History of projection

Size: px
Start display at page:

Download "History of projection"

Transcription

1

2 History of projection Ancient times: Greeks wrote about laws of perspective Renaissance: perspective is adopted by artists Duccio c. 1308

3 History of projection Later Renaissance: perspective formalized precisely da Vinci c. 1498

4 Plane projection in drawing [Carlbom & Paciorek 78]

5 Pinhole imaging Frédo Durand MIT Computer Science and Artificial Intelligence Laboratory - fredo@mit.edu

6 Plane projection in drawing [CS 417 Spring 2002]

7 Plane projection in photography This is another model for what we are doing applies more directly in realistic rendering [CS 417 Spring 2002]

8 Plane projection in photography [Richard Zakia]

9 Jovan Popovic at MIT

10 modeling WorldCoords viewing glortho gluperspective glfrustrum Frédo Durand MIT Computer Science and Artificial Intelligence Laboratory - fredo@mit.edu

11 Viewing transformation [Cornell] the view matrix rewrites all coordinates in eye space

12 void glulookat( GLdouble eyex, GLdouble eyey, GLdouble eyez, GLdouble centerx, GLdouble centery, GLdouble centerz, GLdouble upx, GLdouble upy, GLdouble upz ); glmatrixmode(gl_modelview); glloadidentity(); glulookat( 0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0); glmatrixmode(gl_projection); glloadidentity(); gluperspective(50.0, 1.0, 3.0, 7.0);

13 glulookat() ModelView Matrix

14 Q about glulookat glulookat(eye, at, up) (A) glulookat(7,0,3, 2,0,3, 0,1,0); (B) glulookat(2,0,3, 7,0,3, 0,1,0); (C) gltranslate(-2,0,-3); glrotatey(-90); (D) glulookat(2,0,3, 7,0,3, 0,-1,0);

15 modeling WorldCoords viewing glortho gluperspective glfrustrum Frédo Durand MIT Computer Science and Artificial Intelligence Laboratory - fredo@mit.edu

16 Classical projections Emphasis on cube-like objects traditional in mechanical and architectural drawing Planar Geometric Projections Parallel Perspective Multiview Orthographic Orthographic Axonometric Oblique One-point Two-point Three-point [after Carlbom & Paciorek 78]

17 Parallel projection Viewing rays are parallel rather than diverging like a perspective camera that s far away

18 Frédo Durand MIT Computer Science and Artificial Intelligence Laboratory - fredo@mit.edu

19 Frédo Durand MIT Computer Science and Artificial Intelligence Laboratory - fredo@mit.edu

20 Multiview orthographic [Carlbom & Paciorek 78] projection plane parallel to a coordinate plane projection direction perpendicular to projection plane

21 Multiview orthographic [Carlbom & Paciorek 78]

22 Frédo Durand MIT Computer Science and Artificial Intelligence Laboratory - fredo@mit.edu

23 Frédo Durand MIT Computer Science and Artificial Intelligence Laboratory - fredo@mit.edu

24 Frédo Durand MIT Computer Science and Artificial Intelligence Laboratory - fredo@mit.edu

25 Frédo Durand MIT Computer Science and Artificial Intelligence Laboratory - fredo@mit.edu

26 Frédo Durand MIT Computer Science and Artificial Intelligence Laboratory - fredo@mit.edu

27 Frédo Durand MIT Computer Science and Artificial Intelligence Laboratory - fredo@mit.edu

28 Frédo Durand MIT Computer Science and Artificial Intelligence Laboratory - fredo@mit.edu

29 Frédo Durand MIT Computer Science and Artificial Intelligence Laboratory - fredo@mit.edu

30 [Marschner] [Levoy] Frédo Durand MIT Computer Science and Artificial Intelligence Laboratory - fredo@mit.edu

31 Q about gluperspective gluperspective(fovydegrees, aspect, znear, zfar); (A)gluPerspective(50, 1, 1, 1000); (B) gluperspective(50, 1.3, 0, 1000); (C) gluperspective(30, 1.3, 2, 15); (D)gluPerspective(180, 1, 3, 7); (E) Don t know

32 Frédo Durand MIT Computer Science and Artificial Intelligence Laboratory - fredo@mit.edu

33 Focal length: pinhole optics Verify focal length equivalence of pinhole and lens What is the view angle for a given focal length & 24x36mm film f d pinhole s Film/ sensor pinhole scene Film/ sensor Frédo Durand MIT Computer Science and Artificial Intelligence Laboratory - fredo@mit.edu

34 Lenses 24mm 50mm 135mm Frédo Durand MIT Computer Science and Artificial Intelligence Laboratory - fredo@mit.edu

35 Focal length: pinhole optics What happens when the focal length is doubled? Projected object size Amount of light gathered f d 2f s Film/ sensor pinhole scene Frédo Durand MIT Computer Science and Artificial Intelligence Laboratory - fredo@mit.edu

36 Focal length: pinhole optics What happens when the focal length is doubled? What happens when the scene is twice as far? How do we get the same relative object size when the focal length is doubled? What is the difference then? Is it equivalent to get closer and to zoom in? f d 2f 2d s Film/ sensor pinhole scene Frédo Durand MIT Computer Science and Artificial Intelligence Laboratory - fredo@mit.edu

37 Perspective vs. viewpoint Focal lens does NOT ONLY change subject size Same size by moving the viewpoint Different perspective (e.g. background) Snapshot-Perspective-Speed, aperture-filter-lighting-processing & Print-Make up-retouching Frédo Durand MIT Computer Science and Artificial Intelligence Laboratory - fredo@mit.edu

38 Perspective vs. viewpoint Telephoto makes it easier to select background (a small change in viewpoint is a big change in background. Frédo Durand MIT Computer Science and Artificial Intelligence Laboratory - fredo@mit.edu

39 Perspective vs. viewpoint Portrait: distortion with wide angle Why? Wide angle Standard Telephoto Frédo Durand MIT Computer Science and Artificial Intelligence Laboratory - fredo@mit.edu

40 Focal length: pinhole optics What happens when the film is half the size? Application: Real film is 36x24mm On the 20D, the sensor is 22.5 x 15.0 mm Conversion factor on the 20D? On the SD500, it is 1/1.8 " (7.18 x 5.32 mm) What is the mm zoom on the SD500? f d 2f ½s Film/ sensor pinhole scene Frédo Durand MIT Computer Science and Artificial Intelligence Laboratory - fredo@mit.edu

41 Exposure Two main parameters: Aperture (in f stop) Shutter speed (in fraction of a second) Frédo Durand MIT Computer Science and Artificial Intelligence Laboratory - fredo@mit.edu

42 Pinhole limit Frédo Durand MIT Computer Science and Artificial Intelligence Laboratory - fredo@mit.edu

43 Do we ever want the frustum to be non symetric for left/right? Frédo Durand MIT Computer Science and Artificial Intelligence Laboratory - fredo@mit.edu

44 Frédo Durand MIT Computer Science and Artificial Intelligence Laboratory - fredo@mit.edu

45 Frédo Durand MIT Computer Science and Artificial Intelligence Laboratory - fredo@mit.edu

46 Frédo Durand MIT Computer Science and Artificial Intelligence Laboratory - fredo@mit.edu Oblique Perspective Projection

47 Frédo Durand MIT Computer Science and Artificial Intelligence Laboratory - fredo@mit.edu

48 Frédo Durand MIT Computer Science and Artificial Intelligence Laboratory - fredo@mit.edu

49 Frédo Durand MIT Computer Science and Artificial Intelligence Laboratory - fredo@mit.edu

50 Frédo Durand MIT Computer Science and Artificial Intelligence Laboratory - fredo@mit.edu

History of projection. Perspective. History of projection. Plane projection in drawing

History of projection. Perspective. History of projection. Plane projection in drawing History of projection Ancient times: Greeks wrote about laws of perspective Renaissance: perspective is adopted by artists Perspective CS 4620 Lecture 3 Duccio c. 1308 1 2 History of projection Plane projection

More information

Perspective. Announcement: CS4450/5450. CS 4620 Lecture 3. Will be MW 8:40 9:55 How many can make the new time?

Perspective. Announcement: CS4450/5450. CS 4620 Lecture 3. Will be MW 8:40 9:55 How many can make the new time? Perspective CS 4620 Lecture 3 1 2 Announcement: CS4450/5450 Will be MW 8:40 9:55 How many can make the new time? 3 4 History of projection Ancient times: Greeks wrote about laws of perspective Renaissance:

More information

Perspective. Cornell CS4620/5620 Fall 2012 Lecture Kavita Bala 1 (with previous instructors James/Marschner)

Perspective. Cornell CS4620/5620 Fall 2012 Lecture Kavita Bala 1 (with previous instructors James/Marschner) CS4620/5620: Lecture 6 Perspective 1 Announcements HW 1 out Due in two weeks (Mon 9/17) Due right before class Turn it in online AND in class (preferably) 2 Transforming normal vectors Transforming surface

More information

Perspective. CS 4620 Lecture Steve Marschner. Cornell CS4620 Spring 2018 Lecture 5

Perspective. CS 4620 Lecture Steve Marschner. Cornell CS4620 Spring 2018 Lecture 5 Perspective CS 4620 Lecture 5 2018 Steve Marschner 1 Parallel projection To render an image of a 3D scene, we project it onto a plane Simplest kind of projection is parallel projection image projection

More information

Virtual and Digital Cameras

Virtual and Digital Cameras CS148: Introduction to Computer Graphics and Imaging Virtual and Digital Cameras Ansel Adams Topics Effect Cause Field of view Film size, focal length Perspective Lens, focal length Focus Dist. of lens

More information

CS354 Computer Graphics Viewing and Projections

CS354 Computer Graphics Viewing and Projections Slide Credit: Donald S. Fussell CS354 Computer Graphics Viewing and Projections Qixing Huang February 19th 2018 Eye Coordinates (not NDC) Planar Geometric Projections Standard projections project onto

More information

6.098 Digital and Computational Photography Advanced Computational Photography. Bill Freeman Frédo Durand MIT - EECS

6.098 Digital and Computational Photography Advanced Computational Photography. Bill Freeman Frédo Durand MIT - EECS 6.098 Digital and Computational Photography 6.882 Advanced Computational Photography Bill Freeman Frédo Durand MIT - EECS Administrivia PSet 1 is out Due Thursday February 23 Digital SLR initiation? During

More information

Visual Imaging in the Electronic Age. Drawing Perspective Images

Visual Imaging in the Electronic Age. Drawing Perspective Images Visual Imaging in the Electronic Age Lecture # 2 Drawing Perspective Images Brunelleschi s Experiment August 27, 2015 Prof. Donald P. Greenberg http://www.graphics.cornell.edu/academic/art2907/ User Name:

More information

Visual Imaging in the Electronic Age. Drawing Perspective Images

Visual Imaging in the Electronic Age. Drawing Perspective Images Visual Imaging in the Electronic Age Lecture # 2 Drawing Perspective Images Brunelleschi s Experiment August 25, 2016 Prof. Donald P. Greenberg http://www.graphics.cornell.edu/academic/art2907/ User Name:

More information

Computational Photography and Video. Prof. Marc Pollefeys

Computational Photography and Video. Prof. Marc Pollefeys Computational Photography and Video Prof. Marc Pollefeys Today s schedule Introduction of Computational Photography Course facts Syllabus Digital Photography What is computational photography Convergence

More information

Classical Viewing. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico

Classical Viewing. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico Classical Viewing Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico 1 Objectives Introduce the classical views Compare and contrast image

More information

Lenses and Focal Length

Lenses and Focal Length Task 2 Lenses and Focal Length During this task we will be exploring how a change in lens focal length can alter the way that the image is recorded on the film. To gain a better understanding before you

More information

Building a Real Camera

Building a Real Camera Building a Real Camera Home-made pinhole camera Slide by A. Efros http://www.debevec.org/pinhole/ Shrinking the aperture Why not make the aperture as small as possible? Less light gets through Diffraction

More information

3D Viewing. Introduction to Computer Graphics Torsten Möller / Manfred Klaffenböck. Machiraju/Zhang/Möller

3D Viewing. Introduction to Computer Graphics Torsten Möller / Manfred Klaffenböck. Machiraju/Zhang/Möller 3D Viewing Introduction to Computer Graphics Torsten Möller / Manfred Klaffenböck Machiraju/Zhang/Möller Reading Chapter 5 of Angel Chapter 13 of Hughes, van Dam, Chapter 7 of Shirley+Marschner Machiraju/Zhang/Möller

More information

Building a Real Camera. Slides Credit: Svetlana Lazebnik

Building a Real Camera. Slides Credit: Svetlana Lazebnik Building a Real Camera Slides Credit: Svetlana Lazebnik Home-made pinhole camera Slide by A. Efros http://www.debevec.org/pinhole/ Shrinking the aperture Why not make the aperture as small as possible?

More information

6.A44 Computational Photography

6.A44 Computational Photography Add date: Friday 6.A44 Computational Photography Depth of Field Frédo Durand We allow for some tolerance What happens when we close the aperture by two stop? Aperture diameter is divided by two is doubled

More information

Cameras and Sensors. Today. Today. It receives light from all directions. BIL721: Computational Photography! Spring 2015, Lecture 2!

Cameras and Sensors. Today. Today. It receives light from all directions. BIL721: Computational Photography! Spring 2015, Lecture 2! !! Cameras and Sensors Today Pinhole camera! Lenses! Exposure! Sensors! photo by Abelardo Morell BIL721: Computational Photography! Spring 2015, Lecture 2! Aykut Erdem! Hacettepe University! Computer Vision

More information

Lenses, exposure, and (de)focus

Lenses, exposure, and (de)focus Lenses, exposure, and (de)focus http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2017, Lecture 15 Course announcements Homework 4 is out. - Due October 26

More information

3D Viewing I. Acknowledgement: Some slides are from the Dr. Andries van Dam lecture. CMSC 435/634 August D Viewing I # /27

3D Viewing I. Acknowledgement: Some slides are from the Dr. Andries van Dam lecture. CMSC 435/634 August D Viewing I # /27 3D Viewing I Acknowledgement: Some slides are from the Dr. Andries van Dam lecture. From 3D to 2D: Orthographic and Perspective Projection Part 1 Geometrical Constructions Types of Projection Projection

More information

Projections Computer Graphics and Visualization

Projections Computer Graphics and Visualization Planar Geometric Fall 2010 Standard projections project onto a plane Projectors are lines that either converge at a center of projection are parallel Nonplanar projections are needed for applications such

More information

How do we see the world?

How do we see the world? The Camera 1 How do we see the world? Let s design a camera Idea 1: put a piece of film in front of an object Do we get a reasonable image? Credit: Steve Seitz 2 Pinhole camera Idea 2: Add a barrier to

More information

Understanding Focal Length

Understanding Focal Length JANUARY 19, 2018 BEGINNER Understanding Focal Length Featuring DIANE BERKENFELD, DAVE BLACK, MIKE CORRADO & LINDSAY SILVERMAN Focal length, usually represented in millimeters (mm), is the basic description

More information

Computer Vision. The Pinhole Camera Model

Computer Vision. The Pinhole Camera Model Computer Vision The Pinhole Camera Model Filippo Bergamasco (filippo.bergamasco@unive.it) http://www.dais.unive.it/~bergamasco DAIS, Ca Foscari University of Venice Academic year 2017/2018 Imaging device

More information

Two strategies for realistic rendering capture real world data synthesize from bottom up

Two strategies for realistic rendering capture real world data synthesize from bottom up Recap from Wednesday Two strategies for realistic rendering capture real world data synthesize from bottom up Both have existed for 500 years. Both are successful. Attempts to take the best of both world

More information

3D Viewing I. From 3D to 2D: Orthographic and Perspective Projection Part 1

3D Viewing I. From 3D to 2D: Orthographic and Perspective Projection Part 1 From 3D to 2D: Orthographic and Perspective Projection Part 1 3D Viewing I By Andries van Dam Geometrical Constructions Types of Projection Projection in Computer Graphics Jian Chen January 15, 2010 3D

More information

DSLR Cameras have a wide variety of lenses that can be used.

DSLR Cameras have a wide variety of lenses that can be used. Chapter 8-Lenses DSLR Cameras have a wide variety of lenses that can be used. The camera lens is very important in making great photographs. It controls what the sensor sees, how much of the scene is included,

More information

Basic principles of photography. David Capel 346B IST

Basic principles of photography. David Capel 346B IST Basic principles of photography David Capel 346B IST Latin Camera Obscura = Dark Room Light passing through a small hole produces an inverted image on the opposite wall Safely observing the solar eclipse

More information

Visual Imaging in the Electronic Age. Drawing Perspective Images

Visual Imaging in the Electronic Age. Drawing Perspective Images Visual Imaging in the Electronic Age Lecture # 2 Drawing Perspective Images Brunelleschi s Experiment August 24, 2017 Prof. Donald P. Greenberg http://www.graphics.cornell.edu/academic/art2907/ User Name:

More information

Image Formation. World Optics Sensor Signal. Computer Vision. Introduction to. Light (Energy) Source. Surface Imaging Plane. Pinhole Lens.

Image Formation. World Optics Sensor Signal. Computer Vision. Introduction to. Light (Energy) Source. Surface Imaging Plane. Pinhole Lens. Image Formation Light (Energy) Source Surface Imaging Plane Pinhole Lens World Optics Sensor Signal B&W Film Color Film TV Camera Silver Density Silver density in three color layers Electrical Today Optics:

More information

Lecture 22: Cameras & Lenses III. Computer Graphics and Imaging UC Berkeley CS184/284A, Spring 2017

Lecture 22: Cameras & Lenses III. Computer Graphics and Imaging UC Berkeley CS184/284A, Spring 2017 Lecture 22: Cameras & Lenses III Computer Graphics and Imaging UC Berkeley, Spring 2017 F-Number For Lens vs. Photo A lens s F-Number is the maximum for that lens E.g. 50 mm F/1.4 is a high-quality telephoto

More information

Image Formation III Chapter 1 (Forsyth&Ponce) Cameras Lenses & Sensors

Image Formation III Chapter 1 (Forsyth&Ponce) Cameras Lenses & Sensors Image Formation III Chapter 1 (Forsyth&Ponce) Cameras Lenses & Sensors Guido Gerig CS-GY 6643, Spring 2017 (slides modified from Marc Pollefeys, UNC Chapel Hill/ ETH Zurich, With content from Prof. Trevor

More information

Announcement A total of 5 (five) late days are allowed for projects. Office hours

Announcement A total of 5 (five) late days are allowed for projects. Office hours Announcement A total of 5 (five) late days are allowed for projects. Office hours Me: 3:50-4:50pm Thursday (or by appointment) Jake: 12:30-1:30PM Monday and Wednesday Image Formation Digital Camera Film

More information

Prof. Feng Liu. Spring /05/2017

Prof. Feng Liu. Spring /05/2017 Prof. Feng Liu Spring 2017 http://www.cs.pdx.edu/~fliu/courses/cs510/ 04/05/2017 Last Time Course overview Admin. Info Computational Photography 2 Today Digital Camera History of Camera Controlling Camera

More information

Basic Camera Concepts. How to properly utilize your camera

Basic Camera Concepts. How to properly utilize your camera Basic Camera Concepts How to properly utilize your camera Basic Concepts Shutter speed One stop Aperture, f/stop Depth of field and focal length / focus distance Shutter Speed When the shutter is closed

More information

Projection. Readings. Szeliski 2.1. Wednesday, October 23, 13

Projection. Readings. Szeliski 2.1. Wednesday, October 23, 13 Projection Readings Szeliski 2.1 Projection Readings Szeliski 2.1 Müller-Lyer Illusion by Pravin Bhat Müller-Lyer Illusion by Pravin Bhat http://www.michaelbach.de/ot/sze_muelue/index.html Müller-Lyer

More information

Lens Aperture. South Pasadena High School Final Exam Study Guide- 1 st Semester Photo ½. Study Guide Topics that will be on the Final Exam

Lens Aperture. South Pasadena High School Final Exam Study Guide- 1 st Semester Photo ½. Study Guide Topics that will be on the Final Exam South Pasadena High School Final Exam Study Guide- 1 st Semester Photo ½ Study Guide Topics that will be on the Final Exam The Rule of Thirds Depth of Field Lens and its properties Aperture and F-Stop

More information

Cameras. Steve Rotenberg CSE168: Rendering Algorithms UCSD, Spring 2017

Cameras. Steve Rotenberg CSE168: Rendering Algorithms UCSD, Spring 2017 Cameras Steve Rotenberg CSE168: Rendering Algorithms UCSD, Spring 2017 Camera Focus Camera Focus So far, we have been simulating pinhole cameras with perfect focus Often times, we want to simulate more

More information

The Camera : Computational Photography Alexei Efros, CMU, Fall 2005

The Camera : Computational Photography Alexei Efros, CMU, Fall 2005 The Camera 15-463: Computational Photography Alexei Efros, CMU, Fall 2005 How do we see the world? object film Let s design a camera Idea 1: put a piece of film in front of an object Do we get a reasonable

More information

Computational Approaches to Cameras

Computational Approaches to Cameras Computational Approaches to Cameras 11/16/17 Magritte, The False Mirror (1935) Computational Photography Derek Hoiem, University of Illinois Announcements Final project proposal due Monday (see links on

More information

The Camera : Computational Photography Alexei Efros, CMU, Fall 2008

The Camera : Computational Photography Alexei Efros, CMU, Fall 2008 The Camera 15-463: Computational Photography Alexei Efros, CMU, Fall 2008 How do we see the world? object film Let s design a camera Idea 1: put a piece of film in front of an object Do we get a reasonable

More information

VIEWING 1. CLASSICAL AND COMPUTER VIEWING. Computer Graphics

VIEWING 1. CLASSICAL AND COMPUTER VIEWING. Computer Graphics VIEWING We now investigate the multitude of ways in which we can describe our virtual camera. Along the way, we examine related topics, such as the relationship between classical viewing techniques and

More information

Coded photography , , Computational Photography Fall 2018, Lecture 14

Coded photography , , Computational Photography Fall 2018, Lecture 14 Coded photography http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2018, Lecture 14 Overview of today s lecture The coded photography paradigm. Dealing with

More information

Cameras. CSE 455, Winter 2010 January 25, 2010

Cameras. CSE 455, Winter 2010 January 25, 2010 Cameras CSE 455, Winter 2010 January 25, 2010 Announcements New Lecturer! Neel Joshi, Ph.D. Post-Doctoral Researcher Microsoft Research neel@cs Project 1b (seam carving) was due on Friday the 22 nd Project

More information

Reading. Angel. Chapter 5. Optional

Reading. Angel. Chapter 5. Optional Projections Reading Angel. Chapter 5 Optional David F. Rogers and J. Alan Adams, Mathematical Elements for Computer Graphics, Second edition, McGraw-Hill, New York, 1990, Chapter 3. The 3D synthetic camera

More information

Reading. Projections. The 3D synthetic camera model. Imaging with the synthetic camera. Angel. Chapter 5. Optional

Reading. Projections. The 3D synthetic camera model. Imaging with the synthetic camera. Angel. Chapter 5. Optional Reading Angel. Chapter 5 Optional Projections David F. Rogers and J. Alan Adams, Mathematical Elements for Computer Graphics, Second edition, McGraw-Hill, New York, 1990, Chapter 3. The 3D snthetic camera

More information

Topic 6 - Optics Depth of Field and Circle Of Confusion

Topic 6 - Optics Depth of Field and Circle Of Confusion Topic 6 - Optics Depth of Field and Circle Of Confusion Learning Outcomes In this lesson, we will learn all about depth of field and a concept known as the Circle of Confusion. By the end of this lesson,

More information

Cameras. Digital Visual Effects, Spring 2008 Yung-Yu Chuang 2008/2/26. with slides by Fredo Durand, Brian Curless, Steve Seitz and Alexei Efros

Cameras. Digital Visual Effects, Spring 2008 Yung-Yu Chuang 2008/2/26. with slides by Fredo Durand, Brian Curless, Steve Seitz and Alexei Efros Cameras Digital Visual Effects, Spring 2008 Yung-Yu Chuang 2008/2/26 with slides by Fredo Durand, Brian Curless, Steve Seitz and Alexei Efros Camera trial #1 scene film Put a piece of film in front of

More information

Projection. Projection. Image formation. Müller-Lyer Illusion. Readings. Readings. Let s design a camera. Szeliski 2.1. Szeliski 2.

Projection. Projection. Image formation. Müller-Lyer Illusion. Readings. Readings. Let s design a camera. Szeliski 2.1. Szeliski 2. Projection Projection Readings Szeliski 2.1 Readings Szeliski 2.1 Müller-Lyer Illusion Image formation object film by Pravin Bhat http://www.michaelbach.de/ot/sze_muelue/index.html Let s design a camera

More information

F-number sequence. a change of f-number to the next in the sequence corresponds to a factor of 2 change in light intensity,

F-number sequence. a change of f-number to the next in the sequence corresponds to a factor of 2 change in light intensity, 1 F-number sequence a change of f-number to the next in the sequence corresponds to a factor of 2 change in light intensity, 0.7, 1, 1.4, 2, 2.8, 4, 5.6, 8, 11, 16, 22, 32, Example: What is the difference

More information

Physics 1230 Homework 8 Due Friday June 24, 2016

Physics 1230 Homework 8 Due Friday June 24, 2016 At this point, you know lots about mirrors and lenses and can predict how they interact with light from objects to form images for observers. In the next part of the course, we consider applications of

More information

An f-number of X may also be displayed as 1:X (instead of f/x), as shown below for the Canon f/2.8 lens.

An f-number of X may also be displayed as 1:X (instead of f/x), as shown below for the Canon f/2.8 lens. LENS Lens The Focal Length The Lens Ratio An f-number of X may also be displayed as 1:X (instead of f/x), as shown below for the Canon 70-200 f/2.8 lens. Note: Aperture opening (iris) is rarely a perfect

More information

Capturing Light. The Light Field. Grayscale Snapshot 12/1/16. P(q, f)

Capturing Light. The Light Field. Grayscale Snapshot 12/1/16. P(q, f) Capturing Light Rooms by the Sea, Edward Hopper, 1951 The Penitent Magdalen, Georges de La Tour, c. 1640 Some slides from M. Agrawala, F. Durand, P. Debevec, A. Efros, R. Fergus, D. Forsyth, M. Levoy,

More information

What will be on the midterm?

What will be on the midterm? What will be on the midterm? CS 178, Spring 2014 Marc Levoy Computer Science Department Stanford University General information 2 Monday, 7-9pm, Cubberly Auditorium (School of Edu) closed book, no notes

More information

IMAGE FORMATION. Light source properties. Sensor characteristics Surface. Surface reflectance properties. Optics

IMAGE FORMATION. Light source properties. Sensor characteristics Surface. Surface reflectance properties. Optics IMAGE FORMATION Light source properties Sensor characteristics Surface Exposure shape Optics Surface reflectance properties ANALOG IMAGES An image can be understood as a 2D light intensity function f(x,y)

More information

Coded photography , , Computational Photography Fall 2017, Lecture 18

Coded photography , , Computational Photography Fall 2017, Lecture 18 Coded photography http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2017, Lecture 18 Course announcements Homework 5 delayed for Tuesday. - You will need cameras

More information

Creating a Panorama Photograph Using Photoshop Elements

Creating a Panorama Photograph Using Photoshop Elements Creating a Panorama Photograph Using Photoshop Elements Following are guidelines when shooting photographs for a panorama. Overlap images sufficiently -- Images should overlap approximately 15% to 40%.

More information

Section 8. Objectives

Section 8. Objectives 8-1 Section 8 Objectives Objectives Simple and Petval Objectives are lens element combinations used to image (usually) distant objects. To classify the objective, separated groups of lens elements are

More information

Unit 1: Image Formation

Unit 1: Image Formation Unit 1: Image Formation 1. Geometry 2. Optics 3. Photometry 4. Sensor Readings Szeliski 2.1-2.3 & 6.3.5 1 Physical parameters of image formation Geometric Type of projection Camera pose Optical Sensor

More information

Image Formation. Dr. Gerhard Roth. COMP 4102A Winter 2015 Version 3

Image Formation. Dr. Gerhard Roth. COMP 4102A Winter 2015 Version 3 Image Formation Dr. Gerhard Roth COMP 4102A Winter 2015 Version 3 1 Image Formation Two type of images Intensity image encodes light intensities (passive sensor) Range (depth) image encodes shape and distance

More information

Chapter 6-Existing Light Photography

Chapter 6-Existing Light Photography Chapter 6-Existing Light Photography All of these images were taken with available light. Painting with light-using available light Photography that includes artificial light which naturally exists in

More information

Physics 1230: Light and Color. Guest Lecture, Jack again. Lecture 23: More about cameras

Physics 1230: Light and Color. Guest Lecture, Jack again. Lecture 23: More about cameras Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230 Guest Lecture, Jack again Lecture 23: More about

More information

Digital Photography I: Creating Images with Impact v

Digital Photography I: Creating Images with Impact v Digital Photography I: Creating Images with Impact v18 18-19 The Digital Photography I course focuses on the basics of photography, including building an understanding of aperture, shutter speed, lighting,

More information

Lens Openings & Shutter Speeds

Lens Openings & Shutter Speeds Illustrations courtesy Life Magazine Encyclopedia of Photography Lens Openings & Shutter Speeds Controlling Exposure & the Rendering of Space and Time Equal Lens Openings/ Double Exposure Time Here is

More information

Computational Cameras. Rahul Raguram COMP

Computational Cameras. Rahul Raguram COMP Computational Cameras Rahul Raguram COMP 790-090 What is a computational camera? Camera optics Camera sensor 3D scene Traditional camera Final image Modified optics Camera sensor Image Compute 3D scene

More information

The Bellows Extension Exposure Factor: Including Useful Reference Charts for use in the Field

The Bellows Extension Exposure Factor: Including Useful Reference Charts for use in the Field The Bellows Extension Exposure Factor: Including Useful Reference Charts for use in the Field Robert B. Hallock hallock@physics.umass.edu revised May 23, 2005 Abstract: The need for a bellows correction

More information

Digital Photography I: Creating Images with Impact!

Digital Photography I: Creating Images with Impact! Course Syllabus Digital Photography I: Creating Images with Impact! Course Description Have you ever wondered how photographers take such great pictures? Have you tried to take photographs and wondered

More information

Cameras. Shrinking the aperture. Camera trial #1. Pinhole camera. Digital Visual Effects Yung-Yu Chuang. Put a piece of film in front of an object.

Cameras. Shrinking the aperture. Camera trial #1. Pinhole camera. Digital Visual Effects Yung-Yu Chuang. Put a piece of film in front of an object. Camera trial #1 Cameras Digital Visual Effects Yung-Yu Chuang scene film with slides by Fredo Durand, Brian Curless, Steve Seitz and Alexei Efros Put a piece of film in front of an object. Pinhole camera

More information

Transform 3D objects on to a 2D plane using projections

Transform 3D objects on to a 2D plane using projections PROJECTIONS 1 Transform 3D objects on to a 2D plane using projections 2 types of projections Perspective Parallel In parallel projection, coordinate positions are transformed to the view plane along parallel

More information

Graphic Communications

Graphic Communications Graphic Communications Lecture 8: Projections Assoc. Prof.Dr. Cengizhan İpbüker İTÜ-SUNY 2004-2005 2005 Fall ipbuker_graph06 Projections The projections used to display 3D objects in 2D are called Planar

More information

Telecentric Imaging Object space telecentricity stop source: edmund optics The 5 classical Seidel Aberrations First order aberrations Spherical Aberration (~r 4 ) Origin: different focal lengths for different

More information

Elements of Exposure

Elements of Exposure Elements of Exposure Exposure refers to the amount of light and the duration of time that light is allowed to expose film or a digital-imaging sensor. Exposure is controlled by f-stop, shutter speed, and

More information

Introduction to camera usage. The universal manual controls of most cameras

Introduction to camera usage. The universal manual controls of most cameras Introduction to camera usage A camera in its barest form is simply a light tight container that utilizes a lens with iris, a shutter that has variable speeds, and contains a sensitive piece of media, either

More information

Interactive Computer Graphics A TOP-DOWN APPROACH WITH SHADER-BASED OPENGL

Interactive Computer Graphics A TOP-DOWN APPROACH WITH SHADER-BASED OPENGL International Edition Interactive Computer Graphics A TOP-DOWN APPROACH WITH SHADER-BASED OPENGL Sixth Edition Edward Angel Dave Shreiner 228 Chapter 4 Viewing Front elevation Elevation oblique Plan oblique

More information

Image formation - Cameras. Grading & Project. About the course. Tentative Schedule. Course Content. Students introduction

Image formation - Cameras. Grading & Project. About the course. Tentative Schedule. Course Content. Students introduction About the course Instructors: Haibin Ling (hbling@temple, Wachman 35) Hours Lecture: Tuesda 5:3-8:pm, TTLMAN 43B Office hour: Tuesda 3: - 5:pm, or b appointment Textbook Computer Vision: Models, Learning,

More information

Image stabilization (IS)

Image stabilization (IS) Image stabilization (IS) CS 178, Spring 2009 Marc Levoy Computer Science Department Stanford University Outline what are the causes of camera shake? and how can you avoid it (without having an IS system)?

More information

Digital Photography: Course Syllabus

Digital Photography: Course Syllabus Digital Photography: Course Syllabus Digital Photography I: Creating Images with Impact! COURSE DESCRIPTION: In the digital photography course, students will learn creative photographic skills and processes.

More information

Your objective: maximum control, maximum manageability

Your objective: maximum control, maximum manageability Your objective: maximum control, maximum manageability Know how the light works Know how photography works Know the camera you re using Making the most of what you have to work with. ISO This is the first

More information

Lecture 02 Image Formation 1

Lecture 02 Image Formation 1 Institute of Informatics Institute of Neuroinformatics Lecture 02 Image Formation 1 Davide Scaramuzza http://rpg.ifi.uzh.ch 1 Lab Exercise 1 - Today afternoon Room ETH HG E 1.1 from 13:15 to 15:00 Work

More information

Image Formation and Capture. Acknowledgment: some figures by B. Curless, E. Hecht, W.J. Smith, B.K.P. Horn, and A. Theuwissen

Image Formation and Capture. Acknowledgment: some figures by B. Curless, E. Hecht, W.J. Smith, B.K.P. Horn, and A. Theuwissen Image Formation and Capture Acknowledgment: some figures by B. Curless, E. Hecht, W.J. Smith, B.K.P. Horn, and A. Theuwissen Image Formation and Capture Real world Optics Sensor Devices Sources of Error

More information

Exploring 3D in Flash

Exploring 3D in Flash 1 Exploring 3D in Flash We live in a three-dimensional world. Objects and spaces have width, height, and depth. Various specialized immersive technologies such as special helmets, gloves, and 3D monitors

More information

Projection. Announcements. Müller-Lyer Illusion. Image formation. Readings Nalwa 2.1

Projection. Announcements. Müller-Lyer Illusion. Image formation. Readings Nalwa 2.1 Announcements Mailing list (you should have received messages) Project 1 additional test sequences online Projection Readings Nalwa 2.1 Müller-Lyer Illusion Image formation object film by Pravin Bhat http://www.michaelbach.de/ot/sze_muelue/index.html

More information

Projections. Conceptual Model of the 3D viewing process

Projections. Conceptual Model of the 3D viewing process Projections Projections Conceptual Model of the 3D viewing process 3D Projections (Rays converge on eye position) (Rays parallel to view plane) Perspective Parallel Orthographic Oblique Elevations Axonometric

More information

Presented to you today by the Fort Collins Digital Camera Club

Presented to you today by the Fort Collins Digital Camera Club Presented to you today by the Fort Collins Digital Camera Club www.fcdcc.com Photography: February 19, 2011 Fort Collins Digital Camera Club 2 Film Photography: Photography using light sensitive chemicals

More information

Topic 1 - A Closer Look At Exposure Shutter Speeds

Topic 1 - A Closer Look At Exposure Shutter Speeds Getting more from your Camera Topic 1 - A Closer Look At Exposure Shutter Speeds Learning Outcomes In this lesson, we will look at exposure in more detail: ISO, Shutter speed and aperture. We will be reviewing

More information

Intro to Digital SLR and ILC Photography Week 1 The Camera Body

Intro to Digital SLR and ILC Photography Week 1 The Camera Body Intro to Digital SLR and ILC Photography Week 1 The Camera Body Instructor: Roger Buchanan Class notes are available at www.thenerdworks.com Course Outline: Week 1 Camera Body; Week 2 Lenses; Week 3 Accessories,

More information

Buxton & District U3A Digital Photography Beginners Group

Buxton & District U3A Digital Photography Beginners Group U3A Group Lesson 7: Controlling exposure / focal length / perspective / composition for a better picture & Taking Pictures of people 3 December 2013 Programme Buxton & District 19 September Exploring your

More information

Film Cameras Digital SLR Cameras Point and Shoot Bridge Compact Mirror less

Film Cameras Digital SLR Cameras Point and Shoot Bridge Compact Mirror less Film Cameras Digital SLR Cameras Point and Shoot Bridge Compact Mirror less Portraits Landscapes Macro Sports Wildlife Architecture Fashion Live Music Travel Street Weddings Kids Food CAMERA SENSOR

More information

Wavefront coding. Refocusing & Light Fields. Wavefront coding. Final projects. Is depth of field a blur? Frédo Durand Bill Freeman MIT - EECS

Wavefront coding. Refocusing & Light Fields. Wavefront coding. Final projects. Is depth of field a blur? Frédo Durand Bill Freeman MIT - EECS 6.098 Digital and Computational Photography 6.882 Advanced Computational Photography Final projects Send your slides by noon on Thrusday. Send final report Refocusing & Light Fields Frédo Durand Bill Freeman

More information

Overview Why are photos used in engineering reports? Micro to macro and beyond Camera techno stuff Backgrounds and lighting

Overview Why are photos used in engineering reports? Micro to macro and beyond Camera techno stuff Backgrounds and lighting How to Take Pretty Good Pictures for Engineering Reports Overview Why are photos used in engineering reports? Micro to macro and beyond Camera techno stuff Backgrounds and lighting Why Include Photo s?

More information

The ultimate camera. Computational Photography. Creating the ultimate camera. The ultimate camera. What does it do?

The ultimate camera. Computational Photography. Creating the ultimate camera. The ultimate camera. What does it do? Computational Photography The ultimate camera What does it do? Image from Durand & Freeman s MIT Course on Computational Photography Today s reading Szeliski Chapter 9 The ultimate camera Infinite resolution

More information

Camera Simulation. References. Photography, B. London and J. Upton Optics in Photography, R. Kingslake The Camera, The Negative, The Print, A.

Camera Simulation. References. Photography, B. London and J. Upton Optics in Photography, R. Kingslake The Camera, The Negative, The Print, A. Camera Simulation Effect Cause Field of view Film size, focal length Depth of field Aperture, focal length Exposure Film speed, aperture, shutter Motion blur Shutter References Photography, B. London and

More information

Chapter 18 Optical Elements

Chapter 18 Optical Elements Chapter 18 Optical Elements GOALS When you have mastered the content of this chapter, you will be able to achieve the following goals: Definitions Define each of the following terms and use it in an operational

More information

Cameras. Outline. Pinhole camera. Camera trial #1. Pinhole camera Film camera Digital camera Video camera

Cameras. Outline. Pinhole camera. Camera trial #1. Pinhole camera Film camera Digital camera Video camera Outline Cameras Pinhole camera Film camera Digital camera Video camera Digital Visual Effects, Spring 2007 Yung-Yu Chuang 2007/3/6 with slides by Fredo Durand, Brian Curless, Steve Seitz and Alexei Efros

More information

Topic 3 - A Closer Look At Exposure: Aperture

Topic 3 - A Closer Look At Exposure: Aperture Getting more from your Camera Topic 3 - A Closer Look At Exposure: Aperture Learning Outcomes In this lesson, we will revisit the concept of aperture and the role it plays in your photography and by the

More information

Overview. Pinhole camera model Projective geometry Vanishing points and lines Projection matrix Cameras with Lenses Color Digital image

Overview. Pinhole camera model Projective geometry Vanishing points and lines Projection matrix Cameras with Lenses Color Digital image Camera & Color Overview Pinhole camera model Projective geometry Vanishing points and lines Projection matrix Cameras with Lenses Color Digital image Book: Hartley 6.1, Szeliski 2.1.5, 2.2, 2.3 The trip

More information

CCD Requirements for Digital Photography

CCD Requirements for Digital Photography IS&T's 2 PICS Conference IS&T's 2 PICS Conference Copyright 2, IS&T CCD Requirements for Digital Photography Richard L. Baer Hewlett-Packard Laboratories Palo Alto, California Abstract The performance

More information

Dappled Photography: Mask Enhanced Cameras for Heterodyned Light Fields and Coded Aperture Refocusing

Dappled Photography: Mask Enhanced Cameras for Heterodyned Light Fields and Coded Aperture Refocusing Dappled Photography: Mask Enhanced Cameras for Heterodyned Light Fields and Coded Aperture Refocusing Ashok Veeraraghavan, Ramesh Raskar, Ankit Mohan & Jack Tumblin Amit Agrawal, Mitsubishi Electric Research

More information

How to combine images in Photoshop

How to combine images in Photoshop How to combine images in Photoshop In Photoshop, you can use multiple layers to combine images, but there are two other ways to create a single image from mulitple images. Create a panoramic image with

More information

Why learn about photography in this course?

Why learn about photography in this course? Why learn about photography in this course? Geri's Game: Note the background is blurred. - photography: model of image formation - Many computer graphics methods use existing photographs e.g. texture &

More information

COURSE NAME: PHOTOGRAPHY AND AUDIO VISUAL PRODUCTION (VOCATIONAL) FOR UNDER GRADUATE (FIRST YEAR)

COURSE NAME: PHOTOGRAPHY AND AUDIO VISUAL PRODUCTION (VOCATIONAL) FOR UNDER GRADUATE (FIRST YEAR) COURSE NAME: PHOTOGRAPHY AND AUDIO VISUAL PRODUCTION (VOCATIONAL) FOR UNDER GRADUATE (FIRST YEAR) PAPER TITLE: BASIC PHOTOGRAPHIC UNIT - 3 : SIMPLE LENS TOPIC: LENS PROPERTIES AND DEFECTS OBJECTIVES By

More information