Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Question 1: Define the principal focus of a concave mirror. Light rays that are parallel to the principal axis of a concave mirror converge at a specific point on its principal axis after reflecting from the mirror. This point is known as the principal focus of the concave mirror. Question 2: The radius of curvature of a spherical mirror is 20 cm. What is its focal length? Radius of curvature, R = 20 cm Radius of curvature of a spherical mirror = 2 Focal length (f) R = 2f Hence, the focal length of the given spherical mirror is 10 cm. Question 3: Name the mirror that can give an erect and enlarged image of an object. When an object is placed between the pole and the principal focus of a concave mirror, the image formed is virtual, erect, and enlarged. Question 4: Why do we prefer a convex mirror as a rear-view mirror in vehicles? Convex mirrors give a virtual, erect, and diminished image of the objects placed in front of them. They are preferred as a rear-view mirror in vehicles because they give a wider field of view, which allows the driver to see most of the traffic behind him.

2 Question 1: Find the focal length of a convex mirror whose radius of curvature is 32 cm. Radius of curvature, R = 32 cm Radius of curvature = 2 Focal length (f) R = 2f Hence, the focal length of the given convex mirror is 16 cm. Question 2: A concave mirror produces three times magnified (enlarged) real image of object placed at 10 cm in front of it. Where is the image located? Magnification produced by a spherical mirror is given by the relation, Let the height of the object, h o = h Then, height of the image, h I = 3h (Image formed is real) Object distance, u = 10 cm v = 3 ( 10) = 30 cm Here, the negative sign indicates that an inverted image is formed at a distance of 30 cm in front of the given concave mirror.

3 Question 1: A ray of light travelling in air enters obliquely into water. Does the light ray bend towards the normal or away from the normal? Why? The light ray bends towards the normal. When a ray of light travels from an optically rarer medium to an optically denser medium, it gets bent towards the normal. Since water is optically denser than air, a ray of light travelling from air into the water will bend towards the normal. Question 2: Light enters from air to glass having refractive index What is the speed of light in the glass? The speed of light in vacuum is m s 1. Refractive index of a medium n m is given by, Speed of light in vacuum, c = m s 1 Refractive index of glass, n g = 1.50 Speed of light in the glass, Question 3: Find out, from Table, the medium having highest optical density. Also find the medium with lowest optical density. Material medium Refractive index Material medium Refractive index Air Canada Balsam 1.53 Ice Water 1.33 Rock salt 1.54 Alcohol

4 Kerosene 1.44 Carbon disulphide 1.63 Fused quartz 1.46 Dense flint glass 1.65 Turpentine oil 1.47 Ruby 1.71 Benzene 1.50 Sapphire 1.77 Crown glass 1.52 Diamond 2.42 Highest optical density = Diamond Lowest optical density = Air Optical density of a medium is directly related with the refractive index of that medium. A medium which has the highest refractive index will have the highest optical density and vice-versa. It can be observed from table 10.3 that diamond and air respectively have the highest and lowest refractive index. Therefore, diamond has the highest optical density and air has the lowest optical density. Question 4: You are given kerosene, turpentine and water. In which of these does the light travel fastest? Use the information given in Table. Material medium Refractive index Material medium Refractive index Air Canada Balsam 1.53 Ice Water 1.33 Rock salt 1.54 Alcohol

5 Kerosene 1.44 Carbon disulphide 1.63 Fused quartz 1.46 Dense flint glass 1.65 Turpentine oil 1.47 Ruby 1.71 Benzene 1.50 Sapphire 1.77 Crown glass 1.52 Diamond 2.42 Speed of light in a medium is given by the relation for refractive index (n m ). The relation is given as It can be inferred from the relation that light will travel the slowest in the material which has the highest refractive index and travel the fastest in the material which has the lowest refractive index. It can be observed from table 10.3 that the refractive indices of kerosene, turpentine, and water are 1.44, 1.47, and 1.33 respectively. Therefore, light travels the fastest in water. Question 5: The refractive index of diamond is What is the meaning of this statement? Refractive index of a medium n m is related to the speed of light in that medium v by the relation:

6 Where, c is the speed of light in vacuum/air The refractive index of diamond is This suggests that the speed of light in diamond will reduce by a factor 2.42 compared to its speed in air.

7 Question 1: Define 1 dioptre of power of a lens. Power of lens is defined as the reciprocal of its focal length. If P is the power of a lens of focal length F in metres, then The S.I. unit of power of a lens is Dioptre. It is denoted by D. 1 dioptre is defined as the power of a lens of focal length 1 metre. 1 D = 1 m 1 Question 2: A convex lens forms a real and inverted image of a needle at a distance of 50 cm from it. Where is the needle placed in front of the convex lens if the image is equal to the size of the object? Also, find the power of the lens. When an object is placed at the centre of curvature, 2F 1, of a convex lens, its image is formed at the centre of curvature, 2F 2, on the other side of the lens. The image formed is inverted and of the same size as the object, as shown in the given figure. It is given that the image of the needle is formed at a distance of 50 cm from the convex lens. Hence, the needle is placed in front of the lens at a distance of 50 cm. Object distance, u = 50 cm Image distance, v = 50 cm Focal length = f According to the lens formula,

8 Hence, the power of the given lens is +4 D. Question 3: Find the power of a concave lens of focal length 2 m. Focal length of concave lens, f = 2 m Here, negative sign arises due to the divergent nature of concave lens. Hence, the power of the given concave lens is 0.5 D.

9 Question 1: Which one of the following materials cannot be used to make a lens? (a) Water (b) Glass (c) Plastic (d) Clay (d) A lens allows light to pass through it. Since clay does not show such property, it cannot be used to make a lens. Question 2: The image formed by a concave mirror is observed to be virtual, erect and larger than the object. Where should be the position of the object? (a) Between the principal focus and the centre of curvature (b) At the centre of curvature (c) Beyond the centre of curvature (d) Between the pole of the mirror and its principal focus. (d) When an object is placed between the pole and principal focus of a concave mirror, the image formed is virtual, erect, and larger than the object. Question 3: Where should an object be placed in front of a convex lens to get a real image of the size of the object? (a) At the principal focus of the lens (b) At twice the focal length (c) At infinity (d) Between the optical centre of the lens and its principal focus. (b) When an object is placed at the centre of curvature in front of a convex lens, its image is formed at the centre of curvature on the other side of the lens. The image formed is real, inverted, and of the same size as the object. Question 4: A spherical mirror and a thin spherical lens have each a focal length of 15 cm. The mirror and the lens are likely to be

10 (a) both concave (b) both convex (c) the mirror is concave and the lens is convex (d) the mirror is convex, but the lens is concave (a) By convention, the focal length of a concave mirror and a concave lens are taken as negative. Hence, both the spherical mirror and the thin spherical lens are concave in nature. Question 5: No matter how far you stand from a mirror, your image appears erect. The mirror is likely to be (a) plane (b) concave (c) convex (d) either plane or convex (d) A convex mirror always gives a virtual and erect image of smaller size of the object placed in front of it. Similarly, a plane mirror will always give a virtual and erect image of same size as that of the object placed in front of it. Therefore, the given mirror could be either plane or convex. Question 6: Which of the following lenses would you prefer to use while reading small letters found in a dictionary? (a) A convex lens of focal length 50 cm (b) A concave lens of focal length 50 cm (c) A convex lens of focal length 5 cm (d) A concave lens of focal length 5 cm (c) A convex lens gives a magnified image of an object when it is placed between the radius of curvature and focal length. Also, magnification is more for convex lenses having shorter focal length. Therefore, for reading small letters, a convex lens of focal length 5 cm should be used. Question 7:

11 We wish to obtain an erect image of an object, using a concave mirror of focal length 15 cm. What should be the range of distance of the object from the mirror? What is the nature of the image? Is the image larger or smaller than the object? Draw a ray diagram to show the image formation in this case. Range of object distance = 0 cm to15 cm A concave mirror gives an erect image when an object is placed between its pole (P) and the principal focus (F). Hence, to obtain an erect image of an object from a concave mirror of focal length 15 cm, the object must be placed anywhere between the pole and the focus. The image formed will be virtual, erect, and magnified in nature, as shown in the given figure. Question 8: Name the type of mirror used in the following situations. (a) Headlights of a car (b) Side/rear-view mirror of a vehicle (c) Solar furnace Support your answer with reason. (a) Concave (b) Convex (c) Concave Explanation (a) Concave mirror is used in the headlights of a car. This is because concave mirrors can produce powerful parallel beam of light when the light source is placed at their principal focus. (b) Convex mirror is used in side/rear view mirror of a vehicle. Convex mirrors give a virtual, erect, and diminished image of the objects placed in front of it. Because of this,

12 they have a wide field of view. It enables the driver to see most of the traffic behind him/her. (c) Concave mirrors are convergent mirrors. That is why they are used to construct solar furnaces. Concave mirrors converge the light incident on them at a single point known as principal focus. Hence, they can be used to produce a large amount of heat at that point. Question 9: One-half of a convex lens is covered with a black paper. Will this lens produce a complete image of the object? Verify your answer experimentally. Explain your observations. The convex lens will form complete image of an object, even if its one half is covered with black paper. It can be understood by the following two cases. Case I When the upper half of the lens is covered In this case, a ray of light coming from the object will be refracted by the lower half of the lens. These rays meet at the other side of the lens to form the image of the given object, as shown in the following figure. Case II When the lower half of the lens is covered In this case, a ray of light coming from the object is refracted by the upper half of the lens. These rays meet at the other side of the lens to form the image of the given object, as shown in the following figure.

13 Question 10: An object 5 cm in length is held 25 cm away from a converging lens of focal length 10 cm. Draw the ray diagram and find the position, size and the nature of the image formed. Object distance, u = 25 cm Object height, h o = 5 cm Focal length, f = +10 cm According to the lens formula, The positive value of v shows that the image is formed at the other side of the lens. The negative sign shows that the image is real and formed behind the lens. The negative value of image height indicates that the image formed is inverted. The position, size, and nature of image are shown in the following ray diagram.

14 Question 11: A concave lens of focal length 15 cm forms an image 10 cm from the lens. How far is the object placed from the lens? Draw the ray diagram. Focal length of concave lens (OF 1 ), f = 15 cm Image distance, v = 10 cm According to the lens formula, The negative value of u indicates that the object is placed 30 cm in front of the lens. This is shown in the following ray diagram. Question 12: An object is placed at a distance of 10 cm from a convex mirror of focal length 15 cm. Find the position and nature of the image. Focal length of convex mirror, f = +15 cm Object distance, u = 10 cm According to the mirror formula,

15 The positive value of v indicates that the image is formed behind the mirror. The positive value of magnification indicates that the image formed is virtual and erect. Question 13: The magnification produced by a plane mirror is +1. What does this mean? Magnification produced by a mirror is given by the relation The magnification produced by a plane mirror is +1. It shows that the image formed by the plane mirror is of the same size as that of the object. The positive sign shows that the image formed is virtual and erect. Question 14: An object 5.0 cm in length is placed at a distance of 20 cm in front of a convex mirror of radius of curvature 30 cm. Find the position of the image, its nature and size. Object distance, u = 20 cm Object height, h = 5 cm Radius of curvature, R = 30 cm Radius of curvature = 2 Focal length R = 2f f = 15 cm According to the mirror formula,

16 The positive value of v indicates that the image is formed behind the mirror. The positive value of image height indicates that the image formed is erect. Therefore, the image formed is virtual, erect, and smaller in size. Question 15: An object of size 7.0 cm is placed at 27 cm in front of a concave mirror of focal length 18 cm. At what distance from the mirror should a screen be placed, so that a sharp focused image can be obtained? Find the size and the nature of the image. Object distance, u = 27 cm Object height, h = 7 cm Focal length, f = 18 cm According to the mirror formula, The screen should be placed at a distance of 54 cm in front of the given mirror. The negative value of magnification indicates that the image formed is real.

17 The negative value of image height indicates that the image formed is inverted. Question 16: Find the focal length of a lens of power 2.0 D. What type of lens is this? A concave lens has a negative focal length. Hence, it is a concave lens. Question 17: A doctor has prescribed a corrective lens of power +1.5 D. Find the focal length of the lens. Is the prescribed lens diverging or converging? A convex lens has a positive focal length. Hence, it is a convex lens or a converging lens.

### LIGHT REFLECTION AND REFRACTION

LIGHT REFLECTION AND REFRACTION REFLECTION OF LIGHT A highly polished surface, such as a mirror, reflects most of the light falling on it. Laws of Reflection: (i) The angle of incidence is equal to the

### Assignment X Light. Reflection and refraction of light. (a) Angle of incidence (b) Angle of reflection (c) principle axis

Assignment X Light Reflection of Light: Reflection and refraction of light. 1. What is light and define the duality of light? 2. Write five characteristics of light. 3. Explain the following terms (a)

### LIGHT REFLECTION AND REFRACTION

LIGHT REFLECTION AND REFRACTION 1. List four properties of the image formed by a plane mirror. Properties of image formed by a plane mirror: 1. It is always virtual and erect. 2. Its size is equal to that

### Final Reg Optics Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Final Reg Optics Review 1) How far are you from your image when you stand 0.75 m in front of a vertical plane mirror? 1) 2) A object is 12 cm in front of a concave mirror, and the image is 3.0 cm in front

### always positive for virtual image

Point to be remembered: sign convention for Spherical mirror Object height, h = always positive Always +ve for virtual image Image height h = Always ve for real image. Object distance from pole (u) = always

### Refraction by Spherical Lenses by

Page1 Refraction by Spherical Lenses by www.examfear.com To begin with this topic, let s first know, what is a lens? A lens is a transparent material bound by two surfaces, of which one or both the surfaces

### ii) When light falls on objects, it reflects the light and when the reflected light reaches our eyes then we see the objects.

Light i) Light is a form of energy which helps us to see objects. ii) When light falls on objects, it reflects the light and when the reflected light reaches our eyes then we see the objects. iii) Light

### PHYSICS REFERENCE STUDY MATERIAL. for. Summative Assessment -II CLASS X

PHYSICS REFERENCE STUDY MATERIAL for Summative Assessment -II CLASS X 2016 17 CHAPTER WISE CONCEPTS, FORMULAS AND NUMERICALS INLCUDING HOTS PROBLEMS Prepared by M. S. KUMARSWAMY, TGT(MATHS) M. Sc. Gold

### 04. REFRACTION OF LIGHT AT CURVED SURFACES

CLASS-10 PHYSICAL SCIENCE 04. REFRACTION OF LIGHT AT CURVED SURFACES Questions and Answers *Reflections on Concepts* 1. Write the lens maker s formula and explain the terms in it. A. Lens maker s formula

### Geometric Optics. Ray Model. assume light travels in straight line uses rays to understand and predict reflection & refraction

Geometric Optics Ray Model assume light travels in straight line uses rays to understand and predict reflection & refraction General Physics 2 Geometric Optics 1 Reflection Law of reflection the angle

### CHAPTER 3LENSES. 1.1 Basics. Convex Lens. Concave Lens. 1 Introduction to convex and concave lenses. Shape: Shape: Symbol: Symbol:

CHAPTER 3LENSES 1 Introduction to convex and concave lenses 1.1 Basics Convex Lens Shape: Concave Lens Shape: Symbol: Symbol: Effect to parallel rays: Effect to parallel rays: Explanation: Explanation:

### Name. Light Chapter Summary Cont d. Refraction

Page 1 of 17 Physics Week 12(Sem. 2) Name Light Chapter Summary Cont d with a smaller index of refraction to a material with a larger index of refraction, the light refracts towards the normal line. Also,

### Chapter 36. Image Formation

Chapter 36 Image Formation Real and Virtual Images Real images can be displayed on screens Virtual Images can not be displayed onto screens. Focal Length& Radius of Curvature When the object is very far

### Instructions. To run the slideshow:

Instructions To run the slideshow: Click: view full screen mode, or press Ctrl +L. Left click advances one slide, right click returns to previous slide. To exit the slideshow press the Esc key. Optical

### Chapter 23. Mirrors and Lenses

Chapter 23 Mirrors and Lenses Notation for Mirrors and Lenses The object distance is the distance from the object to the mirror or lens Denoted by p The image distance is the distance from the image to

### PHYS 160 Astronomy. When analyzing light s behavior in a mirror or lens, it is helpful to use a technique called ray tracing.

Optics Introduction In this lab, we will be exploring several properties of light including diffraction, reflection, geometric optics, and interference. There are two sections to this lab and they may

### Chapter 23. Mirrors and Lenses

Chapter 23 Mirrors and Lenses Mirrors and Lenses The development of mirrors and lenses aided the progress of science. It led to the microscopes and telescopes. Allowed the study of objects from microbes

### Converging and Diverging Surfaces. Lenses. Converging Surface

Lenses Sandy Skoglund 2 Converging and Diverging s AIR Converging If the surface is convex, it is a converging surface in the sense that the parallel rays bend toward each other after passing through the

### JPN Pahang Physics Module Form 4 Chapter 5 Light. In each of the following sentences, fill in the bracket the appropriate word or words given below.

JPN Pahang Physics Module orm 4 HAPTER 5: LIGHT In each of the following sentences, fill in the bracket the appropriate word or words given below. solid, liquid, gas, vacuum, electromagnetic wave, energy

### Chapter 23. Light Geometric Optics

Chapter 23. Light Geometric Optics There are 3 basic ways to gather light and focus it to make an image. Pinhole - Simple geometry Mirror - Reflection Lens - Refraction Pinhole Camera Image Formation (the

### Phys214 Fall 2004 Midterm Form A

1. A clear sheet of polaroid is placed on top of a similar sheet so that their polarizing axes make an angle of 30 with each other. The ratio of the intensity of emerging light to incident unpolarized

### OPTICS DIVISION B. School/#: Names:

OPTICS DIVISION B School/#: Names: Directions: Fill in your response for each question in the space provided. All questions are worth two points. Multiple Choice (2 points each question) 1. Which of the

### Chapter 2 - Geometric Optics

David J. Starling Penn State Hazleton PHYS 214 The human eye is a visual system that collects light and forms an image on the retina. The human eye is a visual system that collects light and forms an image

### Name: Lab Partner: Section:

Chapter 10 Thin Lenses Name: Lab Partner: Section: 10.1 Purpose In this experiment, the formation of images by concave and convex lenses will be explored. The application of the thin lens equation and

### INDEX OF REFRACTION index of refraction n = c/v material index of refraction n

INDEX OF REFRACTION The index of refraction (n) of a material is the ratio of the speed of light in vacuuo (c) to the speed of light in the material (v). n = c/v Indices of refraction for any materials

### mirrors and lenses PHY232 Remco Zegers Room W109 cyclotron building

mirrors and lenses PHY232 Remco Zegers zegers@nscl.msu.edu Room W109 cyclotron building http://www.nscl.msu.edu/~zegers/phy232.html quiz (extra credit) a ray of light moves from air to a material with

### Chapter 34 Geometric Optics

Chapter 34 Geometric Optics Lecture by Dr. Hebin Li Goals of Chapter 34 To see how plane and curved mirrors form images To learn how lenses form images To understand how a simple image system works Reflection

### Determination of Focal Length of A Converging Lens and Mirror

Physics 41 Determination of Focal Length of A Converging Lens and Mirror Objective: Apply the thin-lens equation and the mirror equation to determine the focal length of a converging (biconvex) lens and

### Section 3 Curved Mirrors. Calculate distances and focal lengths using the mirror equation for concave and convex spherical mirrors.

Objectives Calculate distances and focal lengths using the mirror equation for concave and convex spherical mirrors. Draw ray diagrams to find the image distance and magnification for concave and convex

### Lenses- Worksheet. (Use a ray box to answer questions 3 to 7)

Lenses- Worksheet 1. Look at the lenses in front of you and try to distinguish the different types of lenses? Describe each type and record its characteristics. 2. Using the lenses in front of you, look

### Marketed and Distributed by FaaDoOEngineers.com

REFRACTION OF LIGHT GUPTA CLASSES For any help contact: 995368795, 968789880 Nishant Gupta, D-, Prashant vihar, Rohini, Delhi-85 Contact: 995368795, 968789880 Reraction o light:. The ratio o the sine o

### 10.2 Images Formed by Lenses SUMMARY. Refraction in Lenses. Section 10.1 Questions

10.2 SUMMARY Refraction in Lenses Converging lenses bring parallel rays together after they are refracted. Diverging lenses cause parallel rays to move apart after they are refracted. Rays are refracted

### Lenses. Images. Difference between Real and Virtual Images

Linear Magnification (m) This is the factor by which the size of the object has been magnified by the lens in a direction which is perpendicular to the axis of the lens. Linear magnification can be calculated

### Activity 6.1 Image Formation from Spherical Mirrors

PHY385H1F Introductory Optics Practicals Day 6 Telescopes and Microscopes October 31, 2011 Group Number (number on Intro Optics Kit):. Facilitator Name:. Record-Keeper Name: Time-keeper:. Computer/Wiki-master:..

### Supplementary Notes to. IIT JEE Physics. Topic-wise Complete Solutions

Supplementary Notes to IIT JEE Physics Topic-wise Complete Solutions Geometrical Optics: Focal Length of a Concave Mirror and a Convex Lens using U-V Method Jitender Singh Shraddhesh Chaturvedi PsiPhiETC

Chapter 34 Images Copyright 34-1 Images and Plane Mirrors Learning Objectives 34.01 Distinguish virtual images from real images. 34.02 Explain the common roadway mirage. 34.03 Sketch a ray diagram for

### Wonders of Light - Part I

6. Wonders of Light - Part I Light : The fastest physical quantity, which is an electromagnetic radiation travelling with the speed of 3 0 8 m/s. SCHOOL SECTION 25 SCIENCE & TECHNOLOGY MT EDUCARE LTD.

### Division C Optics KEY Captains Exchange

Division C Optics KEY 2017-2018 Captains Exchange 1.) If a laser beam is reflected off a mirror lying on a table and bounces off a nearby wall at a 30 degree angle, what was the angle of incidence of the

### PHYSICS 289 Experiment 8 Fall Geometric Optics II Thin Lenses

PHYSICS 289 Experiment 8 Fall 2005 Geometric Optics II Thin Lenses Please look at the chapter on lenses in your text before this lab experiment. Please submit a short lab report which includes answers

### Geometric Optics Practice Problems. Ray Tracing - Draw at least two principle rays and show the image created by the lens or mirror.

Geometric Optics Practice Problems Ray Tracing - Draw at least two principle rays and show the image created by the lens or mirror. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Practice Problems - Mirrors Classwork

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A plane mirror is placed on the level bottom of a swimming pool that holds water (n =

### Lecture 17. Image formation Ray tracing Calculation. Lenses Convex Concave. Mirrors Convex Concave. Optical instruments

Lecture 17. Image formation Ray tracing Calculation Lenses Convex Concave Mirrors Convex Concave Optical instruments Image formation Laws of refraction and reflection can be used to explain how lenses

### Physics 197 Lab 7: Thin Lenses and Optics

Physics 197 Lab 7: Thin Lenses and Optics Equipment: Item Part # Qty per Team # of Teams Basic Optics Light Source PASCO OS-8517 1 12 12 Power Cord for Light Source 1 12 12 Ray Optics Set (Concave Lens)

### CHAPTER 18 REFRACTION & LENSES

Physics Approximate Timeline Students are expected to keep up with class work when absent. CHAPTER 18 REFRACTION & LENSES Day Plans for the day Assignments for the day 1 18.1 Refraction of Light o Snell

### SUBJECT: PHYSICS. Use and Succeed.

SUBJECT: PHYSICS I hope this collection of questions will help to test your preparation level and useful to recall the concepts in different areas of all the chapters. Use and Succeed. Navaneethakrishnan.V

### AP Physics Problems -- Waves and Light

AP Physics Problems -- Waves and Light 1. 1974-3 (Geometric Optics) An object 1.0 cm high is placed 4 cm away from a converging lens having a focal length of 3 cm. a. Sketch a principal ray diagram for

### Laboratory 12: Image Formation by Lenses

Phys 112L Spring 2013 Laboratory 12: Image Formation by Lenses The process by which convex lenses produce images can be described with reference to the scenario illustrated in Fig. 1. An object is placed

### Chapter 29/30. Wave Fronts and Rays. Refraction of Sound. Dispersion in a Prism. Index of Refraction. Refraction and Lenses

Chapter 29/30 Refraction and Lenses Refraction Refraction the bending of waves as they pass from one medium into another. Caused by a change in the average speed of light. Analogy A car that drives off

### Gaussian Ray Tracing Technique

Gaussian Ray Tracing Technique Positive Lenses. A positive lens has two focal points one on each side of the lens; both are at the same focal distance f from the lens. Parallel rays of light coming from

### Physics 228 Lecture 3. Today: Spherical Mirrors Lenses.

Physics 228 Lecture 3 Today: Spherical Mirrors Lenses www.physics.rutgers.edu/ugrad/228 a) Santa as he sees himself in a mirrored sphere. b) Santa as he sees himself in a flat mirror after too much eggnog.

### Chapter 26. The Refraction of Light: Lenses and Optical Instruments

Chapter 26 The Refraction of Light: Lenses and Optical Instruments 26.1 The Index of Refraction Light travels through a vacuum at a speed c=3. 00 10 8 m/ s Light travels through materials at a speed less

### Unit 5.B Geometric Optics

Unit 5.B Geometric Optics Early Booklet E.C.: + 1 Unit 5.B Hwk. Pts.: / 18 Unit 5.B Lab Pts.: / 25 Late, Incomplete, No Work, No Units Fees? Y / N Essential Fundamentals of Geometric Optics 1. Convex surfaces

### Image Formation. Light from distant things. Geometrical optics. Pinhole camera. Chapter 36

Light from distant things Chapter 36 We learn about a distant thing from the light it generates or redirects. The lenses in our eyes create images of objects our brains can process. This chapter concerns

### E X P E R I M E N T 12

E X P E R I M E N T 12 Mirrors and Lenses Produced by the Physics Staff at Collin College Copyright Collin College Physics Department. All Rights Reserved. University Physics II, Exp 12: Mirrors and Lenses

### Part 1 Investigating Snell s Law

Geometric Optics with Lenses PURPOSE: To observe the refraction of light off through lenses; to investigate the relationship between objects and images; to study the relationship between object distance,

### 1) An electromagnetic wave is a result of electric and magnetic fields acting together. T 1)

Exam 3 Review Name TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) An electromagnetic wave is a result of electric and magnetic fields acting together. T 1) 2) Electromagnetic

### Focal Length of Lenses

Focal Length of Lenses OBJECTIVES Investigate the properties of converging and diverging lenses. Determine the focal length of converging lenses both by a real image of a distant object and by finite object

### The Reflection of Light in Curved Mirrors

The Reflection of Light in Curved Mirrors Now that you have had a change to review and reflect upon the nature of light on plane mirrors, it is time to proceed on to the study of curved mirrors. To review,

### Reflection and Refraction of Light

Reflection and Refraction of Light Physics 102 28 March 2002 Lecture 6 28 Mar 2002 Physics 102 Lecture 6 1 Light waves and light rays Last time we showed: Time varying B fields E fields B fields to create

### Refraction of Light. Refraction of Light

1 Refraction of Light Activity: Disappearing coin Place an empty cup on the table and drop a penny in it. Look down into the cup so that you can see the coin. Move back away from the cup slowly until the

### University of Rochester Department of Physics and Astronomy Physics123, Spring Homework 5 - Solutions

Problem 5. University of Rochester Department of Physics and Astronomy Physics23, Spring 202 Homework 5 - Solutions An optometrist finds that a farsighted person has a near point at 25 cm. a) If the eye

### Exam 4. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Name: Class: Date: Exam 4 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Mirages are a result of which physical phenomena a. interference c. reflection

### LAB 12 Reflection and Refraction

Cabrillo College Physics 10L Name LAB 12 Reflection and Refraction Read Hewitt Chapters 28 and 29 What to learn and explore Please read this! When light rays reflect off a mirror surface or refract through

### WAVES: LENSES QUESTIONS

WAVES: LENSES QUESTIONS LIGHT (2016;1) Tim was looking into a convex mirror ball in his garden. Standing behind a small plant, he noticed that when he looked at the reflection of the plant in the convex

### c v n = n r Sin n c = n i Refraction of Light Index of Refraction Snell s Law or Refraction Example Problem Total Internal Reflection Optics

Refraction is the bending of the path of a light wave as it passes from one material into another material. Refraction occurs at the boundary and is caused by a change in the speed of the light wave upon

### Image Formation by Lenses

Image Formation by Lenses Bởi: OpenStaxCollege Lenses are found in a huge array of optical instruments, ranging from a simple magnifying glass to the eye to a camera s zoom lens. In this section, we will

### Person s Optics Test KEY SSSS

Person s Optics Test KEY SSSS 2017-18 Competitors Names: School Name: All questions are worth one point unless otherwise stated. Show ALL WORK or you may not receive credit. Include correct units whenever

### 13. Optical Instruments*

13. Optical Instruments* Objective: Here what you have been learning about thin lenses is applied to make a telescope. In the process you encounter general optical instrument design concepts. The learning

### Geometric!Op9cs! Reflec9on! Refrac9on!`!Snell s!law! Mirrors!and!Lenses! Other!topics! Thin!Lens!Equa9on! Magnifica9on! Lensmaker s!formula!

Geometric!Op9cs! Reflec9on! Refrac9on!`!Snell s!law! Mirrors!and!Lenses! Thin!Lens!Equa9on! Magnifica9on! Lensmaker s!formula! Other!topics! Telescopes! Apertures! Reflec9on! Angle!of!incidence!equals!angle!of!reflec9on!

### PHYSICS 202 EXAM 3 March 31, 2005

PHYSICS 202 EXAM 3 March 31, 2005 NAME: SECTION: 517 518 519 520 Note: 517 Recitation Mon 4:10 518 Recitation Wed 10:20 519 Recitation Wed 8:00 520 Recitation Mon 1:50 There are a total of 11 problems

### PHYS:1200 LECTURE 31 LIGHT AND OPTICS (3)

1 PHYS:1200 LECTURE 31 LIGHT AND OPTICS (3) In lecture 30, we applied the law of reflection to understand how images are formed using plane and curved mirrors. In this lecture we will use the law of refraction

### Lenses. Optional Reading Stargazer: the life and times of the TELESCOPE, Fred Watson (Da Capo 2004).

Lenses Equipment optical bench, incandescent light source, laser, No 13 Wratten filter, 3 lens holders, cross arrow, diffuser, white screen, case of lenses etc., vernier calipers, 30 cm ruler, meter stick

### Using Mirrors to Form Images. Reflections of Reflections. Key Terms. Find Out ACTIVITY

5.2 Using Mirrors to Form Images All mirrors reflect light according to the law of reflection. Plane mirrors form an image that is upright and appears to be as far behind the mirror as the is in front

### Light and Applications of Optics

UNIT 4 Light and Applications of Optics Topic 4.1: What is light and how is it produced? Topic 4.6: What are lenses and what are some of their applications? Topic 4.2 : How does light interact with objects

### Chapter 34 Geometric Optics (also known as Ray Optics) by C.-R. Hu

Chapter 34 Geometric Optics (also known as Ray Optics) by C.-R. Hu 1. Principles of image formation by mirrors (1a) When all length scales of objects, gaps, and holes are much larger than the wavelength

### Dr. Todd Satogata (ODU/Jefferson Lab) Monday, April

University Physics 227N/232N Mirrors and Lenses Homework Optics 2 due Friday AM Quiz Friday Optional review session next Monday (Apr 28) Bring Homework Notebooks to Final for Grading Dr. Todd Satogata

### L 32 Light and Optics [2] The rainbow. Why is it a rain BOW? Atmospheric scattering. Different colors are refracted (bent) by different amounts

L 32 Light and Optics [2] Measurements of the speed of light The bending of light refraction Total internal reflection Dispersion Dispersion Rainbows Atmospheric scattering Blue sky and red sunsets Mirrors

### The knowledge and understanding for this unit is given below:

WAVES AND OPTICS The knowledge and understanding for this unit is given below: Waves 1. State that a wave transfers energy. 2. Describe a method of measuring the speed of sound in air, using the relationship

### Practice Problems for Chapter 25-26

Practice Problems for Chapter 25-26 1. What are coherent waves? 2. Describe diffraction grating 3. What are interference fringes? 4. What does monochromatic light mean? 5. What does the Rayleigh Criterion

### Physics, Chapter 38: Mirrors and Lenses

University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Robert Katz Publications Research Papers in Physics and Astronomy 1-1958 Physics, Chapter 38: Mirrors and Lenses Henry Semat

### Chapter 23. Light: Geometric Optics

Ch-23-1 Chapter 23 Light: Geometric Optics Questions 1. Archimedes is said to have burned the whole Roman fleet in the harbor of Syracuse, Italy, by focusing the rays of the Sun with a huge spherical mirror.

### Rutgers Analytical Physics 750:228, Spring 2013 ( RUPHYS228S13 ) My Courses Course Settings University Physics with Modern Physics, 13e Young/Freedman

Signed in as RONALD GILMAN, Instructor Help Sign Out Rutgers Analytical Physics 750:228, Spring 2013 ( RUPHYS228S13 ) My Courses Course Settings University Physics with Modern Physics, 13e Young/Freedman

### !"#\$%&\$'()(*'+,&-./,'(0' focal point! parallel rays! converging lens" image of an object in a converging lens" converging lens: 3 easy rays" !

!"#\$%&\$'()(*'+,&-./,'(0' converging lens"! +,7\$,\$'! 8,9/4&:27'473'+,7\$,\$'! 84#';%4?.4:27' 1234#5\$'126%&\$'''! @4=,/4\$'! 1",'A.=47'>#,*'+,7\$,\$'473'B4

### Different Mirror Surfaces

DATE: NAME: CLASS: CHAPTER 5 BLM 2-18 Different Mirror Surfaces Goal Show your understanding of the kinds of mirrors used for different purposes. What to Do Identify the type of mirror (plane, convex,

### Exemplar for Internal Achievement Standard Level 2

Exemplar for internal assessment resource Physics 2.2A for Achievement Standard 91169 Exemplar for Internal Achievement Standard 91169 Level 2 This exemplar supports assessment against: Achievement Standard

### Basic Optics System OS-8515C

40 50 30 60 20 70 10 80 0 90 80 10 20 70 T 30 60 40 50 50 40 60 30 70 20 80 90 90 80 BASIC OPTICS RAY TABLE 10 0 10 70 20 60 50 40 30 Instruction Manual with Experiment Guide and Teachers Notes 012-09900B

### An image is being formed by a mirror with a spherical radius of R=+40cm. Draw mirror spherical surface curving to the right!

Image formation by Reflection at a Spherical Mirror An image is being formed by a mirror with a spherical radius of R=+40cm. Left side of room: Right side of room: Draw mirror spherical surface curving

### UNIT SUMMARY: Electromagnetic Spectrum, Color, & Light Name: Date:

UNIT SUMMARY: Electromagnetic Spectrum, Color, & Light Name: Date: Topics covered in the unit: 1. Electromagnetic Spectrum a. Order of classifications and respective wavelengths b. requency, wavelength,

### 2.710 Optics Spring 09 Problem Set #3 Posted Feb. 23, 2009 Due Wednesday, March 4, 2009

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 2.710 Optics Spring 09 Problem Set # Posted Feb. 2, 2009 Due Wednesday, March 4, 2009 1. Wanda s world Your goldfish Wanda happens to be situated at the center of

### CHAPTER 34. Optical Images

CHAPTER 34 1* Can a virtual image be photographed? Yes. Note that a virtual image is seen because the eye focuses the diverging rays to form a real image on the retina. Similarly, the camera lens can focus

### Converging Lens. Goal: To measure the focal length of a converging lens using various methods and to study how a converging lens forms a real image.

Converging Lens Goal: To measure the focal length of a converging lens using various methods and to study how a converging lens forms a real image. Lab Preparation The picture on the screen in a movie

### CBSE Sample Paper-01 (Unsolved) SUMMATIVE ASSESSMENT II SCIENCE (Theory) Class X. Time allowed: 3 hours Maximum Marks: 90

General Instructions: CBSE Sample Paper-01 (Unsolved) SUMMATIVE ASSESSMENT II SCIENCE (Theory) Class X Time allowed: 3 hours Maximum Marks: 90 a) All questions are compulsory. b) The question paper comprises

### Lecture 19 (Geometric Optics I Plane and Spherical Optics) Physics Spring 2018 Douglas Fields

Lecture 19 (Geometric Optics I Plane and Spherical Optics) Physics 262-01 Spring 2018 Douglas Fields Optics -Wikipedia Optics is the branch of physics which involves the behavior and properties of light,

### H-'li+i Lensmaker's Equation. Summary / =

Lensmaker's equation *! 23-10 Lensmaker's Equation A useful equation, known as the lensmaker's equation, relates the focal length of a lens to the radii of curvature Rx and R2 of its two surfaces and its

### Page 2. Q1.The figure below shows an incomplete electromagnetic spectrum. A microwaves B C ultraviolet D gamma

Q1.The figure below shows an incomplete electromagnetic spectrum. A microwaves B C ultraviolet D gamma (a) What name is given to the group of waves at the position labelled A in the figure above? Tick

### Exam 4--PHYS 102--S15

Name: Class: Date: Exam 4--PHYS 102--S15 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A mirror produces an upright image. The object is 2 cm high; the

### O5: Lenses and the refractor telescope

O5. 1 O5: Lenses and the refractor telescope Introduction In this experiment, you will study converging lenses and the lens equation. You will make several measurements of the focal length of lenses and