A Kalman-Filtering Approach to High Dynamic Range Imaging for Measurement Applications

Size: px
Start display at page:

Download "A Kalman-Filtering Approach to High Dynamic Range Imaging for Measurement Applications"

Transcription

1 A Kalman-Filtering Approach to High Dynamic Range Imaging for Measurement Applications IEEE Transactions on Image Processing, Vol. 21, No. 2, 2012 Eric Dedrick and Daniel Lau, Presented by Ran Shu School of Electrical Engineering and Computer Science Kyungpook National Univ.

2 Abstract High dynamic range imaging Receiving little attention Dynamic range of a scene Exceeding captured by image sensor in single exposure Constructing radiance maps In measurement applications Proposing novel HDRI Pixel-by-pixel Kalman filtering Evaluating performance Using proposing objective metric Presented experiments 9.4-dB improvement in signal-to-noise ratio 29% improvement in radiometric accuracy Over classic method 2/37

3 Introduction Exceeding dynamic range of scene Captured by camera in single exposure Over and underexposed areas Multiexposure techniques Fusing exposures into single composite image With higher dynamic range 3/37

4 Previous multiexposure methods Using exposure time ratio and pixel value mappings between exposure Obtaining parametric camera response function Exposure fusion performed using weighted average Using reciprocity relation Exposure times and smoothness constraint Constructing nonparametric camera response function» Exposure fusion performed using weighted average Recovering camera response function In presence of camera white balancing Estimating radiance uncertainties» Basing on statistics of pooled pixels Performing exposure fusion by iteratively updating radiance estimates Using weighting term based on estimated noise variance 4/37

5 HDRI for infrared camera and temperature measurement Using blackbodies of controlled temperatures for calibration Finding response function of camera with InSb image sensor Using emissivities Performing exposure fusion Computing radiance of each pixel from exposure» Longest exposure time» Pixel not saturated HDRI for thermographic application Recovering inverse camera response function Mapping pixel values to radiance 5/37

6 Proposing method Postulating HDRI targeting measurement applications Rooted in solid-state image sensor models Weights used in exposure fusion» Basing on noise present in acquired exposures Estimating uncertainty in radiance estimates» Providing useful information to application Presenting new method of HDRI Camera response function Vary independently across image sensor Making term pixel response function more appropiate Calibration procedure Improving performance across sensor array Corrects pixelwise nonuniformity caused by sensor array» Measurement noise power» Scene illumination» Optical vignetting 6/37

7 Calibration limitation Unchanging part Illumination conditions Camera parameters Focus and aperture size Changing part Depth-dependent changes» In illumination» Object distance differing too much Performance of approach depending Controlled camera settings Environmental conditions 7/37

8 HDR achieving Applying Kalman filtering independently Each pixel location across multiple exposures Demonstrating usefulness of proposed method Introducing objective metrics Evaluating accuracy and performance» Comparing to classic HDRI techniques 8/37

9 Camera calibration Performing calibration Using spectrally flat white balance card Correcting any fixed pattern spatial nonuniformities Existing due to illumination, optical vignetting, sensor noise Not sensitive to type of illuminant Reflected radiant intensity of white balance card Target reflector Both scaling identically with variations in illumination intensity» Reflectance measurements not sensitive to illuminant intensity 9/37

10 Selecting camera Linear camera response function Without noise Response of each pixel z ATr B (1) where z T r AB, is output of a particular pixel, is exposure time, is scene radiance at this pixel location, parameters to be determined for each pixel through calibration 10/37

11 Spatial nonuniformities due to Lighting Vignetting fall-off Sensor fixed pattern noises Fig.1. Exposure of a uniform target taken using a 10-bit camera. Nonuniformities are evident. 11/37

12 Acquiring exposures of calibration card With varying exposure times allowing A and B Pixel gain coefficients Pixel offset coefficients (a) (b) (c) Fig.2. (a) Gain and (b) offset coefficients of the pixel response functions. (c) Variance of a sequence of 49 exposures taken with identical camera parameters. 12/37

13 Two noise sources Dark current Photo response nonuniformity» Corrected by pixel gain and offset terms of pixel response functions Zero-mean noise Shot noise Read noise» Not uniform across sensor» Few isolated pixels with large variances suppressed Modeled for particular pixel R CTr D (2) where calibration card defines, R CD, is measurement noise power, are parameters to be determined for each pixel through linear regression r 1 13/37

14 Coefficients of measurement noise power model (a) (b) (c) Fig.3. (a) Gain and (b) offset coefficients of the measurement noise power model. (c) Estimated process noise power Q. 14/37

15 Pixel response model Including process noise and measurement noise Estimating process noise power from residual error z AT r B n (3) z A T Q R (4) where Q is process noise power at particular pixel location, Any outlier in calibration data Estimating of process noise power» Occasionally occur in some isolated pixels 15/37

16 Shot noise process Described by Poisson distribution Expecting number of occurrences increase Fig.4. (Open circle) Probability density function of a Poisson distribution overlaid with the probability density function of a Gaussian distribution. Both distributions have a mean and variance of /37

17 Selecting Prosilica GC640 camera Micron MT9V203 CMOS image sensor Operating fully manual mode» Eliminating need to compensate for features» Reducing quantization noise and not introducing compression artifacts 17/37

18 Radiance estimation HDRI based on Kalman filtering Selected camera with linear response function Chosen operating region Applying Gaussian noise model State x of linear system Expressing in state space form x Φ x Γ u w (5) where Φ Γ w k k 1 k 1 k 1 k 1 k 1 governs the time evolution of the system, is a weight applied to the control, is additive white Gaussian process noise Measurement of state performing given by measurement model zk Hkxk v k (6) where z is an observation vector, H relates state to observation, v is additive white Gaussian process noise u 18/37

19 Expected value operator E E T T E T vw k k 0 w w Q, v v R, k k k k k k Optimal estimates of system state Generated recursively with Kalman filter where x Φ xˆ Γ u k 1 k 1 k 1 k 1 P Φ P Φ Q T k k 1 k 1 k 1 k 1 K P H H P H R T T k k k k k k k xˆ xˆ K z H xˆ k k k k k k, P Ex xˆ x x T T k k k k k k k k k P I K H P I K H K R K I K ˆx 1 designations refer to a priori and posteriori estimates, is an estimate of covariance, is the identity matrix, is the Kalman gain ˆ T (7) (8) (9) (10) (11) 19/37

20 Reciprocity relation stating response of pixel Function of product of scene radiance At that location Exposure time General process and measurement models Simpler scalar forms» With assumptions of static scene r r k k 1 k 1 z AT r B n k k k (12) (13) where A and B are gain and offset parameters of a particular pixel determined from calibration 20/37

21 Simplifications in Kalman filter Used to estimating radiance at this pixel location» Performing procedure independently for each pixel» Each with its own filter rˆ k rˆ k1 P P Q k k 1 k 1 K AT P A T P R 2 2 k k k k k K rˆ rˆ K z AT rˆ B k k k k k k 2 2 k k k k k k P l K AT P K R 1 (14) (15) (16) (17) (18) 21/37

22 Performance analysis Comparing performance of proposed method Previous methods Based on exposure sequences of Gretag-Macbeth color chart Illuminated by 60-W incandescent source Fig.5. Exposures used as inputs to HDRI algorithms. Exposure times were 0.5, 1.0, 2.5, 5.0, 6.5, 8.0, 15.5, 23.0, 35.5, and 65.5 ms. 22/37

23 Proposing characterizing algorithm performance Using objective metric with SNR as measure of precision Radiance ratio test used as measure of accuracy Previous camera response functions Fig.6. Camera response functions computed by the Debevec, Mitsunaga, and Robertson methods. 23/37

24 Number of usable samples and HDR results Fig.7. Number of usable samples in the sequence at each pixel location. Fig.8. Radiance estimates generated using (a) Debevec, (b) Akyuz, (c) Robertson, (d) Mitsunaga, (e)richards, and (f) Kalman filtering. 24/37

25 Uncertainty estimates generated by Kalman approach Fig.9. Estimates of the uncertainty in relative radiance generated by the Kalman-filtering approach. 25/37

26 Subtle difference between HDR images Considering for measurement techniques Applying objective metrics» Beginning with their associated SNRs» As measures of uniformity r SNR 20 log 10 r (19) where r is the mean of radiance of six fully visible patches in first row of in put images as signal amplitude, r is standard deviation of radiance is taken to be noise amplitude 26/37

27 SNRs of the original exposure sequence Table.1. SNR of the exposures shown in Fig /37

28 SNRs of various HDRI techniques Table.2. SNR of the HDR images generated from the sequence in Fig /37

29 Accuracy of radiance estimates Relative radiance easier to obtain than absolute radiance Devised a radiance ratio test» Comparing measured luminance values» To CIELAB coordinates of Gretag-Macbeth color chart Converting luminance values to Relative luminance» Divided by lightest reference checker» Yielded a ratio independent of white point normalization factor Averaged over each patch 29/37

30 Relative reflectances of the HDR images generated from the sequence in Fig.5 Table.3. Relative reflectances of the HDR images generated from the sequence in Fig.5 30/37

31 Examining Figs. 8 and 9 Uncertainty in relative radiance Closely related to relative radiance itself» Substituting (16) into (18) and iterating k times P k» Dividing by and letting P k» Further simplifies P k P 0 k i1 i 2 2 k k T i j 0 i1 i i 1 i 1 i Ri P0 P0 P A R R A 2 k i1 R i R 2 k k T i i 1Ri i1 Ri 2 A 2 1 k i1 Ti R i (20) (21) (22) 31/37

32 » Experimentally verified D is typically less than 1% of CTr P k 2 A» Sampling HDR scene 2 C i1» Double exposure time between each exposure P k A Sequence of exposures with much lower dynamic range Exposure times repeated k C 2 k 1 Ti R i 2 1 T 1 (23) (23) Fig.10. Second set of exposures used as inputs to the different HDRI techniques. Exposure times are 2, 2, 2, 2.5, 2.5, and 2.5 ms. 32/37

33 Table.4. SNR of the exposures shown in Fig. 10 Table.5. SNR of the HDR images generated from the input sequence in Fig /37

34 Table.6. Relative reflectances of the HDR images generated from the sequence in Fig /37

35 Relative radiance estimate of Kalman-filtering Fig.11. Relative radiance estimates of the Kalman-filtering approach. Fig.12. Relative radiance estimates of the Kalman-filtering approach with no process noise. 35/37

36 Frames from an HDR video sequence (a) (b) (c) (d) Fig.13. (a) a moving matchbox and (b) a candle, with the exposure times chosen for the (c) matchbox and (d) candle video sequences. 36/37

37 conclusions HDRI based on Kalman filtering Proposed objective quality metric Assess precision and accuracy Useful for measurement applicaiton 37/37

A simulation tool for evaluating digital camera image quality

A simulation tool for evaluating digital camera image quality A simulation tool for evaluating digital camera image quality Joyce Farrell ab, Feng Xiao b, Peter Catrysse b, Brian Wandell b a ImagEval Consulting LLC, P.O. Box 1648, Palo Alto, CA 94302-1648 b Stanford

More information

Visibility of Uncorrelated Image Noise

Visibility of Uncorrelated Image Noise Visibility of Uncorrelated Image Noise Jiajing Xu a, Reno Bowen b, Jing Wang c, and Joyce Farrell a a Dept. of Electrical Engineering, Stanford University, Stanford, CA. 94305 U.S.A. b Dept. of Psychology,

More information

SYSTEMATIC NOISE CHARACTERIZATION OF A CCD CAMERA: APPLICATION TO A MULTISPECTRAL IMAGING SYSTEM

SYSTEMATIC NOISE CHARACTERIZATION OF A CCD CAMERA: APPLICATION TO A MULTISPECTRAL IMAGING SYSTEM SYSTEMATIC NOISE CHARACTERIZATION OF A CCD CAMERA: APPLICATION TO A MULTISPECTRAL IMAGING SYSTEM A. Mansouri, F. S. Marzani, P. Gouton LE2I. UMR CNRS-5158, UFR Sc. & Tech., University of Burgundy, BP 47870,

More information

Acquisition Basics. How can we measure material properties? Goal of this Section. Special Purpose Tools. General Purpose Tools

Acquisition Basics. How can we measure material properties? Goal of this Section. Special Purpose Tools. General Purpose Tools Course 10 Realistic Materials in Computer Graphics Acquisition Basics MPI Informatik (moving to the University of Washington Goal of this Section practical, hands-on description of acquisition basics general

More information

According to the proposed AWB methods as described in Chapter 3, the following

According to the proposed AWB methods as described in Chapter 3, the following Chapter 4 Experiment 4.1 Introduction According to the proposed AWB methods as described in Chapter 3, the following experiments were designed to evaluate the feasibility and robustness of the algorithms.

More information

Realistic Image Synthesis

Realistic Image Synthesis Realistic Image Synthesis - HDR Capture & Tone Mapping - Philipp Slusallek Karol Myszkowski Gurprit Singh Karol Myszkowski LDR vs HDR Comparison Various Dynamic Ranges (1) 10-6 10-4 10-2 100 102 104 106

More information

HIGH DYNAMIC RANGE MAP ESTIMATION VIA FULLY CONNECTED RANDOM FIELDS WITH STOCHASTIC CLIQUES

HIGH DYNAMIC RANGE MAP ESTIMATION VIA FULLY CONNECTED RANDOM FIELDS WITH STOCHASTIC CLIQUES HIGH DYNAMIC RANGE MAP ESTIMATION VIA FULLY CONNECTED RANDOM FIELDS WITH STOCHASTIC CLIQUES F. Y. Li, M. J. Shafiee, A. Chung, B. Chwyl, F. Kazemzadeh, A. Wong, and J. Zelek Vision & Image Processing Lab,

More information

Goal of this Section. Capturing Reflectance From Theory to Practice. Acquisition Basics. How can we measure material properties? Special Purpose Tools

Goal of this Section. Capturing Reflectance From Theory to Practice. Acquisition Basics. How can we measure material properties? Special Purpose Tools Capturing Reflectance From Theory to Practice Acquisition Basics GRIS, TU Darmstadt (formerly University of Washington, Seattle Goal of this Section practical, hands-on description of acquisition basics

More information

Burst Photography! EE367/CS448I: Computational Imaging and Display! stanford.edu/class/ee367! Lecture 7! Gordon Wetzstein! Stanford University!

Burst Photography! EE367/CS448I: Computational Imaging and Display! stanford.edu/class/ee367! Lecture 7! Gordon Wetzstein! Stanford University! Burst Photography! EE367/CS448I: Computational Imaging and Display! stanford.edu/class/ee367! Lecture 7! Gordon Wetzstein! Stanford University! Motivation! wikipedia! exposure sequence! -4 stops! Motivation!

More information

Improving Image Quality by Camera Signal Adaptation to Lighting Conditions

Improving Image Quality by Camera Signal Adaptation to Lighting Conditions Improving Image Quality by Camera Signal Adaptation to Lighting Conditions Mihai Negru and Sergiu Nedevschi Technical University of Cluj-Napoca, Computer Science Department Mihai.Negru@cs.utcluj.ro, Sergiu.Nedevschi@cs.utcluj.ro

More information

INCREASING LINEAR DYNAMIC RANGE OF COMMERCIAL DIGITAL PHOTOCAMERA USED IN IMAGING SYSTEMS WITH OPTICAL CODING arxiv: v1 [cs.

INCREASING LINEAR DYNAMIC RANGE OF COMMERCIAL DIGITAL PHOTOCAMERA USED IN IMAGING SYSTEMS WITH OPTICAL CODING arxiv: v1 [cs. INCREASING LINEAR DYNAMIC RANGE OF COMMERCIAL DIGITAL PHOTOCAMERA USED IN IMAGING SYSTEMS WITH OPTICAL CODING arxiv:0805.2690v1 [cs.cv] 17 May 2008 M.V. Konnik, E.A. Manykin, S.N. Starikov Moscow Engineering

More information

BASLER A601f / A602f

BASLER A601f / A602f Camera Specification BASLER A61f / A6f Measurement protocol using the EMVA Standard 188 3rd November 6 All values are typical and are subject to change without prior notice. CONTENTS Contents 1 Overview

More information

Automatic High Dynamic Range Image Generation for Dynamic Scenes

Automatic High Dynamic Range Image Generation for Dynamic Scenes Automatic High Dynamic Range Image Generation for Dynamic Scenes IEEE Computer Graphics and Applications Vol. 28, Issue. 2, April 2008 Katrien Jacobs, Celine Loscos, and Greg Ward Presented by Yuan Xi

More information

HDR images acquisition

HDR images acquisition HDR images acquisition dr. Francesco Banterle francesco.banterle@isti.cnr.it Current sensors No sensors available to consumer for capturing HDR content in a single shot Some native HDR sensors exist, HDRc

More information

Introduction to Video Forgery Detection: Part I

Introduction to Video Forgery Detection: Part I Introduction to Video Forgery Detection: Part I Detecting Forgery From Static-Scene Video Based on Inconsistency in Noise Level Functions IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 5,

More information

Omnidirectional High Dynamic Range Imaging with a Moving Camera

Omnidirectional High Dynamic Range Imaging with a Moving Camera Omnidirectional High Dynamic Range Imaging with a Moving Camera by Fanping Zhou Thesis submitted to the Faculty of Graduate and Postdoctoral Studies in partial fulfillment of the requirements for the M.A.Sc.

More information

A Study of Slanted-Edge MTF Stability and Repeatability

A Study of Slanted-Edge MTF Stability and Repeatability A Study of Slanted-Edge MTF Stability and Repeatability Jackson K.M. Roland Imatest LLC, 2995 Wilderness Place Suite 103, Boulder, CO, USA ABSTRACT The slanted-edge method of measuring the spatial frequency

More information

ISET Selecting a Color Conversion Matrix

ISET Selecting a Color Conversion Matrix ISET Selecting a Color Conversion Matrix Contents How to Calculate a CCM...1 Applying the CCM in the Processor Window...6 This document gives a step-by-step description of using ISET to calculate a color

More information

DISCRIMINANT FUNCTION CHANGE IN ERDAS IMAGINE

DISCRIMINANT FUNCTION CHANGE IN ERDAS IMAGINE DISCRIMINANT FUNCTION CHANGE IN ERDAS IMAGINE White Paper April 20, 2015 Discriminant Function Change in ERDAS IMAGINE For ERDAS IMAGINE, Hexagon Geospatial has developed a new algorithm for change detection

More information

Image acquisition. In both cases, the digital sensing element is one of the following: Line array Area array. Single sensor

Image acquisition. In both cases, the digital sensing element is one of the following: Line array Area array. Single sensor Image acquisition Digital images are acquired by direct digital acquisition (digital still/video cameras), or scanning material acquired as analog signals (slides, photographs, etc.). In both cases, the

More information

Image Processing for feature extraction

Image Processing for feature extraction Image Processing for feature extraction 1 Outline Rationale for image pre-processing Gray-scale transformations Geometric transformations Local preprocessing Reading: Sonka et al 5.1, 5.2, 5.3 2 Image

More information

Wavelet Based Denoising by Correlation Analysis for High Dynamic Range Imaging

Wavelet Based Denoising by Correlation Analysis for High Dynamic Range Imaging Lehrstuhl für Bildverarbeitung Institute of Imaging & Computer Vision Based Denoising by for High Dynamic Range Imaging Jens N. Kaftan and André A. Bell and Claude Seiler and Til Aach Institute of Imaging

More information

Lecture Notes 11 Introduction to Color Imaging

Lecture Notes 11 Introduction to Color Imaging Lecture Notes 11 Introduction to Color Imaging Color filter options Color processing Color interpolation (demozaicing) White balancing Color correction EE 392B: Color Imaging 11-1 Preliminaries Up till

More information

Remote Sensing Calibration Solutions

Remote Sensing Calibration Solutions Remote Sensing Calibration Solutions Cameras, Sensors and Focal Plane Arrays Multispectral and Hyperspectral Imagers Small Satellite Imagers Earth Observation Systems SWIR Band Science and Imaging Reconnaissance

More information

HDR imaging Automatic Exposure Time Estimation A novel approach

HDR imaging Automatic Exposure Time Estimation A novel approach HDR imaging Automatic Exposure Time Estimation A novel approach Miguel A. MARTÍNEZ,1 Eva M. VALERO,1 Javier HERNÁNDEZ-ANDRÉS,1 Javier ROMERO,1 1 Color Imaging Laboratory, University of Granada, Spain.

More information

High Dynamic Range Imaging

High Dynamic Range Imaging High Dynamic Range Imaging 1 2 Lecture Topic Discuss the limits of the dynamic range in current imaging and display technology Solutions 1. High Dynamic Range (HDR) Imaging Able to image a larger dynamic

More information

On the use of synthetic images for change detection accuracy assessment

On the use of synthetic images for change detection accuracy assessment On the use of synthetic images for change detection accuracy assessment Hélio Radke Bittencourt 1, Daniel Capella Zanotta 2 and Thiago Bazzan 3 1 Departamento de Estatística, Pontifícia Universidade Católica

More information

Introduction to Image Processing and Computer Vision -- Noise, Dynamic Range and Color --

Introduction to Image Processing and Computer Vision -- Noise, Dynamic Range and Color -- Introduction to Image Processing and Computer Vision -- Noise, Dynamic Range and Color -- Winter 2013 Ivo Ihrke Organizational Issues I received your email addresses Course announcements will be send via

More information

Figure 1 HDR image fusion example

Figure 1 HDR image fusion example TN-0903 Date: 10/06/09 Using image fusion to capture high-dynamic range (hdr) scenes High dynamic range (HDR) refers to the ability to distinguish details in scenes containing both very bright and relatively

More information

Acquisition and representation of images

Acquisition and representation of images Acquisition and representation of images Stefano Ferrari Università degli Studi di Milano stefano.ferrari@unimi.it Methods for mage Processing academic year 2017 2018 Electromagnetic radiation λ = c ν

More information

A Saturation-based Image Fusion Method for Static Scenes

A Saturation-based Image Fusion Method for Static Scenes 2015 6th International Conference of Information and Communication Technology for Embedded Systems (IC-ICTES) A Saturation-based Image Fusion Method for Static Scenes Geley Peljor and Toshiaki Kondo Sirindhorn

More information

Noise Characteristics of a High Dynamic Range Camera with Four-Chip Optical System

Noise Characteristics of a High Dynamic Range Camera with Four-Chip Optical System Journal of Electrical Engineering 6 (2018) 61-69 doi: 10.17265/2328-2223/2018.02.001 D DAVID PUBLISHING Noise Characteristics of a High Dynamic Range Camera with Four-Chip Optical System Takayuki YAMASHITA

More information

A Novel Hybrid Exposure Fusion Using Boosting Laplacian Pyramid

A Novel Hybrid Exposure Fusion Using Boosting Laplacian Pyramid A Novel Hybrid Exposure Fusion Using Boosting Laplacian Pyramid S.Abdulrahaman M.Tech (DECS) G.Pullaiah College of Engineering & Technology, Nandikotkur Road, Kurnool, A.P-518452. Abstract: THE DYNAMIC

More information

Color Restoration of RGBN Multispectral Filter Array Sensor Images Based on Spectral Decomposition

Color Restoration of RGBN Multispectral Filter Array Sensor Images Based on Spectral Decomposition sensors Article Color Restoration of RGBN Multispectral Filter Array Sensor Images Based on Spectral Decomposition Chulhee Park and Moon Gi Kang * Department of Electrical and Electronic Engineering, Yonsei

More information

Image Denoising Using Statistical and Non Statistical Method

Image Denoising Using Statistical and Non Statistical Method Image Denoising Using Statistical and Non Statistical Method Ms. Shefali A. Uplenchwar 1, Mrs. P. J. Suryawanshi 2, Ms. S. G. Mungale 3 1MTech, Dept. of Electronics Engineering, PCE, Maharashtra, India

More information

Cvision 2. António J. R. Neves João Paulo Silva Cunha. Bernardo Cunha. IEETA / Universidade de Aveiro

Cvision 2. António J. R. Neves João Paulo Silva Cunha. Bernardo Cunha. IEETA / Universidade de Aveiro Cvision 2 Digital Imaging António J. R. Neves (an@ua.pt) & João Paulo Silva Cunha & Bernardo Cunha IEETA / Universidade de Aveiro Outline Image sensors Camera calibration Sampling and quantization Data

More information

VU Rendering SS Unit 8: Tone Reproduction

VU Rendering SS Unit 8: Tone Reproduction VU Rendering SS 2012 Unit 8: Tone Reproduction Overview 1. The Problem Image Synthesis Pipeline Different Image Types Human visual system Tone mapping Chromatic Adaptation 2. Tone Reproduction Linear methods

More information

DEFENSE APPLICATIONS IN HYPERSPECTRAL REMOTE SENSING

DEFENSE APPLICATIONS IN HYPERSPECTRAL REMOTE SENSING DEFENSE APPLICATIONS IN HYPERSPECTRAL REMOTE SENSING James M. Bishop School of Ocean and Earth Science and Technology University of Hawai i at Mānoa Honolulu, HI 96822 INTRODUCTION This summer I worked

More information

A Framework for Analysis of Computational Imaging Systems

A Framework for Analysis of Computational Imaging Systems A Framework for Analysis of Computational Imaging Systems Kaushik Mitra, Oliver Cossairt, Ashok Veeraghavan Rice University Northwestern University Computational imaging CI systems that adds new functionality

More information

Measurement of Texture Loss for JPEG 2000 Compression Peter D. Burns and Don Williams* Burns Digital Imaging and *Image Science Associates

Measurement of Texture Loss for JPEG 2000 Compression Peter D. Burns and Don Williams* Burns Digital Imaging and *Image Science Associates Copyright SPIE Measurement of Texture Loss for JPEG Compression Peter D. Burns and Don Williams* Burns Digital Imaging and *Image Science Associates ABSTRACT The capture and retention of image detail are

More information

Acquisition. Some slides from: Yung-Yu Chuang (DigiVfx) Jan Neumann, Pat Hanrahan, Alexei Efros

Acquisition. Some slides from: Yung-Yu Chuang (DigiVfx) Jan Neumann, Pat Hanrahan, Alexei Efros Acquisition Some slides from: Yung-Yu Chuang (DigiVfx) Jan Neumann, Pat Hanrahan, Alexei Efros Image Acquisition Digital Camera Film Outline Pinhole camera Lens Lens aberrations Exposure Sensors Noise

More information

The ultimate camera. Computational Photography. Creating the ultimate camera. The ultimate camera. What does it do?

The ultimate camera. Computational Photography. Creating the ultimate camera. The ultimate camera. What does it do? Computational Photography The ultimate camera What does it do? Image from Durand & Freeman s MIT Course on Computational Photography Today s reading Szeliski Chapter 9 The ultimate camera Infinite resolution

More information

A Short History of Using Cameras for Weld Monitoring

A Short History of Using Cameras for Weld Monitoring A Short History of Using Cameras for Weld Monitoring 2 Background Ever since the development of automated welding, operators have needed to be able to monitor the process to ensure that all parameters

More information

Luminance Adaptation Model for Increasing the Dynamic. Range of an Imaging System Based on a CCD Camera

Luminance Adaptation Model for Increasing the Dynamic. Range of an Imaging System Based on a CCD Camera Luminance Adaptation Model for Increasing the Dynamic Range of an Imaging System Based on a CCD Camera Marta de Lasarte, 1 Montserrat Arjona, 1 Meritxell Vilaseca, 1, Francisco M. Martínez- Verdú, 2 and

More information

Multiscale model of Adaptation, Spatial Vision and Color Appearance

Multiscale model of Adaptation, Spatial Vision and Color Appearance Multiscale model of Adaptation, Spatial Vision and Color Appearance Sumanta N. Pattanaik 1 Mark D. Fairchild 2 James A. Ferwerda 1 Donald P. Greenberg 1 1 Program of Computer Graphics, Cornell University,

More information

High Dynamic Range Imaging using FAST-IR imagery

High Dynamic Range Imaging using FAST-IR imagery High Dynamic Range Imaging using FAST-IR imagery Frédérick Marcotte a, Vincent Farley* a, Myron Pauli b, Pierre Tremblay a, Martin Chamberland a a Telops Inc., 100-2600 St-Jean-Baptiste, Québec, Qc, Canada,

More information

Image based lighting for glare assessment

Image based lighting for glare assessment Image based lighting for glare assessment Third Annual Radiance Workshop - Fribourg 2004 Santiago Torres The University of Tokyo Department of Architecture Principles Include data acquired with a digital

More information

WHITE PAPER. Methods for Measuring Flat Panel Display Defects and Mura as Correlated to Human Visual Perception

WHITE PAPER. Methods for Measuring Flat Panel Display Defects and Mura as Correlated to Human Visual Perception Methods for Measuring Flat Panel Display Defects and Mura as Correlated to Human Visual Perception Methods for Measuring Flat Panel Display Defects and Mura as Correlated to Human Visual Perception Abstract

More information

Automatic Selection of Brackets for HDR Image Creation

Automatic Selection of Brackets for HDR Image Creation Automatic Selection of Brackets for HDR Image Creation Michel VIDAL-NAQUET, Wei MING Abstract High Dynamic Range imaging (HDR) is now readily available on mobile devices such as smart phones and compact

More information

Interpolation of CFA Color Images with Hybrid Image Denoising

Interpolation of CFA Color Images with Hybrid Image Denoising 2014 Sixth International Conference on Computational Intelligence and Communication Networks Interpolation of CFA Color Images with Hybrid Image Denoising Sasikala S Computer Science and Engineering, Vasireddy

More information

To Denoise or Deblur: Parameter Optimization for Imaging Systems

To Denoise or Deblur: Parameter Optimization for Imaging Systems To Denoise or Deblur: Parameter Optimization for Imaging Systems Kaushik Mitra a, Oliver Cossairt b and Ashok Veeraraghavan a a Electrical and Computer Engineering, Rice University, Houston, TX 77005 b

More information

Noise and ISO. CS 178, Spring Marc Levoy Computer Science Department Stanford University

Noise and ISO. CS 178, Spring Marc Levoy Computer Science Department Stanford University Noise and ISO CS 178, Spring 2014 Marc Levoy Computer Science Department Stanford University Outline examples of camera sensor noise don t confuse it with JPEG compression artifacts probability, mean,

More information

Acquisition and representation of images

Acquisition and representation of images Acquisition and representation of images Stefano Ferrari Università degli Studi di Milano stefano.ferrari@unimi.it Elaborazione delle immagini (Image processing I) academic year 2011 2012 Electromagnetic

More information

Correction of Clipped Pixels in Color Images

Correction of Clipped Pixels in Color Images Correction of Clipped Pixels in Color Images IEEE Transaction on Visualization and Computer Graphics, Vol. 17, No. 3, 2011 Di Xu, Colin Doutre, and Panos Nasiopoulos Presented by In-Yong Song School of

More information

Solid State Luminance Standards

Solid State Luminance Standards Solid State Luminance Standards Color and luminance correction of: - Imaging colorimeters - Luminance meters - Imaging spectrometers Compact and Robust for Production Environments Correct for instrument

More information

PSEUDO HDR VIDEO USING INVERSE TONE MAPPING

PSEUDO HDR VIDEO USING INVERSE TONE MAPPING PSEUDO HDR VIDEO USING INVERSE TONE MAPPING Yu-Chen Lin ( 林育辰 ), Chiou-Shann Fuh ( 傅楸善 ) Dept. of Computer Science and Information Engineering, National Taiwan University, Taiwan E-mail: r03922091@ntu.edu.tw

More information

Enhancement of Speech Signal Based on Improved Minima Controlled Recursive Averaging and Independent Component Analysis

Enhancement of Speech Signal Based on Improved Minima Controlled Recursive Averaging and Independent Component Analysis Enhancement of Speech Signal Based on Improved Minima Controlled Recursive Averaging and Independent Component Analysis Mohini Avatade & S.L. Sahare Electronics & Telecommunication Department, Cummins

More information

Real-time ghost free HDR video stream generation using weight adaptation based method

Real-time ghost free HDR video stream generation using weight adaptation based method Real-time ghost free HDR video stream generation using weight adaptation based method Mustapha Bouderbane, Pierre-Jean Lapray, Julien Dubois, Barthélémy Heyrman, Dominique Ginhac Le2i UMR 6306, CNRS, Arts

More information

TRUESENSE SPARSE COLOR FILTER PATTERN OVERVIEW SEPTEMBER 30, 2013 APPLICATION NOTE REVISION 1.0

TRUESENSE SPARSE COLOR FILTER PATTERN OVERVIEW SEPTEMBER 30, 2013 APPLICATION NOTE REVISION 1.0 TRUESENSE SPARSE COLOR FILTER PATTERN OVERVIEW SEPTEMBER 30, 2013 APPLICATION NOTE REVISION 1.0 TABLE OF CONTENTS Overview... 3 Color Filter Patterns... 3 Bayer CFA... 3 Sparse CFA... 3 Image Processing...

More information

Issues in Color Correcting Digital Images of Unknown Origin

Issues in Color Correcting Digital Images of Unknown Origin Issues in Color Correcting Digital Images of Unknown Origin Vlad C. Cardei rian Funt and Michael rockington vcardei@cs.sfu.ca funt@cs.sfu.ca brocking@sfu.ca School of Computing Science Simon Fraser University

More information

COMPUTATIONAL PHOTOGRAPHY. Chapter 10

COMPUTATIONAL PHOTOGRAPHY. Chapter 10 1 COMPUTATIONAL PHOTOGRAPHY Chapter 10 Computa;onal photography Computa;onal photography: image analysis and processing algorithms are applied to one or more photographs to create images that go beyond

More information

Camera Image Processing Pipeline

Camera Image Processing Pipeline Lecture 13: Camera Image Processing Pipeline Visual Computing Systems Today (actually all week) Operations that take photons hitting a sensor to a high-quality image Processing systems used to efficiently

More information

Continuous Flash. October 1, Technical Report MSR-TR Microsoft Research Microsoft Corporation One Microsoft Way Redmond, WA 98052

Continuous Flash. October 1, Technical Report MSR-TR Microsoft Research Microsoft Corporation One Microsoft Way Redmond, WA 98052 Continuous Flash Hugues Hoppe Kentaro Toyama October 1, 2003 Technical Report MSR-TR-2003-63 Microsoft Research Microsoft Corporation One Microsoft Way Redmond, WA 98052 Page 1 of 7 Abstract To take a

More information

International Journal of Innovative Research in Engineering Science and Technology APRIL 2018 ISSN X

International Journal of Innovative Research in Engineering Science and Technology APRIL 2018 ISSN X HIGH DYNAMIC RANGE OF MULTISPECTRAL ACQUISITION USING SPATIAL IMAGES 1 M.Kavitha, M.Tech., 2 N.Kannan, M.E., and 3 S.Dharanya, M.E., 1 Assistant Professor/ CSE, Dhirajlal Gandhi College of Technology,

More information

DETERMINING LENS VIGNETTING WITH HDR TECHNIQUES

DETERMINING LENS VIGNETTING WITH HDR TECHNIQUES Национален Комитет по Осветление Bulgarian National Committee on Illumination XII National Conference on Lighting Light 2007 10 12 June 2007, Varna, Bulgaria DETERMINING LENS VIGNETTING WITH HDR TECHNIQUES

More information

Fringe Parameter Estimation and Fringe Tracking. Mark Colavita 7/8/2003

Fringe Parameter Estimation and Fringe Tracking. Mark Colavita 7/8/2003 Fringe Parameter Estimation and Fringe Tracking Mark Colavita 7/8/2003 Outline Visibility Fringe parameter estimation via fringe scanning Phase estimation & SNR Visibility estimation & SNR Incoherent and

More information

Multispectral. imaging device. ADVANCED LIGHT ANALYSIS by. Most accurate homogeneity MeasureMent of spectral radiance. UMasterMS1 & UMasterMS2

Multispectral. imaging device. ADVANCED LIGHT ANALYSIS by. Most accurate homogeneity MeasureMent of spectral radiance. UMasterMS1 & UMasterMS2 Multispectral imaging device Most accurate homogeneity MeasureMent of spectral radiance UMasterMS1 & UMasterMS2 ADVANCED LIGHT ANALYSIS by UMaster Ms Multispectral Imaging Device UMaster MS Description

More information

Estimation of spectral response of a consumer grade digital still camera and its application for temperature measurement

Estimation of spectral response of a consumer grade digital still camera and its application for temperature measurement Indian Journal of Pure & Applied Physics Vol. 47, October 2009, pp. 703-707 Estimation of spectral response of a consumer grade digital still camera and its application for temperature measurement Anagha

More information

Comprehensive Vicarious Calibration and Characterization of a Small Satellite Constellation Using the Specular Array Calibration (SPARC) Method

Comprehensive Vicarious Calibration and Characterization of a Small Satellite Constellation Using the Specular Array Calibration (SPARC) Method This document does not contain technology or Technical Data controlled under either the U.S. International Traffic in Arms Regulations or the U.S. Export Administration Regulations. Comprehensive Vicarious

More information

Digital Imaging Systems for Historical Documents

Digital Imaging Systems for Historical Documents Digital Imaging Systems for Historical Documents Improvement Legibility by Frequency Filters Kimiyoshi Miyata* and Hiroshi Kurushima** * Department Museum Science, ** Department History National Museum

More information

Using Spatially Varying Pixels Exposures and Bayer-covered Photosensors for High Dynamic Range Imaging

Using Spatially Varying Pixels Exposures and Bayer-covered Photosensors for High Dynamic Range Imaging IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1 Using Spatially Varying Pixels Exposures and Bayer-covered Photosensors for High Dynamic Range Imaging Mikhail V. Konnik arxiv:0803.2812v2

More information

High dynamic range imaging and tonemapping

High dynamic range imaging and tonemapping High dynamic range imaging and tonemapping http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2017, Lecture 12 Course announcements Homework 3 is out. - Due

More information

Camera Image Processing Pipeline: Part II

Camera Image Processing Pipeline: Part II Lecture 13: Camera Image Processing Pipeline: Part II Visual Computing Systems Today Finish image processing pipeline Auto-focus / auto-exposure Camera processing elements Smart phone processing elements

More information

Low Dynamic Range Solutions to the High Dynamic Range Imaging Problem

Low Dynamic Range Solutions to the High Dynamic Range Imaging Problem Low Dynamic Range Solutions to the High Dynamic Range Imaging Problem Submitted in partial fulfillment of the requirements of the degree of Doctor of Philosophy by Shanmuganathan Raman (Roll No. 06407008)

More information

A Real Time Algorithm for Exposure Fusion of Digital Images

A Real Time Algorithm for Exposure Fusion of Digital Images A Real Time Algorithm for Exposure Fusion of Digital Images Tomislav Kartalov #1, Aleksandar Petrov *2, Zoran Ivanovski #3, Ljupcho Panovski #4 # Faculty of Electrical Engineering Skopje, Karpoš II bb,

More information

Contrast Image Correction Method

Contrast Image Correction Method Contrast Image Correction Method Journal of Electronic Imaging, Vol. 19, No. 2, 2010 Raimondo Schettini, Francesca Gasparini, Silvia Corchs, Fabrizio Marini, Alessandro Capra, and Alfio Castorina Presented

More information

Calibration considerations for a reduced-timeline optimized approach for VNIR earthorbiting

Calibration considerations for a reduced-timeline optimized approach for VNIR earthorbiting Calibration considerations for a reduced-timeline optimized approach for VNIR earthorbiting satellites Zachary Bergen, Joe Tansock Space Dynamics Laboratory 1695 North Research Park Way, North Logan, UT

More information

SCIENTIFIC AND TECHNICAL INSIGHT INTO MICROCARB

SCIENTIFIC AND TECHNICAL INSIGHT INTO MICROCARB SCIENTIFIC AND TECHNICAL INSIGHT INTO MICROCARB International Working Group on Green House Gazes Monitoring from Space IWGGMS-12 Denis Jouglet, D. Pradines, F. Buisson, V. Pascal, P. Lafrique (CNES) LSCE,

More information

Sequential Algorithm for Robust Radiometric Calibration and Vignetting Correction

Sequential Algorithm for Robust Radiometric Calibration and Vignetting Correction Sequential Algorithm for Robust Radiometric Calibration and Vignetting Correction Seon Joo Kim and Marc Pollefeys Department of Computer Science University of North Carolina Chapel Hill, NC 27599 {sjkim,

More information

A collection of hyperspectral images for imaging systems research Torbjørn Skauli a,b, Joyce Farrell *a

A collection of hyperspectral images for imaging systems research Torbjørn Skauli a,b, Joyce Farrell *a A collection of hyperspectral images for imaging systems research Torbjørn Skauli a,b, Joyce Farrell *a a Stanford Center for Image Systems Engineering, Stanford CA, USA; b Norwegian Defence Research Establishment,

More information

Extended Dynamic Range Imaging: A Spatial Down-Sampling Approach

Extended Dynamic Range Imaging: A Spatial Down-Sampling Approach 2014 IEEE International Conference on Systems, Man, and Cybernetics October 5-8, 2014, San Diego, CA, USA Extended Dynamic Range Imaging: A Spatial Down-Sampling Approach Huei-Yung Lin and Jui-Wen Huang

More information

A 120dB dynamic range image sensor with single readout using in pixel HDR

A 120dB dynamic range image sensor with single readout using in pixel HDR A 120dB dynamic range image sensor with single readout using in pixel HDR CMOS Image Sensors for High Performance Applications Workshop November 19, 2015 J. Caranana, P. Monsinjon, J. Michelot, C. Bouvier,

More information

COLOR CORRECTION METHOD USING GRAY GRADIENT BAR FOR MULTI-VIEW CAMERA SYSTEM. Jae-Il Jung and Yo-Sung Ho

COLOR CORRECTION METHOD USING GRAY GRADIENT BAR FOR MULTI-VIEW CAMERA SYSTEM. Jae-Il Jung and Yo-Sung Ho COLOR CORRECTION METHOD USING GRAY GRADIENT BAR FOR MULTI-VIEW CAMERA SYSTEM Jae-Il Jung and Yo-Sung Ho School of Information and Mechatronics Gwangju Institute of Science and Technology (GIST) 1 Oryong-dong

More information

Quantitative Estimation of Vvariability in the Underwater Radiance Distribution (RadCam)

Quantitative Estimation of Vvariability in the Underwater Radiance Distribution (RadCam) Quantitative Estimation of Vvariability in the Underwater Radiance Distribution (RadCam) Marlon R. Lewis Satlantic, Inc. Richmond Terminal, Pier 9, 3481 North Marginal Road Halifax, Nova Scotia, Canada

More information

Image Processing by Bilateral Filtering Method

Image Processing by Bilateral Filtering Method ABHIYANTRIKI An International Journal of Engineering & Technology (A Peer Reviewed & Indexed Journal) Vol. 3, No. 4 (April, 2016) http://www.aijet.in/ eissn: 2394-627X Image Processing by Bilateral Image

More information

Images and Displays. Lecture Steve Marschner 1

Images and Displays. Lecture Steve Marschner 1 Images and Displays Lecture 2 2008 Steve Marschner 1 Introduction Computer graphics: The study of creating, manipulating, and using visual images in the computer. What is an image? A photographic print?

More information

Spatially Varying Color Correction Matrices for Reduced Noise

Spatially Varying Color Correction Matrices for Reduced Noise Spatially Varying olor orrection Matrices for educed oise Suk Hwan Lim, Amnon Silverstein Imaging Systems Laboratory HP Laboratories Palo Alto HPL-004-99 June, 004 E-mail: sukhwan@hpl.hp.com, amnon@hpl.hp.com

More information

Camera Image Processing Pipeline: Part II

Camera Image Processing Pipeline: Part II Lecture 14: Camera Image Processing Pipeline: Part II Visual Computing Systems Today Finish image processing pipeline Auto-focus / auto-exposure Camera processing elements Smart phone processing elements

More information

Enhanced LWIR NUC Using an Uncooled Microbolometer Camera

Enhanced LWIR NUC Using an Uncooled Microbolometer Camera Enhanced LWIR NUC Using an Uncooled Microbolometer Camera Joe LaVeigne a, Greg Franks a, Kevin Sparkman a, Marcus Prewarski a, Brian Nehring a a Santa Barbara Infrared, Inc., 30 S. Calle Cesar Chavez,

More information

High Dynamic Range Images

High Dynamic Range Images High Dynamic Range Images TNM078 Image Based Rendering Jonas Unger 2004, V1.2 1 Introduction When examining the world around us, it becomes apparent that the lighting conditions in many scenes cover a

More information

ELEC Dr Reji Mathew Electrical Engineering UNSW

ELEC Dr Reji Mathew Electrical Engineering UNSW ELEC 4622 Dr Reji Mathew Electrical Engineering UNSW Filter Design Circularly symmetric 2-D low-pass filter Pass-band radial frequency: ω p Stop-band radial frequency: ω s 1 δ p Pass-band tolerances: δ

More information

ISO INTERNATIONAL STANDARD. Photography Electronic still-picture cameras Methods for measuring opto-electronic conversion functions (OECFs)

ISO INTERNATIONAL STANDARD. Photography Electronic still-picture cameras Methods for measuring opto-electronic conversion functions (OECFs) INTERNATIONAL STANDARD ISO 14524 First edition 1999-12-15 Photography Electronic still-picture cameras Methods for measuring opto-electronic conversion functions (OECFs) Photographie Appareils de prises

More information

CCD reductions techniques

CCD reductions techniques CCD reductions techniques Origin of noise Noise: whatever phenomena that increase the uncertainty or error of a signal Origin of noises: 1. Poisson fluctuation in counting photons (shot noise) 2. Pixel-pixel

More information

(i) Understanding the basic concepts of signal modeling, correlation, maximum likelihood estimation, least squares and iterative numerical methods

(i) Understanding the basic concepts of signal modeling, correlation, maximum likelihood estimation, least squares and iterative numerical methods Tools and Applications Chapter Intended Learning Outcomes: (i) Understanding the basic concepts of signal modeling, correlation, maximum likelihood estimation, least squares and iterative numerical methods

More information

DIGITAL IMAGE PROCESSING UNIT III

DIGITAL IMAGE PROCESSING UNIT III DIGITAL IMAGE PROCESSING UNIT III 3.1 Image Enhancement in Frequency Domain: Frequency refers to the rate of repetition of some periodic events. In image processing, spatial frequency refers to the variation

More information

When Does Computational Imaging Improve Performance?

When Does Computational Imaging Improve Performance? When Does Computational Imaging Improve Performance? Oliver Cossairt Assistant Professor Northwestern University Collaborators: Mohit Gupta, Changyin Zhou, Daniel Miau, Shree Nayar (Columbia University)

More information

Background Adaptive Band Selection in a Fixed Filter System

Background Adaptive Band Selection in a Fixed Filter System Background Adaptive Band Selection in a Fixed Filter System Frank J. Crosby, Harold Suiter Naval Surface Warfare Center, Coastal Systems Station, Panama City, FL 32407 ABSTRACT An automated band selection

More information

SNR Estimation in Nakagami-m Fading With Diversity Combining and Its Application to Turbo Decoding

SNR Estimation in Nakagami-m Fading With Diversity Combining and Its Application to Turbo Decoding IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 50, NO. 11, NOVEMBER 2002 1719 SNR Estimation in Nakagami-m Fading With Diversity Combining Its Application to Turbo Decoding A. Ramesh, A. Chockalingam, Laurence

More information

Fast Bilateral Filtering for the Display of High-Dynamic-Range Images

Fast Bilateral Filtering for the Display of High-Dynamic-Range Images Fast Bilateral Filtering for the Display of High-Dynamic-Range Images Frédo Durand & Julie Dorsey Laboratory for Computer Science Massachusetts Institute of Technology Contributions Contrast reduction

More information

Learning the image processing pipeline

Learning the image processing pipeline Learning the image processing pipeline Brian A. Wandell Stanford Neurosciences Institute Psychology Stanford University http://www.stanford.edu/~wandell S. Lansel Andy Lin Q. Tian H. Blasinski H. Jiang

More information