexei Efros Tone mapping How should we map scene luminances (up to 1:100,000) 000) to display

More information

A Locally Tuned Nonlinear Technique for Color Image Enhancement

A Locally Tuned Nonlinear Technique for Color Image Enhancement A Locally Tuned Nonlinear Technique for Color Image Enhancement Electrical and Computer Engineering Department Old Dominion University Norfolk, VA 3508, USA sarig00@odu.edu, vasari@odu.edu http://www.eng.odu.edu/visionlab

More information

icam06, HDR, and Image Appearance

icam06, HDR, and Image Appearance icam06, HDR, and Image Appearance Jiangtao Kuang, Mark D. Fairchild, Rochester Institute of Technology, Rochester, New York Abstract A new image appearance model, designated as icam06, has been developed

More information

Realistic Image Synthesis

Realistic Image Synthesis Realistic Image Synthesis - HDR Capture & Tone Mapping - Philipp Slusallek Karol Myszkowski Gurprit Singh Karol Myszkowski LDR vs HDR Comparison Various Dynamic Ranges (1) 10-6 10-4 10-2 100 102 104 106

More information

High dynamic range and tone mapping Advanced Graphics

High dynamic range and tone mapping Advanced Graphics High dynamic range and tone mapping Advanced Graphics Rafał Mantiuk Computer Laboratory, University of Cambridge Cornell Box: need for tone-mapping in graphics Rendering Photograph 2 Real-world scenes

More information

Problem Set 3. Assigned: March 9, 2006 Due: March 23, (Optional) Multiple-Exposure HDR Images

Problem Set 3. Assigned: March 9, 2006 Due: March 23, (Optional) Multiple-Exposure HDR Images 6.098/6.882 Computational Photography 1 Problem Set 3 Assigned: March 9, 2006 Due: March 23, 2006 Problem 1 (Optional) Multiple-Exposure HDR Images Even though this problem is optional, we recommend you

More information

High Dynamic Range Images : Rendering and Image Processing Alexei Efros. The Grandma Problem

High Dynamic Range Images : Rendering and Image Processing Alexei Efros. The Grandma Problem High Dynamic Range Images 15-463: Rendering and Image Processing Alexei Efros The Grandma Problem 1 Problem: Dynamic Range 1 1500 The real world is high dynamic range. 25,000 400,000 2,000,000,000 Image

More information

Correction of Clipped Pixels in Color Images

Correction of Clipped Pixels in Color Images Correction of Clipped Pixels in Color Images IEEE Transaction on Visualization and Computer Graphics, Vol. 17, No. 3, 2011 Di Xu, Colin Doutre, and Panos Nasiopoulos Presented by In-Yong Song School of

More information

Adaptive Local Power-Law Transformation for Color Image Enhancement

Adaptive Local Power-Law Transformation for Color Image Enhancement Appl. Math. Inf. Sci. 7, No. 5, 2019-2026 (2013) 2019 Applied Mathematics & Information Sciences An International Journal http://dx.doi.org/10.12785/amis/070542 Adaptive Local Power-Law Transformation

More information

The Influence of Luminance on Local Tone Mapping

The Influence of Luminance on Local Tone Mapping The Influence of Luminance on Local Tone Mapping Laurence Meylan and Sabine Süsstrunk, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland Abstract We study the influence of the choice

More information

IMAGE ENHANCEMENT - POINT PROCESSING

IMAGE ENHANCEMENT - POINT PROCESSING 1 IMAGE ENHANCEMENT - POINT PROCESSING KOM3212 Image Processing in Industrial Systems Some of the contents are adopted from R. C. Gonzalez, R. E. Woods, Digital Image Processing, 2nd edition, Prentice

More information

Denoising and Effective Contrast Enhancement for Dynamic Range Mapping

Denoising and Effective Contrast Enhancement for Dynamic Range Mapping Denoising and Effective Contrast Enhancement for Dynamic Range Mapping G. Kiruthiga Department of Electronics and Communication Adithya Institute of Technology Coimbatore B. Hakkem Department of Electronics

More information

Fast Bilateral Filtering for the Display of High-Dynamic-Range Images

Fast Bilateral Filtering for the Display of High-Dynamic-Range Images Contributions ing for the Display of High-Dynamic-Range Images for HDR images Local tone mapping Preserves details No halo Edge-preserving filter Frédo Durand & Julie Dorsey Laboratory for Computer Science

More information

Image Processing for feature extraction

Image Processing for feature extraction Image Processing for feature extraction 1 Outline Rationale for image pre-processing Gray-scale transformations Geometric transformations Local preprocessing Reading: Sonka et al 5.1, 5.2, 5.3 2 Image

More information

Filtering. Image Enhancement Spatial and Frequency Based

Filtering. Image Enhancement Spatial and Frequency Based Filtering Image Enhancement Spatial and Frequency Based Brent M. Dingle, Ph.D. 2015 Game Design and Development Program Mathematics, Statistics and Computer Science University of Wisconsin - Stout Lecture

More information

Index Terms: edge-preserving filter, Bilateral filter, exploratory data model, Image Enhancement, Unsharp Masking

Index Terms: edge-preserving filter, Bilateral filter, exploratory data model, Image Enhancement, Unsharp Masking Volume 3, Issue 9, September 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Modified Classical

More information

Design of Various Image Enhancement Techniques - A Critical Review

Design of Various Image Enhancement Techniques - A Critical Review Design of Various Image Enhancement Techniques - A Critical Review Moole Sasidhar M.Tech Department of Electronics and Communication Engineering, Global College of Engineering and Technology(GCET), Kadapa,

More information

A Comparison of the Multiscale Retinex With Other Image Enhancement Techniques

A Comparison of the Multiscale Retinex With Other Image Enhancement Techniques A Comparison of the Multiscale Retinex With Other Image Enhancement Techniques Zia-ur Rahman, Glenn A. Woodell and Daniel J. Jobson College of William & Mary, NASA Langley Research Center Abstract The

More information

Digital Radiography using High Dynamic Range Technique

Digital Radiography using High Dynamic Range Technique Digital Radiography using High Dynamic Range Technique DAN CIURESCU 1, SORIN BARABAS 2, LIVIA SANGEORZAN 3, LIGIA NEICA 1 1 Department of Medicine, 2 Department of Materials Science, 3 Department of Computer

More information

25/02/2017. C = L max L min. L max C 10. = log 10. = log 2 C 2. Cornell Box: need for tone-mapping in graphics. Dynamic range

25/02/2017. C = L max L min. L max C 10. = log 10. = log 2 C 2. Cornell Box: need for tone-mapping in graphics. Dynamic range Cornell Box: need for tone-mapping in graphics High dynamic range and tone mapping Advanced Graphics Rafał Mantiuk Computer Laboratory, University of Cambridge Rendering Photograph 2 Real-world scenes

More information

Fixing the Gaussian Blur : the Bilateral Filter

Fixing the Gaussian Blur : the Bilateral Filter Fixing the Gaussian Blur : the Bilateral Filter Lecturer: Jianbing Shen Email : shenjianbing@bit.edu.cnedu Office room : 841 http://cs.bit.edu.cn/shenjianbing cn/shenjianbing Note: contents copied from

More information

High Dynamic Range (HDR) Photography in Photoshop CS2

High Dynamic Range (HDR) Photography in Photoshop CS2 Page 1 of 7 High dynamic range (HDR) images enable photographers to record a greater range of tonal detail than a given camera could capture in a single photo. This opens up a whole new set of lighting

More information

USE OF HISTOGRAM EQUALIZATION IN IMAGE PROCESSING FOR IMAGE ENHANCEMENT

USE OF HISTOGRAM EQUALIZATION IN IMAGE PROCESSING FOR IMAGE ENHANCEMENT USE OF HISTOGRAM EQUALIZATION IN IMAGE PROCESSING FOR IMAGE ENHANCEMENT Sapana S. Bagade M.E,Computer Engineering, Sipna s C.O.E.T,Amravati, Amravati,India sapana.bagade@gmail.com Vijaya K. Shandilya Assistant

More information

A Review Paper on Image Processing based Algorithms for De-noising and Enhancement of Underwater Images

A Review Paper on Image Processing based Algorithms for De-noising and Enhancement of Underwater Images IJSTE - International Journal of Science Technology & Engineering Volume 2 Issue 10 April 2016 ISSN (online): 2349-784X A Review Paper on Image Processing based Algorithms for De-noising and Enhancement

More information

CoE4TN4 Image Processing. Chapter 3: Intensity Transformation and Spatial Filtering

CoE4TN4 Image Processing. Chapter 3: Intensity Transformation and Spatial Filtering CoE4TN4 Image Processing Chapter 3: Intensity Transformation and Spatial Filtering Image Enhancement Enhancement techniques: to process an image so that the result is more suitable than the original image

More information

Image Processing. Adam Finkelstein Princeton University COS 426, Spring 2019

Image Processing. Adam Finkelstein Princeton University COS 426, Spring 2019 Image Processing Adam Finkelstein Princeton University COS 426, Spring 2019 Image Processing Operations Luminance Brightness Contrast Gamma Histogram equalization Color Grayscale Saturation White balance

More information

icam06: A refined image appearance model for HDR image rendering

icam06: A refined image appearance model for HDR image rendering J. Vis. Commun. Image R. 8 () 46 44 www.elsevier.com/locate/jvci icam6: A refined image appearance model for HDR image rendering Jiangtao Kuang *, Garrett M. Johnson, Mark D. Fairchild Munsell Color Science

More information

Table of contents. Vision industrielle 2002/2003. Local and semi-local smoothing. Linear noise filtering: example. Convolution: introduction

Table of contents. Vision industrielle 2002/2003. Local and semi-local smoothing. Linear noise filtering: example. Convolution: introduction Table of contents Vision industrielle 2002/2003 Session - Image Processing Département Génie Productique INSA de Lyon Christian Wolf wolf@rfv.insa-lyon.fr Introduction Motivation, human vision, history,

More information

Local Adaptive Contrast Enhancement for Color Images

Local Adaptive Contrast Enhancement for Color Images Local Adaptive Contrast for Color Images Judith Dijk, Richard J.M. den Hollander, John G.M. Schavemaker and Klamer Schutte TNO Defence, Security and Safety P.O. Box 96864, 2509 JG The Hague, The Netherlands

More information

Image Enhancement for Astronomical Scenes. Jacob Lucas The Boeing Company Brandoch Calef The Boeing Company Keith Knox Air Force Research Laboratory

Image Enhancement for Astronomical Scenes. Jacob Lucas The Boeing Company Brandoch Calef The Boeing Company Keith Knox Air Force Research Laboratory Image Enhancement for Astronomical Scenes Jacob Lucas The Boeing Company Brandoch Calef The Boeing Company Keith Knox Air Force Research Laboratory ABSTRACT Telescope images of astronomical objects and

More information

Medical Image Enhancement using Multi Scale Retinex Algorithm with Gaussian and Laplacian surround functions

Medical Image Enhancement using Multi Scale Retinex Algorithm with Gaussian and Laplacian surround functions Medical Image Enhancement using Multi Scale Retinex Algorithm with Gaussian and Laplacian surround functions 1 Savita I Basanagoudar, 2 Chidanandamurthy M V, 3 M Z Kurian 1 PG Student, Dept of ECE Sri

More information

1.Discuss the frequency domain techniques of image enhancement in detail.

1.Discuss the frequency domain techniques of image enhancement in detail. 1.Discuss the frequency domain techniques of image enhancement in detail. Enhancement In Frequency Domain: The frequency domain methods of image enhancement are based on convolution theorem. This is represented

More information

Tone Adjustment of Underexposed Images Using Dynamic Range Remapping

Tone Adjustment of Underexposed Images Using Dynamic Range Remapping Tone Adjustment of Underexposed Images Using Dynamic Range Remapping Yanwen Guo and Xiaodong Xu National Key Lab for Novel Software Technology, Nanjing University Nanjing 210093, P. R. China {ywguo,xdxu}@nju.edu.cn

More information

HIGH DYNAMIC RANGE VERSUS STANDARD DYNAMIC RANGE COMPRESSION EFFICIENCY

HIGH DYNAMIC RANGE VERSUS STANDARD DYNAMIC RANGE COMPRESSION EFFICIENCY HIGH DYNAMIC RANGE VERSUS STANDARD DYNAMIC RANGE COMPRESSION EFFICIENCY Ronan Boitard Mahsa T. Pourazad Panos Nasiopoulos University of British Columbia, Vancouver, Canada TELUS Communications Inc., Vancouver,

More information

BBM 413! Fundamentals of! Image Processing!

BBM 413! Fundamentals of! Image Processing! BBM 413! Fundamentals of! Image Processing! Today s topics" Point operations! Histogram processing! Erkut Erdem" Dept. of Computer Engineering" Hacettepe University" "! Point Operations! Histogram Processing!

More information

BBM 413 Fundamentals of Image Processing. Erkut Erdem Dept. of Computer Engineering Hacettepe University. Point Operations Histogram Processing

BBM 413 Fundamentals of Image Processing. Erkut Erdem Dept. of Computer Engineering Hacettepe University. Point Operations Histogram Processing BBM 413 Fundamentals of Image Processing Erkut Erdem Dept. of Computer Engineering Hacettepe University Point Operations Histogram Processing Today s topics Point operations Histogram processing Today

More information

BBM 413 Fundamentals of Image Processing. Erkut Erdem Dept. of Computer Engineering Hacettepe University. Point Operations Histogram Processing

BBM 413 Fundamentals of Image Processing. Erkut Erdem Dept. of Computer Engineering Hacettepe University. Point Operations Histogram Processing BBM 413 Fundamentals of Image Processing Erkut Erdem Dept. of Computer Engineering Hacettepe University Point Operations Histogram Processing Today s topics Point operations Histogram processing Today

More information

Part I Feature Extraction (1) Image Enhancement. CSc I6716 Spring Local, meaningful, detectable parts of the image.

Part I Feature Extraction (1) Image Enhancement. CSc I6716 Spring Local, meaningful, detectable parts of the image. CSc I6716 Spring 211 Introduction Part I Feature Extraction (1) Zhigang Zhu, City College of New York zhu@cs.ccny.cuny.edu Image Enhancement What are Image Features? Local, meaningful, detectable parts

More information

Introduction. Computer Vision. CSc I6716 Fall Part I. Image Enhancement. Zhigang Zhu, City College of New York

Introduction. Computer Vision. CSc I6716 Fall Part I. Image Enhancement. Zhigang Zhu, City College of New York CSc I6716 Fall 21 Introduction Part I Feature Extraction ti (1) Zhigang Zhu, City College of New York zhu@cs.ccny.cuny.edu Image Enhancement What are Image Features? Local, meaningful, detectable parts

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Part 2: Image Enhancement Digital Image Processing Course Introduction in the Spatial Domain Lecture AASS Learning Systems Lab, Teknik Room T26 achim.lilienthal@tech.oru.se Course

More information

Applications of Flash and No-Flash Image Pairs in Mobile Phone Photography

Applications of Flash and No-Flash Image Pairs in Mobile Phone Photography Applications of Flash and No-Flash Image Pairs in Mobile Phone Photography Xi Luo Stanford University 450 Serra Mall, Stanford, CA 94305 xluo2@stanford.edu Abstract The project explores various application

More information

HIGH DYNAMIC RANGE IMAGING Nancy Clements Beasley, March 22, 2011

HIGH DYNAMIC RANGE IMAGING Nancy Clements Beasley, March 22, 2011 HIGH DYNAMIC RANGE IMAGING Nancy Clements Beasley, March 22, 2011 First - What Is Dynamic Range? Dynamic range is essentially about Luminance the range of brightness levels in a scene o From the darkest

More information

Extended Dynamic Range Imaging: A Spatial Down-Sampling Approach

Extended Dynamic Range Imaging: A Spatial Down-Sampling Approach 2014 IEEE International Conference on Systems, Man, and Cybernetics October 5-8, 2014, San Diego, CA, USA Extended Dynamic Range Imaging: A Spatial Down-Sampling Approach Huei-Yung Lin and Jui-Wen Huang

More information

What is an image? Bernd Girod: EE368 Digital Image Processing Pixel Operations no. 1. A digital image can be written as a matrix

What is an image? Bernd Girod: EE368 Digital Image Processing Pixel Operations no. 1. A digital image can be written as a matrix What is an image? Definition: An image is a 2-dimensional light intensity function, f(x,y), where x and y are spatial coordinates, and f at (x,y) is related to the brightness of the image at that point.

More information

[Kaur, 2(8): August, 2013] ISSN: Impact Factor: INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

[Kaur, 2(8): August, 2013] ISSN: Impact Factor: INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY An Enhancement of Classical Unsharp Mask filter for Contrast and Edge Preservation Gurpreet Kaur Department of Computer Science

More information

A Saturation-based Image Fusion Method for Static Scenes

A Saturation-based Image Fusion Method for Static Scenes 2015 6th International Conference of Information and Communication Technology for Embedded Systems (IC-ICTES) A Saturation-based Image Fusion Method for Static Scenes Geley Peljor and Toshiaki Kondo Sirindhorn

More information

Bristol Photographic Society Introduction to Digital Imaging

Bristol Photographic Society Introduction to Digital Imaging Bristol Photographic Society Introduction to Digital Imaging Part 16 HDR an Introduction HDR stands for High Dynamic Range and is a method for capturing a scene that has a light range (light to dark) that

More information

Spatial Domain Processing and Image Enhancement

Spatial Domain Processing and Image Enhancement Spatial Domain Processing and Image Enhancement Lecture 4, Feb 18 th, 2008 Lexing Xie EE4830 Digital Image Processing http://www.ee.columbia.edu/~xlx/ee4830/ thanks to Shahram Ebadollahi and Min Wu for

More information

ImageEd: Technical Overview

ImageEd: Technical Overview Purpose of this document ImageEd: Technical Overview This paper is meant to provide insight into the features where the ImageEd software differs from other -editing programs. The treatment is more technical

More information

Various Image Enhancement Techniques - A Critical Review

Various Image Enhancement Techniques - A Critical Review International Journal of Innovation and Scientific Research ISSN 2351-8014 Vol. 10 No. 2 Oct. 2014, pp. 267-274 2014 Innovative Space of Scientific Research Journals http://www.ijisr.issr-journals.org/

More information

Image Enhancement in Spatial Domain

Image Enhancement in Spatial Domain Image Enhancement in Spatial Domain 2 Image enhancement is a process, rather a preprocessing step, through which an original image is made suitable for a specific application. The application scenarios

More information

Meet icam: A Next-Generation Color Appearance Model

Meet icam: A Next-Generation Color Appearance Model Meet icam: A Next-Generation Color Appearance Model Mark D. Fairchild and Garrett M. Johnson Munsell Color Science Laboratory, Center for Imaging Science Rochester Institute of Technology, Rochester NY

More information

Image Filtering. Median Filtering

Image Filtering. Median Filtering Image Filtering Image filtering is used to: Remove noise Sharpen contrast Highlight contours Detect edges Other uses? Image filters can be classified as linear or nonlinear. Linear filters are also know

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Lecture # 5 Image Enhancement in Spatial Domain- I ALI JAVED Lecturer SOFTWARE ENGINEERING DEPARTMENT U.E.T TAXILA Email:: ali.javed@uettaxila.edu.pk Office Room #:: 7 Presentation

More information

FOG REMOVAL ALGORITHM USING ANISOTROPIC DIFFUSION AND HISTOGRAM STRETCHING

FOG REMOVAL ALGORITHM USING ANISOTROPIC DIFFUSION AND HISTOGRAM STRETCHING FOG REMOVAL ALGORITHM USING DIFFUSION AND HISTOGRAM STRETCHING 1 G SAILAJA, 2 M SREEDHAR 1 PG STUDENT, 2 LECTURER 1 DEPARTMENT OF ECE 1 JNTU COLLEGE OF ENGINEERING (Autonomous), ANANTHAPURAMU-5152, ANDRAPRADESH,

More information

Guided Image Filtering for Image Enhancement

Guided Image Filtering for Image Enhancement International Journal of Research Studies in Science, Engineering and Technology Volume 1, Issue 9, December 2014, PP 134-138 ISSN 2349-4751 (Print) & ISSN 2349-476X (Online) Guided Image Filtering for

More information

The Statistics of Visual Representation Daniel J. Jobson *, Zia-ur Rahman, Glenn A. Woodell * * NASA Langley Research Center, Hampton, Virginia 23681

The Statistics of Visual Representation Daniel J. Jobson *, Zia-ur Rahman, Glenn A. Woodell * * NASA Langley Research Center, Hampton, Virginia 23681 The Statistics of Visual Representation Daniel J. Jobson *, Zia-ur Rahman, Glenn A. Woodell * * NASA Langley Research Center, Hampton, Virginia 23681 College of William & Mary, Williamsburg, Virginia 23187

More information

Adding Local Contrast to Global Gamut Mapping Algorithms

Adding Local Contrast to Global Gamut Mapping Algorithms Adding Local Contrast to Global Gamut Mapping Algorithms Peter Zolliker, and Klaus Simon; Empa, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for Media Technology; CH-8600 Dübendorf,

More information

High-Dynamic-Range Imaging & Tone Mapping

High-Dynamic-Range Imaging & Tone Mapping High-Dynamic-Range Imaging & Tone Mapping photo by Jeffrey Martin! Spatial color vision! JPEG! Today s Agenda The dynamic range challenge! Multiple exposures! Estimating the response curve! HDR merging:

More information

ECC419 IMAGE PROCESSING

ECC419 IMAGE PROCESSING ECC419 IMAGE PROCESSING INTRODUCTION Image Processing Image processing is a subclass of signal processing concerned specifically with pictures. Digital Image Processing, process digital images by means

More information

CS/ECE 545 (Digital Image Processing) Midterm Review

CS/ECE 545 (Digital Image Processing) Midterm Review CS/ECE 545 (Digital Image Processing) Midterm Review Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI) Exam Overview Wednesday, March 5, 2014 in class Will cover up to lecture

More information

Figure 1 HDR image fusion example

Figure 1 HDR image fusion example TN-0903 Date: 10/06/09 Using image fusion to capture high-dynamic range (hdr) scenes High dynamic range (HDR) refers to the ability to distinguish details in scenes containing both very bright and relatively

More information

Images and Filters. EE/CSE 576 Linda Shapiro

Images and Filters. EE/CSE 576 Linda Shapiro Images and Filters EE/CSE 576 Linda Shapiro What is an image? 2 3 . We sample the image to get a discrete set of pixels with quantized values. 2. For a gray tone image there is one band F(r,c), with values

More information

Non Linear Image Enhancement

Non Linear Image Enhancement Non Linear Image Enhancement SAIYAM TAKKAR Jaypee University of information technology, 2013 SIMANDEEP SINGH Jaypee University of information technology, 2013 Abstract An image enhancement algorithm based

More information

Color Image Enhancement Using Retinex Algorithm

Color Image Enhancement Using Retinex Algorithm Color Image Enhancement Using Retinex Algorithm Neethu Lekshmi J M 1, Shiny.C 2 1 (Dept of Electronics and Communication,College of Engineering,Karunagappally,India) 2 (Dept of Electronics and Communication,College

More information

Computer Graphics Fundamentals

Computer Graphics Fundamentals Computer Graphics Fundamentals Jacek Kęsik, PhD Simple converts Rotations Translations Flips Resizing Geometry Rotation n * 90 degrees other Geometry Rotation n * 90 degrees other Geometry Translations

More information

A Model of Retinal Local Adaptation for the Tone Mapping of CFA Images

A Model of Retinal Local Adaptation for the Tone Mapping of CFA Images A Model of Retinal Local Adaptation for the Tone Mapping of CFA Images Laurence Meylan 1, David Alleysson 2, and Sabine Süsstrunk 1 1 School of Computer and Communication Sciences, Ecole Polytechnique

More information

Image Enhancement contd. An example of low pass filters is:

Image Enhancement contd. An example of low pass filters is: Image Enhancement contd. An example of low pass filters is: We saw: unsharp masking is just a method to emphasize high spatial frequencies. We get a similar effect using high pass filters (for instance,

More information

Firas Hassan and Joan Carletta The University of Akron

Firas Hassan and Joan Carletta The University of Akron A Real-Time FPGA-Based Architecture for a Reinhard-Like Tone Mapping Operator Firas Hassan and Joan Carletta The University of Akron Outline of Presentation Background and goals Existing methods for local

More information

Contrast enhancement with the noise removal. by a discriminative filtering process

Contrast enhancement with the noise removal. by a discriminative filtering process Contrast enhancement with the noise removal by a discriminative filtering process Badrun Nahar A Thesis in The Department of Electrical and Computer Engineering Presented in Partial Fulfillment of the

More information

! 1! Digital Photography! 2! 1!

! 1! Digital Photography! 2! 1! ! 1! Digital Photography! 2! 1! Summary of results! Field of view at a distance of 5 meters Focal length! 20mm! 55mm! 200mm! Field of view! 6 meters! 2.2 meters! 0.6 meters! 3! 4! 2! ! 5! Which Lens?!

More information

Photo Editing Workflow

Photo Editing Workflow Photo Editing Workflow WHY EDITING Modern digital photography is a complex process, which starts with the Photographer s Eye, that is, their observational ability, it continues with photo session preparations,

More information

Reading Instructions Chapters for this lecture. Computer Assisted Image Analysis Lecture 2 Point Processing. Image Processing

Reading Instructions Chapters for this lecture. Computer Assisted Image Analysis Lecture 2 Point Processing. Image Processing 1/34 Reading Instructions Chapters for this lecture 2/34 Computer Assisted Image Analysis Lecture 2 Point Processing Anders Brun (anders@cb.uu.se) Centre for Image Analysis Swedish University of Agricultural

More information

A.V.C. COLLEGE OF ENGINEERING DEPARTEMENT OF CSE CP7004- IMAGE PROCESSING AND ANALYSIS UNIT 1- QUESTION BANK

A.V.C. COLLEGE OF ENGINEERING DEPARTEMENT OF CSE CP7004- IMAGE PROCESSING AND ANALYSIS UNIT 1- QUESTION BANK A.V.C. COLLEGE OF ENGINEERING DEPARTEMENT OF CSE CP7004- IMAGE PROCESSING AND ANALYSIS UNIT 1- QUESTION BANK STAFF NAME: TAMILSELVAN K UNIT I SPATIAL DOMAIN PROCESSING Introduction to image processing

More information

Digital Image Fundamentals and Image Enhancement in the Spatial Domain

Digital Image Fundamentals and Image Enhancement in the Spatial Domain Digital Image Fundamentals and Image Enhancement in the Spatial Domain Mohamed N. Ahmed, Ph.D. Introduction An image may be defined as 2D function f(x,y), where x and y are spatial coordinates. The amplitude

More information

ECU 3040 Digital Image Processing

ECU 3040 Digital Image Processing ECU 3040 Digital Image Processing Dr. Praveen Sankaran Department of ECE NIT Calicut January 8, 2015 Ground Rules Grading Policy: Projects 20 Exam 1 15 Exam 2 15 Exam 3 50 Letter Grading:Absolute Textbook:

More information

Ron Brecher. AstroCATS May 3-4, 2014

Ron Brecher. AstroCATS May 3-4, 2014 Ron Brecher AstroCATS May 3-4, 2014 Observing since 1998 Imaging since 2006 Current imaging setup: Camera: SBIG STL-11000M with L, R, G, B and H-alpha filters Telescopes: 10 f/3.6 (or f/6.8) ASA reflector;

More information

A Novel approach for Enhancement of Image Contrast Using Adaptive Bilateral filter with Unsharp Masking Algorithm

A Novel approach for Enhancement of Image Contrast Using Adaptive Bilateral filter with Unsharp Masking Algorithm ISSN 2319-8885,Volume01,Issue No. 03 www.semargroups.org Jul-Dec 2012, P.P. 216-223 A Novel approach for Enhancement of Image Contrast Using Adaptive Bilateral filter with Unsharp Masking Algorithm A.CHAITANYA

More information

Digital cameras for digital cinematography Alfonso Parra AEC

Digital cameras for digital cinematography Alfonso Parra AEC Digital cameras for digital cinematography Alfonso Parra AEC Digital cameras, from left to right: Sony F23, Panavision Genesis, ArriD20, Viper and Red One Since there is great diversity in high-quality

More information

The Unique Role of Lucis Differential Hysteresis Processing (DHP) in Digital Image Enhancement

The Unique Role of Lucis Differential Hysteresis Processing (DHP) in Digital Image Enhancement The Unique Role of Lucis Differential Hysteresis Processing (DHP) in Digital Image Enhancement Brian Matsumoto, Ph.D. Irene L. Hale, Ph.D. Imaging Resource Consultants and Research Biologists, University

More information

High Dynamic Range Imaging

High Dynamic Range Imaging High Dynamic Range Imaging 1 2 Lecture Topic Discuss the limits of the dynamic range in current imaging and display technology Solutions 1. High Dynamic Range (HDR) Imaging Able to image a larger dynamic

More information

Correcting Over-Exposure in Photographs

Correcting Over-Exposure in Photographs Correcting Over-Exposure in Photographs Dong Guo, Yuan Cheng, Shaojie Zhuo and Terence Sim School of Computing, National University of Singapore, 117417 {guodong,cyuan,zhuoshao,tsim}@comp.nus.edu.sg Abstract

More information

Continuous Flash. October 1, Technical Report MSR-TR Microsoft Research Microsoft Corporation One Microsoft Way Redmond, WA 98052

Continuous Flash. October 1, Technical Report MSR-TR Microsoft Research Microsoft Corporation One Microsoft Way Redmond, WA 98052 Continuous Flash Hugues Hoppe Kentaro Toyama October 1, 2003 Technical Report MSR-TR-2003-63 Microsoft Research Microsoft Corporation One Microsoft Way Redmond, WA 98052 Page 1 of 7 Abstract To take a

More information

ABSTRACT. Keywords: color appearance, image appearance, image quality, vision modeling, image rendering

ABSTRACT. Keywords: color appearance, image appearance, image quality, vision modeling, image rendering Image appearance modeling Mark D. Fairchild and Garrett M. Johnson * Munsell Color Science Laboratory, Chester F. Carlson Center for Imaging Science, Rochester Institute of Technology, Rochester, NY, USA

More information

Image Enhancement in Spatial Domain: A Comprehensive Study

Image Enhancement in Spatial Domain: A Comprehensive Study 17th Int'l Conf. on Computer and Information Technology, 22-23 December 2014, Daffodil International University, Dhaka, Bangladesh Image Enhancement in Spatial Domain: A Comprehensive Study Shanto Rahman

More information

High Dynamic Range Image Rendering with a Luminance-Chromaticity Independent Model

High Dynamic Range Image Rendering with a Luminance-Chromaticity Independent Model High Dynamic Range Image Rendering with a Luminance-Chromaticity Independent Model Shaobing Gao #, Wangwang Han #, Yanze Ren, Yongjie Li University of Electronic Science and Technology of China, Chengdu,

More information

ISSN Vol.03,Issue.29 October-2014, Pages:

ISSN Vol.03,Issue.29 October-2014, Pages: ISSN 2319-8885 Vol.03,Issue.29 October-2014, Pages:5768-5772 www.ijsetr.com Quality Index Assessment for Toned Mapped Images Based on SSIM and NSS Approaches SAMEED SHAIK 1, M. CHAKRAPANI 2 1 PG Scholar,

More information

Towards Real-time Hardware Gamma Correction for Dynamic Contrast Enhancement

Towards Real-time Hardware Gamma Correction for Dynamic Contrast Enhancement Towards Real-time Gamma Correction for Dynamic Contrast Enhancement Jesse Scott, Ph.D. Candidate Integrated Design Services, College of Engineering, Pennsylvania State University University Park, PA jus2@engr.psu.edu

More information

Distributed Algorithms. Image and Video Processing

Distributed Algorithms. Image and Video Processing Chapter 7 High Dynamic Range (HDR) Distributed Algorithms for Introduction to HDR (I) Source: wikipedia.org 2 1 Introduction to HDR (II) High dynamic range classifies a very high contrast ratio in images

More information

Effective Contrast Enhancement using Adaptive Gamma Correction and Weighting Distribution Function

Effective Contrast Enhancement using Adaptive Gamma Correction and Weighting Distribution Function e t International Journal on Emerging Technologies (Special Issue on ICRIET-2016) 7(2): 299-303(2016) ISSN No. (Print) : 0975-8364 ISSN No. (Online) : 2249-3255 Effective Contrast Enhancement using Adaptive

More information

Prof. Feng Liu. Winter /10/2019

Prof. Feng Liu. Winter /10/2019 Prof. Feng Liu Winter 29 http://www.cs.pdx.edu/~fliu/courses/cs4/ //29 Last Time Course overview Admin. Info Computer Vision Computer Vision at PSU Image representation Color 2 Today Filter 3 Today Filters

More information

ABSTRACT. Keywords: Color image differences, image appearance, image quality, vision modeling 1. INTRODUCTION

ABSTRACT. Keywords: Color image differences, image appearance, image quality, vision modeling 1. INTRODUCTION Measuring Images: Differences, Quality, and Appearance Garrett M. Johnson * and Mark D. Fairchild Munsell Color Science Laboratory, Chester F. Carlson Center for Imaging Science, Rochester Institute of

More information

A Kalman-Filtering Approach to High Dynamic Range Imaging for Measurement Applications

A Kalman-Filtering Approach to High Dynamic Range Imaging for Measurement Applications A Kalman-Filtering Approach to High Dynamic Range Imaging for Measurement Applications IEEE Transactions on Image Processing, Vol. 21, No. 2, 2012 Eric Dedrick and Daniel Lau, Presented by Ran Shu School

More information

easyhdr 3.3 User Manual Bartłomiej Okonek

easyhdr 3.3 User Manual Bartłomiej Okonek User Manual 2006-2014 Bartłomiej Okonek 20.03.2014 Table of contents 1. Introduction...4 2. User interface...5 2.1. Workspace...6 2.2. Main tabbed panel...6 2.3. Additional tone mapping options panel...8

More information

Gray Point (A Plea to Forget About White Point)

Gray Point (A Plea to Forget About White Point) HPA Technology Retreat Indian Wells, California 2016.02.18 Gray Point (A Plea to Forget About White Point) George Joblove 2016 HPA Technology Retreat Indian Wells, California 2016.02.18 2016 George Joblove

More information

Evaluation of image quality of the compression schemes JPEG & JPEG 2000 using a Modular Colour Image Difference Model.

Evaluation of image quality of the compression schemes JPEG & JPEG 2000 using a Modular Colour Image Difference Model. Evaluation of image quality of the compression schemes JPEG & JPEG 2000 using a Modular Colour Image Difference Model. Mary Orfanidou, Liz Allen and Dr Sophie Triantaphillidou, University of Westminster,

More information

High dynamic range imaging and tonemapping

High dynamic range imaging and tonemapping High dynamic range imaging and tonemapping http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2017, Lecture 12 Course announcements Homework 3 is out. - Due

More information

December 28, Dr. Praveen Sankaran (Department of ECE NIT Calicut DIP)

December 28, Dr. Praveen Sankaran (Department of ECE NIT Calicut DIP) Dr. Praveen Sankaran Department of ECE NIT Calicut December 28, 2012 Winter 2013 December 28, 2012 1 / 18 Outline 1 Piecewise-Linear Functions Review 2 Histogram Processing Winter 2013 December 28, 2012

More information