Digital Image Processing

Size: px
Start display at page:

Download "Digital Image Processing"

Transcription

1 Part 1: Course Introduction Achim J. Lilienthal AASS Learning Systems Lab, Dep. Teknik Room T1209 (Fr, o'clock) Course Book Chapters 1 &

2 Contents 1. Introduction digital images human visual perception, optical illusions, e-m spectrum example application person tracking with mobile robots example image understanding tiny images approach 2. Course Contents 3. Digital Image Acquisition image formation model image sampling and quantization, zooming and shrinking

3 Contents Introduction Digital Images

4 Introduction Digital Images Digital Images a finite set of digital values (picture elements = pixels) each pixel is associated to a position in a 2D region each pixel has a value digital image of a rat magnification of the rat s nose

5 Introduction Digital Images Digital Images can be thought of as a matrix (raster image / raster map) of grey levels / intensity values magnification of the rat s nose

6 Introduction Digital Images Digital Images types dimensionality and nature of pixel values binary (bilevel) grey scale color false-color multi-spectral semantic (thematic),... 3D Digital Images picture elements are called voxels (from "volumetric" and "pixel") not addressed here

7 Introduction Electromagnetic Spectrum The Electromagnetic Spectrum we perceive only a small range of colours of the electromagnetic spectrum (~ 430nm 790nm) gamma rays, X rays, ultraviolet light, visible spectrum, infrared, microwaves, radio waves,...

8 Introduction Electromagnetic Spectrum The Electromagnetic Spectrum fundamental equations relation between wavelength (λ) and frequency (ν): relation between energy and frequency: E = hν λ = c ν

9 Introduction Electromagnetic Spectrum The Electromagnetic Spectrum we perceive only a small range of colours of the electromagnetic spectrum (~ 430nm 790nm) objects are perceived by the light they reflect achromatic light: all wavelengths are reflected equally chromatic light: some wavelengths are reflected predominantly

10 Contents Introduction Biological Vision

11 Introduction Visual Perception Metaphysics All men by nature desire to know. An indication of this is the delight we take in our senses; for even apart from their usefulness they are loved for themselves; and above all others the sense of sight. Aristotle (384 BC 322 BC)

12 Introduction Visual Perception The Human Eye

13 Introduction Visual Perception What happens? photons are reflected at objects pattern of reflected photons is sensed biological vision: with photoreceptors ( pixel) computer vision: with a (digital) camera and further processed as a multidimensional signal biological vision: in the visual cortex computer vision: DIP, computer vision Vision from Per-Erik Forssén "Visual Object Detection"

14 Introduction Visual Perception Image Formation Pinhole Camera Model from Per-Erik Forssén "Visual Object Recognition"

15 Introduction Visual Perception Image Formation Pinhole Camera Model focal length between 17 mm (min. refractive power, objects farther than 3m) and 14 mm (max. refractive power) 15 / 100 = h / 17 h = 2.55 mm focal length (min. refractive power)

16 Introduction Visual Perception The Human Eye sphere (diameter ~ 20 mm)

17 Introduction Visual Perception The Human Eye cornea constant thickness lens with fixed focal length responsible for ~ 75% of the refraction

18 Introduction Visual Perception The Human Eye cornea lens constant thickness lens with fixed focal length responsible for ~ 75% of the refraction can be contracted zoom (to a plane) shape of lens is varied to focus on objects at different distances IR and UV light are absorbed by proteins in the lens structure

19 Introduction Visual Perception The Human Eye cornea lens constant thickness lens with fixed focal length responsible for ~ 75% of the refraction can be contracted zoom (to a plane) 2D image on the retina represents the light pattern reflected from a thin plane in the 3D spatial world, the lens is focused on

20 Introduction Visual Perception The Human Eye pupil opening varies from 2 to 8 mm regulates the amount of light reaching the retina

21 Introduction Visual Perception The Human Eye pupil opening varies from 2 to 8 mm regulates the amount of light reaching the retina aperture of a camera source: Wikipedia (

22 Introduction Visual Perception The Human Eye pupil opening varies from 2 to 8 mm regulates the amount of light reaching the retina aperture of a camera light reaches the retinal surface (spherical, inner wall of the eyeball) photoreceptors "translate" light into electrical pulses distributed over the retinal surface non-uniform resolution

23 Introduction Visual Perception Foveal/Peripheral View

24 Introduction Visual Perception Foveal/Peripheral View

25 Introduction Visual Perception Foveal/Peripheral View

26 Introduction Visual Perception Foveal/Peripheral View

27 Introduction Visual Perception The Human Eye pupil opening varies from 2 to 8 mm regulates the amount of light reaching the retina aperture of the eye light reaches the retinal surface (spherical, inner wall of the eyeball) photoreceptors are distributed over the retinal surface cones & rods

28 Introduction Visual Perception The Human Eye two classes of light receptors distributed over the retinal surface cones (bright-light vision phototopic) 6-7 million around fovea colour & bright-light vision fine details cones with peak sensitivity for long, medium and short wavelengths (red, green, blue) only cones in the fovea

29 Introduction Visual Perception The Human Eye two classes of light receptors distributed over the retinal surface cones (bright-light vision phototopic) 6-7 million around fovea colour & bright-light vision fine details red, green, blue rods (dim-light vision scotopic) million coarse details "night vision"

30 Introduction Visual Perception Receptor Distribution in the Human Eye no receptors where the optic nerve emerges (blind spot) radially symmetric distribution around the fovea except from the blind spot distribution of rods and cones around the fovea

31 Introduction Visual Perception Why do we sometimes have red eyes in photos?

32 Introduction Visual Perception

33 Introduction Visual Perception The Fovea responsible for sharp vision (reading, watching television,...) circular indentation (diameter ~ 15 mm) approx cones in this area (~ a 15 x 15 mm 2 square sensor)

34 Introduction Visual Perception The Fovea responsible for sharp vision (reading, watching television,...) circular indentation (diameter ~ 15 mm) approx cones in this area (~ a 15 x 15 mm 2 square sensor) resolution that can be achieved with a CCD chip? 10 MP camera 7.2 x 5.3 mm 2 ( pixels / mm 2 ) "pixels" on 1.5 x 1.5 mm 2 ( "pixels" / mm 2 )

35 Introduction Visual Perception Receptor Position in the Human Eye photo-receptors turned away from the lens!

36 Introduction Brightness Adaptation in the Human Eye human eye can adapt over 10 orders of magnitude! 6 orders in phototopic vision (cones) accomplished by brightness adaptation (changes in the overall sensitivity) much smaller range for each brightness adaptation level B a subjective brightness is a log function of the light intensity brightness discrimination poor at low levels of illumination better with increasing illumination

37 Introduction Sensation vs Perception Ganglion Cells 125 million rods & cones 1 million ganglion cells implement local neighbourhood operations (local receptive field) respond if there is a difference between "center and surround" (center-surround cells) contrast-sensitive vision absolute intensity / color not available to the brain important for colour constancy

38 Introduction Visual Perception Image Formation in the Human Eye perceived breightness is not a simple function of intensity! Mach bands stripes appear darker near a more intense stripe (and vice versa) caused by inhibitory neural connections

39 Introduction Visual Perception Image Formation in the Human Eye perceived breightness is not a simple function of intensity! Mach bands stripes appear darker near a more intense stripe (and vice versa) caused by inhibitory neural connections simultaneous contrast a regions' perceived breightness depends on the intensity in the neighbourhood

40 Introduction Visual Perception perceived breightness is not a simple function of intensity! simultaneous contrast a regions perceived breightness depends on the intensity in the neighbourhood

41 Introduction Sensation vs Perception Sensation operation of basic sensory systems result of physical stimuli and low-level processes Perception involve higher-level processes in the percipient memories expectations emotions state of fatigue or alertness "The Great Ideas of Psychology" (TTC)

42 Introduction Visual Perception Biological Vision development responded to evolutionary necessities

43 Introduction Visual Perception Biological Vision bear pixels?

44 Introduction Visual Perception Importance of Context Torralba et al., CVPR 2007, Short Course

45 Introduction Visual Perception Importance of Context Torralba et al., CVPR 2007, Short Course

46 Introduction Visual Perception Image Formation in the Human Eye perceived breightness is not a simple function of intensity! Mach bands stripes appear darker near a more intense stripe (and vice versa) caused by inhibitory neural connections simultaneous contrast a regions perceived breightness depends on the intensity in the neighbourhood optical illusions

47 Introduction Optical Illusions Optical Illusions the eye / brain fills in nonexisting information perceives geometrical properties of an object wrongly characteristic of the human visual system and not yet fully understood... (some examples follow)

48 Introduction Optical Illusions concentrate on the dot in the middle and move your head back and forth

49 Introduction Optical Illusions movement created only in the brain

50 Introduction Optical Illusions concentrate on the cross in the middle and the moving circle turns green!... after a while the violet circles disappear!!

51 Introduction Optical Illusions 1. Relax and stare for 30s - 45s to the four dots in the centre 2. Then look slowly to a white wall (large uniformly coloured area) close to you 3. You will see a bright spot forms at the wall 4. Now blink a few times 5. What do you see? Whom do you see?

52 Introduction Optical Illusions

53 Contents Introduction Image Processing

54 1 Introduction Image Processing Image Processing versus Image Analysis world imaging image analysis data image computer graphics knowledge image understanding, computer vision image processing

55 1 Introduction Image Processing Image Processing versus Image Analysis world visualisation imaging image analysis image processing data image computer graphics knowledge image understanding, computer vision

56 Introduction Image Processing Fundamental Steps in problem Lara Croft has to get out of a room

57 Introduction Image Processing Fundamental Steps in problem image acquisition

58 Introduction Image Processing Fundamental Steps in problem image acquisition preprocessing

59 Introduction Image Processing Fundamental Steps in problem image acquisition preprocessing segmentation

60 Introduction Image Processing Fundamental Steps in problem image acquisition preprocessing segmentation representation and description model of objects

61 Introduction Image Processing Fundamental Steps in problem image acquisition preprocessing segmentation representation and description model of objects recognition and interpretation what are these objects?

62 Introduction Image Processing Fundamental Steps in problem image acquisition preprocessing segmentation representation and description model of objects recognition and interpretation what are these objects? solution

63 Contents Course Contents

64 2 Course Contents Filtering in the Spatial Domain (Image Enhancement) "Lena" with noise Median filtering edge detection

65 2 Course Contents Fourier Transform original image power spectrum after Fourier transformation inverse transform of filtered power spectrum

66 2 Course Contents Image Restoration?

67 2 Course Contents Binary Image Operations original image thresholding closing

68 2 Course Contents Segmentation? original image segmented (binary) image

69 2 Course Contents Morphological Image Processing & Shape Description... after morphological closing grey image... after segmentation... after skeletonization

70 2 Course Contents Colour Representation and Use RGB space CIE s chromaticity diagram

71 2 Course Contents Classification and Introduction to Pattern Recognition? original image result of classification

72 Contents Digital Image Acquisition

73 3 Digital Image Acquisition Digital Image Representation f(x,y) as a matrix of real numbers f (0,0) f (0,1)... f (0, N 1) f (1,0) f (1,1)... f (1, N 1) f ( x, y) = = ( aij ) f ( M 1,0) f ( M 1,1)... f ( M 1, N 1) elements of the matrix are called pixels (2D)

74 3 Image Formation and Image Sampling Image Formation Model illumination i(x,y) from a source reflectivity r(x,y) = reflection / absorption in the scene f(x,y) = i(x,y) r(x,y) i ~ 0.1 lm/m 2 (full moon) 1000 lm/m 2 (office) 10'000 lm/m 2 (cloudy day) 90'000 lm/m 2 (sunny day)

75 3 Image Formation and Image Sampling Image Formation Model illumination i(x,y) from a source reflectivity r(x,y) = reflection / absorption in the scene f(x,y) = i(x,y) r(x,y) r = 0.01 (black velvet) 0.65 (stainless steel) 0.80 (flat white wall) 0.90 (silver-plated metal) 0.93 (snow)

76 3 Image Formation and Image Sampling Image Formation Model illumination i(x,y) from a source reflectivity r(x,y) = reflection / absorption in the scene f(x,y) = i(x,y) r(x,y) Image Sampling digital image can be seen as a 2D function f(x,y) x and y are the spatial coordinates f(x,y) is the grey level / intensity at position (x,y) a digital image must be sampled (digitized) in space (x,y): image sampling in amplitude f(x,y): grey-level quantization

77 3 Digital Image Acquisition Image Sampling and Quantization conversion of continuous input signal to a digital form continuous signal digitized image

78 3 Digital Image Acquisition Image Sampling and Quantization conversion of continuous input signal to a digital form sample f(x,y) in both coordinates (sampling) continuous signal

79 3 Digital Image Acquisition Image Sampling and Quantization conversion of continuous input signal to a digital form sample f(x,y) in both coordinates (sampling) continuous signal

80 3 Digital Image Acquisition Image Sampling and Quantization conversion of continuous input signal to a digital form sample f(x,y) in both coordinates (sampling) sample f(x,y) in amplitude (quantization)

81 3 Digital Image Acquisition Image Sampling uniform same sampling frequency everywhere adaptive higher sampling frequency in areas with greater detail (not very common) determines the spatial resolution

82 3 Digital Image Acquisition Image Sampling spatial resolution: smallest discernible detail in the image (line pairs per mm, for example)

83 3 Digital Image Acquisition Image Quantisation greylevel quantization

84 Part 1: Course Introduction Achim J. Lilienthal Thank you! AASS Learning Systems Lab, Dep. Teknik Room T1209 (Fr, o'clock) Course Book Chapters 1 &

Lecture 2 Digital Image Fundamentals. Lin ZHANG, PhD School of Software Engineering Tongji University Fall 2016

Lecture 2 Digital Image Fundamentals. Lin ZHANG, PhD School of Software Engineering Tongji University Fall 2016 Lecture 2 Digital Image Fundamentals Lin ZHANG, PhD School of Software Engineering Tongji University Fall 2016 Contents Elements of visual perception Light and the electromagnetic spectrum Image sensing

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Digital Imaging Fundamentals Christophoros Nikou cnikou@cs.uoi.gr Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 2008. Digital Image Processing

More information

Digital Image Fundamentals. Digital Image Processing. Human Visual System. Contents. Structure Of The Human Eye (cont.) Structure Of The Human Eye

Digital Image Fundamentals. Digital Image Processing. Human Visual System. Contents. Structure Of The Human Eye (cont.) Structure Of The Human Eye Digital Image Processing 2 Digital Image Fundamentals Digital Imaging Fundamentals Christophoros Nikou cnikou@cs.uoi.gr Those who wish to succeed must ask the right preliminary questions Aristotle Images

More information

Digital Image Fundamentals. Digital Image Processing. Human Visual System. Contents. Structure Of The Human Eye (cont.) Structure Of The Human Eye

Digital Image Fundamentals. Digital Image Processing. Human Visual System. Contents. Structure Of The Human Eye (cont.) Structure Of The Human Eye Digital Image Processing 2 Digital Image Fundamentals Digital Imaging Fundamentals Christophoros Nikou cnikou@cs.uoi.gr Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall,

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Digital Imaging Fundamentals Christophoros Nikou cnikou@cs.uoi.gr Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 2008. Digital Image Processing

More information

Introduction to Visual Perception & the EM Spectrum

Introduction to Visual Perception & the EM Spectrum , Winter 2005 Digital Image Fundamentals: Visual Perception & the EM Spectrum, Image Acquisition, Sampling & Quantization Monday, September 19 2004 Overview (1): Review Some questions to consider Elements

More information

Review. Introduction to Visual Perception & the EM Spectrum. Overview (1):

Review. Introduction to Visual Perception & the EM Spectrum. Overview (1): Overview (1): Review Some questions to consider Winter 2005 Digital Image Fundamentals: Visual Perception & the EM Spectrum, Image Acquisition, Sampling & Quantization Tuesday, January 17 2006 Elements

More information

Vision. The eye. Image formation. Eye defects & corrective lenses. Visual acuity. Colour vision. Lecture 3.5

Vision. The eye. Image formation. Eye defects & corrective lenses. Visual acuity. Colour vision. Lecture 3.5 Lecture 3.5 Vision The eye Image formation Eye defects & corrective lenses Visual acuity Colour vision Vision http://www.wired.com/wiredscience/2009/04/schizoillusion/ Perception of light--- eye-brain

More information

Human Visual System. Digital Image Processing. Digital Image Fundamentals. Structure Of The Human Eye. Blind-Spot Experiment.

Human Visual System. Digital Image Processing. Digital Image Fundamentals. Structure Of The Human Eye. Blind-Spot Experiment. Digital Image Processing Digital Imaging Fundamentals Christophoros Nikou cnikou@cs.uoi.gr 4 Human Visual System The best vision model we have! Knowledge of how images form in the eye can help us with

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Digital Imaging Fundamentals Christophoros Nikou cnikou@cs.uoi.gr Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 2008. Digital Image Processing

More information

III: Vision. Objectives:

III: Vision. Objectives: III: Vision Objectives: Describe the characteristics of visible light, and explain the process by which the eye transforms light energy into neural. Describe how the eye and the brain process visual information.

More information

Unit 1 DIGITAL IMAGE FUNDAMENTALS

Unit 1 DIGITAL IMAGE FUNDAMENTALS Unit 1 DIGITAL IMAGE FUNDAMENTALS What Is Digital Image? An image may be defined as a two-dimensional function, f(x, y), where x and y are spatial (plane) coordinates, and the amplitude of f at any pair

More information

DIGITAL IMAGE PROCESSING LECTURE # 4 DIGITAL IMAGE FUNDAMENTALS-I

DIGITAL IMAGE PROCESSING LECTURE # 4 DIGITAL IMAGE FUNDAMENTALS-I DIGITAL IMAGE PROCESSING LECTURE # 4 DIGITAL IMAGE FUNDAMENTALS-I 4 Topics to Cover Light and EM Spectrum Visual Perception Structure Of Human Eyes Image Formation on the Eye Brightness Adaptation and

More information

EC-433 Digital Image Processing

EC-433 Digital Image Processing EC-433 Digital Image Processing Lecture 2 Digital Image Fundamentals Dr. Arslan Shaukat 1 Fundamental Steps in DIP Image Acquisition An image is captured by a sensor (such as a monochrome or color TV camera)

More information

HW- Finish your vision book!

HW- Finish your vision book! March 1 Table of Contents: 77. March 1 & 2 78. Vision Book Agenda: 1. Daily Sheet 2. Vision Notes and Discussion 3. Work on vision book! EQ- How does vision work? Do Now 1.Find your Vision Sensation fill-in-theblanks

More information

Chapter 2: Digital Image Fundamentals. Digital image processing is based on. Mathematical and probabilistic models Human intuition and analysis

Chapter 2: Digital Image Fundamentals. Digital image processing is based on. Mathematical and probabilistic models Human intuition and analysis Chapter 2: Digital Image Fundamentals Digital image processing is based on Mathematical and probabilistic models Human intuition and analysis 2.1 Visual Perception How images are formed in the eye? Eye

More information

The Human Visual System. Lecture 1. The Human Visual System. The Human Eye. The Human Retina. cones. rods. horizontal. bipolar. amacrine.

The Human Visual System. Lecture 1. The Human Visual System. The Human Eye. The Human Retina. cones. rods. horizontal. bipolar. amacrine. Lecture The Human Visual System The Human Visual System Retina Optic Nerve Optic Chiasm Lateral Geniculate Nucleus (LGN) Visual Cortex The Human Eye The Human Retina Lens rods cones Cornea Fovea Optic

More information

Vision. PSYCHOLOGY (8th Edition, in Modules) David Myers. Module 13. Vision. Vision

Vision. PSYCHOLOGY (8th Edition, in Modules) David Myers. Module 13. Vision. Vision PSYCHOLOGY (8th Edition, in Modules) David Myers PowerPoint Slides Aneeq Ahmad Henderson State University Worth Publishers, 2007 1 Vision Module 13 2 Vision Vision The Stimulus Input: Light Energy The

More information

Image and Multidimensional Signal Processing

Image and Multidimensional Signal Processing Image and Multidimensional Signal Processing Professor William Hoff Dept of Electrical Engineering &Computer Science http://inside.mines.edu/~whoff/ Digital Image Fundamentals 2 Digital Image Fundamentals

More information

AP PSYCH Unit 4.2 Vision 1. How does the eye transform light energy into neural messages? 2. How does the brain process visual information? 3.

AP PSYCH Unit 4.2 Vision 1. How does the eye transform light energy into neural messages? 2. How does the brain process visual information? 3. AP PSYCH Unit 4.2 Vision 1. How does the eye transform light energy into neural messages? 2. How does the brain process visual information? 3. What theories help us understand color vision? 4. Is your

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Lecture # 3 Digital Image Fundamentals ALI JAVED Lecturer SOFTWARE ENGINEERING DEPARTMENT U.E.T TAXILA Email:: ali.javed@uettaxila.edu.pk Office Room #:: 7 Presentation Outline

More information

DIGITAL IMAGE PROCESSING (COM-3371) Week 2 - January 14, 2002

DIGITAL IMAGE PROCESSING (COM-3371) Week 2 - January 14, 2002 DIGITAL IMAGE PROCESSING (COM-3371) Week 2 - January 14, 22 Topics: Human eye Visual phenomena Simple image model Image enhancement Point processes Histogram Lookup tables Contrast compression and stretching

More information

Human Visual System. Prof. George Wolberg Dept. of Computer Science City College of New York

Human Visual System. Prof. George Wolberg Dept. of Computer Science City College of New York Human Visual System Prof. George Wolberg Dept. of Computer Science City College of New York Objectives In this lecture we discuss: - Structure of human eye - Mechanics of human visual system (HVS) - Brightness

More information

Image Processing - Intro. Tamás Szirányi

Image Processing - Intro. Tamás Szirányi Image Processing - Intro Tamás Szirányi The path of light through optics A Brief History of Images 1558 Camera Obscura, Gemma Frisius, 1558 A Brief History of Images 1558 1568 Lens Based Camera Obscura,

More information

Visual perception basics. Image aquisition system. IE PŁ P. Strumiłło

Visual perception basics. Image aquisition system. IE PŁ P. Strumiłło Visual perception basics Image aquisition system Light perception by humans Humans perceive approx. 90% of information about the environment by means of visual system. Efficiency of the human visual system

More information

Early Visual Processing: Receptive Fields & Retinal Processing (Chapter 2, part 2)

Early Visual Processing: Receptive Fields & Retinal Processing (Chapter 2, part 2) Early Visual Processing: Receptive Fields & Retinal Processing (Chapter 2, part 2) Lecture 5 Jonathan Pillow Sensation & Perception (PSY 345 / NEU 325) Princeton University, Spring 2015 1 Summary of last

More information

CPSC 4040/6040 Computer Graphics Images. Joshua Levine

CPSC 4040/6040 Computer Graphics Images. Joshua Levine CPSC 4040/6040 Computer Graphics Images Joshua Levine levinej@clemson.edu Lecture 04 Displays and Optics Sept. 1, 2015 Slide Credits: Kenny A. Hunt Don House Torsten Möller Hanspeter Pfister Agenda Open

More information

10/8/ dpt. n 21 = n n' r D = The electromagnetic spectrum. A few words about light. BÓDIS Emőke 02 October Optical Imaging in the Eye

10/8/ dpt. n 21 = n n' r D = The electromagnetic spectrum. A few words about light. BÓDIS Emőke 02 October Optical Imaging in the Eye A few words about light BÓDIS Emőke 02 October 2012 Optical Imaging in the Eye Healthy eye: 25 cm, v1 v2 Let s determine the change in the refractive power between the two extremes during accommodation!

More information

CS 548: Computer Vision REVIEW: Digital Image Basics. Spring 2016 Dr. Michael J. Reale

CS 548: Computer Vision REVIEW: Digital Image Basics. Spring 2016 Dr. Michael J. Reale CS 548: Computer Vision REVIEW: Digital Image Basics Spring 2016 Dr. Michael J. Reale Human Vision System: Cones and Rods Two types of receptors in eye: Cones Brightness and color Photopic vision = bright-light

More information

Overview. Pinhole camera model Projective geometry Vanishing points and lines Projection matrix Cameras with Lenses Color Digital image

Overview. Pinhole camera model Projective geometry Vanishing points and lines Projection matrix Cameras with Lenses Color Digital image Camera & Color Overview Pinhole camera model Projective geometry Vanishing points and lines Projection matrix Cameras with Lenses Color Digital image Book: Hartley 6.1, Szeliski 2.1.5, 2.2, 2.3 The trip

More information

Spatial Vision: Primary Visual Cortex (Chapter 3, part 1)

Spatial Vision: Primary Visual Cortex (Chapter 3, part 1) Spatial Vision: Primary Visual Cortex (Chapter 3, part 1) Lecture 6 Jonathan Pillow Sensation & Perception (PSY 345 / NEU 325) Princeton University, Fall 2017 Eye growth regulation KL Schmid, CF Wildsoet

More information

The Human Eye and a Camera 12.1

The Human Eye and a Camera 12.1 The Human Eye and a Camera 12.1 The human eye is an amazing optical device that allows us to see objects near and far, in bright light and dim light. Although the details of how we see are complex, the

More information

Digital Image Processing COSC 6380/4393

Digital Image Processing COSC 6380/4393 Digital Image Processing COSC 6380/4393 Lecture 2 Aug 24 th, 2017 Slides from Dr. Shishir K Shah, Rajesh Rao and Frank (Qingzhong) Liu 1 Instructor TA Digital Image Processing COSC 6380/4393 Pranav Mantini

More information

The Special Senses: Vision

The Special Senses: Vision OLLI Lecture 5 The Special Senses: Vision Vision The eyes are the sensory organs for vision. They collect light waves through their photoreceptors (located in the retina) and transmit them as nerve impulses

More information

Color and perception Christian Miller CS Fall 2011

Color and perception Christian Miller CS Fall 2011 Color and perception Christian Miller CS 354 - Fall 2011 A slight detour We ve spent the whole class talking about how to put images on the screen What happens when we look at those images? Are there any

More information

Digital Image Processing

Digital Image Processing Digital Image Processing IMAGE PERCEPTION & ILLUSION Hamid R. Rabiee Fall 2015 Outline 2 What is color? Image perception Color matching Color gamut Color balancing Illusions What is Color? 3 Visual perceptual

More information

STUDY NOTES UNIT I IMAGE PERCEPTION AND SAMPLING. Elements of Digital Image Processing Systems. Elements of Visual Perception structure of human eye

STUDY NOTES UNIT I IMAGE PERCEPTION AND SAMPLING. Elements of Digital Image Processing Systems. Elements of Visual Perception structure of human eye DIGITAL IMAGE PROCESSING STUDY NOTES UNIT I IMAGE PERCEPTION AND SAMPLING Elements of Digital Image Processing Systems Elements of Visual Perception structure of human eye light, luminance, brightness

More information

Digital Image Processing COSC 6380/4393

Digital Image Processing COSC 6380/4393 Digital Image Processing COSC 6380/4393 Lecture 2 Aug 23 rd, 2018 Slides from Dr. Shishir K Shah, Rajesh Rao and Frank (Qingzhong) Liu 1 Instructor Digital Image Processing COSC 6380/4393 Pranav Mantini

More information

11/23/11. A few words about light nm The electromagnetic spectrum. BÓDIS Emőke 22 November Schematic structure of the eye

11/23/11. A few words about light nm The electromagnetic spectrum. BÓDIS Emőke 22 November Schematic structure of the eye 11/23/11 A few words about light 300-850nm 400-800 nm BÓDIS Emőke 22 November 2011 The electromagnetic spectrum see only 1/70 of the electromagnetic spectrum The External Structure: The Immediate Structure:

More information

Vision and Color. Reading. The lensmaker s formula. Lenses. Brian Curless CSEP 557 Autumn Good resources:

Vision and Color. Reading. The lensmaker s formula. Lenses. Brian Curless CSEP 557 Autumn Good resources: Reading Good resources: Vision and Color Brian Curless CSEP 557 Autumn 2017 Glassner, Principles of Digital Image Synthesis, pp. 5-32. Palmer, Vision Science: Photons to Phenomenology. Wandell. Foundations

More information

Visual System I Eye and Retina

Visual System I Eye and Retina Visual System I Eye and Retina Reading: BCP Chapter 9 www.webvision.edu The Visual System The visual system is the part of the NS which enables organisms to process visual details, as well as to perform

More information

Vision and Color. Reading. Optics, cont d. Lenses. d d f. Brian Curless CSEP 557 Fall Good resources:

Vision and Color. Reading. Optics, cont d. Lenses. d d f. Brian Curless CSEP 557 Fall Good resources: Reading Good resources: Vision and Color Brian Curless CSEP 557 Fall 2016 Glassner, Principles of Digital Image Synthesis, pp. 5-32. Palmer, Vision Science: Photons to Phenomenology. Wandell. Foundations

More information

Vision and Color. Brian Curless CSEP 557 Fall 2016

Vision and Color. Brian Curless CSEP 557 Fall 2016 Vision and Color Brian Curless CSEP 557 Fall 2016 1 Reading Good resources: Glassner, Principles of Digital Image Synthesis, pp. 5-32. Palmer, Vision Science: Photons to Phenomenology. Wandell. Foundations

More information

Vision and Color. Reading. Optics, cont d. Lenses. d d f. Brian Curless CSE 557 Autumn Good resources:

Vision and Color. Reading. Optics, cont d. Lenses. d d f. Brian Curless CSE 557 Autumn Good resources: Reading Good resources: Vision and Color Brian Curless CSE 557 Autumn 2015 Glassner, Principles of Digital Image Synthesis, pp. 5-32. Palmer, Vision Science: Photons to Phenomenology. Wandell. Foundations

More information

Vision and Color. Brian Curless CSE 557 Autumn 2015

Vision and Color. Brian Curless CSE 557 Autumn 2015 Vision and Color Brian Curless CSE 557 Autumn 2015 1 Reading Good resources: Glassner, Principles of Digital Image Synthesis, pp. 5-32. Palmer, Vision Science: Photons to Phenomenology. Wandell. Foundations

More information

Visual Effects of Light. Prof. Grega Bizjak, PhD Laboratory of Lighting and Photometry Faculty of Electrical Engineering University of Ljubljana

Visual Effects of Light. Prof. Grega Bizjak, PhD Laboratory of Lighting and Photometry Faculty of Electrical Engineering University of Ljubljana Visual Effects of Light Prof. Grega Bizjak, PhD Laboratory of Lighting and Photometry Faculty of Electrical Engineering University of Ljubljana Light is life If sun would turn off the life on earth would

More information

Vision Basics Measured in:

Vision Basics Measured in: Vision Vision Basics Sensory receptors in our eyes transduce light into meaningful images Light = packets of waves Measured in: Brightness amplitude of wave (high=bright) Color length of wave Saturation

More information

Retina. Convergence. Early visual processing: retina & LGN. Visual Photoreptors: rods and cones. Visual Photoreptors: rods and cones.

Retina. Convergence. Early visual processing: retina & LGN. Visual Photoreptors: rods and cones. Visual Photoreptors: rods and cones. Announcements 1 st exam (next Thursday): Multiple choice (about 22), short answer and short essay don t list everything you know for the essay questions Book vs. lectures know bold terms for things that

More information

Seeing and Perception. External features of the Eye

Seeing and Perception. External features of the Eye Seeing and Perception Deceives the Eye This is Madness D R Campbell School of Computing University of Paisley 1 External features of the Eye The circular opening of the iris muscles forms the pupil, which

More information

Getting light to imager. Capturing Images. Depth and Distance. Ideal Imaging. CS559 Lecture 2 Lights, Cameras, Eyes

Getting light to imager. Capturing Images. Depth and Distance. Ideal Imaging. CS559 Lecture 2 Lights, Cameras, Eyes CS559 Lecture 2 Lights, Cameras, Eyes Last time: what is an image idea of image-based (raster representation) Today: image capture/acquisition, focus cameras and eyes displays and intensities Corrected

More information

The human visual system

The human visual system The human visual system Vision and hearing are the two most important means by which humans perceive the outside world. 1 Low-level vision Light is the electromagnetic radiation that stimulates our visual

More information

Visual Perception of Images

Visual Perception of Images Visual Perception of Images A processed image is usually intended to be viewed by a human observer. An understanding of how humans perceive visual stimuli the human visual system (HVS) is crucial to the

More information

Light. Path of Light. Looking at things. Depth and Distance. Getting light to imager. CS559 Lecture 2 Lights, Cameras, Eyes

Light. Path of Light. Looking at things. Depth and Distance. Getting light to imager. CS559 Lecture 2 Lights, Cameras, Eyes CS559 Lecture 2 Lights, Cameras, Eyes These are course notes (not used as slides) Written by Mike Gleicher, Sept. 2005 Adjusted after class stuff we didn t get to removed / mistakes fixed Light Electromagnetic

More information

CSE 527: Introduction to Computer Vision

CSE 527: Introduction to Computer Vision CSE 527: Introduction to Computer Vision Week 2 - Class 2: Vision, Physics, Cameras September 7th, 2017 Today Physics Human Vision Eye Brain Perspective Projection Camera Models Image Formation Digital

More information

The eye* The eye is a slightly asymmetrical globe, about an inch in diameter. The front part of the eye (the part you see in the mirror) includes:

The eye* The eye is a slightly asymmetrical globe, about an inch in diameter. The front part of the eye (the part you see in the mirror) includes: The eye* The eye is a slightly asymmetrical globe, about an inch in diameter. The front part of the eye (the part you see in the mirror) includes: The iris (the pigmented part) The cornea (a clear dome

More information

Life Science Chapter 2 Study Guide

Life Science Chapter 2 Study Guide Key concepts and definitions Waves and the Electromagnetic Spectrum Wave Energy Medium Mechanical waves Amplitude Wavelength Frequency Speed Properties of Waves (pages 40-41) Trough Crest Hertz Electromagnetic

More information

Mahdi Amiri. March Sharif University of Technology

Mahdi Amiri. March Sharif University of Technology Course Presentation Multimedia Systems Color Space Mahdi Amiri March 2014 Sharif University of Technology The wavelength λ of a sinusoidal waveform traveling at constant speed ν is given by Physics of

More information

CS 565 Computer Vision. Nazar Khan PUCIT Lecture 4: Colour

CS 565 Computer Vision. Nazar Khan PUCIT Lecture 4: Colour CS 565 Computer Vision Nazar Khan PUCIT Lecture 4: Colour Topics to be covered Motivation for Studying Colour Physical Background Biological Background Technical Colour Spaces Motivation Colour science

More information

Reading. 1. Visual perception. Outline. Forming an image. Optional: Glassner, Principles of Digital Image Synthesis, sections

Reading. 1. Visual perception. Outline. Forming an image. Optional: Glassner, Principles of Digital Image Synthesis, sections Reading Optional: Glassner, Principles of Digital mage Synthesis, sections 1.1-1.6. 1. Visual perception Brian Wandell. Foundations of Vision. Sinauer Associates, Sunderland, MA, 1995. Research papers:

More information

Visual Perception. Overview. The Eye. Information Processing by Human Observer

Visual Perception. Overview. The Eye. Information Processing by Human Observer Visual Perception Spring 06 Instructor: K. J. Ray Liu ECE Department, Univ. of Maryland, College Park Overview Last Class Introduction to DIP/DVP applications and examples Image as a function Concepts

More information

Visual Effects of. Light. Warmth. Light is life. Sun as a deity (god) If sun would turn off the life on earth would extinct

Visual Effects of. Light. Warmth. Light is life. Sun as a deity (god) If sun would turn off the life on earth would extinct Visual Effects of Light Prof. Grega Bizjak, PhD Laboratory of Lighting and Photometry Faculty of Electrical Engineering University of Ljubljana Light is life If sun would turn off the life on earth would

More information

Why is blue tinted backlight better?

Why is blue tinted backlight better? Why is blue tinted backlight better? L. Paget a,*, A. Scott b, R. Bräuer a, W. Kupper a, G. Scott b a Siemens Display Technologies, Marketing and Sales, Karlsruhe, Germany b Siemens Display Technologies,

More information

Further reading. 1. Visual perception. Restricting the light. Forming an image. Angel, section 1.4

Further reading. 1. Visual perception. Restricting the light. Forming an image. Angel, section 1.4 Further reading Angel, section 1.4 Glassner, Principles of Digital mage Synthesis, sections 1.1-1.6. 1. Visual perception Spencer, Shirley, Zimmerman, and Greenberg. Physically-based glare effects for

More information

Graphics and Image Processing Basics

Graphics and Image Processing Basics EST 323 / CSE 524: CG-HCI Graphics and Image Processing Basics Klaus Mueller Computer Science Department Stony Brook University Julian Beever Optical Illusion: Sidewalk Art Julian Beever Optical Illusion:

More information

Achim J. Lilienthal Mobile Robotics and Olfaction Lab, AASS, Örebro University

Achim J. Lilienthal Mobile Robotics and Olfaction Lab, AASS, Örebro University Achim J. Lilienthal Mobile Robotics and Olfaction Lab, Room T1227, Mo, 11-12 o'clock AASS, Örebro University (please drop me an email in advance) achim.lilienthal@oru.se 1 2. General Introduction Schedule

More information

Visual Perception. human perception display devices. CS Visual Perception

Visual Perception. human perception display devices. CS Visual Perception Visual Perception human perception display devices 1 Reference Chapters 4, 5 Designing with the Mind in Mind by Jeff Johnson 2 Visual Perception Most user interfaces are visual in nature. So, it is important

More information

2 The First Steps in Vision

2 The First Steps in Vision 2 The First Steps in Vision 2 The First Steps in Vision A Little Light Physics Eyes That See light Retinal Information Processing Whistling in the Dark: Dark and Light Adaptation The Man Who Could Not

More information

Spatial Vision: Primary Visual Cortex (Chapter 3, part 1)

Spatial Vision: Primary Visual Cortex (Chapter 3, part 1) Spatial Vision: Primary Visual Cortex (Chapter 3, part 1) Lecture 6 Jonathan Pillow Sensation & Perception (PSY 345 / NEU 325) Princeton University, Spring 2019 1 remaining Chapter 2 stuff 2 Mach Band

More information

Vision. Biological vision and image processing

Vision. Biological vision and image processing Vision Stefano Ferrari Università degli Studi di Milano stefano.ferrari@unimi.it Methods for Image processing academic year 2017 2018 Biological vision and image processing The human visual perception

More information

Visual Perception. Readings and References. Forming an image. Pinhole camera. Readings. Other References. CSE 457, Autumn 2004 Computer Graphics

Visual Perception. Readings and References. Forming an image. Pinhole camera. Readings. Other References. CSE 457, Autumn 2004 Computer Graphics Readings and References Visual Perception CSE 457, Autumn Computer Graphics Readings Sections 1.4-1.5, Interactive Computer Graphics, Angel Other References Foundations of Vision, Brian Wandell, pp. 45-50

More information

The eye, displays and visual effects

The eye, displays and visual effects The eye, displays and visual effects Week 2 IAT 814 Lyn Bartram Visible light and surfaces Perception is about understanding patterns of light. Visible light constitutes a very small part of the electromagnetic

More information

Spectral colors. What is colour? 11/23/17. Colour Vision 1 - receptoral. Colour Vision I: The receptoral basis of colour vision

Spectral colors. What is colour? 11/23/17. Colour Vision 1 - receptoral. Colour Vision I: The receptoral basis of colour vision Colour Vision I: The receptoral basis of colour vision Colour Vision 1 - receptoral What is colour? Relating a physical attribute to sensation Principle of Trichromacy & metamers Prof. Kathy T. Mullen

More information

Capturing Light in man and machine

Capturing Light in man and machine Capturing Light in man and machine CS194: Image Manipulation & Computational Photography Alexei Efros, UC Berkeley, Fall 2014 Etymology PHOTOGRAPHY light drawing / writing Image Formation Digital Camera

More information

12.1. Human Perception of Light. Perceiving Light

12.1. Human Perception of Light. Perceiving Light 12.1 Human Perception of Light Here is a summary of what you will learn in this section: Focussing of light in your eye is accomplished by the cornea, the lens, and the fluids contained in your eye. Light

More information

Reading. Lenses, cont d. Lenses. Vision and color. d d f. Good resources: Glassner, Principles of Digital Image Synthesis, pp

Reading. Lenses, cont d. Lenses. Vision and color. d d f. Good resources: Glassner, Principles of Digital Image Synthesis, pp Reading Good resources: Glassner, Principles of Digital Image Synthesis, pp. 5-32. Palmer, Vision Science: Photons to Phenomenology. Vision and color Wandell. Foundations of Vision. 1 2 Lenses The human

More information

Sensation. What is Sensation, Perception, and Cognition. All sensory systems operate the same, they only use different mechanisms

Sensation. What is Sensation, Perception, and Cognition. All sensory systems operate the same, they only use different mechanisms Sensation All sensory systems operate the same, they only use different mechanisms 1. Have a physical stimulus (e.g., light) 2. The stimulus emits some sort of energy 3. Energy activates some sort of receptor

More information

Sensation. Sensation. Perception. What is Sensation, Perception, and Cognition

Sensation. Sensation. Perception. What is Sensation, Perception, and Cognition All sensory systems operate the same, they only use different mechanisms Sensation 1. Have a physical stimulus (e.g., light) 2. The stimulus emits some sort of energy 3. Energy activates some sort of receptor

More information

Lecture 8. Lecture 8. r 1

Lecture 8. Lecture 8. r 1 Lecture 8 Achromat Design Design starts with desired Next choose your glass materials, i.e. Find P D P D, then get f D P D K K Choose radii (still some freedom left in choice of radii for minimization

More information

VC 11/12 T2 Image Formation

VC 11/12 T2 Image Formation VC 11/12 T2 Image Formation Mestrado em Ciência de Computadores Mestrado Integrado em Engenharia de Redes e Sistemas Informáticos Miguel Tavares Coimbra Outline Computer Vision? The Human Visual System

More information

CMPSCI 670: Computer Vision! Color. University of Massachusetts, Amherst September 15, 2014 Instructor: Subhransu Maji

CMPSCI 670: Computer Vision! Color. University of Massachusetts, Amherst September 15, 2014 Instructor: Subhransu Maji CMPSCI 670: Computer Vision! Color University of Massachusetts, Amherst September 15, 2014 Instructor: Subhransu Maji Slides by D.A. Forsyth 2 Color is the result of interaction between light in the environment

More information

Lecture 26. PHY 112: Light, Color and Vision. Finalities. Final: Thursday May 19, 2:15 to 4:45 pm. Prof. Clark McGrew Physics D 134

Lecture 26. PHY 112: Light, Color and Vision. Finalities. Final: Thursday May 19, 2:15 to 4:45 pm. Prof. Clark McGrew Physics D 134 PHY 112: Light, Color and Vision Lecture 26 Prof. Clark McGrew Physics D 134 Finalities Final: Thursday May 19, 2:15 to 4:45 pm ESS 079 (this room) Lecture 26 PHY 112 Lecture 1 Introductory Chapters Chapters

More information

Capturing Light in man and machine. Some figures from Steve Seitz, Steve Palmer, Paul Debevec, and Gonzalez et al.

Capturing Light in man and machine. Some figures from Steve Seitz, Steve Palmer, Paul Debevec, and Gonzalez et al. Capturing Light in man and machine Some figures from Steve Seitz, Steve Palmer, Paul Debevec, and Gonzalez et al. 15-463: Computational Photography Alexei Efros, CMU, Fall 2005 Image Formation Digital

More information

Exam 3--PHYS 151--S15

Exam 3--PHYS 151--S15 Name: Class: Date: Exam 3--PHYS 151--S15 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Consider this diagram of the eye and answer the following questions.

More information

VC 14/15 TP2 Image Formation

VC 14/15 TP2 Image Formation VC 14/15 TP2 Image Formation Mestrado em Ciência de Computadores Mestrado Integrado em Engenharia de Redes e Sistemas Informáticos Miguel Tavares Coimbra Outline Computer Vision? The Human Visual System

More information

Vision 1. Physical Properties of Light. Overview of Topics. Light, Optics, & The Eye Chaudhuri, Chapter 8

Vision 1. Physical Properties of Light. Overview of Topics. Light, Optics, & The Eye Chaudhuri, Chapter 8 Vision 1 Light, Optics, & The Eye Chaudhuri, Chapter 8 1 1 Overview of Topics Physical Properties of Light Physical properties of light Interaction of light with objects Anatomy of the eye 2 3 Light A

More information

Science 8 Unit 2 Pack:

Science 8 Unit 2 Pack: Science 8 Unit 2 Pack: Name Page 0 Section 4.1 : The Properties of Waves Pages By the end of section 4.1 you should be able to understand the following: Waves are disturbances that transmit energy from

More information

Detection of external stimuli Response to the stimuli Transmission of the response to the brain

Detection of external stimuli Response to the stimuli Transmission of the response to the brain Sensation Detection of external stimuli Response to the stimuli Transmission of the response to the brain Perception Processing, organizing and interpreting sensory signals Internal representation of the

More information

AS Psychology Activity 4

AS Psychology Activity 4 AS Psychology Activity 4 Anatomy of The Eye Light enters the eye and is brought into focus by the cornea and the lens. The fovea is the focal point it is a small depression in the retina, at the back of

More information

Lecture 3: Grey and Color Image Processing

Lecture 3: Grey and Color Image Processing I22: Digital Image processing Lecture 3: Grey and Color Image Processing Prof. YingLi Tian Sept. 13, 217 Department of Electrical Engineering The City College of New York The City University of New York

More information

Multimedia Systems Color Space Mahdi Amiri March 2012 Sharif University of Technology

Multimedia Systems Color Space Mahdi Amiri March 2012 Sharif University of Technology Course Presentation Multimedia Systems Color Space Mahdi Amiri March 2012 Sharif University of Technology Physics of Color Light Light or visible light is the portion of electromagnetic radiation that

More information

Capturing Light in man and machine

Capturing Light in man and machine Capturing Light in man and machine 15-463: Computational Photography Alexei Efros, CMU, Fall 2010 Etymology PHOTOGRAPHY light drawing / writing Image Formation Digital Camera Film The Eye Sensor Array

More information

VC 16/17 TP2 Image Formation

VC 16/17 TP2 Image Formation VC 16/17 TP2 Image Formation Mestrado em Ciência de Computadores Mestrado Integrado em Engenharia de Redes e Sistemas Informáticos Hélder Filipe Pinto de Oliveira Outline Computer Vision? The Human Visual

More information

We have already discussed retinal structure and organization, as well as the photochemical and electrophysiological basis for vision.

We have already discussed retinal structure and organization, as well as the photochemical and electrophysiological basis for vision. LECTURE 4 SENSORY ASPECTS OF VISION We have already discussed retinal structure and organization, as well as the photochemical and electrophysiological basis for vision. At the beginning of the course,

More information

General Imaging System

General Imaging System General Imaging System Lecture Slides ME 4060 Machine Vision and Vision-based Control Chapter 5 Image Sensing and Acquisition By Dr. Debao Zhou 1 2 Light, Color, and Electromagnetic Spectrum Penetrate

More information

Color. Bilkent University. CS554 Computer Vision Pinar Duygulu

Color. Bilkent University. CS554 Computer Vision Pinar Duygulu 1 Color CS 554 Computer Vision Pinar Duygulu Bilkent University 2 What is light? Electromagnetic radiation (EMR) moving along rays in space R(λ) is EMR, measured in units of power (watts) λ is wavelength

More information

Colour. Why/How do we perceive colours? Electromagnetic Spectrum (1: visible is very small part 2: not all colours are present in the rainbow!

Colour. Why/How do we perceive colours? Electromagnetic Spectrum (1: visible is very small part 2: not all colours are present in the rainbow! Colour What is colour? Human-centric view of colour Computer-centric view of colour Colour models Monitor production of colour Accurate colour reproduction Colour Lecture (2 lectures)! Richardson, Chapter

More information

Image Formation and Capture

Image Formation and Capture Figure credits: B. Curless, E. Hecht, W.J. Smith, B.K.P. Horn, A. Theuwissen, and J. Malik Image Formation and Capture COS 429: Computer Vision Image Formation and Capture Real world Optics Sensor Devices

More information

Chapter 2: The Beginnings of Perception

Chapter 2: The Beginnings of Perception Chapter 2: The Beginnings of Perception We ll see the first three steps of the perceptual process for vision https:// 49.media.tumblr.co m/ 87423d97f3fbba8fa4 91f2f1bfbb6893/ tumblr_o1jdiqp4tc1 qabbyto1_500.gif

More information

IFT3355: Infographie Couleur. Victor Ostromoukhov, Pierre Poulin Dép. I.R.O. Université de Montréal

IFT3355: Infographie Couleur. Victor Ostromoukhov, Pierre Poulin Dép. I.R.O. Université de Montréal IFT3355: Infographie Couleur Victor Ostromoukhov, Pierre Poulin Dép. I.R.O. Université de Montréal Color Appearance Visual Range Electromagnetic waves (in nanometres) γ rays X rays ultraviolet violet

More information

Physics 1230: Light and Color. Guest Lecture, Jack again. Lecture 23: More about cameras

Physics 1230: Light and Color. Guest Lecture, Jack again. Lecture 23: More about cameras Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230 Guest Lecture, Jack again Lecture 23: More about

More information