ABSTRACT 1. PURPOSE 2. METHODS

Size: px
Start display at page:

Download "ABSTRACT 1. PURPOSE 2. METHODS"

Transcription

1 Perceptual uniformity of commonly used color spaces Ali Avanaki a, Kathryn Espig a, Tom Kimpe b, Albert Xthona a, Cédric Marchessoux b, Johan Rostang b, Bastian Piepers b a Barco Healthcare, Beaverton, OR; b Barco Healthcare, Kortrijk, Belgium ABSTRACT Use of color images in medical imaging has increased significantly the last few years. Color information is essential for applications such as ophthalmology, dermatology and clinical photography. Use of color at least brings benefits for other applications such as endoscopy, laparoscopy and digital pathology. Remarkably, as of today, there is no agreed standard on how color information needs to be visualized for medical applications. This lack of standardization results in large variability of how color images are visualized and it makes quality assurance a challenge. For this reason FDA and ICC recently organized a joint summit on color in medical imaging (CMI) [link]. At this summit, one of the suggestions was that modalities such as digital pathology could benefit from using a perceptually uniform color space (T. Kimpe, Color Behavior of Medical Displays, CMI presentation, May 2013). Perceptually uniform spaces have already been used for many years in the radiology community where the DICOM GSDF standard [link] provides linearity in luminance but not in color behavior. In this paper we quantify perceptual uniformity, using CIE s E 2000 as a color distance metric, of several color spaces that are typically used for medical applications. We applied our method to theoretical color spaces Gamma 1.8, 2.0, & 2.2, standard srgb, and DICOM (correction LUT for gray applied to all primaries). In addition, we also measured color spaces (i.e., native behavior) of a high-end medical display (Barco Coronis Fusion 6MP DL, MDCC-6130), and a consumer display (Dell 1907FP). Our results indicate that srgb & the native color space on the Barco Coronis Fusion exhibit the least non-uniformity within their group. However, the remaining degree of perceptual non-uniformity is still significant and there is certainly room for improvement. Keywords: Perceptually uniform color space 1. PURPOSE It was suggested that some applications of color in medical imaging could benefit from using a perceptually uniform color space and display [6]. Perceptual uniformity for luminance is already being used for many years in radiology applications and has become the calibration standard for radiology displays. In a DICOM-calibrated gray scale display, the perceived luminance is proportional to the display s input (i.e., digital drive levels; we use this term interchangeably with RGB). Our ultimate goal is to draw a parallel between DICOM GSDF used with grayscale medical images and a perceptually uniform color space that could potentially be beneficial for color medical images. In such a perceptually uniform color space, perceived color differences are evenly distributed across the gamut and therefore color differences will look equally large independent of the exact position in the gamut. A perceptually uniform color space also will reduce quantization errors and maximize visibility of subtle color differences. As a first step toward our goal, we want to quantify perceptual uniformity of several color spaces that are typically used for medical applications. For this purpose we use E 2000, a widely accepted color (in the sense that includes luminance as well as hue & saturation) difference metric [3, 4] that correlates well with human s perception [7, 8]. 2. METHODS For each color space, E 2000 between two consecutive points on primaries, and gray is calculated. This allows for quantifying the perceptual uniformity of the neutral grey values from dark to white, as well as of the individual primary colors when driven from minimum to maximum intensity.

2 2.1 Uniformity across the whole gamut A second way of quantifying perceptual uniformity but within the entire color gamut, is to calculate E 2000 between (r,g,b) & (r, g-1, b), (r,g,b) & (r, g, b-1), and (r,g,b) & (r-1, g, b), for points on a color cube (depth of 8-bit/channel). We take the maximum of these values, as the worst-case granularity (WCG) for the space and use it in comparing spaces. Granularity is inversely related to bit depth. One can determine if a certain distance threshold of E 2000 color points may be reached at given bit depth using the corresponding WCG. To show (non-)uniformity of color space, we illustrate E 2000 granularity across the gamut using slice diagrams meeting at the point which yields WCG value for the space. We also calculated the minimum, maximum, average and standard deviation over the entire color gamut. Table 1. Statistics of E 2000 between consecutive points (8 bit/channel) for primaries & gray in some common color spaces. Color space DICOM srgb γ1.8 γ2.0 γ2.2 Dell 1907FP Barco MDCC Channel Average Std. dev. Min Max Red Green Blue Gray Red Green Blue Gray Red Green Blue Gray Red Green Blue Gray Red Green Blue Gray Red Green Blue Gray Red Green Blue Gray CIE LAB values are necessary to calculate E CIE LAB values are calculated from CIE XYZ values and the white point (i.e., XYZ for maximum drive of all primaries) [1]. For measured spaces (displays native behaviors), XYZ values are measured using a Minolta CA-210 colorimeter on a uniform (with respect to drive level) 52 3 grid and a 15 3 grid with sides on 15 levels (out of 256) of each primary. The values of XYZ on grid will be interpolated on 52 3 grid, except for those fall within 15 3 grid; those will be interpolated on 15 3 grid. Note that a direct measurement is not feasible (52 3 measurement takes 3 days), and we found that models of LCD behavior (e.g., [2]) are not sufficiently accurate for our purposes. For theoretical spaces, XYZ values, relative to white point luminance, can be readily calculated from RGB values. Such formulas for standard srgb are listed in [5]. The non-linearity therein which is applied to RGB values (scaled to 0 to 1 range) is given by

3 12.92, , with For Gamma spaces, this non-linearity is replaced by, with γ = 1.8, 2.0, or 2.2, and the rest of XYZ calculation is similar to that of srgb. For DICOM, we first calculate the correction look up table (LUT) for luminance of gray line following standard srgb with L min = 0.4 and L max = 400 cd/m 2. The LUT calculated as such will be the nonlinearity for DICOM space and the rest of XYZ calculation is similar to that of srgb. 3. RESULTS Table 1 compares the color spaces we studied in terms of E 2000 between two consecutive points on primaries and gray, for 8 bit/channel. Lower standard deviation means better uniformity. Table 2. Statistics of E2000 between adjacent red, green & blue points in some common color spaces. WCGs are shown in bold. See 2.1 for details. Color Space DICOM srgb γ1.8 γ2.0 γ2.2 Dell 1907FP Barco MDCC Channel Average Std. dev. Min Max Red Green Blue Red Green Blue Red Green Blue Red Green Blue Red Green Blue Red Green Blue Red Green Blue Statistics that are calculated similarly (cf. 2.1) for the whole gamut are reported in Table 2. A question that may arise here is that why the maximum E 2000 step on gray is shorter than space s WCG (e.g., for Gamma 1.8, WCG is , while max gray step is , cf. Table 1)? After all, a step in gray is equivalent to 3 steps, one along each primary. The answer stems from the fact for all points on gray line a* = b* = 0 (no chromaticity), and that all other points in the gamut have some chromaticity that contributes to E 2000 distance with their neighbors. From another perspective, the edges of gamut corresponding to the primaries are all longer than the gray line in LAB space. Note that the lengths of primary edges are different in LAB space (green, red, blue, in decreasing order of length). This means, for example, that there are many more perceptually different shades of green than there are of blue. Hence, the average E 2000 between green values are systematically higher than those of red or blue (see Average column of

4 Table 2). In terms of WCG (see last column of Table 2), while srgb offers the most uniform color, there is still a lot of room for improvement: the in-between E 2000 values are far from being the same as their standard deviation is about 50% of their average. Figure 1, compares Table 2 data for theoretical color spaces in terms of WCG and standard deviation for green. If we use standard deviation, which also measures dispersion of in-between E 2000 values, DICOM seems to be slightly more uniform than srgb. This also holds, for all primaries, when the standard deviations are normalized by the corresponding values in the average column. 3,5 3 2,5 2 1,5 1 0,5 0 DICOM srgb γ1.8 γ2.0 γ2.2 std. dev. WCG Figure 1. Comparison of WCG and standard deviation (for green), both normalized to those of srgb, for theoretical color spaces. Data is from Table 2. Standard deviation also gives an indication of non-uniformity (higher std. dev. means less uniformity). 0.8 srgb Figure 2. Visualization of perceptual uniformity for srgb color space. See text for more details. E 2000 between adjacent points on primaries and gray as well as between adjacent red, green & blue points across the whole gamut (slice diagrams described in 2.1) are given for srgb (Figure 2) and DICOM (Figure 3). It may be

5 observed that while in terms of WCG srgb offers more overall perceptual uniformity (no red in Figure 2 slice diagrams; color scale is same as Figure 3), DICOM has the advantage that its non-uniformity is localized to lowluminance part of gamut (curves in top-left of Figure 3 flatten after drive level of 50). 2.5 DICOM Figure 3. Visualization of perceptual uniformity for DICOM color space. See text for more details. In Figure 4, E 2000 between adjacent points on the most saturated edges of the color cube are plotted for srgb for depth of 8 bit/channel. The path includes edges (1,0,0) to (1,1,0) to (0,1,0) to (0,1,1) to (0,0,1) to (1,0,1), back to (1,0,0) in that order. Note that ideally one cannot expect a flat line replacing the curve in Figure 4. That is because the green edge of the gamut is perceptually the longest and when divided by 256 levels, it yields larger in-between E 2000 distance than other primaries or gray. That said, from Figure 4, one can observe that the way srgb distributes the in-between levels seems arbitrary, from perceptual uniformity viewpoint, and far from ideal in that sense. 4. CONCLUSION We have quantified perceptual uniformity of several color spaces that are typically used for medical applications. For this purpose we used E 2000, a widely accepted color difference metric.

6 0.4 de2000 beween adjacent srgb points on gamut circumference (p = 256) de Figure 4. E 2000 between adjacent points on most saturated edges of srgb color cube. Corresponding colors are shown in the horizontal bar. None of the color spaces under consideration is fully uniform in terms E 2000 granularity. In terms of WCG (lower is better), srgb leads theoretical spaces with vs , , & for Gamma 2.2, 2.0, & 1.8, and for DICOM spaces. WCGs for Barco MDCC-6130 and Dell 1907FP are and The remaining degree of perceptual non-uniformity is still significant and there is certainly room for improvement. REFERENCES [1] accessed Aug [2] N. Tamura, N. Tsumura, and Y. Miyake, Masking model for accurate colorimetric characterization of LCD, JSID [3] accessed Aug [4] Matlab implementation, accessed Aug [5] accessed Aug [6] T. Kimpe, et al., Does the choice of display system influence perception and visibility of clinically relevant features in digital pathology images?, submitted to SPIE MI [7] R. Ramanath, and M.S. Drew, Color: Color Models, Wiley Encyclopedia of Computer Science and Engineering, vol. 1, [8] R. Ramanath, and M.S. Drew, Color: Color Perception, Wiley Encyclopedia of Computer Science and Engineering, vol. 1, 2009.

Practical guidelines for color calibration and quality assurance of medical displays

Practical guidelines for color calibration and quality assurance of medical displays Practical guidelines for color calibration and quality assurance of medical displays Poster No.: C-1140 Congress: ECR 2017 Type: Educational Exhibit Authors: T. Kimpe, J. Rostang, G. Van Hoey, A. Xthona

More information

Color Accuracy in ICC Color Management System

Color Accuracy in ICC Color Management System Color Accuracy in ICC Color Management System Huanzhao Zeng Digital Printing Technologies, Hewlett-Packard Company Vancouver, Washington Abstract ICC committee provides us a standardized profile format

More information

Technical Paper CONSISTENT PRESENTATION OF MEDICAL IMAGES

Technical Paper CONSISTENT PRESENTATION OF MEDICAL IMAGES Technical Paper CONSISTENT PRESENTATION OF MEDICAL IMAGES A REPORT ON MEDICAL WORKSTATION CALIBRATION By Tom Schulte In years past, the quality of medical images was strictly controlled during the exposure,

More information

Increasing the Number of Gray Shades in Medical Display Systems How Much is Enough?

Increasing the Number of Gray Shades in Medical Display Systems How Much is Enough? Increasing the Number of Gray Shades in Medical Display Systems How Much is Enough? Tom Kimpe and Tom Tuytschaever Medical images produced by x-ray detectors, computed tomography (CT) scanners, and other

More information

Color Science. What light is. Measuring light. CS 4620 Lecture 15. Salient property is the spectral power distribution (SPD)

Color Science. What light is. Measuring light. CS 4620 Lecture 15. Salient property is the spectral power distribution (SPD) Color Science CS 4620 Lecture 15 1 2 What light is Measuring light Light is electromagnetic radiation Salient property is the spectral power distribution (SPD) [Lawrence Berkeley Lab / MicroWorlds] exists

More information

University of British Columbia CPSC 414 Computer Graphics

University of British Columbia CPSC 414 Computer Graphics University of British Columbia CPSC 414 Computer Graphics Color 2 Week 10, Fri 7 Nov 2003 Tamara Munzner 1 Readings Chapter 1.4: color plus supplemental reading: A Survey of Color for Computer Graphics,

More information

Introduction to Color Science (Cont)

Introduction to Color Science (Cont) Lecture 24: Introduction to Color Science (Cont) Computer Graphics and Imaging UC Berkeley Empirical Color Matching Experiment Additive Color Matching Experiment Show test light spectrum on left Mix primaries

More information

Medical Imaging Display Color Space (mrgb) Teleconference 19 June :00 (EST)

Medical Imaging Display Color Space (mrgb) Teleconference 19 June :00 (EST) Medical Imaging Display Color Space (mrgb) Teleconference 19 June 2014 09:00 (EST) The meeting was called to order at 09:00 am (EST) by Craig Revie, acting chair, with the following attendees: Rich Amador

More information

Color Reproduction. Chapter 6

Color Reproduction. Chapter 6 Chapter 6 Color Reproduction Take a digital camera and click a picture of a scene. This is the color reproduction of the original scene. The success of a color reproduction lies in how close the reproduced

More information

Assessment of Color Displays. Michael Flynn Radiology Research Henry Ford Health System Detroit, MI

Assessment of Color Displays. Michael Flynn Radiology Research Henry Ford Health System Detroit, MI Assessment of Color Displays Learning Objectives 1. Human color vision 2. CIE color spaces 3. ICC color management 4. Color measurements 5. Medical standards for color Michael Flynn Radiology Research

More information

Out of the Box vs. Professional Calibration and the Comparison of DeltaE 2000 & Delta ICtCp

Out of the Box vs. Professional Calibration and the Comparison of DeltaE 2000 & Delta ICtCp 2018 Value Electronics TV Shootout Out of the Box vs. Professional Calibration and the Comparison of DeltaE 2000 & Delta ICtCp John Reformato Calibrator ISF Level-3 9/23/2018 Click on our logo to go to

More information

Barco medical display systems. Product catalog

Barco medical display systems. Product catalog Barco medical display systems Product catalog TECHNOLOGy THAT MAkES A DIFFERENCE Backlight Output Stabilization (BLOS) Backlight Output Stabilization (BLOS) is an image stabilization system driven by a

More information

IMAGE PROCESSING >COLOR SPACES UTRECHT UNIVERSITY RONALD POPPE

IMAGE PROCESSING >COLOR SPACES UTRECHT UNIVERSITY RONALD POPPE IMAGE PROCESSING >COLOR SPACES UTRECHT UNIVERSITY RONALD POPPE OUTLINE Human visual system Color images Color quantization Colorimetric color spaces HUMAN VISUAL SYSTEM HUMAN VISUAL SYSTEM HUMAN VISUAL

More information

Color Science. CS 4620 Lecture 15

Color Science. CS 4620 Lecture 15 Color Science CS 4620 Lecture 15 2013 Steve Marschner 1 [source unknown] 2013 Steve Marschner 2 What light is Light is electromagnetic radiation exists as oscillations of different frequency (or, wavelength)

More information

Color Management. R. Mac Holbert

Color Management. R. Mac Holbert Color Management R. Mac Holbert Color Management Is Important! It s Relatively Inexpensive! It s Not Difficult To Understand! What is Color Management? Color Management is the name given to processes and

More information

Evaluating clinical performance of the new Coronis Fusion 6MP DL display

Evaluating clinical performance of the new Coronis Fusion 6MP DL display White Paper Evaluating clinical performance of the new Coronis Fusion 6MP DL display What s inside? Clinical performance of Coronis Fusion 6MP DL for lung nodule screening ROC curves for Coronis Fusion

More information

To discuss. Color Science Color Models in image. Computer Graphics 2

To discuss. Color Science Color Models in image. Computer Graphics 2 Color To discuss Color Science Color Models in image Computer Graphics 2 Color Science Light & Spectra Light is an electromagnetic wave It s color is characterized by its wavelength Laser consists of single

More information

Human Vision, Color and Basic Image Processing

Human Vision, Color and Basic Image Processing Human Vision, Color and Basic Image Processing Connelly Barnes CS4810 University of Virginia Acknowledgement: slides by Jason Lawrence, Misha Kazhdan, Allison Klein, Tom Funkhouser, Adam Finkelstein and

More information

Color & Graphics. Color & Vision. The complete display system is: We'll talk about: Model Frame Buffer Screen Eye Brain

Color & Graphics. Color & Vision. The complete display system is: We'll talk about: Model Frame Buffer Screen Eye Brain Color & Graphics The complete display system is: Model Frame Buffer Screen Eye Brain Color & Vision We'll talk about: Light Visions Psychophysics, Colorimetry Color Perceptually based models Hardware models

More information

k m = 683 lumens/watt Display QC QC Measures for Color Displays joules watts lumens SAM Imaging Education Course

k m = 683 lumens/watt Display QC QC Measures for Color Displays joules watts lumens SAM Imaging Education Course Display QC SAM Imaging Education Course MO-GH-205-3 DisplayQuality Test Image TG18-pQC QC Measures for Color Displays a) Color coordinate systems (5) b) Devices for measuring color coordinates (11) c)

More information

Sampling and Reconstruction. Today: Color Theory. Color Theory COMP575

Sampling and Reconstruction. Today: Color Theory. Color Theory COMP575 and COMP575 Today: Finish up Color Color Theory CIE XYZ color space 3 color matching functions: X, Y, Z Y is luminance X and Z are color values WP user acdx Color Theory xyy color space Since Y is luminance,

More information

Technical Report. A New Encoding System for Image Archiving of Cultural Heritage: ETRGB Roy S. Berns and Maxim Derhak

Technical Report. A New Encoding System for Image Archiving of Cultural Heritage: ETRGB Roy S. Berns and Maxim Derhak Technical Report A New Encoding System for Image Archiving of Cultural Heritage: ETRGB Roy S. Berns and Maxim Derhak May 2014 Executive Summary A recent analysis was performed to determine if any current

More information

VU Rendering SS Unit 8: Tone Reproduction

VU Rendering SS Unit 8: Tone Reproduction VU Rendering SS 2012 Unit 8: Tone Reproduction Overview 1. The Problem Image Synthesis Pipeline Different Image Types Human visual system Tone mapping Chromatic Adaptation 2. Tone Reproduction Linear methods

More information

Lecture 3: Grey and Color Image Processing

Lecture 3: Grey and Color Image Processing I22: Digital Image processing Lecture 3: Grey and Color Image Processing Prof. YingLi Tian Sept. 13, 217 Department of Electrical Engineering The City College of New York The City University of New York

More information

Color Image Processing

Color Image Processing Color Image Processing Jesus J. Caban Outline Discuss Assignment #1 Project Proposal Color Perception & Analysis 1 Discuss Assignment #1 Project Proposal Due next Monday, Oct 4th Project proposal Submit

More information

Color , , Computational Photography Fall 2018, Lecture 7

Color , , Computational Photography Fall 2018, Lecture 7 Color http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2018, Lecture 7 Course announcements Homework 2 is out. - Due September 28 th. - Requires camera and

More information

Computer Graphics Si Lu Fall /27/2016

Computer Graphics Si Lu Fall /27/2016 Computer Graphics Si Lu Fall 2017 09/27/2016 Announcement Class mailing list https://groups.google.com/d/forum/cs447-fall-2016 2 Demo Time The Making of Hallelujah with Lytro Immerge https://vimeo.com/213266879

More information

SIM University Color, Brightness, Contrast, Smear Reduction and Latency. Stuart Nicholson Program Architect, VE.

SIM University Color, Brightness, Contrast, Smear Reduction and Latency. Stuart Nicholson Program Architect, VE. 2012 2012 Color, Brightness, Contrast, Smear Reduction and Latency 2 Stuart Nicholson Program Architect, VE Overview Topics Color Luminance (Brightness) Contrast Smear Latency Objective What is it? How

More information

CIE tri-stimulus experiment. Color Value Functions. CIE 1931 Standard. Color. Diagram. Color light intensity for visual color match

CIE tri-stimulus experiment. Color Value Functions. CIE 1931 Standard. Color. Diagram. Color light intensity for visual color match CIE tri-stimulus experiment diffuse reflecting screen diffuse reflecting screen 770 769 768 test light 382 381 380 observer test light 445 535 630 445 535 630 observer light intensity for visual color

More information

Understand brightness, intensity, eye characteristics, and gamma correction, halftone technology, Understand general usage of color

Understand brightness, intensity, eye characteristics, and gamma correction, halftone technology, Understand general usage of color Understand brightness, intensity, eye characteristics, and gamma correction, halftone technology, Understand general usage of color 1 ACHROMATIC LIGHT (Grayscale) Quantity of light physics sense of energy

More information

Color Measurement with the LSS-100P

Color Measurement with the LSS-100P Color Measurement with the LSS-100P Color is complicated. This paper provides a brief overview of color perception and measurement. XYZ and the Eye We can model the color perception of the eye as three

More information

Computer Graphics. Si Lu. Fall er_graphics.htm 10/02/2015

Computer Graphics. Si Lu. Fall er_graphics.htm 10/02/2015 Computer Graphics Si Lu Fall 2017 http://www.cs.pdx.edu/~lusi/cs447/cs447_547_comput er_graphics.htm 10/02/2015 1 Announcements Free Textbook: Linear Algebra By Jim Hefferon http://joshua.smcvt.edu/linalg.html/

More information

Exact Characterization of Monitor Color Showing

Exact Characterization of Monitor Color Showing Available online at www.sciencedirect.com Procedia Environmental Sciences 10 (2011 ) 505 510 2011 3rd International Conference on Environmental Science and Information ESIAT Application 2011 Technology

More information

Gamut Mapping and Digital Color Management

Gamut Mapping and Digital Color Management Gamut Mapping and Digital Color Management EHINC 2005 EHINC 2005, Lille 1 Overview Digital color management Color management functionalities Calibration Characterization Using color transforms Quality

More information

Chapter 3 Part 2 Color image processing

Chapter 3 Part 2 Color image processing Chapter 3 Part 2 Color image processing Motivation Color fundamentals Color models Pseudocolor image processing Full-color image processing: Component-wise Vector-based Recent and current work Spring 2002

More information

HOW CLOSE IS CLOSE ENOUGH? SPECIFYING COLOUR TOLERANCES FOR HDR AND WCG DISPLAYS

HOW CLOSE IS CLOSE ENOUGH? SPECIFYING COLOUR TOLERANCES FOR HDR AND WCG DISPLAYS HOW CLOSE IS CLOSE ENOUGH? SPECIFYING COLOUR TOLERANCES FOR HDR AND WCG DISPLAYS Jaclyn A. Pytlarz, Elizabeth G. Pieri Dolby Laboratories Inc., USA ABSTRACT With a new high-dynamic-range (HDR) and wide-colour-gamut

More information

Color , , Computational Photography Fall 2017, Lecture 11

Color , , Computational Photography Fall 2017, Lecture 11 Color http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2017, Lecture 11 Course announcements Homework 2 grades have been posted on Canvas. - Mean: 81.6% (HW1:

More information

DIGITAL IMAGING FOUNDATIONS

DIGITAL IMAGING FOUNDATIONS CHAPTER DIGITAL IMAGING FOUNDATIONS Photography is, and always has been, a blend of art and science. The technology has continually changed and evolved over the centuries but the goal of photographers

More information

Colour. Why/How do we perceive colours? Electromagnetic Spectrum (1: visible is very small part 2: not all colours are present in the rainbow!

Colour. Why/How do we perceive colours? Electromagnetic Spectrum (1: visible is very small part 2: not all colours are present in the rainbow! Colour What is colour? Human-centric view of colour Computer-centric view of colour Colour models Monitor production of colour Accurate colour reproduction Colour Lecture (2 lectures)! Richardson, Chapter

More information

xyy L*a*b* L*u*v* RGB

xyy L*a*b* L*u*v* RGB The RGB code Part 2: Cracking the RGB code (from XYZ to RGB, and other codes ) In the first part of his quest to crack the RGB code, our hero saw how to get XYZ numbers by combining a Standard Observer

More information

Chapter 2 Fundamentals of Digital Imaging

Chapter 2 Fundamentals of Digital Imaging Chapter 2 Fundamentals of Digital Imaging Part 4 Color Representation 1 In this lecture, you will find answers to these questions What is RGB color model and how does it represent colors? What is CMY color

More information

Light. intensity wavelength. Light is electromagnetic waves Laser is light that contains only a narrow spectrum of frequencies

Light. intensity wavelength. Light is electromagnetic waves Laser is light that contains only a narrow spectrum of frequencies Image formation World, image, eye Light Light is electromagnetic waves Laser is light that contains only a narrow spectrum of frequencies intensity wavelength Visible light is light with wavelength from

More information

Preliminary Assessment of High Dynamic Range Displays for Pathology Detection Tasks. CIS/Kodak New Collaborative Proposal

Preliminary Assessment of High Dynamic Range Displays for Pathology Detection Tasks. CIS/Kodak New Collaborative Proposal Preliminary Assessment of High Dynamic Range Displays for Pathology Detection Tasks CIS/Kodak New Collaborative Proposal CO-PI: Karl G. Baum, Center for Imaging Science, Post Doctoral Researcher CO-PI:

More information

Colour. Electromagnetic Spectrum (1: visible is very small part 2: not all colours are present in the rainbow!) Colour Lecture!

Colour. Electromagnetic Spectrum (1: visible is very small part 2: not all colours are present in the rainbow!) Colour Lecture! Colour Lecture! ITNP80: Multimedia 1 Colour What is colour? Human-centric view of colour Computer-centric view of colour Colour models Monitor production of colour Accurate colour reproduction Richardson,

More information

Announcements. Electromagnetic Spectrum. The appearance of colors. Homework 4 is due Tue, Dec 6, 11:59 PM Reading:

Announcements. Electromagnetic Spectrum. The appearance of colors. Homework 4 is due Tue, Dec 6, 11:59 PM Reading: Announcements Homework 4 is due Tue, Dec 6, 11:59 PM Reading: Chapter 3: Color CSE 252A Lecture 18 Electromagnetic Spectrum The appearance of colors Color appearance is strongly affected by (at least):

More information

For a long time I limited myself to one color as a form of discipline. Pablo Picasso. Color Image Processing

For a long time I limited myself to one color as a form of discipline. Pablo Picasso. Color Image Processing For a long time I limited myself to one color as a form of discipline. Pablo Picasso Color Image Processing 1 Preview Motive - Color is a powerful descriptor that often simplifies object identification

More information

Digital Technology Group, Inc. Tampa Ft. Lauderdale Carolinas

Digital Technology Group, Inc. Tampa Ft. Lauderdale Carolinas Digital Technology Group, Inc. Tampa Ft. Lauderdale Carolinas www.dtgweb.com Color Management Defined by Digital Technology Group Absolute Colorimetric One of the four Rendering Intents of the ICC specification.

More information

Introduction to Computer Vision CSE 152 Lecture 18

Introduction to Computer Vision CSE 152 Lecture 18 CSE 152 Lecture 18 Announcements Homework 5 is due Sat, Jun 9, 11:59 PM Reading: Chapter 3: Color Electromagnetic Spectrum The appearance of colors Color appearance is strongly affected by (at least):

More information

12/02/2017. From light to colour spaces. Electromagnetic spectrum. Colour. Correlated colour temperature. Black body radiation.

12/02/2017. From light to colour spaces. Electromagnetic spectrum. Colour. Correlated colour temperature. Black body radiation. From light to colour spaces Light and colour Advanced Graphics Rafal Mantiuk Computer Laboratory, University of Cambridge 1 2 Electromagnetic spectrum Visible light Electromagnetic waves of wavelength

More information

Colour. Cunliffe & Elliott, Chapter 8 Chapman & Chapman, Digital Multimedia, Chapter 5. Autumn 2016 University of Stirling

Colour. Cunliffe & Elliott, Chapter 8 Chapman & Chapman, Digital Multimedia, Chapter 5. Autumn 2016 University of Stirling CSCU9N5: Multimedia and HCI 1 Colour What is colour? Human-centric view of colour Computer-centric view of colour Colour models Monitor production of colour Accurate colour reproduction Cunliffe & Elliott,

More information

Color and Perception. CS535 Fall Daniel G. Aliaga Department of Computer Science Purdue University

Color and Perception. CS535 Fall Daniel G. Aliaga Department of Computer Science Purdue University Color and Perception CS535 Fall 2014 Daniel G. Aliaga Department of Computer Science Purdue University Elements of Color Perception 2 Elements of Color Physics: Illumination Electromagnetic spectra; approx.

More information

Image Display and Perception

Image Display and Perception Image Display and Perception J. Anthony Seibert, Ph.D. Department of Radiology UC Davis Medical Center Sacramento, California, USA Image acquisition, display, & interpretation X-rays kvp mas Tube filtration

More information

CS6640 Computational Photography. 6. Color science for digital photography Steve Marschner

CS6640 Computational Photography. 6. Color science for digital photography Steve Marschner CS6640 Computational Photography 6. Color science for digital photography 2012 Steve Marschner 1 What visible light is One octave of the electromagnetic spectrum (380-760nm) NASA/Wikimedia Commons 2 What

More information

Capturing Light in man and machine

Capturing Light in man and machine Capturing Light in man and machine CS194: Image Manipulation & Computational Photography Alexei Efros, UC Berkeley, Fall 2015 Etymology PHOTOGRAPHY light drawing / writing Image Formation Digital Camera

More information

Display profiling and Color Management

Display profiling and Color Management Display profiling and Color Management Andrew Rodney aka The Digital Dog www.digitaldog.net andrew@digitaldog.net Email me (andrew@digitaldog.net) if you need this presentation in PDF form. Most of the

More information

Colors in Images & Video

Colors in Images & Video LECTURE 8 Colors in Images & Video CS 5513 Multimedia Systems Spring 2009 Imran Ihsan Principal Design Consultant OPUSVII www.opuseven.com Faculty of Engineering & Applied Sciences 1. Light and Spectra

More information

Factors Governing Print Quality in Color Prints

Factors Governing Print Quality in Color Prints Factors Governing Print Quality in Color Prints Gabriel Marcu Apple Computer, 1 Infinite Loop MS: 82-CS, Cupertino, CA, 95014 Introduction The proliferation of the color printers in the computer world

More information

COLOR and the human response to light

COLOR and the human response to light COLOR and the human response to light Contents Introduction: The nature of light The physiology of human vision Color Spaces: Linear Artistic View Standard Distances between colors Color in the TV 2 How

More information

Color Image Processing

Color Image Processing Color Image Processing with Biomedical Applications Rangaraj M. Rangayyan, Begoña Acha, and Carmen Serrano University of Calgary, Calgary, Alberta, Canada University of Seville, Spain SPIE Press 2011 434

More information

Report #17-UR-049. Color Camera. Jason E. Meyer Ronald B. Gibbons Caroline A. Connell. Submitted: February 28, 2017

Report #17-UR-049. Color Camera. Jason E. Meyer Ronald B. Gibbons Caroline A. Connell. Submitted: February 28, 2017 Report #17-UR-049 Color Camera Jason E. Meyer Ronald B. Gibbons Caroline A. Connell Submitted: February 28, 2017 ACKNOWLEDGMENTS The authors of this report would like to acknowledge the support of the

More information

Spectro-Densitometers: Versatile Color Measurement Instruments for Printers

Spectro-Densitometers: Versatile Color Measurement Instruments for Printers By Hapet Berberian observations of typical proofing and press room Through operations, there would be general consensus that the use of color measurement instruments to measure and control the color reproduction

More information

Appearance Match between Soft Copy and Hard Copy under Mixed Chromatic Adaptation

Appearance Match between Soft Copy and Hard Copy under Mixed Chromatic Adaptation Appearance Match between Soft Copy and Hard Copy under Mixed Chromatic Adaptation Naoya KATOH Research Center, Sony Corporation, Tokyo, Japan Abstract Human visual system is partially adapted to the CRT

More information

White Paper. The Advantages of Hybrid Gamma PXL. 1 Introduction Outline of Hybrid Gamma PXL Study Results...

White Paper. The Advantages of Hybrid Gamma PXL. 1 Introduction Outline of Hybrid Gamma PXL Study Results... White Paper The Advantages of Hybrid Gamma PXL CONTENTS 1 Introduction... 2 2 Outline of Hybrid Gamma PXL... 4 3 Study... 5 4 Results... 7 5 Conclusions... 10 No.17-001 Revision A November 2017 Product

More information

LECTURE 07 COLORS IN IMAGES & VIDEO

LECTURE 07 COLORS IN IMAGES & VIDEO MULTIMEDIA TECHNOLOGIES LECTURE 07 COLORS IN IMAGES & VIDEO IMRAN IHSAN ASSISTANT PROFESSOR LIGHT AND SPECTRA Visible light is an electromagnetic wave in the 400nm 700 nm range. The eye is basically similar

More information

Visibility of Uncorrelated Image Noise

Visibility of Uncorrelated Image Noise Visibility of Uncorrelated Image Noise Jiajing Xu a, Reno Bowen b, Jing Wang c, and Joyce Farrell a a Dept. of Electrical Engineering, Stanford University, Stanford, CA. 94305 U.S.A. b Dept. of Psychology,

More information

SUSPENSION CRITERIA FOR IMAGE MONITORS AND VIEWING BOXES.

SUSPENSION CRITERIA FOR IMAGE MONITORS AND VIEWING BOXES. SUSPENSION CRITERIA FOR IMAGE MONITORS AND VIEWING BOXES. Tingberg, Anders Published in: Radiation Protection Dosimetry DOI: 10.1093/rpd/ncs302 Published: 2013-01-01 Link to publication Citation for published

More information

CHARACTERIZATION OF PROCESSING ARTIFACTS IN HIGH DYNAMIC RANGE, WIDE COLOR GAMUT VIDEO

CHARACTERIZATION OF PROCESSING ARTIFACTS IN HIGH DYNAMIC RANGE, WIDE COLOR GAMUT VIDEO CHARACTERIZATION OF PROCESSING ARTIFACTS IN HIGH DYNAMIC RANGE, WIDE COLOR GAMUT VIDEO O. Baumann, A. Okell, J. Ström Ericsson ABSTRACT A new, more immersive, television experience is here. With higher

More information

Colour Management Workflow

Colour Management Workflow Colour Management Workflow The Eye as a Sensor The eye has three types of receptor called 'cones' that can pick up blue (S), green (M) and red (L) wavelengths. The sensitivity overlaps slightly enabling

More information

Photography and graphic technology Extended colour encodings for digital image storage, manipulation and interchange. Part 4:

Photography and graphic technology Extended colour encodings for digital image storage, manipulation and interchange. Part 4: Provläsningsexemplar / Preview TECHNICAL SPECIFICATION ISO/TS 22028-4 First edition 2012-11-01 Photography and graphic technology Extended colour encodings for digital image storage, manipulation and interchange

More information

Image Processing COS 426

Image Processing COS 426 Image Processing COS 426 What is a Digital Image? A digital image is a discrete array of samples representing a continuous 2D function Continuous function Discrete samples Limitations on Digital Images

More information

Histograms and Color Balancing

Histograms and Color Balancing Histograms and Color Balancing 09/14/17 Empire of Light, Magritte Computational Photography Derek Hoiem, University of Illinois Administrative stuff Project 1: due Monday Part I: Hybrid Image Part II:

More information

WHITE PAPER. Evaluating Color Performance in a Professional Monitor

WHITE PAPER. Evaluating Color Performance in a Professional Monitor Evaluating Color Performance in a Professional Monitor This buyer s guide reviews why your monitor matters, and what to look for when purchasing a professional-grade monitor to enhance your creative work.

More information

Introduction to Color Theory

Introduction to Color Theory Systems & Biomedical Engineering Department SBE 306B: Computer Systems III (Computer Graphics) Dr. Ayman Eldeib Spring 2018 Introduction to With colors you can set a mood, attract attention, or make a

More information

Underlying Factors for Consistent Color Appearance (CCA) and developing CCA metric

Underlying Factors for Consistent Color Appearance (CCA) and developing CCA metric Underlying Factors for Consistent Color Appearance (CCA) and developing CCA metric Elena Fedorovskaya & Robert Chung - RIT David Hunter & Pierre Urbain- ChromaChecker.com CRPC1 CRPC2 CRPC3 CRPC4 CRPC5

More information

Multimedia Systems Color Space Mahdi Amiri March 2012 Sharif University of Technology

Multimedia Systems Color Space Mahdi Amiri March 2012 Sharif University of Technology Course Presentation Multimedia Systems Color Space Mahdi Amiri March 2012 Sharif University of Technology Physics of Color Light Light or visible light is the portion of electromagnetic radiation that

More information

Computer Graphics. Rendering. Rendering 3D. Images & Color. Scena 3D rendering image. Human Visual System: the retina. Human Visual System

Computer Graphics. Rendering. Rendering 3D. Images & Color. Scena 3D rendering image. Human Visual System: the retina. Human Visual System Rendering Rendering 3D Scena 3D rendering image Computer Graphics Università dell Insubria Corso di Laurea in Informatica Anno Accademico 2014/15 Marco Tarini Images & Color M a r c o T a r i n i C o m

More information

ISO/TS TECHNICAL SPECIFICATION

ISO/TS TECHNICAL SPECIFICATION TECHNICAL SPECIFICATION ISO/TS 22028-2 First edition 2006-08-15 Photography and graphic technology Extended colour encodings for digital image storage, manipulation and interchange Part 2: Reference output

More information

How to compare the deltae of two matching ColorLists. Creating pixel files in Photoshop for ColorThink.

How to compare the deltae of two matching ColorLists. Creating pixel files in Photoshop for ColorThink. How to compare the deltae of two matching ColorLists. What you do: Create two ColorLists, text files that have Lab values, that are compared using ColorThink Pro (reports de, Std Dev, max de etc). A ColorList

More information

Additive Color Synthesis

Additive Color Synthesis Color Systems Defining Colors for Digital Image Processing Various models exist that attempt to describe color numerically. An ideal model should be able to record all theoretically visible colors in the

More information

A Study of Slanted-Edge MTF Stability and Repeatability

A Study of Slanted-Edge MTF Stability and Repeatability A Study of Slanted-Edge MTF Stability and Repeatability Jackson K.M. Roland Imatest LLC, 2995 Wilderness Place Suite 103, Boulder, CO, USA ABSTRACT The slanted-edge method of measuring the spatial frequency

More information

Effective Color: Materials. Color in Information Display. What does RGB Mean? The Craft of Digital Color. RGB from Cameras.

Effective Color: Materials. Color in Information Display. What does RGB Mean? The Craft of Digital Color. RGB from Cameras. Effective Color: Materials Color in Information Display Aesthetics Maureen Stone StoneSoup Consulting Woodinville, WA Course Notes on http://www.stonesc.com/vis05 (Part 2) Materials Perception The Craft

More information

Color images C1 C2 C3

Color images C1 C2 C3 Color imaging Color images C1 C2 C3 Each colored pixel corresponds to a vector of three values {C1,C2,C3} The characteristics of the components depend on the chosen colorspace (RGB, YUV, CIELab,..) Digital

More information

Effects of Pixel Density On Softcopy Image Interpretability

Effects of Pixel Density On Softcopy Image Interpretability Effects of Pixel Density On Softcopy Image Interpretability Jon Leachtenauer ERIM-International, Arlington, Virginia Andrew S. Biache and Geoff Garney Autometric Inc., Springfield, Viriginia Abstract Softcopy

More information

Figure 1: Energy Distributions for light

Figure 1: Energy Distributions for light Lecture 4: Colour The physical description of colour Colour vision is a very complicated biological and psychological phenomenon. It can be described in many different ways, including by physics, by subjective

More information

Gernot Hoffmann. Sky Blue

Gernot Hoffmann. Sky Blue Gernot Hoffmann Sky Blue Contents 1. Introduction 2 2. Examples A / Lighter Sky 5 3. Examples B / Lighter Part of Sky 8 4. Examples C / Uncorrected Images 11 5. CIELab 14 6. References 17 1. Introduction

More information

Imaging Informatics. Standards Support for Color in Medical Imaging. SAM Imaging Education Course. Photometric Standards Colorimetric Standards

Imaging Informatics. Standards Support for Color in Medical Imaging. SAM Imaging Education Course. Photometric Standards Colorimetric Standards Imaging Informatics SAM Imaging Education Course AAPM Standards Support for Color in Medical Imaging Photometric Standards Colorimetric Standards Michael J. Flynn, PhD Henry Ford Health System, Detroit,

More information

Update on the INCITS W1.1 Standard for Evaluating the Color Rendition of Printing Systems

Update on the INCITS W1.1 Standard for Evaluating the Color Rendition of Printing Systems Update on the INCITS W1.1 Standard for Evaluating the Color Rendition of Printing Systems Susan Farnand and Karin Töpfer Eastman Kodak Company Rochester, NY USA William Kress Toshiba America Business Solutions

More information

Black point compensation and its influence on image appearance

Black point compensation and its influence on image appearance riginal scientific paper UDK: 070. Black point compensation and its influence on image appearance Authors: Dragoljub Novaković, Igor Karlović, Ivana Tomić Faculty of Technical Sciences, Graphic Engineering

More information

Color Theory: Defining Brown

Color Theory: Defining Brown Color Theory: Defining Brown Defining Colors Colors can be defined in many different ways. Computer users are often familiar with colors defined as percentages or amounts of red, green, and blue (RGB).

More information

On Contrast Sensitivity in an Image Difference Model

On Contrast Sensitivity in an Image Difference Model On Contrast Sensitivity in an Image Difference Model Garrett M. Johnson and Mark D. Fairchild Munsell Color Science Laboratory, Center for Imaging Science Rochester Institute of Technology, Rochester New

More information

Comparison of Two Pixel based Segmentation Algorithms of Color Images by Histogram

Comparison of Two Pixel based Segmentation Algorithms of Color Images by Histogram 5 Comparison of Two Pixel based Segmentation Algorithms of Color Images by Histogram Dr. Goutam Chatterjee, Professor, Dept of ECE, KPR Institute of Technology, Ghatkesar, Hyderabad, India ABSTRACT The

More information

Color Image Processing. Gonzales & Woods: Chapter 6

Color Image Processing. Gonzales & Woods: Chapter 6 Color Image Processing Gonzales & Woods: Chapter 6 Objectives What are the most important concepts and terms related to color perception? What are the main color models used to represent and quantify color?

More information

Compression and Image Formats

Compression and Image Formats Compression Compression and Image Formats Reduce amount of data used to represent an image/video Bit rate and quality requirements Necessary to facilitate transmission and storage Required quality is application

More information

262 JOURNAL OF DISPLAY TECHNOLOGY, VOL. 4, NO. 2, JUNE 2008

262 JOURNAL OF DISPLAY TECHNOLOGY, VOL. 4, NO. 2, JUNE 2008 262 JOURNAL OF DISPLAY TECHNOLOGY, VOL. 4, NO. 2, JUNE 2008 A Display Simulation Toolbox for Image Quality Evaluation Joyce Farrell, Gregory Ng, Xiaowei Ding, Kevin Larson, and Brian Wandell Abstract The

More information

ALEXA Log C Curve. Usage in VFX. Harald Brendel

ALEXA Log C Curve. Usage in VFX. Harald Brendel ALEXA Log C Curve Usage in VFX Harald Brendel Version Author Change Note 14-Jun-11 Harald Brendel Initial Draft 14-Jun-11 Harald Brendel Added Wide Gamut Primaries 14-Jun-11 Oliver Temmler Editorial 20-Jun-11

More information

COLOR. and the human response to light

COLOR. and the human response to light COLOR and the human response to light Contents Introduction: The nature of light The physiology of human vision Color Spaces: Linear Artistic View Standard Distances between colors Color in the TV 2 Amazing

More information

Color Management for Digital Photography

Color Management for Digital Photography Color Management for Digital Photography A Presentation for the Akron Camera Club By Tom Noe Bonnie Janelle Lou Janelle What Is Color Management? An attempt to accurately depict color from initial camera

More information

Yagi Digital Microscope Calibration

Yagi Digital Microscope Calibration Yagi Digital Microscope Calibration Method summary, assessment and suggestions for improvement W Craig Revie, International Color Consortium Introduction In the area of pathology, a type of digital microscope

More information

Digital Image Processing. Lecture # 3 Image Enhancement

Digital Image Processing. Lecture # 3 Image Enhancement Digital Image Processing Lecture # 3 Image Enhancement 1 Image Enhancement Image Enhancement 3 Image Enhancement 4 Image Enhancement Process an image so that the result is more suitable than the original

More information

Capturing Light in man and machine

Capturing Light in man and machine Capturing Light in man and machine CS194: Image Manipulation & Computational Photography Alexei Efros, UC Berkeley, Fall 2014 Etymology PHOTOGRAPHY light drawing / writing Image Formation Digital Camera

More information