Panoramic imaging. Ixyzϕθλt. 45 degrees FOV (normal view)

Size: px
Start display at page:

Download "Panoramic imaging. Ixyzϕθλt. 45 degrees FOV (normal view)"

Transcription

1 Camera projections Recall the plenoptic function: Panoramic imaging Ixyzϕθλt (,,,,,, ) At any point xyz,, in space, there is a full sphere of possible incidence directions ϕ, θ, covered by 0 ϕ 2π, 0 θ π. A regular camera captures the incident rays from some region around a forward direction, and projects these directions onto rectilinear image coordinates ( uv, ) in the image plane by a linear perspective projection, or something reasonably close. This type of projection limits the field of view to strictly less than 180 degrees. Most cameras in fact have a field of view (FOV) that is only around 45 degrees. A lens with a field of view of 90 degrees is considered a very wide angle lens. The planar perspective projection is in fact unsuitable for wide angles. Objects at the image edges are projected in a very oblique direction towards the plane, and will have their proportions heavily distorted. A projection with a FOV close to 180 degrees will spend most of its pixels for objects at the extreme edge of the view, whereas the important parts of the image are most probably in the middle. The scene from above (the small black object in the middle marks the camera position for the following views) 45 degrees FOV (normal view) 90 degrees FOV (very wide angle view) 150 degrees FOV (extreme) 170 degrees FOV (strange) 175 degrees FOV (useless) Figure 1: Planar perspective projections with increasing field of view For very wide angle lenses, the planar projection is abandoned in favor of the fisheye projection. A fisheye projection is a projection through a projection reference point, just like the planar perspective projection, but it is performed against a sphere instead of a plane. The projection reference point is at the center of the sphere. The surface of the sphere is then mapped to a planar

2 image, oftan so that the angle of incidence is mapped linearly to the radial distance to the image center. Fisheye projections can have a very large field of view, 180 degrees or even more. The projection as such lends itself to a full 360 degrees field of view, even though it is difficult to design actual lenses with a FOV significantly larger than 180 degrees. Panorama mappings Figure 2: A fisheye projection with 180 degrees FOV There are of course infinitely many ways of mapping from ( ϕ, θ) to ( uv, ) when recording an image. Planar perspective projection and fisheye projection are just two examples. The planar perspective projection happens to be practical for most applications, and when it is inappropriate, the fisheye mapping will often do the job. Other mappings can be useful, though. In particular, it is sometimes desirable to capture image data in every possible direction from one single point of view. An image with a full 360 degrees field of view is called a panoramic image, or a panorama. Recording and storing such images presents a mapping problem. All image recording and storage media that exist today are essentially flat. Digital images are perhaps not flat in the normal sense of the word, but they are two-dimensional data structures with an equidistant rectilinear mapping of ( uv, ) image position to pixel coordinates, which really implies a flat image. The mapping for a panorama can be chosen in a number of different ways. The probem is equivalent to the cartographic problem of making a flat map of the whole Earth. Perhaps the most straightforward mapping is to map ( ϕ, θ) directly onto ( uv, ). This is called a spherical mapping. Another option is to exclude the top and bottom parts of the sphere and project the remainder against a cylinder. Such an image is called a cylindrical mapping. A third possibility is to map the environment sphere onto the six faces of a cube, and store the panorama as six square images. Quite logically, this mapping is called a cubical mapping. Each of these three mappings have their benefits.

3 Figure 3: Common panorama mappings. From top to bottom: spherical, cylindrical, cubical.

4 Other mappings exist. One relatively convenient way of storing a panorama would be to store two 180 degree fisheye images, each covering one hemisphere. It is also possible to use a fisheye mapping extended to 360 degrees field of view. Such mappings are irregular and highly non-uniform, but they are sometimes used for environment maps, and recently also for image based lighting. The light probe mapping described and used by Debevec et al [ is in fact a 360 degree fisheye projection, and the dual paraboloid environment mapping described by Heidrich and Seidel [ is a kind of dual fisheye projection. Panorama remappings One of the advantages with digital images over traditional image media is that they can easily be non-uniformly spatially resampled (warped) in a totally arbitrary manner. It is therefore possible to remap panoramas from one particular projection to any other projection, but some caution is advisable, because the resampling might throw away significant amounts of data. Different panorama mappings have different sampling densities, and because there is simply no way of making a perfectly uniform mapping from the surface of a sphere to a plane, the sampling density will always vary somewhat over the panoramic image. Converting a panorama from one mapping to another means resampling an image from one irregular, curvilinear coordinate system to another, which is a lot more tricky than resampling between regular, rectilinear coordinate systems. When dealing with panoramas, it is even more important than with regular images to use a higher resolution for the input image than the final output image, and to avoid repeated remapping operations. Using software with a good resampling algorithm can make a big difference. Commercial image editing tools are often insufficient. A very high quality resampling package is Panorama Tools by Helmut Dersch [ It is free, and it is designed for tricky panoramic remappings. Panorama acquisition Panoramic images are not a new invention. Panorama cameras have been available since at least the beginning of the 20th century, even though they have never had a big market. There are several different principles for acquiring a panorama image. Which one is best depends heavily on the application. Each of the methods presented below has its its own merits. Scanning panorama cameras Classic panorama cameras, and some modern digital versions as well, operate by the scanning slit principle. The shutter opening of the camera is a vertical slit, the camera rotates on a tripod during the exposure, and the film is fed past the slit with a speed that matches the translation of the scene as a result of the camera rotation. The width of the slit can be adjusted to change the aperture. Scanning slit panoramic cameras use standard film, and capture a 360 degree panorama horizontally on a wide film strip. Their vertical field of view, however, is comparable to a regular camera and therefore significantly less than 180 degrees. The panoramas obtained in this manner are cylindrical panoramas. Scanning slit cameras can also capture panoramas with less than 360 degrees horizontal field of view, simply by stopping before one full turn is completed. One-shot, single view panorama cameras It is possible to design optical systems that directly capture the full environment sphere. A fisheye lens with a 360 degrees field of view is impossible to build, but by using curved mirrors a 360 degrees field of view can be achieved.

5 The simplest setup uses a reflective sphere. An image of a reflective sphere contains direct reflections from all (or at least most) incidence directions. Such images can be used straight off for panoramas, but their bad sampling uniformity makes it advisable to remap them before storage. A reflective sphere image may be remapped to a 360 degree fisheye projection by a resampling in the radial direction. Figure 4: An image of a reflective sphere. Background masked black for clarity. One-shot, multi-view panorama cameras Another way of designing a camera that captures a panorama in a single shot is to use multiple lenses and acquire images from all lenses simultaneously, either by using multiple cameras, or by using mirrors or prisms to combine images from several lenses in a a single frame. Two 180 degree fisheye images are enough to cover an entire sphere, but many fisheye lenses have problems with the image quality towards the eges, with significant defocus, color aberration, flare and light falloff. For better image quality, four fisheye lenses in a tetrahedral configuration can be used, but that of course requires twice as much hardware. A cubical panorama can be aquired by six cameras facing front, back, left, right, up and down, each with a 90 degree field of view. 90 degrees FOV is an unusually wide angle lens which is not readily available as inexpensive standard equipment, but such lenses do exist. A problem which becomes apparent with single-shot panoramas is that a photographer cannot hold the camera, or even be near it, without being in clear view in the shot. This can be solved either by remote control or a timer release. The camera mount will still present a problem, though. Sometimes it is OK to leave it in the image, other times some manual retouching of the image might be required. Scanning or multi-shot panorama acquisition methods make it easier to keep the photographer and the camera mount out of view. Panoramic movie cameras One-shot panorama cameras (single- or multi-view) can of course capture movies instead of still images. Panoramic film or video sequences have found some applications, and a couple of panorama video systems are on the market.

6 Multi-shot panoramas Instead of acquiring several images at once, a single camera can be used to capture each part of a panorama in sequence. A 180 degree fisheye lens ideally requires only two shots, even though three or four might be needed to better avoid edge problems. A fisheye lens makes the method quite covenient, but even a regular planar projection lens with a smaller field of view can be used, along with a good tripod mount, to capture a dozen or more images in different directions. It takes some cutting and pasting to combine the images to a panorama, but it requires no special camera equipment. Furthermore, the image quality is excellent, because the method uses many high quality source images, each with a very uniform sampling. The recombination of several images to a panorama is called stitching. Software tools exist to assist panorama photographers in stitching, and even make the process more or less automatic. Figure 5: Unfinished stitched panorama (6 images placed, each with 45 degrees FOV) One disadvantage of stitching, apart from that it is cumbersome, is that the images are not taken simultaneously. If the scene changes or the light conditions change while the images are acquired, there will be problems stitching them together to a consistent panorama. Effects from strong onlight, such as glare and lens flare, will also present a problem, since glare and flare will only appear in images where a light source is visible, and not in adjacent images in the sequence. Panorama viewers A panorama can be viewed in two quite different ways. Either the entire panorama is displayed on a surface that encloses the viewer, and lets him or her look around freely. This method is suitable for large audiences, but it requires expensive display equipment and a lot of open space. A more common method is to use an interactive computer program to remap part of the panorama to a planar perspective projection with a smaller field of view, and giving the user control over the direction of view, and possibly also the field of view. This gives the viewer an impression of being in a scene and looking around with a camera, which is often enough to invoke a sense of immersion. Remapping a panoramic projection to a planar perspective projection is not a simple operation, and an image contains a lot of data. It is in fact not until recently that computers have been able to handle that kind of heavy computations with a reasonable speed and sufficient image quality. The recent development of inexpensive 3-D graphics accelerators also presents an alternative mapping method: the panorama can be placed as a texture on the inside of a three-dimensional

7 shape that matches the panorama projection (a sphere, a cylinder or a cube), and the viewing can then be taken care of by a hardware accelerated rendering of the view from a virtual camera placed at the center. Cubical panoramas are particularly suitable for this, because their projection fits nicely into today s polygon and texture rendering pipelines. Commercial applications There are actually not that many commercial applications for panoramic images, but now that computers are able to handle them more easily and with high quality, we will probably see more of it in the near future. A few computer games using panoramic images have been released over the years, the most recent one being Myst III: Exile. In Exile, the panorama viewer is enhanced to simulate glare, and parts of the scene are moving, which gives a very immersive and compelling effect. For quite a few years by now, Apple Computers [ has been one of the leaders in the development of panoramic imaging with their software Quicktime VR. They deserve a mention for providing reasonably open standards, while some others have been trying to market their software as secret magic. A particularly sad mix of marketing hype, prohibitively expensive software licensing and repeated and dubious attacks on free software developers comes from the company IPIX [ Their products are not bad, but they have made a lot of enemies over the years. As panoramic imaging becomes more commonplace, it will be easier for companies to make a living on selling their products, but right now, commercial panoramic imaging is a struggle between only a few actors for shares of a too small market. Stefan Gustavson,

A short introduction to panoramic images

A short introduction to panoramic images A short introduction to panoramic images By Richard Novossiltzeff Bridgwater Photographic Society March 25, 2014 1 What is a panorama Some will say that the word Panorama is over-used; the better word

More information

High Dynamic Range Imaging

High Dynamic Range Imaging High Dynamic Range Imaging IMAGE BASED RENDERING, PART 1 Mihai Aldén mihal915@student.liu.se Fredrik Salomonsson fresa516@student.liu.se Tuesday 7th September, 2010 Abstract This report describes the implementation

More information

Image stitching. Image stitching. Video summarization. Applications of image stitching. Stitching = alignment + blending. geometrical registration

Image stitching. Image stitching. Video summarization. Applications of image stitching. Stitching = alignment + blending. geometrical registration Image stitching Stitching = alignment + blending Image stitching geometrical registration photometric registration Digital Visual Effects, Spring 2006 Yung-Yu Chuang 2005/3/22 with slides by Richard Szeliski,

More information

Synthetic Stereoscopic Panoramic Images

Synthetic Stereoscopic Panoramic Images Synthetic Stereoscopic Panoramic Images What are they? How are they created? What are they good for? Paul Bourke University of Western Australia In collaboration with ICinema @ University of New South

More information

Cameras. Steve Rotenberg CSE168: Rendering Algorithms UCSD, Spring 2017

Cameras. Steve Rotenberg CSE168: Rendering Algorithms UCSD, Spring 2017 Cameras Steve Rotenberg CSE168: Rendering Algorithms UCSD, Spring 2017 Camera Focus Camera Focus So far, we have been simulating pinhole cameras with perfect focus Often times, we want to simulate more

More information

Creating a Panorama Photograph Using Photoshop Elements

Creating a Panorama Photograph Using Photoshop Elements Creating a Panorama Photograph Using Photoshop Elements Following are guidelines when shooting photographs for a panorama. Overlap images sufficiently -- Images should overlap approximately 15% to 40%.

More information

Brief summary report of novel digital capture techniques

Brief summary report of novel digital capture techniques Brief summary report of novel digital capture techniques Paul Bourke, ivec@uwa, February 2014 The following briefly summarizes and gives examples of the various forms of novel digital photography and video

More information

Extended View Toolkit

Extended View Toolkit Extended View Toolkit Peter Venus Alberstrasse 19 Graz, Austria, 8010 mail@petervenus.de Cyrille Henry France ch@chnry.net Marian Weger Krenngasse 45 Graz, Austria, 8010 mail@marianweger.com Winfried Ritsch

More information

Photographing Long Scenes with Multiviewpoint

Photographing Long Scenes with Multiviewpoint Photographing Long Scenes with Multiviewpoint Panoramas A. Agarwala, M. Agrawala, M. Cohen, D. Salesin, R. Szeliski Presenter: Stacy Hsueh Discussant: VasilyVolkov Motivation Want an image that shows an

More information

Beacon Island Report / Notes

Beacon Island Report / Notes Beacon Island Report / Notes Paul Bourke, ivec@uwa, 17 February 2014 During my 2013 and 2014 visits to Beacon Island four general digital asset categories were acquired, they were: high resolution panoramic

More information

Time-Lapse Panoramas for the Egyptian Heritage

Time-Lapse Panoramas for the Egyptian Heritage Time-Lapse Panoramas for the Egyptian Heritage Mohammad NABIL Anas SAID CULTNAT, Bibliotheca Alexandrina While laser scanning and Photogrammetry has become commonly-used methods for recording historical

More information

ON THE CREATION OF PANORAMIC IMAGES FROM IMAGE SEQUENCES

ON THE CREATION OF PANORAMIC IMAGES FROM IMAGE SEQUENCES ON THE CREATION OF PANORAMIC IMAGES FROM IMAGE SEQUENCES Petteri PÖNTINEN Helsinki University of Technology, Institute of Photogrammetry and Remote Sensing, Finland petteri.pontinen@hut.fi KEY WORDS: Cocentricity,

More information

UNIT Explain the radiation from two-wire. Ans: Radiation from Two wire

UNIT Explain the radiation from two-wire. Ans:   Radiation from Two wire UNIT 1 1. Explain the radiation from two-wire. Radiation from Two wire Figure1.1.1 shows a voltage source connected two-wire transmission line which is further connected to an antenna. An electric field

More information

11/25/2009 CHAPTER THREE INTRODUCTION INTRODUCTION (CONT D) THE AERIAL CAMERA: LENS PHOTOGRAPHIC SENSORS

11/25/2009 CHAPTER THREE INTRODUCTION INTRODUCTION (CONT D) THE AERIAL CAMERA: LENS PHOTOGRAPHIC SENSORS INTRODUCTION CHAPTER THREE IC SENSORS Photography means to write with light Today s meaning is often expanded to include radiation just outside the visible spectrum, i. e. ultraviolet and near infrared

More information

Novel Hemispheric Image Formation: Concepts & Applications

Novel Hemispheric Image Formation: Concepts & Applications Novel Hemispheric Image Formation: Concepts & Applications Simon Thibault, Pierre Konen, Patrice Roulet, and Mathieu Villegas ImmerVision 2020 University St., Montreal, Canada H3A 2A5 ABSTRACT Panoramic

More information

Which equipment is necessary? How is the panorama created?

Which equipment is necessary? How is the panorama created? Congratulations! By purchasing your Panorama-VR-System you have acquired a tool, which enables you - together with a digital or analog camera, a tripod and a personal computer - to generate high quality

More information

Panoramas. CS 178, Spring Marc Levoy Computer Science Department Stanford University

Panoramas. CS 178, Spring Marc Levoy Computer Science Department Stanford University Panoramas CS 178, Spring 2013 Marc Levoy Computer Science Department Stanford University What is a panorama? a wider-angle image than a normal camera can capture any image stitched from overlapping photographs

More information

SpheroCam HDR. Image based lighting with. Capture light perfectly SPHERON VR. 0s 20s 40s 60s 80s 100s 120s. Spheron VR AG

SpheroCam HDR. Image based lighting with. Capture light perfectly SPHERON VR. 0s 20s 40s 60s 80s 100s 120s. Spheron VR AG Image based lighting with SpheroCam HDR Capture light perfectly 0 60 120 180 240 300 360 0s 20s 40s 60s 80s 100s 120s SPHERON VR high dynamic range imaging Spheron VR AG u phone u internet Hauptstraße

More information

Chapter 18 Optical Elements

Chapter 18 Optical Elements Chapter 18 Optical Elements GOALS When you have mastered the content of this chapter, you will be able to achieve the following goals: Definitions Define each of the following terms and use it in an operational

More information

Digital Photographic Imaging Using MOEMS

Digital Photographic Imaging Using MOEMS Digital Photographic Imaging Using MOEMS Vasileios T. Nasis a, R. Andrew Hicks b and Timothy P. Kurzweg a a Department of Electrical and Computer Engineering, Drexel University, Philadelphia, USA b Department

More information

Capturing Omni-Directional Stereoscopic Spherical Projections with a Single Camera

Capturing Omni-Directional Stereoscopic Spherical Projections with a Single Camera Capturing Omni-Directional Stereoscopic Spherical Projections with a Single Camera Paul Bourke ivec @ University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009 Australia. paul.bourke@uwa.edu.au

More information

Panoramas. CS 178, Spring Marc Levoy Computer Science Department Stanford University

Panoramas. CS 178, Spring Marc Levoy Computer Science Department Stanford University Panoramas CS 178, Spring 2012 Marc Levoy Computer Science Department Stanford University What is a panorama?! a wider-angle image than a normal camera can capture! any image stitched from overlapping photographs!

More information

Realistic Visual Environment for Immersive Projection Display System

Realistic Visual Environment for Immersive Projection Display System Realistic Visual Environment for Immersive Projection Display System Hasup Lee Center for Education and Research of Symbiotic, Safe and Secure System Design Keio University Yokohama, Japan hasups@sdm.keio.ac.jp

More information

The key to a fisheye is the relationship between latitude ø of the 3D vector and radius on the 2D fisheye image, namely a linear one where

The key to a fisheye is the relationship between latitude ø of the 3D vector and radius on the 2D fisheye image, namely a linear one where Fisheye mathematics Fisheye image y 3D world y 1 r P θ θ -1 1 x ø x (x,y,z) -1 z Any point P in a linear (mathematical) fisheye defines an angle of longitude and latitude and therefore a 3D vector into

More information

Holographic Stereograms and their Potential in Engineering. Education in a Disadvantaged Environment.

Holographic Stereograms and their Potential in Engineering. Education in a Disadvantaged Environment. Holographic Stereograms and their Potential in Engineering Education in a Disadvantaged Environment. B. I. Reed, J Gryzagoridis, Department of Mechanical Engineering, University of Cape Town, Private Bag,

More information

This talk is oriented toward artists.

This talk is oriented toward artists. Hello, My name is Sébastien Lagarde, I am a graphics programmer at Unity and with my two artist co-workers Sébastien Lachambre and Cyril Jover, we have tried to setup an easy method to capture accurate

More information

Advanced Diploma in. Photoshop. Summary Notes

Advanced Diploma in. Photoshop. Summary Notes Advanced Diploma in Photoshop Summary Notes Suggested Set Up Workspace: Essentials or Custom Recommended: Ctrl Shift U Ctrl + T Menu Ctrl + I Ctrl + J Desaturate Free Transform Filter options Invert Duplicate

More information

Panoramas. CS 178, Spring Marc Levoy Computer Science Department Stanford University

Panoramas. CS 178, Spring Marc Levoy Computer Science Department Stanford University Panoramas CS 178, Spring 2010 Marc Levoy Computer Science Department Stanford University What is a panorama?! a wider-angle image than a normal camera can capture! any image stitched from overlapping photographs!

More information

How to combine images in Photoshop

How to combine images in Photoshop How to combine images in Photoshop In Photoshop, you can use multiple layers to combine images, but there are two other ways to create a single image from mulitple images. Create a panoramic image with

More information

Instant strip photography

Instant strip photography Rochester Institute of Technology RIT Scholar Works Articles 4-17-2006 Instant strip photography Andrew Davidhazy Follow this and additional works at: http://scholarworks.rit.edu/article Recommended Citation

More information

FAQ AUTODESK STITCHER UNLIMITED 2009 FOR MICROSOFT WINDOWS AND APPLE OSX. General Product Information CONTENTS. What is Autodesk Stitcher 2009?

FAQ AUTODESK STITCHER UNLIMITED 2009 FOR MICROSOFT WINDOWS AND APPLE OSX. General Product Information CONTENTS. What is Autodesk Stitcher 2009? AUTODESK STITCHER UNLIMITED 2009 FOR MICROSOFT WINDOWS AND APPLE OSX FAQ CONTENTS GENERAL PRODUCT INFORMATION STITCHER FEATURES LICENSING STITCHER 2009 RESOURCES AND TRAINING QUICK TIPS FOR STITCHER UNLIMITED

More information

Image Mosaicing. Jinxiang Chai. Source: faculty.cs.tamu.edu/jchai/cpsc641_spring10/lectures/lecture8.ppt

Image Mosaicing. Jinxiang Chai. Source: faculty.cs.tamu.edu/jchai/cpsc641_spring10/lectures/lecture8.ppt CSCE 641 Computer Graphics: Image Mosaicing Jinxiang Chai Source: faculty.cs.tamu.edu/jchai/cpsc641_spring10/lectures/lecture8.ppt Outline Image registration - How to break assumptions? 3D-2D registration

More information

CSC 170 Introduction to Computers and Their Applications. Lecture #3 Digital Graphics and Video Basics. Bitmap Basics

CSC 170 Introduction to Computers and Their Applications. Lecture #3 Digital Graphics and Video Basics. Bitmap Basics CSC 170 Introduction to Computers and Their Applications Lecture #3 Digital Graphics and Video Basics Bitmap Basics As digital devices gained the ability to display images, two types of computer graphics

More information

LENSES. INEL 6088 Computer Vision

LENSES. INEL 6088 Computer Vision LENSES INEL 6088 Computer Vision Digital camera A digital camera replaces film with a sensor array Each cell in the array is a Charge Coupled Device light-sensitive diode that converts photons to electrons

More information

Macro and Close-up Lenses

Macro and Close-up Lenses 58 Macro and Close-up Lenses y its very nature, macro photography B(and to a lesser degree close-up photography) has always caused challenges for lens manufacturers, and this is no different for digital

More information

Peripheral imaging with electronic memory unit

Peripheral imaging with electronic memory unit Rochester Institute of Technology RIT Scholar Works Articles 1997 Peripheral imaging with electronic memory unit Andrew Davidhazy Follow this and additional works at: http://scholarworks.rit.edu/article

More information

Digital Design and Communication Teaching (DiDACT) University of Sheffield Department of Landscape. Adobe Photoshop CS4 INTRODUCTION WORKSHOPS

Digital Design and Communication Teaching (DiDACT) University of Sheffield Department of Landscape. Adobe Photoshop CS4 INTRODUCTION WORKSHOPS Adobe Photoshop CS4 INTRODUCTION WORKSHOPS WORKSHOP 3 - Creating a Panorama Outcomes: y Taking the correct photographs needed to create a panorama. y Using photomerge to create a panorama. y Solutions

More information

Image Formation and Capture. Acknowledgment: some figures by B. Curless, E. Hecht, W.J. Smith, B.K.P. Horn, and A. Theuwissen

Image Formation and Capture. Acknowledgment: some figures by B. Curless, E. Hecht, W.J. Smith, B.K.P. Horn, and A. Theuwissen Image Formation and Capture Acknowledgment: some figures by B. Curless, E. Hecht, W.J. Smith, B.K.P. Horn, and A. Theuwissen Image Formation and Capture Real world Optics Sensor Devices Sources of Error

More information

Determining MTF with a Slant Edge Target ABSTRACT AND INTRODUCTION

Determining MTF with a Slant Edge Target ABSTRACT AND INTRODUCTION Determining MTF with a Slant Edge Target Douglas A. Kerr Issue 2 October 13, 2010 ABSTRACT AND INTRODUCTION The modulation transfer function (MTF) of a photographic lens tells us how effectively the lens

More information

ContextCapture Quick guide for photo acquisition

ContextCapture Quick guide for photo acquisition ContextCapture Quick guide for photo acquisition ContextCapture is automatically turning photos into 3D models, meaning that the quality of the input dataset has a deep impact on the output 3D model which

More information

5 180 o Field-of-View Imaging Polarimetry

5 180 o Field-of-View Imaging Polarimetry 5 180 o Field-of-View Imaging Polarimetry 51 5 180 o Field-of-View Imaging Polarimetry 5.1 Simultaneous Full-Sky Imaging Polarimeter with a Spherical Convex Mirror North and Duggin (1997) developed a practical

More information

The Camera : Computational Photography Alexei Efros, CMU, Fall 2008

The Camera : Computational Photography Alexei Efros, CMU, Fall 2008 The Camera 15-463: Computational Photography Alexei Efros, CMU, Fall 2008 How do we see the world? object film Let s design a camera Idea 1: put a piece of film in front of an object Do we get a reasonable

More information

Adding Depth. Introduction. PTViewer3D. Helmut Dersch. May 20, 2016

Adding Depth. Introduction. PTViewer3D. Helmut Dersch. May 20, 2016 Adding Depth Helmut Dersch May 20, 2016 Introduction It has long been one of my goals to add some kind of 3d-capability to panorama viewers. The conventional technology displays a stereoscopic view based

More information

Homographies and Mosaics

Homographies and Mosaics Homographies and Mosaics Jeffrey Martin (jeffrey-martin.com) with a lot of slides stolen from Steve Seitz and Rick Szeliski 15-463: Computational Photography Alexei Efros, CMU, Fall 2011 Why Mosaic? Are

More information

Technical information about PhoToPlan

Technical information about PhoToPlan Technical information about PhoToPlan The following pages shall give you a detailed overview of the possibilities using PhoToPlan. kubit GmbH Fiedlerstr. 36, 01307 Dresden, Germany Fon: +49 3 51/41 767

More information

Homographies and Mosaics

Homographies and Mosaics Homographies and Mosaics Jeffrey Martin (jeffrey-martin.com) CS194: Image Manipulation & Computational Photography with a lot of slides stolen from Alexei Efros, UC Berkeley, Fall 2014 Steve Seitz and

More information

Overview. Pinhole camera model Projective geometry Vanishing points and lines Projection matrix Cameras with Lenses Color Digital image

Overview. Pinhole camera model Projective geometry Vanishing points and lines Projection matrix Cameras with Lenses Color Digital image Camera & Color Overview Pinhole camera model Projective geometry Vanishing points and lines Projection matrix Cameras with Lenses Color Digital image Book: Hartley 6.1, Szeliski 2.1.5, 2.2, 2.3 The trip

More information

Omni-Directional Catadioptric Acquisition System

Omni-Directional Catadioptric Acquisition System Technical Disclosure Commons Defensive Publications Series December 18, 2017 Omni-Directional Catadioptric Acquisition System Andreas Nowatzyk Andrew I. Russell Follow this and additional works at: http://www.tdcommons.org/dpubs_series

More information

Parity and Plane Mirrors. Invert Image flip about a horizontal line. Revert Image flip about a vertical line.

Parity and Plane Mirrors. Invert Image flip about a horizontal line. Revert Image flip about a vertical line. Optical Systems 37 Parity and Plane Mirrors In addition to bending or folding the light path, reflection from a plane mirror introduces a parity change in the image. Invert Image flip about a horizontal

More information

Single Camera Catadioptric Stereo System

Single Camera Catadioptric Stereo System Single Camera Catadioptric Stereo System Abstract In this paper, we present a framework for novel catadioptric stereo camera system that uses a single camera and a single lens with conic mirrors. Various

More information

IMAGE SENSOR SOLUTIONS. KAC-96-1/5" Lens Kit. KODAK KAC-96-1/5" Lens Kit. for use with the KODAK CMOS Image Sensors. November 2004 Revision 2

IMAGE SENSOR SOLUTIONS. KAC-96-1/5 Lens Kit. KODAK KAC-96-1/5 Lens Kit. for use with the KODAK CMOS Image Sensors. November 2004 Revision 2 KODAK for use with the KODAK CMOS Image Sensors November 2004 Revision 2 1.1 Introduction Choosing the right lens is a critical aspect of designing an imaging system. Typically the trade off between image

More information

Dual-fisheye Lens Stitching for 360-degree Imaging & Video. Tuan Ho, PhD. Student Electrical Engineering Dept., UT Arlington

Dual-fisheye Lens Stitching for 360-degree Imaging & Video. Tuan Ho, PhD. Student Electrical Engineering Dept., UT Arlington Dual-fisheye Lens Stitching for 360-degree Imaging & Video Tuan Ho, PhD. Student Electrical Engineering Dept., UT Arlington Introduction 360-degree imaging: the process of taking multiple photographs and

More information

Bryce 7.1 Pro HDRI Export. HDRI Export

Bryce 7.1 Pro HDRI Export. HDRI Export HDRI Export Bryce can create an HDRI from the sky or load an external HDRI. These HDRIs can also be exported from the IBL tab into different file formats. There are a few things to watch out for. Export

More information

Image Formation. Light from distant things. Geometrical optics. Pinhole camera. Chapter 36

Image Formation. Light from distant things. Geometrical optics. Pinhole camera. Chapter 36 Light from distant things Chapter 36 We learn about a distant thing from the light it generates or redirects. The lenses in our eyes create images of objects our brains can process. This chapter concerns

More information

Volume 1 - Module 6 Geometry of Aerial Photography. I. Classification of Photographs. Vertical

Volume 1 - Module 6 Geometry of Aerial Photography. I. Classification of Photographs. Vertical RSCC Volume 1 Introduction to Photo Interpretation and Photogrammetry Table of Contents Module 1 Module 2 Module 3.1 Module 3.2 Module 4 Module 5 Module 6 Module 7 Module 8 Labs Volume 1 - Module 6 Geometry

More information

CSC Stereography Course I. What is Stereoscopic Photography?... 3 A. Binocular Vision Depth perception due to stereopsis

CSC Stereography Course I. What is Stereoscopic Photography?... 3 A. Binocular Vision Depth perception due to stereopsis CSC Stereography Course 101... 3 I. What is Stereoscopic Photography?... 3 A. Binocular Vision... 3 1. Depth perception due to stereopsis... 3 2. Concept was understood hundreds of years ago... 3 3. Stereo

More information

Notes on the VPPEM electron optics

Notes on the VPPEM electron optics Notes on the VPPEM electron optics Raymond Browning 2/9/2015 We are interested in creating some rules of thumb for designing the VPPEM instrument in terms of the interaction between the field of view at

More information

Cameras. CSE 455, Winter 2010 January 25, 2010

Cameras. CSE 455, Winter 2010 January 25, 2010 Cameras CSE 455, Winter 2010 January 25, 2010 Announcements New Lecturer! Neel Joshi, Ph.D. Post-Doctoral Researcher Microsoft Research neel@cs Project 1b (seam carving) was due on Friday the 22 nd Project

More information

Big League Cryogenics and Vacuum The LHC at CERN

Big League Cryogenics and Vacuum The LHC at CERN Big League Cryogenics and Vacuum The LHC at CERN A typical astronomical instrument must maintain about one cubic meter at a pressure of

More information

Light field sensing. Marc Levoy. Computer Science Department Stanford University

Light field sensing. Marc Levoy. Computer Science Department Stanford University Light field sensing Marc Levoy Computer Science Department Stanford University The scalar light field (in geometrical optics) Radiance as a function of position and direction in a static scene with fixed

More information

Observational Astronomy

Observational Astronomy Observational Astronomy Instruments The telescope- instruments combination forms a tightly coupled system: Telescope = collecting photons and forming an image Instruments = registering and analyzing the

More information

Lecture 18: Light field cameras. (plenoptic cameras) Visual Computing Systems CMU , Fall 2013

Lecture 18: Light field cameras. (plenoptic cameras) Visual Computing Systems CMU , Fall 2013 Lecture 18: Light field cameras (plenoptic cameras) Visual Computing Systems Continuing theme: computational photography Cameras capture light, then extensive processing produces the desired image Today:

More information

Projection. Announcements. Müller-Lyer Illusion. Image formation. Readings Nalwa 2.1

Projection. Announcements. Müller-Lyer Illusion. Image formation. Readings Nalwa 2.1 Announcements Mailing list (you should have received messages) Project 1 additional test sequences online Projection Readings Nalwa 2.1 Müller-Lyer Illusion Image formation object film by Pravin Bhat http://www.michaelbach.de/ot/sze_muelue/index.html

More information

The Camera : Computational Photography Alexei Efros, CMU, Fall 2005

The Camera : Computational Photography Alexei Efros, CMU, Fall 2005 The Camera 15-463: Computational Photography Alexei Efros, CMU, Fall 2005 How do we see the world? object film Let s design a camera Idea 1: put a piece of film in front of an object Do we get a reasonable

More information

Why learn about photography in this course?

Why learn about photography in this course? Why learn about photography in this course? Geri's Game: Note the background is blurred. - photography: model of image formation - Many computer graphics methods use existing photographs e.g. texture &

More information

T I P S F O R I M P R O V I N G I M A G E Q U A L I T Y O N O Z O F O O T A G E

T I P S F O R I M P R O V I N G I M A G E Q U A L I T Y O N O Z O F O O T A G E T I P S F O R I M P R O V I N G I M A G E Q U A L I T Y O N O Z O F O O T A G E Updated 20 th Jan. 2017 References Creator V1.4.0 2 Overview This document will concentrate on OZO Creator s Image Parameter

More information

Phys 531 Lecture 9 30 September 2004 Ray Optics II. + 1 s i. = 1 f

Phys 531 Lecture 9 30 September 2004 Ray Optics II. + 1 s i. = 1 f Phys 531 Lecture 9 30 September 2004 Ray Optics II Last time, developed idea of ray optics approximation to wave theory Introduced paraxial approximation: rays with θ 1 Will continue to use Started disussing

More information

lecture 24 image capture - photography: model of image formation - image blur - camera settings (f-number, shutter speed) - exposure - camera response

lecture 24 image capture - photography: model of image formation - image blur - camera settings (f-number, shutter speed) - exposure - camera response lecture 24 image capture - photography: model of image formation - image blur - camera settings (f-number, shutter speed) - exposure - camera response - application: high dynamic range imaging Why learn

More information

Be aware that there is no universal notation for the various quantities.

Be aware that there is no universal notation for the various quantities. Fourier Optics v2.4 Ray tracing is limited in its ability to describe optics because it ignores the wave properties of light. Diffraction is needed to explain image spatial resolution and contrast and

More information

PANORAMIC PROJECTION SYSTEM USING A PANORAMIC ANNULAR LENS

PANORAMIC PROJECTION SYSTEM USING A PANORAMIC ANNULAR LENS PANORAMIC PROJECTION SYSTEM USING A PANORAMIC ANNULAR LENS John A. Gilbert Professor of Mechanical Engineering Department of Mechanical and Aerospace Engineering University of Alabama in Huntsville Huntsville,

More information

Copyright Indizen Optical Technologies

Copyright Indizen Optical Technologies DEFINITION OF FREEFORM Free form is a manufacturing technology that allows cutting and polishing arbitrary surfaces A lens is free-form if at least one of its surfaces is made with free form technology

More information

Cameras for Stereo Panoramic Imaging Λ

Cameras for Stereo Panoramic Imaging Λ Cameras for Stereo Panoramic Imaging Λ Shmuel Peleg Yael Pritch Moshe Ben-Ezra School of Computer Science and Engineering The Hebrew University of Jerusalem 91904 Jerusalem, ISRAEL Abstract A panorama

More information

of a Panoramic Image Scene

of a Panoramic Image Scene US 2005.0099.494A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2005/0099494A1 Deng et al. (43) Pub. Date: May 12, 2005 (54) DIGITAL CAMERA WITH PANORAMIC (22) Filed: Nov. 10,

More information

CS 443: Imaging and Multimedia Cameras and Lenses

CS 443: Imaging and Multimedia Cameras and Lenses CS 443: Imaging and Multimedia Cameras and Lenses Spring 2008 Ahmed Elgammal Dept of Computer Science Rutgers University Outlines Cameras and lenses! 1 They are formed by the projection of 3D objects.

More information

Abstract. 1. Introduction and Motivation. 3. Methods. 2. Related Work Omni Directional Stereo Imaging

Abstract. 1. Introduction and Motivation. 3. Methods. 2. Related Work Omni Directional Stereo Imaging Abstract This project aims to create a camera system that captures stereoscopic 360 degree panoramas of the real world, and a viewer to render this content in a headset, with accurate spatial sound. 1.

More information

Two strategies for realistic rendering capture real world data synthesize from bottom up

Two strategies for realistic rendering capture real world data synthesize from bottom up Recap from Wednesday Two strategies for realistic rendering capture real world data synthesize from bottom up Both have existed for 500 years. Both are successful. Attempts to take the best of both world

More information

UNIVERSITY OF CALICUT

UNIVERSITY OF CALICUT UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION (2014 Admn. onwards) IV Semester Core Course for BMMC (UG SDE) INTRODUCTION TO VIDEOGRAPHY Question Bank & Answer Key Choose the correct Answer from the

More information

Image Formation and Camera Design

Image Formation and Camera Design Image Formation and Camera Design Spring 2003 CMSC 426 Jan Neumann 2/20/03 Light is all around us! From London & Upton, Photography Conventional camera design... Ken Kay, 1969 in Light & Film, TimeLife

More information

Projection. Projection. Image formation. Müller-Lyer Illusion. Readings. Readings. Let s design a camera. Szeliski 2.1. Szeliski 2.

Projection. Projection. Image formation. Müller-Lyer Illusion. Readings. Readings. Let s design a camera. Szeliski 2.1. Szeliski 2. Projection Projection Readings Szeliski 2.1 Readings Szeliski 2.1 Müller-Lyer Illusion Image formation object film by Pravin Bhat http://www.michaelbach.de/ot/sze_muelue/index.html Let s design a camera

More information

Photoshop Elements 3 Panoramas

Photoshop Elements 3 Panoramas Photoshop Elements 3 Panoramas One of the good things about digital photographs and image editing programs is that they allow us to stitch two or three photographs together to create one long panoramic

More information

Projection. Readings. Szeliski 2.1. Wednesday, October 23, 13

Projection. Readings. Szeliski 2.1. Wednesday, October 23, 13 Projection Readings Szeliski 2.1 Projection Readings Szeliski 2.1 Müller-Lyer Illusion by Pravin Bhat Müller-Lyer Illusion by Pravin Bhat http://www.michaelbach.de/ot/sze_muelue/index.html Müller-Lyer

More information

SNC2D PHYSICS 5/25/2013. LIGHT & GEOMETRIC OPTICS L Converging & Diverging Lenses (P ) Curved Lenses. Curved Lenses

SNC2D PHYSICS 5/25/2013. LIGHT & GEOMETRIC OPTICS L Converging & Diverging Lenses (P ) Curved Lenses. Curved Lenses SNC2D PHYSICS LIGHT & GEOMETRIC OPTICS L Converging & Diverging Lenses (P.448-450) Curved Lenses We see the world through lenses even if we do not wear glasses or contacts. We all have natural lenses in

More information

INTERFEROMETER VI-direct

INTERFEROMETER VI-direct Universal Interferometers for Quality Control Ideal for Production and Quality Control INTERFEROMETER VI-direct Typical Applications Interferometers are an indispensable measurement tool for optical production

More information

Dr. Reham Karam. Perspective Drawing. For Artists & Designers. By : Dr.Reham Karam

Dr. Reham Karam. Perspective Drawing. For Artists & Designers. By : Dr.Reham Karam Perspective Drawing For Artists & Designers By : Dr.Reham Karam Geometry and Art : What is perspective? Perspective, in the vision and visual perception, is : the way that objects appear to the eye based

More information

HDR videos acquisition

HDR videos acquisition HDR videos acquisition dr. Francesco Banterle francesco.banterle@isti.cnr.it How to capture? Videos are challenging: We need to capture multiple frames at different exposure times and everything moves

More information

Instruction Manual for HyperScan Spectrometer

Instruction Manual for HyperScan Spectrometer August 2006 Version 1.1 Table of Contents Section Page 1 Hardware... 1 2 Mounting Procedure... 2 3 CCD Alignment... 6 4 Software... 7 5 Wiring Diagram... 19 1 HARDWARE While it is not necessary to have

More information

J. C. Wyant Fall, 2012 Optics Optical Testing and Testing Instrumentation

J. C. Wyant Fall, 2012 Optics Optical Testing and Testing Instrumentation J. C. Wyant Fall, 2012 Optics 513 - Optical Testing and Testing Instrumentation Introduction 1. Measurement of Paraxial Properties of Optical Systems 1.1 Thin Lenses 1.1.1 Measurements Based on Image Equation

More information

Basic Principles of the Surgical Microscope. by Charles L. Crain

Basic Principles of the Surgical Microscope. by Charles L. Crain Basic Principles of the Surgical Microscope by Charles L. Crain 2006 Charles L. Crain; All Rights Reserved Table of Contents 1. Basic Definition...3 2. Magnification...3 2.1. Illumination/Magnification...3

More information

Laser Scanning for Surface Analysis of Transparent Samples - An Experimental Feasibility Study

Laser Scanning for Surface Analysis of Transparent Samples - An Experimental Feasibility Study STR/03/044/PM Laser Scanning for Surface Analysis of Transparent Samples - An Experimental Feasibility Study E. Lea Abstract An experimental investigation of a surface analysis method has been carried

More information

Active Aperture Control and Sensor Modulation for Flexible Imaging

Active Aperture Control and Sensor Modulation for Flexible Imaging Active Aperture Control and Sensor Modulation for Flexible Imaging Chunyu Gao and Narendra Ahuja Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL,

More information

How do we see the world?

How do we see the world? The Camera 1 How do we see the world? Let s design a camera Idea 1: put a piece of film in front of an object Do we get a reasonable image? Credit: Steve Seitz 2 Pinhole camera Idea 2: Add a barrier to

More information

Experiment 1: Fraunhofer Diffraction of Light by a Single Slit

Experiment 1: Fraunhofer Diffraction of Light by a Single Slit Experiment 1: Fraunhofer Diffraction of Light by a Single Slit Purpose 1. To understand the theory of Fraunhofer diffraction of light at a single slit and at a circular aperture; 2. To learn how to measure

More information

Photographing Art By Mark Pemberton March 26, 2009

Photographing Art By Mark Pemberton March 26, 2009 Photographing Art By Mark Pemberton March 26, 2009 Introduction Almost all artists need to photograph their artwork at some time or another. Usually this is for the purpose of creating a portfolio of their

More information

This document explains the reasons behind this phenomenon and describes how to overcome it.

This document explains the reasons behind this phenomenon and describes how to overcome it. Internal: 734-00583B-EN Release date: 17 December 2008 Cast Effects in Wide Angle Photography Overview Shooting images with wide angle lenses and exploiting large format camera movements can result in

More information

Virtual Reality I. Visual Imaging in the Electronic Age. Donald P. Greenberg November 9, 2017 Lecture #21

Virtual Reality I. Visual Imaging in the Electronic Age. Donald P. Greenberg November 9, 2017 Lecture #21 Virtual Reality I Visual Imaging in the Electronic Age Donald P. Greenberg November 9, 2017 Lecture #21 1968: Ivan Sutherland 1990s: HMDs, Henry Fuchs 2013: Google Glass History of Virtual Reality 2016:

More information

Image Formation and Capture

Image Formation and Capture Figure credits: B. Curless, E. Hecht, W.J. Smith, B.K.P. Horn, A. Theuwissen, and J. Malik Image Formation and Capture COS 429: Computer Vision Image Formation and Capture Real world Optics Sensor Devices

More information

Painting the Total Picture

Painting the Total Picture Painting the Total Picture Dick Termes 1920 Christensen Drive Spearfish South Dakota termes@blackhills.com Abstract Using the sphere surface as a canvas allows the artist to capture the total picture.

More information

Lenses and Focal Length

Lenses and Focal Length Task 2 Lenses and Focal Length During this task we will be exploring how a change in lens focal length can alter the way that the image is recorded on the film. To gain a better understanding before you

More information

PandroidWiz and Presets

PandroidWiz and Presets PandroidWiz and Presets What are Presets PandroidWiz uses Presets to control the pattern of movements of the robotic mount when shooting panoramas. Presets are data files that specify the Yaw and Pitch

More information

High-Resolution Interactive Panoramas with MPEG-4

High-Resolution Interactive Panoramas with MPEG-4 High-Resolution Interactive Panoramas with MPEG-4 Peter Eisert, Yong Guo, Anke Riechers, Jürgen Rurainsky Fraunhofer Institute for Telecommunications, Heinrich-Hertz-Institute Image Processing Department

More information