Homogeneous Representation Representation of points & vectors. Properties. Homogeneous Transformations

Size: px
Start display at page:

Download "Homogeneous Representation Representation of points & vectors. Properties. Homogeneous Transformations"

Transcription

1 From Last Class Homogeneous Transformations Combines Rotation + Translation into one single matri multiplication Composition of Homogeneous Transformations Homogeneous Representation Representation of points & vectors Properties. Sum & differences of vectors are vectors. Sum of a vector and a point is a point 3. Difference between two points is a vector 4. Sum of two points == meaningless Homogeneous Transformations C From Last Class Robot Velocit Kinematics Forward vs. Inverse Kinematics Holonomic vs. Non-holonomic Constraints Differential Drive Triccle Ackerman Steering A B 3 4

2 Robot Velocit Kinematics Forward Kinematics: Non-Holonomic Constraints The robot can reach everwhere in the configuration space, BUT, it is under-actuated, and thus the velocit is constrained. Inverse Kinematics: Testing for Integrabilit of Constraints Given a constraint in the form of Wh Not? The test: Let Not Straightforward then, if constraint can be integrated 5 6 Mobile Robot Drives Differential Steering Co-aial wheels Independentl driven Two-dimensional Non-holonomicall constrained Differential Steering: Forward Kinematics Given the robot geometr and wheel speeds, what is the robot s velocit? Let: r wheel radius Robot Position l ale length right wheel speed left wheel speed We want 7 8

3 Differential Steering: Forward Kinematics (cont.) Given the robot geometr and wheel speeds, what is the robot s velocit? Let: r wheel radius Goal l ale length right wheel speed left wheel speed Differential Steering Instantaneous Center of Curvature ICC Forward Velocit Angular Velocit 9 World Coordinates Differential Steering: Inverse Kinematics 3

4 Differential Steering Benefits Simple construction Zero minimum turning radius Drawbacks Small error in wheel speeds translates to large position errors Requires two drive motors Wheels-first is dnamicall unstable Triccle: Forward Kinematics Steerable powered front wheel Free-spinning rear wheels r front wheel radius d wheelbase front wheel speed Forward Velocit Angular Velocit d 3 4 Triccle: Instantaneous Center of Curvature Triccle: Inverse Kinematics What wheel speed and angle are necessar to produce a desired robot velocit? d d 5 6 4

5 Triccle Mobile Robotics Benefits Does not require accurate speed matching Drawbacks Non-zero minimum turning radius More complicated powertrain OBSERVE ORIENT DECIDE & ACT Perception Localization Control 7 8 Sensing Light Pinhole Camera How do we see the world? sun Place a piece of film in front of an object, can we get a reasonable image? Let s add a barrier, w/ a *VERY* small opening. Purpose: To block off most of the light ras Reduces blurring The opening is known as aperture What happens to the image? 9 5

6 Pinhole Camera Home-made Pinhole Camera Pinhole Model: Captures pencil of ras all ras through a single point This point is called Center of Projection (COP) The image is formed on the Image Plane Effective focal length, f, is the distance from COP to the Image Plane Wh so blurr? Camera w/ Lense Anatom of a modern camera Sensor Arras Purpose for the lens: Ideal Pinhole Model is unattainable; light gathering mechanism Keep image in sharp focus CMOS sensor 3 4 6

7 Images are formed b the interaction of the incident image irradiance with light sensitive elements on the image plane Light sensitive elements Film Charge Coupled Device (CCD) CMOS imaging element Image Sensors Resolution Refers to the precision of the sensor in making measurements (different formal definitions eists) Normal Resolution of a CCD sensor size of the scene element that images to a single piel on the image plane Resolution of a digital image the dimension (in piels) of the digital image. Forsthe & Ponce 5 6 Digital Imaging Sstems CCD or CMOS imaging arra When light falls on the cells in these arras a charge accumulates which is proportional to the incident light energ A/D conversion unit Host Computer Digital Snapshots A digital image is an arra of numbers indicating the image irradiance at various points on the image Image intensities are spatiall sampled Intensit values are quantized (8-bits, -bits, -bits, etc) Video Imager For a video camera, Images are taken sequentiall b opening and close the shutter 3/sec (i.e. 3 frames/sec) 7 8 7

8 Tpes of Images Analog Image A(,) Digital Image I(r,c) Grascale Image monochrome digital image G(r,c) Picture Function Multi-spectral Image color digital image M(r,c) Picture Function Binar Image B(r,c) Picture Function Labeled Image L(r,c) Picture Function Sensing Color In a 3-CCD video camera the light path is split 3 was which are passed through colored light filters and then imaged As a result a color image contains three channels of information: red, green, and blue image intensities In a -CCD color camera color information is obtained b converting the individual elements with a spatiall varing pattern of filters, RGB Baer pattern used to capture color images on a single imaging surface 9 3 Practical Color Sensing: Baer Grid Images in a Computer An image is a -D table of numbers or D Matri

9 Eample

10 A word of caution For this class, image processing in Matlab Matlab etremel powerful in terms of matri manipulation and signal processing Implementation in MatLab vs. in C/C++/Java NOT EQUAL!! Dimensionalit Reduction Machine (3D => D) Funn things happen Parallel lines are not. Figures Steven E. Palmer, What have we lost? Angles Distances (lengths) Distances can t be trusted 39 4

11 FOV Depends on Focal Length Conversion from mm to piels In the digital camera, measurements are made in image piels. Need to convert the focal length (in mm) to piels. Tpical digital sensors are smaller than (35 mm) film, this effectivel increases the focal length Size of field of view governed b the size of the image plane: Smaller FOV = larger Focal Length 4 4 FOV Depends on Focal Length Field of View (Zoom) Size of field of view governed b the size of the image plane: Smaller FOV = larger Focal Length 43 44

12 FOV Depends on Focal Length Filed of View (Zoom) Size of field of view governed b the size of the image plane: Smaller FOV = larger Focal Length FOV Depends on Focal Length Field of View/Focal Length Size of field of view governed b the size of the image plane: Large FOV, small f Camera closer to car Small FOV, large f Camera far from car Smaller FOV = larger Focal Length 47 48

13 Large Focal Length Compresses Depth 49 5 Image Projection Modeling (pinhole) projection Projection Equations The coordinate sstem Use the pinhole model as an approimation Put the optical center (COP) at origin Put image plane (Projection Plane, PP) in front of the COP Wh? The camera looks down the negative z-ais Required for right-handed coordinates Note: and are colinear Given then 5 5 3

14 Images in a Computer An image is a -D table of numbers or D Matri Binar Image Analsis Binar Image Image w/ onl and as entries Notation: B denotes the binar image B[r,c] denotes a piel in the image B[,] upper leftmost piel Neighborhoods 4 Neighborhood N NW N 8 Neighborhood W * E W * S SW S NE E SE How would ou convert an image into a Binar Image? Appling Masks to Images Convolution of the Image w/ another Signal Masks have origins Smmetric masks origins are the center piels

15 Connected Components Labeling Segmentation Recursive Labeling Algorithm Let I denote the image. Step : Convert I to B, Step : Let B = - B, label = for i = :rows for j = :columns if B (i,j) == - label = label + ; Add (i,j) onto Stack and set B (i,j) = label; ? 9? end end while (Stack is not empt) Remove piel P from Stack Let M = neighbors of P whose piel value = -; Add M onto Stack; Set B (M) = label; end Algorithm Pictoriall Result (3,) (3,) (3,3) (,3)

16 Morphological Operators Structuring Elements (S) Morphological Operators Dilation: Minkowski addition BOX(3,5) DISK(5) RING(5) Basic Operators Translation X t of a set of piels b a position vector t is given b X t = {+t X} 6 6 Morphological Operators Morphological Operators Erosion: Opening:

17 Closing: Morphological Operators Region Properties Area Total # of piels in the region of interest Centroid Perimeter Circularit Mean Radial Distance Standard Deviation/Variance of Radial Distance Bounding Bo & Etremal Points Spatial Moments Ellipse Properties Thresholding & Histograms Thresholding: Manual For grascale images G, in Matlab G > epsilon Automatic Otsu Method (See Shapiro & Stockman) Histograms use hist(values, binnumber) in Matlab 67 7

MEM455/800 Robotics II/Advance Robotics Winter 2009

MEM455/800 Robotics II/Advance Robotics Winter 2009 Admin Stuff Course Website: http://robotics.mem.drexel.edu/mhsieh/courses/mem456/ MEM455/8 Robotics II/Advance Robotics Winter 9 Professor: Ani Hsieh Time: :-:pm Tues, Thurs Location: UG Lab, Classroom

More information

Image Processing & Projective geometry

Image Processing & Projective geometry Image Processing & Projective geometry Arunkumar Byravan Partial slides borrowed from Jianbo Shi & Steve Seitz Color spaces RGB Red, Green, Blue HSV Hue, Saturation, Value Why HSV? HSV separates luma,

More information

Unit 1: Image Formation

Unit 1: Image Formation Unit 1: Image Formation 1. Geometry 2. Optics 3. Photometry 4. Sensor Readings Szeliski 2.1-2.3 & 6.3.5 1 Physical parameters of image formation Geometric Type of projection Camera pose Optical Sensor

More information

Image formation - Cameras. Grading & Project. About the course. Tentative Schedule. Course Content. Students introduction

Image formation - Cameras. Grading & Project. About the course. Tentative Schedule. Course Content. Students introduction About the course Instructors: Haibin Ling (hbling@temple, Wachman 35) Hours Lecture: Tuesda 5:3-8:pm, TTLMAN 43B Office hour: Tuesda 3: - 5:pm, or b appointment Textbook Computer Vision: Models, Learning,

More information

Overview. Pinhole camera model Projective geometry Vanishing points and lines Projection matrix Cameras with Lenses Color Digital image

Overview. Pinhole camera model Projective geometry Vanishing points and lines Projection matrix Cameras with Lenses Color Digital image Camera & Color Overview Pinhole camera model Projective geometry Vanishing points and lines Projection matrix Cameras with Lenses Color Digital image Book: Hartley 6.1, Szeliski 2.1.5, 2.2, 2.3 The trip

More information

How do we see the world?

How do we see the world? The Camera 1 How do we see the world? Let s design a camera Idea 1: put a piece of film in front of an object Do we get a reasonable image? Credit: Steve Seitz 2 Pinhole camera Idea 2: Add a barrier to

More information

ME 6406 MACHINE VISION. Georgia Institute of Technology

ME 6406 MACHINE VISION. Georgia Institute of Technology ME 6406 MACHINE VISION Georgia Institute of Technology Class Information Instructor Professor Kok-Meng Lee MARC 474 Office hours: Tues/Thurs 1:00-2:00 pm kokmeng.lee@me.gatech.edu (404)-894-7402 Class

More information

IMAGE FORMATION. Light source properties. Sensor characteristics Surface. Surface reflectance properties. Optics

IMAGE FORMATION. Light source properties. Sensor characteristics Surface. Surface reflectance properties. Optics IMAGE FORMATION Light source properties Sensor characteristics Surface Exposure shape Optics Surface reflectance properties ANALOG IMAGES An image can be understood as a 2D light intensity function f(x,y)

More information

The Camera : Computational Photography Alexei Efros, CMU, Fall 2005

The Camera : Computational Photography Alexei Efros, CMU, Fall 2005 The Camera 15-463: Computational Photography Alexei Efros, CMU, Fall 2005 How do we see the world? object film Let s design a camera Idea 1: put a piece of film in front of an object Do we get a reasonable

More information

Two strategies for realistic rendering capture real world data synthesize from bottom up

Two strategies for realistic rendering capture real world data synthesize from bottom up Recap from Wednesday Two strategies for realistic rendering capture real world data synthesize from bottom up Both have existed for 500 years. Both are successful. Attempts to take the best of both world

More information

Image Formation. Dr. Gerhard Roth. COMP 4102A Winter 2015 Version 3

Image Formation. Dr. Gerhard Roth. COMP 4102A Winter 2015 Version 3 Image Formation Dr. Gerhard Roth COMP 4102A Winter 2015 Version 3 1 Image Formation Two type of images Intensity image encodes light intensities (passive sensor) Range (depth) image encodes shape and distance

More information

Image Formation. Dr. Gerhard Roth. COMP 4102A Winter 2014 Version 1

Image Formation. Dr. Gerhard Roth. COMP 4102A Winter 2014 Version 1 Image Formation Dr. Gerhard Roth COMP 4102A Winter 2014 Version 1 Image Formation Two type of images Intensity image encodes light intensities (passive sensor) Range (depth) image encodes shape and distance

More information

The Camera : Computational Photography Alexei Efros, CMU, Fall 2008

The Camera : Computational Photography Alexei Efros, CMU, Fall 2008 The Camera 15-463: Computational Photography Alexei Efros, CMU, Fall 2008 How do we see the world? object film Let s design a camera Idea 1: put a piece of film in front of an object Do we get a reasonable

More information

Digital Image Processing Chapter 6: Color Image Processing

Digital Image Processing Chapter 6: Color Image Processing Digital Image Processing Chapter 6: Color Image Processing Spectrum of White Light 1666 Sir Isaac Newton, 24 ear old, discovered white light spectrum. Electromagnetic Spectrum Visible light wavelength:

More information

Sensors and Sensing Cameras and Camera Calibration

Sensors and Sensing Cameras and Camera Calibration Sensors and Sensing Cameras and Camera Calibration Todor Stoyanov Mobile Robotics and Olfaction Lab Center for Applied Autonomous Sensor Systems Örebro University, Sweden todor.stoyanov@oru.se 20.11.2014

More information

PRACTICAL IMAGE AND VIDEO PROCESSING USING MATLAB

PRACTICAL IMAGE AND VIDEO PROCESSING USING MATLAB PRACTICAL IMAGE AND VIDEO PROCESSING USING MATLAB OGE MARQUES Florida Atlantic University *IEEE IEEE PRESS WWILEY A JOHN WILEY & SONS, INC., PUBLICATION CONTENTS LIST OF FIGURES LIST OF TABLES FOREWORD

More information

Reading. Projections. The 3D synthetic camera model. Imaging with the synthetic camera. Angel. Chapter 5. Optional

Reading. Projections. The 3D synthetic camera model. Imaging with the synthetic camera. Angel. Chapter 5. Optional Reading Angel. Chapter 5 Optional Projections David F. Rogers and J. Alan Adams, Mathematical Elements for Computer Graphics, Second edition, McGraw-Hill, New York, 1990, Chapter 3. The 3D snthetic camera

More information

Graphics and Interaction Perspective Geometry

Graphics and Interaction Perspective Geometry 433-324 Graphics and Interaction Perspective Geometr Department of Computer Science and Software Engineering The Lecture outline Introduction to perspective geometr Perspective Geometr Centre of projection

More information

Lecture 2 Camera Models

Lecture 2 Camera Models Lecture 2 Camera Models Professor Silvio Savarese Computational Vision and Geometr Lab Silvio Savarese Lecture 2-4-Jan-4 Announcements Prerequisites: an questions? This course requires knowledge of linear

More information

8.2 IMAGE PROCESSING VERSUS IMAGE ANALYSIS Image processing: The collection of routines and

8.2 IMAGE PROCESSING VERSUS IMAGE ANALYSIS Image processing: The collection of routines and 8.1 INTRODUCTION In this chapter, we will study and discuss some fundamental techniques for image processing and image analysis, with a few examples of routines developed for certain purposes. 8.2 IMAGE

More information

Lecture 7: Camera Models

Lecture 7: Camera Models Lecture 7: Camera Models Professor Stanford Vision Lab 1 What we will learn toda? Pinhole cameras Cameras & lenses The geometr of pinhole cameras Reading: [FP]Chapters 1 3 [HZ] Chapter 6 2 What we will

More information

Cameras. CSE 455, Winter 2010 January 25, 2010

Cameras. CSE 455, Winter 2010 January 25, 2010 Cameras CSE 455, Winter 2010 January 25, 2010 Announcements New Lecturer! Neel Joshi, Ph.D. Post-Doctoral Researcher Microsoft Research neel@cs Project 1b (seam carving) was due on Friday the 22 nd Project

More information

To Do. Advanced Computer Graphics. Outline. Computational Imaging. How do we see the world? Pinhole camera

To Do. Advanced Computer Graphics. Outline. Computational Imaging. How do we see the world? Pinhole camera Advanced Computer Graphics CSE 163 [Spring 2017], Lecture 14 Ravi Ramamoorthi http://www.cs.ucsd.edu/~ravir To Do Assignment 2 due May 19 Any last minute issues or questions? Next two lectures: Imaging,

More information

BPM, Wire-Scanner, OTR/YAG Screens, and Collimator Polarity Conventions

BPM, Wire-Scanner, OTR/YAG Screens, and Collimator Polarity Conventions BPM, Wire-Scanner, OTR/YAG Screens, and Collimator Polarit Conventions Beam Position Monitors (BPMs) The Beam Position Monitors (BPMs) in the beamline are used to measure transverse ( and ) electron beam

More information

LENSES. INEL 6088 Computer Vision

LENSES. INEL 6088 Computer Vision LENSES INEL 6088 Computer Vision Digital camera A digital camera replaces film with a sensor array Each cell in the array is a Charge Coupled Device light-sensitive diode that converts photons to electrons

More information

Image Acquisition Hardware. Image Acquisition and Representation. CCD Camera. Camera. how digital images are produced

Image Acquisition Hardware. Image Acquisition and Representation. CCD Camera. Camera. how digital images are produced Image Acquisition Hardware Image Acquisition and Representation how digital images are produced how digital images are represented photometric models-basic radiometry image noises and noise suppression

More information

Image Enhancement II: Neighborhood Operations

Image Enhancement II: Neighborhood Operations Image Enhancement II: Neighborhood Operations Image Enhancement:Spatial Filtering Operation Idea: Use a mask to alter piel values according to local operation Aim: De)-Emphasize some spatial requencies

More information

Computer Vision. The Pinhole Camera Model

Computer Vision. The Pinhole Camera Model Computer Vision The Pinhole Camera Model Filippo Bergamasco (filippo.bergamasco@unive.it) http://www.dais.unive.it/~bergamasco DAIS, Ca Foscari University of Venice Academic year 2017/2018 Imaging device

More information

Projection. Readings. Szeliski 2.1. Wednesday, October 23, 13

Projection. Readings. Szeliski 2.1. Wednesday, October 23, 13 Projection Readings Szeliski 2.1 Projection Readings Szeliski 2.1 Müller-Lyer Illusion by Pravin Bhat Müller-Lyer Illusion by Pravin Bhat http://www.michaelbach.de/ot/sze_muelue/index.html Müller-Lyer

More information

Lecture 2 Camera Models

Lecture 2 Camera Models Lecture 2 Camera Models Professor Silvio Savarese Computational Vision and Geometr Lab Silvio Savarese Lecture 2 - -Jan-8 Lecture 2 Camera Models Pinhole cameras Cameras lenses The geometr of pinhole cameras

More information

Midterm Examination CS 534: Computational Photography

Midterm Examination CS 534: Computational Photography Midterm Examination CS 534: Computational Photography November 3, 2015 NAME: SOLUTIONS Problem Score Max Score 1 8 2 8 3 9 4 4 5 3 6 4 7 6 8 13 9 7 10 4 11 7 12 10 13 9 14 8 Total 100 1 1. [8] What are

More information

Image Formation and Capture

Image Formation and Capture Figure credits: B. Curless, E. Hecht, W.J. Smith, B.K.P. Horn, A. Theuwissen, and J. Malik Image Formation and Capture COS 429: Computer Vision Image Formation and Capture Real world Optics Sensor Devices

More information

Basic principles of photography. David Capel 346B IST

Basic principles of photography. David Capel 346B IST Basic principles of photography David Capel 346B IST Latin Camera Obscura = Dark Room Light passing through a small hole produces an inverted image on the opposite wall Safely observing the solar eclipse

More information

Image Acquisition and Representation. Image Acquisition Hardware. Camera. how digital images are produced how digital images are represented

Image Acquisition and Representation. Image Acquisition Hardware. Camera. how digital images are produced how digital images are represented Image Acquisition and Representation Slide 1 how digital images are produced how digital images are represented Slide 3 Note a digital camera represents a camera system with a built-in digitizer. photometric

More information

Lecture 02 Image Formation 1

Lecture 02 Image Formation 1 Institute of Informatics Institute of Neuroinformatics Lecture 02 Image Formation 1 Davide Scaramuzza http://rpg.ifi.uzh.ch 1 Lab Exercise 1 - Today afternoon Room ETH HG E 1.1 from 13:15 to 15:00 Work

More information

Projection. Projection. Image formation. Müller-Lyer Illusion. Readings. Readings. Let s design a camera. Szeliski 2.1. Szeliski 2.

Projection. Projection. Image formation. Müller-Lyer Illusion. Readings. Readings. Let s design a camera. Szeliski 2.1. Szeliski 2. Projection Projection Readings Szeliski 2.1 Readings Szeliski 2.1 Müller-Lyer Illusion Image formation object film by Pravin Bhat http://www.michaelbach.de/ot/sze_muelue/index.html Let s design a camera

More information

Projection. Announcements. Müller-Lyer Illusion. Image formation. Readings Nalwa 2.1

Projection. Announcements. Müller-Lyer Illusion. Image formation. Readings Nalwa 2.1 Announcements Mailing list (you should have received messages) Project 1 additional test sequences online Projection Readings Nalwa 2.1 Müller-Lyer Illusion Image formation object film by Pravin Bhat http://www.michaelbach.de/ot/sze_muelue/index.html

More information

Computing for Engineers in Python

Computing for Engineers in Python Computing for Engineers in Python Lecture 10: Signal (Image) Processing Autumn 2011-12 Some slides incorporated from Benny Chor s course 1 Lecture 9: Highlights Sorting, searching and time complexity Preprocessing

More information

Image Acquisition and Representation. Camera. CCD Camera. Image Acquisition Hardware

Image Acquisition and Representation. Camera. CCD Camera. Image Acquisition Hardware Image Acquisition and Representation Camera Slide 1 how digital images are produced how digital images are represented Slide 3 First photograph was due to Niepce of France in 1827. Basic abstraction is

More information

Image Acquisition and Representation

Image Acquisition and Representation Image Acquisition and Representation how digital images are produced how digital images are represented photometric models-basic radiometry image noises and noise suppression methods 1 Image Acquisition

More information

MEM: Intro to Robotics. Assignment 3I. Due: Wednesday 10/15 11:59 EST

MEM: Intro to Robotics. Assignment 3I. Due: Wednesday 10/15 11:59 EST MEM: Intro to Robotics Assignment 3I Due: Wednesday 10/15 11:59 EST 1. Basic Optics You are shopping for a new lens for your Canon D30 digital camera and there are lots of lens options at the store. Your

More information

Computer Vision. Howie Choset Introduction to Robotics

Computer Vision. Howie Choset   Introduction to Robotics Computer Vision Howie Choset http://www.cs.cmu.edu.edu/~choset Introduction to Robotics http://generalrobotics.org What is vision? What is computer vision? Edge Detection Edge Detection Interest points

More information

CS 376b Computer Vision

CS 376b Computer Vision CS 376b Computer Vision 09 / 03 / 2014 Instructor: Michael Eckmann Today s Topics This is technically a lab/discussion session, but I'll treat it as a lecture today. Introduction to the course layout,

More information

Image Formation and Capture. Acknowledgment: some figures by B. Curless, E. Hecht, W.J. Smith, B.K.P. Horn, and A. Theuwissen

Image Formation and Capture. Acknowledgment: some figures by B. Curless, E. Hecht, W.J. Smith, B.K.P. Horn, and A. Theuwissen Image Formation and Capture Acknowledgment: some figures by B. Curless, E. Hecht, W.J. Smith, B.K.P. Horn, and A. Theuwissen Image Formation and Capture Real world Optics Sensor Devices Sources of Error

More information

Chapters 1 & 2. Definitions and applications Conceptual basis of photogrammetric processing

Chapters 1 & 2. Definitions and applications Conceptual basis of photogrammetric processing Chapters 1 & 2 Chapter 1: Photogrammetry Definitions and applications Conceptual basis of photogrammetric processing Transition from two-dimensional imagery to three-dimensional information Automation

More information

Building a Real Camera. Slides Credit: Svetlana Lazebnik

Building a Real Camera. Slides Credit: Svetlana Lazebnik Building a Real Camera Slides Credit: Svetlana Lazebnik Home-made pinhole camera Slide by A. Efros http://www.debevec.org/pinhole/ Shrinking the aperture Why not make the aperture as small as possible?

More information

Exercise questions for Machine vision

Exercise questions for Machine vision Exercise questions for Machine vision This is a collection of exercise questions. These questions are all examination alike which means that similar questions may appear at the written exam. I ve divided

More information

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science.

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science. Professor William Hoff Dept of Electrical Engineering &Computer Science http://inside.mines.edu/~whoff/ 1 Sensors and Image Formation Imaging sensors and models of image formation Coordinate systems Digital

More information

Name: Date: Math in Special Effects: Try Other Challenges. Student Handout

Name: Date: Math in Special Effects: Try Other Challenges. Student Handout Name: Date: Math in Special Effects: Try Other Challenges When filming special effects, a high-speed photographer needs to control the duration and impact of light by adjusting a number of settings, including

More information

Computational Approaches to Cameras

Computational Approaches to Cameras Computational Approaches to Cameras 11/16/17 Magritte, The False Mirror (1935) Computational Photography Derek Hoiem, University of Illinois Announcements Final project proposal due Monday (see links on

More information

Dr F. Cuzzolin 1. September 29, 2015

Dr F. Cuzzolin 1. September 29, 2015 P00407 Principles of Computer Vision 1 1 Department of Computing and Communication Technologies Oxford Brookes University, UK September 29, 2015 September 29, 2015 1 / 73 Outline of the Lecture 1 2 Basics

More information

Vision Review: Image Processing. Course web page:

Vision Review: Image Processing. Course web page: Vision Review: Image Processing Course web page: www.cis.udel.edu/~cer/arv September 7, Announcements Homework and paper presentation guidelines are up on web page Readings for next Tuesday: Chapters 6,.,

More information

Building a Real Camera

Building a Real Camera Building a Real Camera Home-made pinhole camera Slide by A. Efros http://www.debevec.org/pinhole/ Shrinking the aperture Why not make the aperture as small as possible? Less light gets through Diffraction

More information

Image Processing for feature extraction

Image Processing for feature extraction Image Processing for feature extraction 1 Outline Rationale for image pre-processing Gray-scale transformations Geometric transformations Local preprocessing Reading: Sonka et al 5.1, 5.2, 5.3 2 Image

More information

Digital Photographs, Image Sensors and Matrices

Digital Photographs, Image Sensors and Matrices Digital Photographs, Image Sensors and Matrices Digital Camera Image Sensors Electron Counts Checkerboard Analogy Bryce Bayer s Color Filter Array Mosaic. Image Sensor Data to Matrix Data Visualization

More information

Digital Photographs and Matrices

Digital Photographs and Matrices Digital Photographs and Matrices Digital Camera Image Sensors Electron Counts Checkerboard Analogy Bryce Bayer s Color Filter Array Mosaic. Image Sensor Data to Matrix Data Visualization of Matrix Addition

More information

A Study on analysis of intracranial acoustic wave propagation by the finite difference time domain method

A Study on analysis of intracranial acoustic wave propagation by the finite difference time domain method A Stud on analsis of intracranial acoustic wave propagation b the finite difference time domain method 4.5 Wa Biological effects of ultrasound, ultrasonic tomograph Yoko Tanikaga, Toshikazu Takizawa, Takefumi

More information

Virtual and Digital Cameras

Virtual and Digital Cameras CS148: Introduction to Computer Graphics and Imaging Virtual and Digital Cameras Ansel Adams Topics Effect Cause Field of view Film size, focal length Perspective Lens, focal length Focus Dist. of lens

More information

Image Formation III Chapter 1 (Forsyth&Ponce) Cameras Lenses & Sensors

Image Formation III Chapter 1 (Forsyth&Ponce) Cameras Lenses & Sensors Image Formation III Chapter 1 (Forsyth&Ponce) Cameras Lenses & Sensors Guido Gerig CS-GY 6643, Spring 2017 (slides modified from Marc Pollefeys, UNC Chapel Hill/ ETH Zurich, With content from Prof. Trevor

More information

SUPER RESOLUTION INTRODUCTION

SUPER RESOLUTION INTRODUCTION SUPER RESOLUTION Jnanavardhini - Online MultiDisciplinary Research Journal Ms. Amalorpavam.G Assistant Professor, Department of Computer Sciences, Sambhram Academy of Management. Studies, Bangalore Abstract:-

More information

Design and Correction of optical Systems

Design and Correction of optical Systems Design and Correction of optical Sstems Part 5: Properties of Optical Sstems Summer term 2012 Herbert Gross Overview 2 1. Basics 2012-04-18 2. Materials 2012-04-25 3. Components 2012-05-02 4. Paraxial

More information

CSE 473/573 Computer Vision and Image Processing (CVIP)

CSE 473/573 Computer Vision and Image Processing (CVIP) CSE 473/573 Computer Vision and Image Processing (CVIP) Ifeoma Nwogu inwogu@buffalo.edu Lecture 4 Image formation(part I) Schedule Last class linear algebra overview Today Image formation and camera properties

More information

Reading. 8. Projections. 3D Geometry Pipeline. 3D Geometry Pipeline (cont d) Required: w Watt, Section

Reading. 8. Projections. 3D Geometry Pipeline. 3D Geometry Pipeline (cont d) Required: w Watt, Section Reading Required: Watt, Section 5.2.2 5.2.4. Further reading: 8. Projections Fole, et al, Chapter 5.6 and Chapter 6 David F. Rogers and J. Alan Adams, Mathematical Elements for Computer Graphics, 2 nd

More information

Lecture 22: Cameras & Lenses III. Computer Graphics and Imaging UC Berkeley CS184/284A, Spring 2017

Lecture 22: Cameras & Lenses III. Computer Graphics and Imaging UC Berkeley CS184/284A, Spring 2017 Lecture 22: Cameras & Lenses III Computer Graphics and Imaging UC Berkeley, Spring 2017 F-Number For Lens vs. Photo A lens s F-Number is the maximum for that lens E.g. 50 mm F/1.4 is a high-quality telephoto

More information

IMAGE ENHANCEMENT IN SPATIAL DOMAIN

IMAGE ENHANCEMENT IN SPATIAL DOMAIN A First Course in Machine Vision IMAGE ENHANCEMENT IN SPATIAL DOMAIN By: Ehsan Khoramshahi Definitions The principal objective of enhancement is to process an image so that the result is more suitable

More information

Digital Imaging Rochester Institute of Technology

Digital Imaging Rochester Institute of Technology Digital Imaging 1999 Rochester Institute of Technology So Far... camera AgX film processing image AgX photographic film captures image formed by the optical elements (lens). Unfortunately, the processing

More information

Scrabble Board Automatic Detector for Third Party Applications

Scrabble Board Automatic Detector for Third Party Applications Scrabble Board Automatic Detector for Third Party Applications David Hirschberg Computer Science Department University of California, Irvine hirschbd@uci.edu Abstract Abstract Scrabble is a well-known

More information

Design of Temporally Dithered Codes for Increased Depth of Field in Structured Light Systems

Design of Temporally Dithered Codes for Increased Depth of Field in Structured Light Systems Design of Temporally Dithered Codes for Increased Depth of Field in Structured Light Systems Ricardo R. Garcia University of California, Berkeley Berkeley, CA rrgarcia@eecs.berkeley.edu Abstract In recent

More information

Why learn about photography in this course?

Why learn about photography in this course? Why learn about photography in this course? Geri's Game: Note the background is blurred. - photography: model of image formation - Many computer graphics methods use existing photographs e.g. texture &

More information

Lecture 7: Camera Models

Lecture 7: Camera Models Lecture 7: Camera Models Professor Fei- Fei Li Stanford Vision Lab Lecture 7 -! 1 What we will learn toda? Pinhole cameras Cameras & lenses The geometr of pinhole cameras Reading: [FP] Chapters 1 3 [HZ]

More information

Lensless Imaging with a Controllable Aperture

Lensless Imaging with a Controllable Aperture Lensless Imaging with a Controllable Aperture Assaf Zomet Shree K. Nayar Computer Science Department Columbia University New York, NY, 10027 E-mail: zomet@humaneyes.com, nayar@cs.columbia.edu Abstract

More information

How does prism technology help to achieve superior color image quality?

How does prism technology help to achieve superior color image quality? WHITE PAPER How does prism technology help to achieve superior color image quality? Achieving superior image quality requires real and full color depth for every channel, improved color contrast and color

More information

lecture 24 image capture - photography: model of image formation - image blur - camera settings (f-number, shutter speed) - exposure - camera response

lecture 24 image capture - photography: model of image formation - image blur - camera settings (f-number, shutter speed) - exposure - camera response lecture 24 image capture - photography: model of image formation - image blur - camera settings (f-number, shutter speed) - exposure - camera response - application: high dynamic range imaging Why learn

More information

FPGA Implementation of Global Vision for Robot Soccer as a Smart Camera

FPGA Implementation of Global Vision for Robot Soccer as a Smart Camera FPGA Implementation of Global Vision for Robot Soccer as a Smart Camera Miguel Contreras, Donald G Baile and Gourab Sen Gupta School of Engineering and Advanced Technolog Masse Universit, Palmerston North,

More information

Image acquisition. In both cases, the digital sensing element is one of the following: Line array Area array. Single sensor

Image acquisition. In both cases, the digital sensing element is one of the following: Line array Area array. Single sensor Image acquisition Digital images are acquired by direct digital acquisition (digital still/video cameras), or scanning material acquired as analog signals (slides, photographs, etc.). In both cases, the

More information

ELEC Dr Reji Mathew Electrical Engineering UNSW

ELEC Dr Reji Mathew Electrical Engineering UNSW ELEC 4622 Dr Reji Mathew Electrical Engineering UNSW Filter Design Circularly symmetric 2-D low-pass filter Pass-band radial frequency: ω p Stop-band radial frequency: ω s 1 δ p Pass-band tolerances: δ

More information

Cameras. Steve Rotenberg CSE168: Rendering Algorithms UCSD, Spring 2017

Cameras. Steve Rotenberg CSE168: Rendering Algorithms UCSD, Spring 2017 Cameras Steve Rotenberg CSE168: Rendering Algorithms UCSD, Spring 2017 Camera Focus Camera Focus So far, we have been simulating pinhole cameras with perfect focus Often times, we want to simulate more

More information

Acquisition. Some slides from: Yung-Yu Chuang (DigiVfx) Jan Neumann, Pat Hanrahan, Alexei Efros

Acquisition. Some slides from: Yung-Yu Chuang (DigiVfx) Jan Neumann, Pat Hanrahan, Alexei Efros Acquisition Some slides from: Yung-Yu Chuang (DigiVfx) Jan Neumann, Pat Hanrahan, Alexei Efros Image Acquisition Digital Camera Film Outline Pinhole camera Lens Lens aberrations Exposure Sensors Noise

More information

Chapter 36. Image Formation

Chapter 36. Image Formation Chapter 36 Image Formation Image of Formation Images can result when light rays encounter flat or curved surfaces between two media. Images can be formed either by reflection or refraction due to these

More information

CS6670: Computer Vision

CS6670: Computer Vision CS6670: Computer Vision Noah Snavely Lecture 5: Cameras and Projection Szeliski 2.1.3-2.1.6 Reading Announcements Project 1 assigned, see projects page: http://www.cs.cornell.edu/courses/cs6670/2011sp/projects/projects.html

More information

VC 14/15 TP2 Image Formation

VC 14/15 TP2 Image Formation VC 14/15 TP2 Image Formation Mestrado em Ciência de Computadores Mestrado Integrado em Engenharia de Redes e Sistemas Informáticos Miguel Tavares Coimbra Outline Computer Vision? The Human Visual System

More information

Digital Image Processing Chapter 3: Image Enhancement in the Spatial Domain

Digital Image Processing Chapter 3: Image Enhancement in the Spatial Domain Digital Image Processing Chapter 3: Image Enhancement in the Spatial Domain Principle Objective o Enhancement Process an image so that the result will be more suitable than the original image or a speciic

More information

Color Models and Color Image Processing. CS 663, Ajit Rajwade

Color Models and Color Image Processing. CS 663, Ajit Rajwade Color Models and Color Image Processing CS 663 Ajit Rajwade Pouring in color Grascale image: D arra of size M N containing scalar intensit values gralevels. Color image: tpicall represented as a 3D arra

More information

Astronomical Cameras

Astronomical Cameras Astronomical Cameras I. The Pinhole Camera Pinhole Camera (or Camera Obscura) Whenever light passes through a small hole or aperture it creates an image opposite the hole This is an effect wherever apertures

More information

General Imaging System

General Imaging System General Imaging System Lecture Slides ME 4060 Machine Vision and Vision-based Control Chapter 5 Image Sensing and Acquisition By Dr. Debao Zhou 1 2 Light, Color, and Electromagnetic Spectrum Penetrate

More information

Megapixels and more. The basics of image processing in digital cameras. Construction of a digital camera

Megapixels and more. The basics of image processing in digital cameras. Construction of a digital camera Megapixels and more The basics of image processing in digital cameras Photography is a technique of preserving pictures with the help of light. The first durable photograph was made by Nicephor Niepce

More information

Coded photography , , Computational Photography Fall 2018, Lecture 14

Coded photography , , Computational Photography Fall 2018, Lecture 14 Coded photography http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2018, Lecture 14 Overview of today s lecture The coded photography paradigm. Dealing with

More information

What will be on the midterm?

What will be on the midterm? What will be on the midterm? CS 178, Spring 2014 Marc Levoy Computer Science Department Stanford University General information 2 Monday, 7-9pm, Cubberly Auditorium (School of Edu) closed book, no notes

More information

LENSLESS IMAGING BY COMPRESSIVE SENSING

LENSLESS IMAGING BY COMPRESSIVE SENSING LENSLESS IMAGING BY COMPRESSIVE SENSING Gang Huang, Hong Jiang, Kim Matthews and Paul Wilford Bell Labs, Alcatel-Lucent, Murray Hill, NJ 07974 ABSTRACT In this paper, we propose a lensless compressive

More information

SECTION I - CHAPTER 2 DIGITAL IMAGING PROCESSING CONCEPTS

SECTION I - CHAPTER 2 DIGITAL IMAGING PROCESSING CONCEPTS RADT 3463 - COMPUTERIZED IMAGING Section I: Chapter 2 RADT 3463 Computerized Imaging 1 SECTION I - CHAPTER 2 DIGITAL IMAGING PROCESSING CONCEPTS RADT 3463 COMPUTERIZED IMAGING Section I: Chapter 2 RADT

More information

SYLLABUS CHAPTER - 2 : INTENSITY TRANSFORMATIONS. Some Basic Intensity Transformation Functions, Histogram Processing.

SYLLABUS CHAPTER - 2 : INTENSITY TRANSFORMATIONS. Some Basic Intensity Transformation Functions, Histogram Processing. Contents i SYLLABUS UNIT - I CHAPTER - 1 : INTRODUCTION TO DIGITAL IMAGE PROCESSING Introduction, Origins of Digital Image Processing, Applications of Digital Image Processing, Fundamental Steps, Components,

More information

Image Processing of Motion for Security Applications

Image Processing of Motion for Security Applications Image Processing of Motion for Securit Applications Frantisek Duchon, Assoc. Prof., Peter Bučka, MSc., Martina Szabová, MA, Martin Dekan, PhD., Peter Beňo, PhD., Michal Tolgess, PhD. Slovak Universit of

More information

Image Formation and Camera Design

Image Formation and Camera Design Image Formation and Camera Design Spring 2003 CMSC 426 Jan Neumann 2/20/03 Light is all around us! From London & Upton, Photography Conventional camera design... Ken Kay, 1969 in Light & Film, TimeLife

More information

3D Viewing. Introduction to Computer Graphics Torsten Möller / Manfred Klaffenböck. Machiraju/Zhang/Möller

3D Viewing. Introduction to Computer Graphics Torsten Möller / Manfred Klaffenböck. Machiraju/Zhang/Möller 3D Viewing Introduction to Computer Graphics Torsten Möller / Manfred Klaffenböck Machiraju/Zhang/Möller Reading Chapter 5 of Angel Chapter 13 of Hughes, van Dam, Chapter 7 of Shirley+Marschner Machiraju/Zhang/Möller

More information

Preparing Remote Sensing Data for Natural Resources Mapping (image enhancement, rectifications )

Preparing Remote Sensing Data for Natural Resources Mapping (image enhancement, rectifications ) Preparing Remote Sensing Data for Natural Resources Mapping (image enhancement, rectifications ) Why is this important What are the major approaches Examples of digital image enhancement Follow up exercises

More information

A Foveated Visual Tracking Chip

A Foveated Visual Tracking Chip TP 2.1: A Foveated Visual Tracking Chip Ralph Etienne-Cummings¹, ², Jan Van der Spiegel¹, ³, Paul Mueller¹, Mao-zhu Zhang¹ ¹Corticon Inc., Philadelphia, PA ²Department of Electrical Engineering, Southern

More information

Image Enhancement. Image Enhancement

Image Enhancement. Image Enhancement SPATIAL FILTERING g h * h g FREQUENCY DOMAIN FILTERING G H. F F H G Copright RMR / RDL - 999. PEE53 - Processamento Digital de Imagens LOW PASS FILTERING attenuate or eliminate high-requenc components

More information

VEHICLE LICENSE PLATE DETECTION ALGORITHM BASED ON STATISTICAL CHARACTERISTICS IN HSI COLOR MODEL

VEHICLE LICENSE PLATE DETECTION ALGORITHM BASED ON STATISTICAL CHARACTERISTICS IN HSI COLOR MODEL VEHICLE LICENSE PLATE DETECTION ALGORITHM BASED ON STATISTICAL CHARACTERISTICS IN HSI COLOR MODEL Instructor : Dr. K. R. Rao Presented by: Prasanna Venkatesh Palani (1000660520) prasannaven.palani@mavs.uta.edu

More information

A Unified Framework for the Consumer-Grade Image Pipeline

A Unified Framework for the Consumer-Grade Image Pipeline A Unified Framework for the Consumer-Grade Image Pipeline Konstantinos N. Plataniotis University of Toronto kostas@dsp.utoronto.ca www.dsp.utoronto.ca Common work with Rastislav Lukac Outline The problem

More information

Images and Filters. EE/CSE 576 Linda Shapiro

Images and Filters. EE/CSE 576 Linda Shapiro Images and Filters EE/CSE 576 Linda Shapiro What is an image? 2 3 . We sample the image to get a discrete set of pixels with quantized values. 2. For a gray tone image there is one band F(r,c), with values

More information