THE STUDY OF WHICH SHADE OF SUNGLASSES BLOCK THE MOST LIGHT

Size: px
Start display at page:

Download "THE STUDY OF WHICH SHADE OF SUNGLASSES BLOCK THE MOST LIGHT"

Transcription

1 THE STUDY OF WHICH SHADE OF SUNGLASSES BLOCK THE MOST LIGHT Kiera Tai Cary Academy ABSTRACT The purpose of this experiment was to determine which color tint of sunglasses would block the most light. Sunglasses have seven layers. From the layer closest to the eye it is the antireflective back, the tinting layer, the lens, the polarization layer, the antireflective coating, the UV coating, and the scratch resistant coating. A flashlight was placed a fixed distance in front of a lens of sunglasses and a light probe was placed a fixed distance behind the lens. The flashlight was turned on and the amount of light that passed through the lens was measured with the light probe. The black tinted sunglasses were found to block the most light. This is probably because it is the darkest color. INTRODUCTION The lenses of sunglasses have seven layers. The layer closest to the eye is the antireflective back, which protects the eye from glare of light from behind. The layer after that is the tinting layer. It is the layer that gives the lens its color. Gray is best for viewing true colors, yellow is good for outdoor activities in low light, and green and brown are soothing in both low and bright light. The next layer is the lens, Figure 1. The 7 layers of sunglasses

2 which is usually made of glass, plastic, or polycarbonate. Glass blocks the least light but is most scratch resistant. Plastic blocks more light but is the cheapest and least durable. Polycarbonate is the lightest, most durable, and blocks the most light. After the lens is the polarization layer, which is many wafer sheets that block horizontal light rays. Next is a UV coating, which filters out ultraviolet rays A and B. Then, there is the antireflective coating which consists of many layers of various metal oxides that reduce glare and sometimes repel water. Lastly, the layer that is farthest away from the eye is the scratch-resistant coating. It is usually made of durable plastic that prevents scratches on the surface of the lens. The eye is the organ that is responsible for sight. The colored area is called the iris and the black spot in the middle of the iris is called the pupil. Light enters the eye through the pupil, and the iris controls how much light enters. The iris is made up of muscle fibers that lengthen and shorten to make the pupils larger or smaller. When it is bright, the pupils become smaller, letting less light in since there is already a lot of light. When it is dark, the pupils become larger, to allow more light to enter so it can see more. The pupil is covered by the cornea, which is like a clear window Figure 2. The human eye that is not visible. Behind the pupils are the lenses. The lenses are like small curved pieces of jelly that are held in place by small muscles. When light enters through the pupil, it passes through the lens. The lens bends the light so it focuses on the retina, which is the back of the eye where images are formed. Images form upside down on the retina. Receptor cells send messages to the brain along a large nerve. The brain receives this information and makes sense of it. It turns the image right side up, mixes colors, and figures out how far away and big things are. When the light doesn t focus on the retina, a blurred picture will be formed. The retina has millions of tiny receptor cells. There are two types of receptor cells: cones and rods. Cones react to colors making it possible to see in bright light, while rods react to black and white and allow seeing in dim light. Each eye has about 6 million cones and 120

3 million rods. The retina has a blind spot, where there are no rods of cones, so nothing can be seen at that spot. When both eyes are open, there isn t a blind spot because the images that each eye sees overlap each other and cover up each blind spot. The eyelids protect the eyes when sleeping and act as windshield wipers, tears wash eyes in case anything got in them, and the eyelashes keep out dust. Light is waves of electromagnetic energy. It travels at 186, 282 miles per second. The size of a wave is measured by its wavelength. The amount of energy in a light wave is proportionally related to its wavelength. Shorter wavelengths have higher amounts of energy, and longer wavelengths have a lower amount of energy. Light is responsible for the sense of sight. Of visible light, violet has the most energy and red has the least energy. Above the visible light spectrum on the violet side is ultraviolet light, also known as UV light. Sunlight is full of UV light, which can damage the cornea and the retina. Refraction is the change of direction in a light wave due to a change in speed. An example of refraction would be when a stick is placed in a bowl of water. The light rays bend when traveling from the air to the water. The Figure 3. The effects refraction has on how the human eye sees things eye perceives the bent line as a straight line, making the stick seem like it is floating a bit above the bottom of the bowl. Reflection is the throwing or bouncing back of light from a surface. The incoming ray hits the surface, and then it bounces back as an outgoing ray. The outgoing ray will always make the same angle as the incoming ray. Absorption is when a substance obtains light when light passes through it. For example, cement walls absorbs sunlight. The amount of light absorbed is equal to the amount of light reradiated. An experiment done by a student at Cary Academy last year tested which brand of sunglasses blocked the most light. It was found the Mom s brand of sunglasses blocked the most light, Livestrong sunglasses blocked the second most light, Claire s

4 sunglasses were blocked the third most light, and the Target brand sunglasses blocked the least light. MATERIALS AND METHODS In this experiment a flashlight, sunglasses with grey tint, sunglasses with black tint, sunglasses with orange tint, a light probe, a dropper, water, and salt were used in this experiment. For the first experiment, a flashlight was first placed 4cm front a light probe. The flashlight was turned on and the amount of light that it gave off was measured. This was repeated three times and an average was determined. Next, the flashlight placed 2cm in front of a lens on a pair of grey tinted sunglasses and a light probe was placed 2cm behind the sunglasses. The flashlight was turned on and the amount of light that passed through the sunglasses was collected with the light probe. The data was collected three times and an average was determined. This was repeated for the sunglasses with black tint and the sunglasses with orange tint. For the second experiment, a flashlight was first placed 2cm away from a light probe. The amount of light that it gave off was measured three times and an average was determined. This process was repeated when the flashlight was 6cm, 10cm, and 20cm away from the light probe. Then, the flashlight was placed 1cm in front of a lens on the sunglasses with grey tint and a light probe was placed 1cm behind the sunglasses. The flashlight was turned on and the amount of light that passed through was collected three times and the average was determined. Then the flashlight was placed 3cm in front of the lens and the light probe was moved 3cm behind the lens. The flashlight was turned on and the amount of light passing through the sunglasses was measured three times and the average was determined. The flashlight was then moved so that it was 5cm in front of the lens and the light probe was moved so that it was 5cm behind the lens. The flashlight was turned on and the amount of light that passed through the sunglasses was measured three times and the average was determined. Then the flashlight was placed 10cm in front of the lens and the light probe was placed 10cm behind the lens.

5 The flashlight was turned on and the amount of light that passed through the sunglasses was measured three times and the average was determined. This process was repeated for the sunglasses with black tint and orange tint. For the third experiment, a flashlight was placed 5cm in front of one of the lenses on the black sunglasses and a light probe was placed 5cm behind the lens. The flashlight was turned on and the amount of light that passed through the sunglasses was measured with the light probe. This was repeated three times and an average was determined. Then, 10 drops of water were put onto one of the lenses of the sunglasses with a dropper. Then, the flashlight was placed 5cm in front of the sunglasses and the light probe was placed 5cm behind the sunglasses. The flashlight was turned on and the amount of light that passed through was measured. This process was repeated three times and an average was determined. Then 10 drops of salt water was placed on the lens. The salt and the water had been mixed to be proportional to real sea water, (35 g/l). The flashlight was placed 5cm in front of the lens with salt water on it and the light probe was place so that it was 5cm behind the lens. The flashlight was turned on and the amount of light that passed through was measured. This was repeated three times and an average was determined. RESULTS AND DISCUSSION In the first experiment, the black tinted sunglasses were found to block the most light, orange tinted sunglasses blocked the second most light, grey tinted sunglasses blocked the least light out of the sunglasses, and there was the most light with no sunglasses. (see Figure 1). With no sunglasses, there was an average of lux. With the black sunglasses, there was an average of lux. With the orange sunglasses there was an average of lux. With the grey sunglasses there was an average of lux. The black sunglasses probably blocked the most light since black is the darkest color out of the three.

6 Amount of LIght (lux) No Sunglasess Gray Tinted Black Tinted Orange Tinted Type of Sunglasses Figure 4. The effect different colored tint has on the amount of light sunglasses can block In the second experiment, the amount of light decreased for all of the sunglasses and for no sunglasses as the distance between the flashlight and the light probe increased. (see Figure 2). There were different patterns in the way the numbers decreased. When there were no sunglasses, the amount of light dropped quickly from 1cm to 5cm and went into a more graduate drop from 5cm to 10cm. The grey and orange tinted sunglasses had a constant decreasing rate. This is probably because the grey and orange tint did not block most of the light at first, so what was making the amount of light decrease was the decreasing distance. The black tinted sunglasses dropped rapidly from 1cm to 3cm and stayed at almost 0 from 3cm to 10cm. This is probably because, unlike the grey and orange tinted sunglasses, it had already blocked most of the light at 1cm and when it was moved farther away, it already had most of the light blocked and now it was also farther away, so there would be virtually no light. When there were no sunglasses and the flashlight was 2cm from the light probe, there was an average of lux. When there were no sunglasses and the sunglasses was 6cm from the light probe there was an average of lux. When there were no sunglasses and the flashlight was 10cm from the light probe there was an average of lux. When there were no sunglasses and the flashlight was 20cm from the light probe there

7 Amount of Light (lux) was an average of 45.6 lux. With the grey tinted sunglasses, there was an average of lux when the flashlight and the light probe were each 1cm away from the lens. When the flashlight and light probe were each 3cm away from the lens on the grey tinted sunglasses there was an average of lux. When the flashlight and the light probe were each 5cm away from the lens there was an average of 138 lux. And when the flashlight and the light probe were each 10cm from the lens there was an average of 45.2 lux. With the orange tinted sunglasses there was an average of lux when the sunglasses and the light probe were each 1cm away from the lens. When the flashlight and the light probe were each 3cm from the lens there was an average of 72.3 lux. When the flashlight and the light probe were each 5cm away from the lens there was an average of 37.7 lux. When the flashlight and the light probe were each 10cm from the lens there was an average of 10.4 lux. For the black tinted sunglasses, there was an average of lux when the flashlight and the light probe were each 1cm from the lens. When the flashlight and the probe were each 3cm from the lens the average dropped to 43.2 lux. When the flashlight and the light probe were each 5cm away from the lens there was an average of 8.8 lux. When the flashlight and the light probe were each 10cm from the lens there was an average of 10.9 lux No Sunglasses Gray Tinted Black Tinted Orange Tinted Distance Away from Sunglasses (cm) Figure 5. The effects distance has on the amount of light sunglasses can block

8 Amount of Light (lux) In the third experiment, salt water on the lens was found to block the most light, followed by water on the lens, and then nothing at all on the lens. (see Figure 6). The amont of light that passed through the lens with salt water averaged 42 lux. When there was water on the lens, there was an average of 46.1 lux. When there was nothing on the lens, there was an average of 62.6 lux None Water Salt Water Liquid on Sunglasses Figure 6. The effect different liquids have on the amount of light sunglasses can block CONCLUSION Black tinted sunglasses were found to block the most light. It was expected that the black tinted sunglasses would block the most light, but it was not expected that the orange sunglasses would block more light than the grey sunglasses. The greater the sunglasses are from the light source the less light there is. This was expected. Salt water on the lens will block more light than regular water and if there was nothing on the lens. This was also expected. These results are important to others because when buying sunglasses, one might have to consider what color tint to buy. And interesting experiment to do in the future would be to test which brand or tint of sunglasses will block the most UV light compared to regular light.

9 CITATIONS Cowen, Meghan. The Study of Seeing Which Sunglasses are Best to Use. Cary Academy. Jan 12, Print. Dineen, Jacqueline. The Five Senses. Englewood Cliffs: Burdett Press, Print. How A Good Pair Of Shades Protect Your Eyeballs. Esquire. Hearst Communications, Inc. Web. Jan 19, "Radiation." Compton's by Britannica. Encyclopædia Britannica Online School Edition. Encyclopædia Britannica, Inc., Web. Jan 27, Tischler, Steve. How to Choose Sunglasses. REI. Web. Jan 19, Tyson, Jeff. How Sunglasses Work. Howstuffworks. HowStuffWorks, Inc. Web. Jan 20, Wikipedia Contributors. "Reflection (physics)." Wikipedia, The Free Encyclopedia. Wikipedia, The Free Encyclopedia, 1 Feb Web. Jan 27, Wikipedia Contributors. "Refraction." Wikipedia, The Free Encyclopedia. Wikipedia, The Free Encyclopedia, 8 Feb Web. Jan 27, Wikipedia Contributors. "Seawater." Wikipedia, The Free Encyclopedia. Wikipedia, The Free Encyclopedia, 15 Feb Web. Feb 2, Wikipedia Contributors. "Light." Wikipedia, The Free Encyclopedia. Wikipedia, The Free Encyclopedia, 8 Feb Web. Jan 27, Zamora, Antonio. Anatomy and Structure of Human Sense Organs. Scientific Psychic. Scientific Psychic. Web. Feb 10, 2012.

10 Zeman, Anne and Kelly, Kate. Everything You Need to Know About Science Homework. New York: Scholastic Inc, Print.

Life Science Chapter 2 Study Guide

Life Science Chapter 2 Study Guide Key concepts and definitions Waves and the Electromagnetic Spectrum Wave Energy Medium Mechanical waves Amplitude Wavelength Frequency Speed Properties of Waves (pages 40-41) Trough Crest Hertz Electromagnetic

More information

Refraction, Lenses, and Prisms

Refraction, Lenses, and Prisms CHAPTER 16 14 SECTION Sound and Light Refraction, Lenses, and Prisms KEY IDEAS As you read this section, keep these questions in mind: What happens to light when it passes from one medium to another? How

More information

Sense Organs (Eye) The eye is the sense organ of sight. The eye is shaped like a ball and is located in bony

Sense Organs (Eye) The eye is the sense organ of sight. The eye is shaped like a ball and is located in bony Sense Organs (Eye) The eye is the sense organ of sight. The eye is shaped like a ball and is located in bony sockets in the skull. It is held in place by six muscles which are joined to the outside of

More information

The Human Eye and a Camera 12.1

The Human Eye and a Camera 12.1 The Human Eye and a Camera 12.1 The human eye is an amazing optical device that allows us to see objects near and far, in bright light and dim light. Although the details of how we see are complex, the

More information

Optics Review (Chapters 11, 12, 13)

Optics Review (Chapters 11, 12, 13) Optics Review (Chapters 11, 12, 13) Complete the following questions in preparation for your test on FRIDAY. The notes that you need are in italics. Try to answer it on your own first, then check with

More information

Light waves of different wavelengths or combinations of wavelengths cause the human eye to detect different colors.

Light waves of different wavelengths or combinations of wavelengths cause the human eye to detect different colors. Section 2: Light waves of different wavelengths or combinations of wavelengths cause the human eye to detect different colors. K What I Know W What I Want to Find Out L What I Learned Essential Questions

More information

Physical Science Physics

Physical Science Physics Name Physical Science Physics C/By Due Date Code Period Earned Points PSP 5W4 Seeing Problems (divide by 11) Multiple Choice Identify the letter of the choice that best completes the statement or answers

More information

Name: Date: Block: Light Unit Study Guide Matching Match the correct definition to each term. 1. Waves

Name: Date: Block: Light Unit Study Guide Matching Match the correct definition to each term. 1. Waves Name: Date: Block: Light Unit Study Guide Matching Match the correct definition to each term. 1. Waves 2. Medium 3. Mechanical waves 4. Longitudinal waves 5. Transverse waves 6. Frequency 7. Reflection

More information

Chapter 16 Light Waves and Color

Chapter 16 Light Waves and Color Chapter 16 Light Waves and Color Lecture PowerPoint Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. What causes color? What causes reflection? What causes color?

More information

Name: Date: Waves and Electromagnetic Spectrum, Sound Waves, and Light Waves Study Guide For Final

Name: Date: Waves and Electromagnetic Spectrum, Sound Waves, and Light Waves Study Guide For Final Name: Date: Waves and Electromagnetic Spectrum, Sound Waves, and Light Waves Study Guide For Final Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A disturbance

More information

III: Vision. Objectives:

III: Vision. Objectives: III: Vision Objectives: Describe the characteristics of visible light, and explain the process by which the eye transforms light energy into neural. Describe how the eye and the brain process visual information.

More information

Instructional Resources/Materials: Light vocabulary cards printed (class set) Enough for each student (See card sort below)

Instructional Resources/Materials: Light vocabulary cards printed (class set) Enough for each student (See card sort below) Grade Level/Course: Grade 7 Life Science Lesson/Unit Plan Name: Light Card Sort Rationale/Lesson Abstract: Light vocabulary building, students identify and share vocabulary meaning. Timeframe: 10 to 20

More information

Vision. By: Karen, Jaqui, and Jen

Vision. By: Karen, Jaqui, and Jen Vision By: Karen, Jaqui, and Jen Activity: Directions: Stare at the black dot in the center of the picture don't look at anything else but the black dot. When we switch the picture you can look around

More information

Science 8 Unit 2 Pack:

Science 8 Unit 2 Pack: Science 8 Unit 2 Pack: Name Page 0 Section 4.1 : The Properties of Waves Pages By the end of section 4.1 you should be able to understand the following: Waves are disturbances that transmit energy from

More information

Holy Cross High School. Medical Physics Homework

Holy Cross High School. Medical Physics Homework Holy Cross High School Medical Physics Homework Homework 1: Refraction 1. A pupil shone light through a rectangular block as shown 75 222 15 40 50 a) The light changes direction as it passes from air to

More information

What Eyes Can See How Do You See What You See?

What Eyes Can See How Do You See What You See? Light Waves 2015 The Regents of the University of California Permission granted to purchaser to photocopy for classroom use. Image Credit: Shutterstock Animals eyes can look very different on the outside,

More information

Chapter: Sound and Light

Chapter: Sound and Light Table of Contents Chapter: Sound and Light Section 1: Sound Section 2: Reflection and Refraction of Light Section 3: Mirrors, Lenses, and the Eye Section 4: Light and Color 1 Sound Sound When an object

More information

Exam 3--PHYS 151--S15

Exam 3--PHYS 151--S15 Name: Class: Date: Exam 3--PHYS 151--S15 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Consider this diagram of the eye and answer the following questions.

More information

EYE. The eye is an extension of the brain

EYE. The eye is an extension of the brain I SEE YOU EYE The eye is an extension of the brain Eye brain proxomity Can you see : the optic nerve bundle? Spinal cord? The human Eye The eye is the sense organ for light. Receptors for light are found

More information

An object that refracts light. A from of energy that travels in waves and can be seen when it interacts with matter

An object that refracts light. A from of energy that travels in waves and can be seen when it interacts with matter Science Study Guide Light, Chapter 9 Fourth Grade Vocabulary Definition Absorb To take in Lens An object that refracts light Example Light A from of energy that travels in waves and can be seen when it

More information

Topic 4: Lenses and Vision. Lens a curved transparent material through which light passes (transmit) Ex) glass, plastic

Topic 4: Lenses and Vision. Lens a curved transparent material through which light passes (transmit) Ex) glass, plastic Topic 4: Lenses and Vision Lens a curved transparent material through which light passes (transmit) Ex) glass, plastic Double Concave Lenses Are thinner and flatter in the middle than around the edges.

More information

Refraction of Light. Refraction of Light

Refraction of Light. Refraction of Light 1 Refraction of Light Activity: Disappearing coin Place an empty cup on the table and drop a penny in it. Look down into the cup so that you can see the coin. Move back away from the cup slowly until the

More information

About this Book CAN YOU SEE THE BOARD IN THE CLASSROOM?

About this Book CAN YOU SEE THE BOARD IN THE CLASSROOM? About this Book CAN YOU SEE THE BOARD IN THE CLASSROOM? We all face health problems once in a while. Maybe you have come down with the flu or you got a cavity. Perhaps you have ADHD or diabetes. Some people

More information

Section 1: Sound. Sound and Light Section 1

Section 1: Sound. Sound and Light Section 1 Sound and Light Section 1 Section 1: Sound Preview Key Ideas Bellringer Properties of Sound Sound Intensity and Decibel Level Musical Instruments Hearing and the Ear The Ear Ultrasound and Sonar Sound

More information

Materials Cow eye, dissecting pan, dissecting kit, safety glasses, lab apron, and gloves

Materials Cow eye, dissecting pan, dissecting kit, safety glasses, lab apron, and gloves Cow Eye Dissection Guide Introduction How do we see? The eye processes the light through photoreceptors located in the eye that send signals to the brain and tells us what we are seeing. There are two

More information

12.1. Human Perception of Light. Perceiving Light

12.1. Human Perception of Light. Perceiving Light 12.1 Human Perception of Light Here is a summary of what you will learn in this section: Focussing of light in your eye is accomplished by the cornea, the lens, and the fluids contained in your eye. Light

More information

ID: A. Optics Review Package Answer Section TRUE/FALSE

ID: A. Optics Review Package Answer Section TRUE/FALSE Optics Review Package Answer Section TRUE/FALSE 1. T 2. F Reflection occurs when light bounces off a surface Refraction is the bending of light as it travels from one medium to another. 3. T 4. F 5. T

More information

AP PSYCH Unit 4.2 Vision 1. How does the eye transform light energy into neural messages? 2. How does the brain process visual information? 3.

AP PSYCH Unit 4.2 Vision 1. How does the eye transform light energy into neural messages? 2. How does the brain process visual information? 3. AP PSYCH Unit 4.2 Vision 1. How does the eye transform light energy into neural messages? 2. How does the brain process visual information? 3. What theories help us understand color vision? 4. Is your

More information

Photography (cont d)

Photography (cont d) Lecture 13 Ch. 4 Photography continued Ch. 5 The Eye Feb. 23, 2010 Exams will be back on Feb. 25 Homework 5 is due Feb. 25 Read all of Ch. 5. on The Eye. 1 Photography (cont d) Polarizing and haze filters

More information

LIGHT AND LIGHTING FUNDAMENTALS. Prepared by Engr. John Paul Timola

LIGHT AND LIGHTING FUNDAMENTALS. Prepared by Engr. John Paul Timola LIGHT AND LIGHTING FUNDAMENTALS Prepared by Engr. John Paul Timola LIGHT a form of radiant energy from natural sources and artificial sources. travels in the form of an electromagnetic wave, so it has

More information

Mastery. Chapter Content. What is light? CHAPTER 11 LESSON 1 C A

Mastery. Chapter Content. What is light? CHAPTER 11 LESSON 1 C A Chapter Content Mastery What is light? LESSON 1 Directions: Use the letters on the diagram to identify the parts of the wave listed below. Write the correct letters on the line provided. 1. amplitude 2.

More information

Light and Applications of Optics

Light and Applications of Optics UNIT 4 Light and Applications of Optics Topic 4.1: What is light and how is it produced? Topic 4.6: What are lenses and what are some of their applications? Topic 4.2 : How does light interact with objects

More information

HW- Finish your vision book!

HW- Finish your vision book! March 1 Table of Contents: 77. March 1 & 2 78. Vision Book Agenda: 1. Daily Sheet 2. Vision Notes and Discussion 3. Work on vision book! EQ- How does vision work? Do Now 1.Find your Vision Sensation fill-in-theblanks

More information

EYE STRUCTURE AND FUNCTION

EYE STRUCTURE AND FUNCTION Name: Class: Date: EYE STRUCTURE AND FUNCTION The eye is the body s organ of sight. It gathers light from the environment and forms an image on specialized nerve cells on the retina. Vision occurs when

More information

L 32 Light and Optics [2] The rainbow. Why is it a rain BOW? Atmospheric scattering. Different colors are refracted (bent) by different amounts

L 32 Light and Optics [2] The rainbow. Why is it a rain BOW? Atmospheric scattering. Different colors are refracted (bent) by different amounts L 32 Light and Optics [2] Measurements of the speed of light The bending of light refraction Total internal reflection Dispersion Dispersion Rainbows Atmospheric scattering Blue sky and red sunsets Mirrors

More information

ELECTROMAGNETIC WAVES AND LIGHT. Physics 5 th Six Weeks

ELECTROMAGNETIC WAVES AND LIGHT. Physics 5 th Six Weeks ELECTROMAGNETIC WAVES AND LIGHT Physics 5 th Six Weeks What are Electromagnetic Waves Electromagnetic Waves Sound and water waves are examples of waves resulting from energy being transferred from particle

More information

PSY 214 Lecture # (09/14/2011) (Introduction to Vision) Dr. Achtman PSY 214. Lecture 4 Topic: Introduction to Vision Chapter 3, pages 44-54

PSY 214 Lecture # (09/14/2011) (Introduction to Vision) Dr. Achtman PSY 214. Lecture 4 Topic: Introduction to Vision Chapter 3, pages 44-54 Corrections: A correction needs to be made to NTCO3 on page 3 under excitatory transmitters. It is possible to excite a neuron without sending information to another neuron. For example, in figure 2.12

More information

Chapter 23 Study Questions Name: Class:

Chapter 23 Study Questions Name: Class: Chapter 23 Study Questions Name: Class: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. When you look at yourself in a plane mirror, you

More information

Light Energy. By: Genevieve Rickey 5th Grade Mrs. Branin 2016

Light Energy. By: Genevieve Rickey 5th Grade Mrs. Branin 2016 Light Energy By: Genevieve Rickey 5th Grade Mrs. Branin 2016 Everyone has probably turned on a light before, but have you ever thought about what light is? Light is a form of energy that is reflected from

More information

Vision. The eye. Image formation. Eye defects & corrective lenses. Visual acuity. Colour vision. Lecture 3.5

Vision. The eye. Image formation. Eye defects & corrective lenses. Visual acuity. Colour vision. Lecture 3.5 Lecture 3.5 Vision The eye Image formation Eye defects & corrective lenses Visual acuity Colour vision Vision http://www.wired.com/wiredscience/2009/04/schizoillusion/ Perception of light--- eye-brain

More information

Chapter Introduction. Chapter Wrap-Up. and the Eye

Chapter Introduction. Chapter Wrap-Up. and the Eye Chapter Introduction Lesson 1 Lesson 2 Lesson 3 Sound Light Chapter Wrap-Up Mirrors, Lenses, and the Eye How do sound and light waves travel and interact with matter? What do you think? Before you begin,

More information

Characteristic Primary Color Primary Pigment. Colors red, green, blue magenta, cyan, yellow

Characteristic Primary Color Primary Pigment. Colors red, green, blue magenta, cyan, yellow Light Energy Chapter 14 You can use a compare and contrast table to show how two or more items are alike and how they are different. Look at the example shown below for primary colors and primary pigments.

More information

Unit 3: Energy On the Move

Unit 3: Energy On the Move 13 13 Table of Contents Unit 3: Energy On the Move Chapter 13: Light 13.1: The Behavior of Light 13.2: Light and Color 13.3: Producing Light 13.4: Using Light 13.1 The Behavior of Light Light and Matter

More information

SCIENCE 8 WORKBOOK Chapter 6 Human Vision Ms. Jamieson 2018 This workbook belongs to:

SCIENCE 8 WORKBOOK Chapter 6 Human Vision Ms. Jamieson 2018 This workbook belongs to: SCIENCE 8 WORKBOOK Chapter 6 Human Vision Ms. Jamieson 2018 This workbook belongs to: Eric Hamber Secondary 5025 Willow Street Vancouver, BC Table of Contents A. Chapter 6.1 Parts of the eye.. Parts of

More information

The Special Senses: Vision

The Special Senses: Vision OLLI Lecture 5 The Special Senses: Vision Vision The eyes are the sensory organs for vision. They collect light waves through their photoreceptors (located in the retina) and transmit them as nerve impulses

More information

Sensation. What is Sensation, Perception, and Cognition. All sensory systems operate the same, they only use different mechanisms

Sensation. What is Sensation, Perception, and Cognition. All sensory systems operate the same, they only use different mechanisms Sensation All sensory systems operate the same, they only use different mechanisms 1. Have a physical stimulus (e.g., light) 2. The stimulus emits some sort of energy 3. Energy activates some sort of receptor

More information

Sensation. Sensation. Perception. What is Sensation, Perception, and Cognition

Sensation. Sensation. Perception. What is Sensation, Perception, and Cognition All sensory systems operate the same, they only use different mechanisms Sensation 1. Have a physical stimulus (e.g., light) 2. The stimulus emits some sort of energy 3. Energy activates some sort of receptor

More information

Test Review # 8. Physics R: Form TR8.17A. Primary colors of light

Test Review # 8. Physics R: Form TR8.17A. Primary colors of light Physics R: Form TR8.17A TEST 8 REVIEW Name Date Period Test Review # 8 Light and Color. Color comes from light, an electromagnetic wave that travels in straight lines in all directions from a light source

More information

Notes: Light and Optics. Reflection. Refraction. Law of Reflection. Light goes straight 12/13/2012

Notes: Light and Optics. Reflection. Refraction. Law of Reflection. Light goes straight 12/13/2012 Notes: Light and Optics Light goes straight Light travels in a straight line unless it interacts with a medium. The material through which a wave travels is called a medium. Light can be reflected, refracted

More information

Vocabulary. Unit 9 Forms of Energy. ENERGY: The capacity for doing work.

Vocabulary. Unit 9 Forms of Energy. ENERGY: The capacity for doing work. Unit 9 Forms of Energy Main Idea: There are many forms of energy, including radiant energy and chemical energy. Energy can change form. ENERGY: The capacity for doing work. Heat, Light and Radiant Energy

More information

Slide 4 Now we have the same components that we find in our eye. The analogy is made clear in this slide. Slide 5 Important structures in the eye

Slide 4 Now we have the same components that we find in our eye. The analogy is made clear in this slide. Slide 5 Important structures in the eye Vision 1 Slide 2 The obvious analogy for the eye is a camera, and the simplest camera is a pinhole camera: a dark box with light-sensitive film on one side and a pinhole on the other. The image is made

More information

Lenses. A lens is any glass, plastic or transparent refractive medium with two opposite faces, and at least one of the faces must be curved.

Lenses. A lens is any glass, plastic or transparent refractive medium with two opposite faces, and at least one of the faces must be curved. PHYSICS NOTES ON A lens is any glass, plastic or transparent refractive medium with two opposite faces, and at least one of the faces must be curved. Types of There are two types of basic lenses. (1.)

More information

SCIENCE 8 WORKBOOK Chapter 6 Human Vision Ms. Jamieson 2018 This workbook belongs to:

SCIENCE 8 WORKBOOK Chapter 6 Human Vision Ms. Jamieson 2018 This workbook belongs to: SCIENCE 8 WORKBOOK Chapter 6 Human Vision Ms. Jamieson 2018 This workbook belongs to: Eric Hamber Secondary 5025 Willow Street Vancouver, BC Table of Contents A. Chapter 6.1 Parts of the eye.. Parts of

More information

3. Butter paper is an example for object. (A) a transparent (B) a translucent (C) an opaque (D) a luminous

3. Butter paper is an example for object. (A) a transparent (B) a translucent (C) an opaque (D) a luminous SETH ANANDRAM JAIPURIA SCHOOL VASUNDHARA, GHAZIABAD SESSION :2017-18 OLYMPIAD WORKSHEET CLASS VIII PHYSICS TOPIC : LIGHT 1. We are able to see objects around us because : (A) the objects absorb all the

More information

LESSON 5 - THE OPTICS OF THE EYE

LESSON 5 - THE OPTICS OF THE EYE LESSON 5 - THE OPTICS OF THE EYE Overview: By dissecting a mammalian eye, students will learn how the lens in the eye focuses light to form an image of an object. They will also learn the main parts of

More information

Table of Contents. Light and Color

Table of Contents. Light and Color light and color Table of Contents Light and Color Light Light Sources The Direction of Light Reflection Reflective Surfaces Light Bounces How Do We See? Light Through Objects Refraction Bending Light Experiment

More information

The Optics of Mirrors

The Optics of Mirrors Use with Text Pages 558 563 The Optics of Mirrors Use the terms in the list below to fill in the blanks in the paragraphs about mirrors. reversed smooth eyes concave focal smaller reflect behind ray convex

More information

Lenses. Images. Difference between Real and Virtual Images

Lenses. Images. Difference between Real and Virtual Images Linear Magnification (m) This is the factor by which the size of the object has been magnified by the lens in a direction which is perpendicular to the axis of the lens. Linear magnification can be calculated

More information

Chapter 11 Lesson 4 THE EYE

Chapter 11 Lesson 4 THE EYE Chapter 11 Lesson 4 THE EYE Eye Openers Museum of Vision You need a couple blank sheets of paper. Label each side #1 How We See #2 Binocular Vision #3 Optical Illusions #4 Persistence of Vision On Packet

More information

Light sources can be natural or artificial (man-made)

Light sources can be natural or artificial (man-made) Light The Sun is our major source of light Light sources can be natural or artificial (man-made) People and insects do not see the same type of light - people see visible light - insects see ultraviolet

More information

1. What are the components of your nervous system? 2. How do telescopes and human eyes work?

1. What are the components of your nervous system? 2. How do telescopes and human eyes work? Chapter 18 Vision and Hearing Although small, your eyes and ears are amazingly important and complex organs. Do you know how your eyes and ears work? Scientists have learned enough about these organs to

More information

COW S EYE. dissection. Dissecting a Cow s Eye Step-by-Step Instructions. Safety first!

COW S EYE. dissection. Dissecting a Cow s Eye Step-by-Step Instructions. Safety first! COW S EYE dissection Dissecting a Cow s Eye Step-by-Step Instructions One way to figure out how something works is to look inside it. To learn about how your eyes work, you can dissect, or take apart,

More information

Topic 1 - What is Light? 1. Radiation is the type of energy transfer which does not require... A matter B heat C waves D light

Topic 1 - What is Light? 1. Radiation is the type of energy transfer which does not require... A matter B heat C waves D light Grade 8 Unit 1 Test Student Class Topic 1 - What is Light? 1. Radiation is the type of energy transfer which does not require... A matter B heat C waves D light 2. Light-producing technologies, such as

More information

Handout 1: Color Survey

Handout 1: Color Survey Handout : Color Survey Have you ever thought about whether everyone sees colors in the same way? Here s your chance to find out! Your teacher will display crayons or slides. Categorize each of the 5 colors

More information

Conceptual Physics Fundamentals

Conceptual Physics Fundamentals Conceptual Physics Fundamentals Chapter 13: LIGHT WAVES This lecture will help you understand: Electromagnetic Spectrum Transparent and Opaque Materials Color Why the Sky is Blue, Sunsets are Red, and

More information

The Eye and Vision. Activities: Linda Shore, Ed.D. Exploratorium Teacher Institute Exploratorium, all rights reserved

The Eye and Vision. Activities: Linda Shore, Ed.D. Exploratorium Teacher Institute Exploratorium, all rights reserved The Eye and Vision By Linda S. Shore, Ed.D. Director,, San Francisco, California, United States lindas@exploratorium.edu Activities: Film Can Eyeglasses a pinhole can help you see better Vessels using

More information

LAB 12 Reflection and Refraction

LAB 12 Reflection and Refraction Cabrillo College Physics 10L Name LAB 12 Reflection and Refraction Read Hewitt Chapters 28 and 29 What to learn and explore Please read this! When light rays reflect off a mirror surface or refract through

More information

sclera pupil What happens to light that enters the eye?

sclera pupil What happens to light that enters the eye? Human Vision Textbook pages 202 215 Before You Read Some people can see things clearly from a great distance. Other people can see things clearly only when they are nearby. Why might this be? Write your

More information

Lecture 6 6 Color, Waves, and Dispersion Reading Assignment: Read Kipnis Chapter 7 Colors, Section I, II, III 6.1 Overview and History

Lecture 6 6 Color, Waves, and Dispersion Reading Assignment: Read Kipnis Chapter 7 Colors, Section I, II, III 6.1 Overview and History Lecture 6 6 Color, Waves, and Dispersion Reading Assignment: Read Kipnis Chapter 7 Colors, Section I, II, III 6.1 Overview and History In Lecture 5 we discussed the two different ways of talking about

More information

LlIGHT REVIEW PART 2 DOWNLOAD, PRINT and submit for 100 points

LlIGHT REVIEW PART 2 DOWNLOAD, PRINT and submit for 100 points WRITE ON SCANTRON WITH NUMBER 2 PENCIL DO NOT WRITE ON THIS TEST LlIGHT REVIEW PART 2 DOWNLOAD, PRINT and submit for 100 points Multiple Choice Identify the choice that best completes the statement or

More information

Vocabulary & Concepts. retina cornea pupil lens iris optic nerve ciliary muscles aqueous humour vitreous humour

Vocabulary & Concepts. retina cornea pupil lens iris optic nerve ciliary muscles aqueous humour vitreous humour Chapter 3 3.0 Human Eye P. 252-255 BC Science Connections Vocabulary & Concepts retina cornea pupil lens iris optic nerve ciliary muscles aqueous humour sclera vitreous humour Parts of the Eye Here s a

More information

Physics for Kids. Science of Light. What is light made of?

Physics for Kids. Science of Light. What is light made of? Physics for Kids Science of Light What is light made of? This is not an easy question. Light has no mass and is not really considered matter. So does it even exist? Of course it does! We couldn't live

More information

Chapter Human Vision

Chapter Human Vision Chapter 6 6.1 Human Vision How Light Enters the Eye Light enters the eye through the pupil. The pupil appears dark because light passes through it without reflecting back Pupil Iris = Coloured circle of

More information

The Human Eye Looking at your own eye with an Eye Scope

The Human Eye Looking at your own eye with an Eye Scope The Human Eye Looking at your own eye with an Eye Scope Rochelle Payne Ondracek Edited by Anne Starace Abstract The human ability to see is the result of an intricate interconnection of muscles, receptors

More information

Exemplar for Internal Achievement Standard Level 2

Exemplar for Internal Achievement Standard Level 2 Exemplar for internal assessment resource Physics 2.2A for Achievement Standard 91169 Exemplar for Internal Achievement Standard 91169 Level 2 This exemplar supports assessment against: Achievement Standard

More information

Human Eye Model OS-8477A

Human Eye Model OS-8477A Instruction Manual 02-3032A Human Eye Model OS-8477A 800-772-8700 www.pasco.com Table of Contents Contents Quick Start............................................................ Introduction...........................................................

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Lecture # 3 Digital Image Fundamentals ALI JAVED Lecturer SOFTWARE ENGINEERING DEPARTMENT U.E.T TAXILA Email:: ali.javed@uettaxila.edu.pk Office Room #:: 7 Presentation Outline

More information

Make a Refractor Telescope

Make a Refractor Telescope Make a Refractor Telescope In this activity students will build, and observe with, simple refractory telescope providing an interactive introduction to light, lenses and refraction. LEARNING OBJECTIVES

More information

Chapter 9: Light, Colour and Radiant Energy. Passed a beam of white light through a prism.

Chapter 9: Light, Colour and Radiant Energy. Passed a beam of white light through a prism. Chapter 9: Light, Colour and Radiant Energy Where is the colour in sunlight? In the 17 th century (1600 s), Sir Isaac Newton conducted a famous experiment. Passed a beam of white light through a prism.

More information

Teacher s Resource. 2. The student will see the images reversed left to right.

Teacher s Resource. 2. The student will see the images reversed left to right. Teacher s Resource Answer Booklet Reflection of Light With a Plane (Flat) Mirror Trace a Star Page 16 1. The individual students will complete the activity with varying degrees of difficulty. 2. The student

More information

Cow Eye Dissection. Online dissection, for kids abstaining:

Cow Eye Dissection. Online dissection, for kids abstaining: Cow Eye Dissection Introductory Discussion: Tell the students that we will be learning about what eyes are made of and how they work by dissecting a cow eye. Talk about where the eye comes from, and how

More information

Chapter Six Chapter Six

Chapter Six Chapter Six Chapter Six Chapter Six Vision Sight begins with Light The advantages of electromagnetic radiation (Light) as a stimulus are Electromagnetic energy is abundant, travels VERY quickly and in fairly straight

More information

Wonderlab The Statoil Gallery

Wonderlab The Statoil Gallery Wonderlab The Statoil Gallery and maths s Age (s) Topic 7 11 LIGHT INFORMATION 11-14 Location WONDERLAB: THE STATOIL GALLERY LEVEL 3, SCIENCE MUSEUM LONDON 1 What s the science? What more will you wonder?

More information

Physics Unit 5 Waves Light & Sound

Physics Unit 5 Waves Light & Sound Physics Unit 5 Waves Light & Sound Wave A rhythmic disturbance that transfers energy through matter and/or a vacuum Material a wave travels through is called the medium 2 types of waves: 1. Transverse

More information

KS3 Science. Light and Sound

KS3 Science. Light and Sound KS3 Science Light and Sound Light and Sound Key Words Write a definition for each of the key words listed below Key words Frequency Wavelength Amplitude Reflection Refraction Dispersion Light Spectrum

More information

Light waves interact with materials.

Light waves interact with materials. Page of 7 KEY CONCEPT Light waves interact with materials. BEFORE, you learned Mechanical waves respond to a change in medium Visible light is made up of EM waves EM waves interact with a new medium in

More information

LIGHT. ENERGY FOR LIFE 2 Presented by- Ms.Priya

LIGHT. ENERGY FOR LIFE 2 Presented by- Ms.Priya LIGHT ENERGY FOR LIFE 2 Presented by- Ms.Priya VOCABULARY 1. Opaque 2. Transparent 3. Translucent 4. Refraction 5. Reflection 6. Ray 7. Image 8. Virtual image 9. Medium 10.Vacuum 11. Lens 12. Spectrum

More information

UNIT 12 LIGHT and OPTICS

UNIT 12 LIGHT and OPTICS UNIT 12 LIGHT and OPTICS What is light? Light is simply a name for a range of electromagnetic radiation that can be detected by the human eye. What characteristic does light have? Light is electromagnetic

More information

Test Review # 9. Physics R: Form TR9.15A. Primary colors of light

Test Review # 9. Physics R: Form TR9.15A. Primary colors of light Physics R: Form TR9.15A TEST 9 REVIEW Name Date Period Test Review # 9 Light and Color. Color comes from light, an electromagnetic wave that travels in straight lines in all directions from a light source

More information

Light Energy. Lana Tiernan Mrs. Branin 2016

Light Energy. Lana Tiernan Mrs. Branin 2016 Light Energy Lana Tiernan Mrs. Branin 2016 What is Light? Light is something very important that is in our everyday lives. We usually don't realize how much we need it. Light is something that allows you

More information

Better than sunglasses. Filter sunglasses from Multilens

Better than sunglasses. Filter sunglasses from Multilens Better than sunglasses Filter sunglasses from Multilens Why Filter Sunglasses and not ordinary sunglasses? Most sunglasses have been designed with one priority they should look trendy. Many manufacturers

More information

CHAPTER 26: PROPERTIES OF LIGHT 02/19/18

CHAPTER 26: PROPERTIES OF LIGHT 02/19/18 CHAPTER 26: PROPERTIES OF LIGHT 02/19/18 ELECTROMAGNETIC WAVES At the end of last chapter, there was a more general statement of Faraday s Law: o Faraday s Law: An electric field is created in any region

More information

Section Electromagnetic Waves and the Electromagnetic Spectrum

Section Electromagnetic Waves and the Electromagnetic Spectrum Section 17.6 Electromagnetic Waves and the Electromagnetic Spectrum Electromagnetic Waves Can you name all the colors of the rainbow? Red, Orange, Yellow, Green, Blue, Indigo, Violet Electromagnetic Waves

More information

2. Pixels and Colors. Introduction to Pixels. Chapter 2. Investigation Pixels and Digital Images

2. Pixels and Colors. Introduction to Pixels. Chapter 2. Investigation Pixels and Digital Images 2. Pixels and Colors Introduction to Pixels The term pixel is a truncation of the phrase picture element which is exactly what a pixel is. A pixel is the smallest block of color in a digital picture. The

More information

11. What happens if two complementary colors are projected together at the correct intensities onto a white screen?

11. What happens if two complementary colors are projected together at the correct intensities onto a white screen? PreAP Physics Review Chapter 14 & 15 09 Name: Date: Period: _ Use the diagram to answer questions 1 13. The diagram represents three overlapping circles of equally intense light of different pure colors.

More information

PHYSICS. Chapter 35 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

PHYSICS. Chapter 35 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 35 Lecture RANDALL D. KNIGHT Chapter 35 Optical Instruments IN THIS CHAPTER, you will learn about some common optical instruments and

More information

Vision 1. Physical Properties of Light. Overview of Topics. Light, Optics, & The Eye Chaudhuri, Chapter 8

Vision 1. Physical Properties of Light. Overview of Topics. Light, Optics, & The Eye Chaudhuri, Chapter 8 Vision 1 Light, Optics, & The Eye Chaudhuri, Chapter 8 1 1 Overview of Topics Physical Properties of Light Physical properties of light Interaction of light with objects Anatomy of the eye 2 3 Light A

More information

Chapter 2: The Beginnings of Perception

Chapter 2: The Beginnings of Perception Chapter 2: The Beginnings of Perception We ll see the first three steps of the perceptual process for vision https:// 49.media.tumblr.co m/ 87423d97f3fbba8fa4 91f2f1bfbb6893/ tumblr_o1jdiqp4tc1 qabbyto1_500.gif

More information

Further reading. 1. Visual perception. Restricting the light. Forming an image. Angel, section 1.4

Further reading. 1. Visual perception. Restricting the light. Forming an image. Angel, section 1.4 Further reading Angel, section 1.4 Glassner, Principles of Digital mage Synthesis, sections 1.1-1.6. 1. Visual perception Spencer, Shirley, Zimmerman, and Greenberg. Physically-based glare effects for

More information

Vision Basics Measured in:

Vision Basics Measured in: Vision Vision Basics Sensory receptors in our eyes transduce light into meaningful images Light = packets of waves Measured in: Brightness amplitude of wave (high=bright) Color length of wave Saturation

More information